
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Semi-synchronized Non-blocking Concurrent
Kernel Cruising

Donghai Tian, Qiang Zeng, Dinghao Wu, Member, IEEE,Peng Liu, Member, IEEE, Changzhen Hu

Abstract—Kernel heap buffer overflow vulnerabilities have been exposed for decades, but there are few practical countermeasure that
can be applied to OS kernels. Previous solutions either suffer from high performance overhead or compatibility problems with
mainstream kernels and hardware. In this paper, we present KRUISER, a concurrent kernel heap buffer overflow monitor. Unlike
conventional methods, the security enforcement of which is usually inlined into the kernel execution, Kruiser migrates security
enforcement from the kernel’s normal execution to a concurrent monitor process, leveraging the increasingly popular multi-core
architectures. To reduce the synchronization overhead between the monitor process and the running kernel, we design a novel
semi-synchronized non-blocking monitoring algorithm, which enables efficient runtime detection on live memory without incurring false
positives. To prevent the monitor process from being tampered and provide guaranteed performance isolation, we utilize the
virtualization technology to run the monitor process out of the monitored VM, while heap memory allocation information is collected
inside the monitored VM in a secure and efficient way. The hybrid VM monitoring technique combined with the secure canary that
cannot be counterfeited by attackers provides guaranteed overflow detection with high efficiency. We have implemented a prototype of
KRUISER based on Linux and the Xen/KVM hypervisor. The evaluation shows that Kruiser can detect realistic kernel heap buffer
overflow attacks in cloud environment effectively with minimal cost.

Index Terms—kernel, virtualization, heap buffer overflow, semi-synchronized, non-blocking, concurrent monitoring.

F

1 INTRODUCTION

Buffer overflows have been comprehensively studied for many
years, but they remain as one of the most severe vulnerabilities.
According to the National Vulnerability Database, 2425 buffer
overflow vulnerabilities were reported in the recent three years,
and more than 70% of them were marked as high severity [1].

Buffer overflows can be roughly divided into two categories:
stack-based buffer overflows and heap-based buffer overflows.
Both of them exist in not only user space but also kernel space.
Compared with user-space buffer overflows, kernel-space buffer
overflow vulnerabilities are more severe considering that if once
such a vulnerability is exploited, attackers could override any
kernel-level protection mechanism. Recently, more and more real
buffer overflow exploits have been released in modern operating
systems including Linux [2], OpenBSD [3] and Windows systems
(e.g., Windows 7 [4] and Windows 10 [5]).

Many effective countermeasures against stack-based buffer
overflows have been proposed, some of which, such as Stack-
Guard [6] and ProPolice [7], have been widely deployed in
compilers and commodity OSes. On the other hand, practical
countermeasures against heap-based buffer overflows are few,
especially in the kernel space. To our knowledge, there are no
practical mechanisms that have been widely deployed to detectk-
ernel space heap buffer overflows. Previous methods suffer from
two major limitations: (1) some of them perform detection before

• Donghai Tian is with School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China. E-mail: dhai@bit.edu.cn.

• Qiang Zeng is with Department of Computer Science and Engineering,
University of South Carolina, Columbia, SC 29201.

• Dinghao Wu, and Peng Liu are with College of Information Sciences and
Technology, The Pennsylvania State University, PA 16802.

• Changzhen Hu is with School of Software, Beijing Institute of Technology,
Beijing 100081, China.

This paper is an extension of the work originally reported in Proceedings of
the 19th Network and Distributed System Security Symposium (NDSS 2012),
San Diego, California, February 5--8, 2012 [77].

each buffer write operation [8], [9], [10], [11], [12], which in-
evitably introduces considerable performance overhead. This kind
of inlined security enforcement can heavily delay the monitored
process when the monitored operations become intense; (2) some
approaches do not check heap buffer overflows until a buffer is
deallocated [13], [14], so that the detection occasions entirely
depend on the control flow, which may allow a large time window
for attackers to compromise the system. Other approaches [15],
[16] either depend on special hardware or require the operating
system to be ported to a new architecture, which are not practical
for wide deployment.

In this paper, we present Kruiser, a concurrent kernel heap
overflow monitor. Unlike previous solutions, Kruiser utilizes the
commodity hardware to achieve highly efficient monitoring with
minimal changes to the existing OS kernel. Our high-level idea is
consistent with the canary checking methods, which firstly places
canaries into heap buffers and then check their integrity. When a
canary is found to be tampered, an overflow is detected.

Different from conventional canary-based methods that are
enforced by the kernel inline code, we make use of a separate
process, which runs concurrently with the OS kernel to keep
checking the canaries. To address the concurrency issues between
the monitor process and OS kernel, we design an efficient data
structure that is used to collect canary location information. Based
on this data structure, we propose a novel semi-synchronized
algorithm, by which the heap allocator does not need to be
fully synchronized while the monitor process is able to check
heap canaries continuously. The monitor process is constantly
checking kernel heap buffer overflows in an infinite loop. We call
this technique kernel cruising. Our semi-synchronized cruising
algorithm is non-blocking. The kernel execution is not blocked
by monitoring, and monitoring is not blocked by the kernel
execution. Thus the performance overhead and the impacts on
kernel execution characteristics are very small on a multi-core
architecture.

IEEE TRANSACTIONS ON CLOUD COMPUTING 2

Moreover, we apply a cryptography method to generate differ-
ent canaries for different kernel buffers. In this way, it is difficult
for attackers to recover canaries after launching the kernel heap
overflows.

We have explored kernel heap management design properties
to collect heap buffer information at page level instead of individ-
ual buffers. A conventional approach is to maintain the collection
of canary addresses of live buffers in a dynamic data structure,
which requires hooking per buffer allocation and deallocation.
Instead of interposing per heap buffer operation, we explore the
characteristics of kernel heap management and hook the much less
frequent operations that switch pages into and out of the heap page
pool, which enables us to use a fix-sized static data structure to
store the metadata describing all the canary locations. Compared to
using a dynamic data structure, our approach avoids the overhead
of data structure growth and shrink; more importantly, it reduces
overhead and complexity of the synchronization between the
monitor process and the canary collecting code.

To provide performance isolation and prevent the monitor
process from being compromised by attackers, we take advantage
of virtualization to deploy the monitor process in a secure execu-
tion environment. Kruiser employs the Direct Memory Mapping
technique, by which the monitor process can perform frequent
memory introspection efficiently. On the other hand, the buffer
address information is collected inside the VM to avoid costly
hypervisor calls; Secure In-VM (SIM) [17] approach is adapted to
protect the metadata from attackers.

In summary, we make the following contributions:

• Semi-synchronized concurrent monitoring: We propose
a novel non-blocking concurrent monitoring algorithm,
in which neither the monitor process nor the monitored
process needs to be fully synchronized to eliminate con-
currency issues such as race conditions; the monitor
keeps checking live kernel memory without incurring
false positives. We call this semi-synchronized. Concurrent
monitoring leverages more and more popular multicore
architectures and thus the performance overhead is lower
compared to inline security enforcement.

• Kernel cruising: The novel cruising idea has been re-
cently explored [18], [19]. It is nontrivial to apply this to
kernel heap cruising.

• Page-level buffer region vs. individual buffers: We
explore specific kernel heap management design properties
to keep metadata at page level instead of individual buffer
level. This enables very efficient heap buffer metadata
bookkeeping via a static fixed-size array instead of dy-
namic data structures and thus reduces the performance
overhead dramatically.

• Out-of-VM monitoring plus In-VM interposition: The
isolated monitor process along with direct memory map-
ping through virtualization is applied to achieve efficient
out-of-the-box monitoring. Moreover, we apply the SIM
framework to protect the In-VM metadata collection. The
hybrid VM monitoring scheme provides a secure and
efficient monitoring in cloud environment.

• Secure canary: Unlike conventional canaries, which can
be inferred and then counterfeited based on other canary
values, we proposed the conception of secure canary and
provided an efficient solution. Secure canaries along with
the hybrid VM monitoring scheme guarantee the detection
of buffer overflow attacks.

We have implemented a prototype of Kruiser based on Linux
and the Xen/KVM hypervisor. The effectiveness of Kruiser has
been evaluated and the experiments show that Kruiser can detect
kernel heap overflows effectively. With respect to performance and
scalability, our kernel cruising approach is practical—it imposes
negligible performance overhead on SPEC CPU2006, and the
throughput slowdown on Apache is 7.9% on average.

2 PROBLEM STATEMENT

Modern virtualization technique plays an important role in cloud
computing. As more and more software services are deployed
into virtualization environments, virtualization (or cloud) security
becomes very important. Many researches focus on protecting the
security of applications running in the virtualization (or cloud)
environments. On the other hand, the OS kernel security is critical.
If once the OS kernel is compromised, attackers could abuse the
highest privileges to achieve their malicious purposes. Among all
the kernel threats, the kernel heap buffer overflow is one of the
most dangerous threats considering that it can lead to arbitrary
code execution in the kernel space. The major reason for this
threat is that the OS kernel component (or kernel module) does
not perform boundary check when it accesses the kernel heap
buffer. To our knowledge, the kernel heap security is not well
addressed due to its complexity. How to provide a kernel heap
protection mechanism that can efficiently detect a kernel heap
buffer overflow in the virtualization (or cloud) environment is an
important research problem.

3 THREAT MODEL

This paper is focused on monitoring kernel heap buffer overflows.
Other security issues, such as memory content disclosure or
shellcode injection by exploiting format string vulnerabilities,
are not in the scope of this paper. We assume the goal of an
attacker X is to compromise the kernel of a VM; then he can
do anything the kernel can do. Attacker X can launch arbitrary
attacks against the kernel, but we assume that the kernel has not
been compromised by other attacks launched by X before a heap
overflow attack succeeds. Otherwise, he had already achieved his
goal. Once the attacker X has compromised the kernel using heap
buffer overflows, we assume X can do anything the kernel is
authorized to do regarding memory read/write, OS control flow
altering, etc. Since this work relies on the virtualization technology
to monitor the kernel heap, we assume the underlying hypervisor is
trusted. We could leverage previous research (e.g., HyperSafe [20],
HyperSentry [21] and HyperCheck [22]) to protect the hypervisor
security. Moreover, our trusted computing base includes a trusted
VM where the monitor resides. This monitoring VM is special,
and it is not supposed to run any other application. Thanks to the
virtualization isolation, it is very difficult for attackers to subvert
the monitoring VM that singly runs a user program. To further
reduce the attack surface, the monitoring VM does not provide
any service outside.

4 BACKGROUND

SLAB allocator. Linux adopts the slab allocator [23]1 for kernel
heap management. It uses caches to organize and manage heap

1. Linux can also use the SLUB/SLOB allocator to manage kernel heap.
In this paper, we focus on the SLAB allocator for its fast performance on a
multiprocessor system.

IEEE TRANSACTIONS ON CLOUD COMPUTING 3

buffer objects. There are two types of caches in kernel heap,
namely general caches and specific caches. General caches are
mainly used to serve kmalloc calls requesting heap buffers of
various sizes, while each specific cache is used to allocate objects
of a specific kernel data structure, such as task struct. A cache
consists of one or more slabs, each of which occupies one or
more physically contiguous pages and contains objects of the same
type. The metadata of a slab describes the object arrangement and
allocation status within the slab page (or pages).

Whenever a kernel component needs a kernel object, the
slab allocator will return a prepared one if the slab is already
constructed and has a free object. Otherwise, the allocator will
carry out the slab construction and initialize the associated objects.
When a kernel object is freed, it doesn’t get destructed, but simply
returned to its slab.

Canary-based Detection of Heap Overflows. Robertson et
al. [13] first present the canary-based approach for heap overflow
detection. The basic idea of this approach is to hook the allocator
for adding 4-byte canary at the end of buffer during the dynamic
allocation. When the dynamic buffer is freed, the allocator will
check the canary integrity for the heap overflow detection. This
approach is not new, but it is non-trivial to be applied for the OS
kernel.

5 CHALLENGES AND SOLUTIONS

5.1 Overview
Based on the canary-based method, we propose a concurrent
heap monitoring method for the OS kernel. The key idea is to
generate a separate monitor process for checking the canaries. By
instrumenting the slab allocator, our system attaches one canary
word at the end of each heap buffer. The monitor process keeps
scanning, or cruising, the canaries to detect buffer overflows.

5.2 Challenges

C1. Synchronization. Since the monitor process checks heap
memory which is shared and modified by other processes, syn-
chronization is vital to ensure the monitor process to locate and
check live buffers reliably without incurring false positives.

Lock-based approach: A straightforward approach is to walk
along the existing kernel data structures used to manage heap
memory, which is usually accessed in a lock-based manner. This
requires the monitor process to follow the locking discipline.
When the lock is held by the monitor process, other processes
may be blocked. On the other hand, the monitor process needs
to acquire the lock to proceed. Both the kernel performance and
monitoring effect will be affected using the lock-based approach.
Another approach is to collect canary addresses in a separate
dynamic data structure such as a hash table. By hooking per buffer
allocation and deallocation, the canary address is inserted into
and removed from the hash table, respectively. Nevertheless, it
still does not reduce but migrate the lock contention, since the
monitor process and other processes updating the hash table are
synchronized using locks.

Lock-free approach: Scanning volatile memory regions with-
out acquiring locks is hazardous [19], which usually needs to sus-
pend the system to double check when an anomaly is detected. The
whole system pause is not desirable and sometimes unacceptable.
Another approach is to maintain the collection of canary addresses
in a lock-free data structure. All processes update and access the

Address space 2Address space 1

Entry code

Exit code

Entry code

Exit code

Hooks

Fig. 1. Overview of Kruiser.

data structure in a non-blocking manner. However, the contention
between accessing processes may still lead to high overhead.

C2. Self-protection and canary counterfeit. As a countermea-
sure against buffer overflow attacks, our component can become
an attack target itself. We rely on a monitor process that keeps
checking—that is, cruising—the kernel heap integrity. After the
system is compromised by exploiting the buffer overflow vulnera-
bilities, attackers may try to kill the monitor process to disable the
detection completely. Attackers can also tamper or manipulate the
data structure needed by our component to mislead or evade the
detection. Moreover, attackers may try to recover the canary after
corrupting it.

C3. Compatibility. Kernel heap management is among the most
important components in OS kernels, whose data structures and
algorithms are generally well designed and implemented for
efficiency. Thus, the concurrent heap monitoring should not in-
troduce much modification for heap management. Moreover, the
solution should be compatible with mainstream systems as well as
hardware.

5.3 Solutions
The Fig. 1 presents the overview of our solution. Specifically,
the monitor process is running as a user-space program inside a
separate VM (i.e., Guest VM2) for self-protection. The heap buffer
metadata and hooking code are kept in the monitored VM (i.e.,
Guest VM1) to achieve efficient buffer information collection.
Moreover, the heap metadata are stored in the fixed size memory
area to facilitate Out-of-VM monitoring. The monitor accesses the
inter-VM heap metadata via an efficient technique called direct
memory mapping. To achieve a concurrent monitoring, the mon-
itor process needs to locate and access the canaries reliably and
efficiently, while the monitored system allocates and deallocates
the buffers and heap pages continuously.

To address the synchronization challenge (C1), We explore
the characteristics of kernel heap management, and propose to
interpose heap page allocation and deallocation, by which we
maintain concise metadata describing canary locations in a sepa-
rate efficient data structure. Compared with interposing per buffer
allocation and deallocation, the interposition is lightweight and
the resultant overhead is much lower. The per page metadata is
concise, which enables us to use a fix-sized static data structure
to store it. Compared with using a concurrent dynamic data
structure to collect canary addresses, the contention due to syn-
chronizing data structure growth and shrink and the overhead due
to data structure maintenance (node allocation and deallocation)
are completely eliminated. More importantly, as the monitor

IEEE TRANSACTIONS ON CLOUD COMPUTING 4

process traverses our own data structure rather than relying on
existing kernel data structures, it is more flexible to design the
synchronization algorithm, i.e. the monitor process does not need
to follow the synchronization discipline imposed by the kernel data
structure. Therefore, we are able to design a highly efficient semi-
synchronized non-blocking algorithm, which enables the monitor
process to constantly check the live memory of the monitored
kernel without incurring false positives.

To address the self-protection and canary counterfeit chal-
lenge (C2), we apply the virtualization technology to deploy the
monitor process into a trusted environment (Fig. 1). To ensure the
same efficiency as in-the-box monitoring, we introduce the Direct
Memory Mapping (DMM) technique, which allows the monitor
process to access the monitored OS memory efficiently. To protect
the heap metadata and interposition code from being compromised
by attackers, we apply the SIM [17] framework, which enables
the data and code to be protected safely and efficiently inside
the monitored VM. As shown in Fig. 1, by utilizing the VMM,
we introduce two separate address spaces in the monitored VM,
and address space 2 is used to place the heap metadata and
interposition code. The entry code and exit code are the only ways
to transfer execution between the two address spaces so that the
metadata can be updated. Canaries are generated applying efficient
cryptography, such that once a canary is corrupted, it is difficult
for attackers to infer and then recover the canary value.

To address the compatibility challenges (C3), we made
minimal changes to the existing kernel heap management based
on the commodity hardware. Specifically, we hook the alloca-
tion/deallocation that adds/removes pages into/from the heap page
pool to update the corresponding heap metadata in our data
structure, so that kernel heap buffer allocation algorithms are not
changed. On the other hand, the major monitor component is
located out of the monitored kernel leveraging the popular VMM
platform, which is widely used in cloud computing nowadays.

6 KERNEL CRUISING

In this section, we present the semi-synchronized non-blocking
kernel cruising algorithm. We introduce the data structure used in
the algorithm in Section 6.1. We discuss potential race conditions
in Section 6.2 and describe our algorithm in Section 6.3.

6.1 Page Identity Array
Kernels usually maintain heap metadata in dynamic data struc-
tures. For example, Linux kernel uses a set of lock-based lists to
describe the heap page pool. It is tempting to walk along the exist-
ing data structures to check heap buffers. This way the concurrent
monitor process has to follow the locking discipline, which would
introduce intense lock contention. Another concurrent approach,
as used in kernel memory mapping and data analysis for kernel
integrity checking [19], is to check without acquiring locks and
freeze the monitored VM for double-check to avoid false positives,
which may require suspending the VM frequently in our case.

Instead of relying on kernel-specific data structures, we main-
tain a separate structure called Page Identity Array (PIA). Its basic
form is a static array data structure with each entry recording the
identity of a page frame. A variety of page identity information
can be of interest, such as per page signature, access control,
accounting and auditing data. With regard to concurrent heap
monitoring, a PIA entry records whether a page frame is used for
heap memory, and if so, the metadata that is used to locate canaries

within the page. The first entry corresponds the first page frame,
and so forth. Since the kernel memory address space is fixed, the
size of PIA structure can be predetermined. This way we only
need to hook functions that add pages into the heap page pool and
that remove pages from it, updating metadata in the corresponding
entries. The monitor traverses the PIA structure and check canaries
according to the stored metadata. Compared to interposing per
buffer allocation and deallocation and collecting canary addresses
in a dynamic data structure, the overhead due to function hooking
and data structure maintenance is largely reduced. We postpone
details about metadata and memory overhead analysis in Section 7.

The idea of using a fixed-size data structure is due to the
insight into kernel heap management. We assume that a kernel
page, if used for heap memory, is divided into buffer objects of
equal size and that all the buffers in this page are arranged as an
array, which is true in most commodity systems. Given a heap
page and its initial buffer object address and size, the monitor
process can locate all the buffers within this page, such that the
metadata stored in each PIA entry can be small. Before a process
(or a kernel thread)2 adds a page into the heap page pool, the
canaries within the page are initialized and the corresponding PIA
entry is updated. By scanning the canaries within each page, the
monitor process detects buffer overflows. Although some buffer
objects are not allocated and some canary checking may be not
necessary, the simple read operations do not introduce much
overhead.

6.2 Race conditions

Exploring the characteristics of kernel heap management, we pro-
posed the static PIA structure, which avoids heap monitoring from
relying on kernel-specific heap data structure and supports highly
efficient random access. Nevertheless, synchronization between
the monitor process and processes updating page identities is still
an issue. For example, when the monitor process reads an entry,
another process may be updating it. Without synchronization, the
consistency of PIA entries cannot be ensured, which implies the
monitor process cannot retrieve heap buffers reliably.

Before we present the kernel heap cruising algorithm, we first
discuss the potential race conditions for sharing the PIA structure,
which motivate our semi-synchronized design in Section 6.3.
Three categories of processes need to access the PIA structure:
the monitor process, processes updating PIA entries when pages
are added into and removed from the pool, respectively. When
multiple processes access the PIA structure, a variety of race
conditions can occur, some of which are subtle.

Non-atomic entry write: As updating a PIA entry is not atomic, a
race condition occurs if we allow multiple processes to modify the
same entry simultaneously, which would corrupt the entry. Lock-
based synchronization is simple, but it incurs high performance
overhead and blocks heap operations.

Non-atomic entry read: When the monitor process is reading a
PIA entry, another process may be updating it. However, as the
read and update of an entry are not atomic, the monitor process
may read inconsistent entry values.

Time of check to time of use (TOCTTOU): For a given entry
if the corresponding page is in the heap pool, the monitor process
checks canaries within that page, during which, however, the page

2. In this paper we will use the two terms interchangeably.

IEEE TRANSACTIONS ON CLOUD COMPUTING 5

1 //Add a page into the heap page pool
2 AddPage(page){
3 ...
4 /* Inside critical section */
5 Initialize all the canaries within the page
6 Update the metadata in PIA[page];
7 smp_wmb(); // This write memory barrier

enforces a store ordering
8 PIA[page].version++;
9 ...

10 }
11
12 //Remove a page out of the heap page pool
13 RemovePage(page){
14 ...
15 /* Inside critical section */
16 for (each canary within the page)
17 if (the canary is tampered)
18 alarm(); // A Buffer overflow is

detected
19 PIA[page].version++;
20 ...
21 }
22
23 Monitor(){
24 uint ver1, ver2;
25 for (int page = 0; page < ENTRY_NUMBER; page++)

{
26 ver1 = PIA[page].version;
27 if (!(ver1 % 2))
28 continue; // Bypass non-heap page
29
30 smp_rmb(); // This read memory barrier

enforces a load ordering
31 Read the metadata stored in PIA[page];
32 smp_rmb();
33 ver2 = PIA[page].version;
34 if (ver1 != ver2)
35 continue; // Metadata was updated

during the read
36
37 for (each canary within the page){
38 if (the canary is tampered)
39 DoubleCheckOnTamper(page, ver1);
40 }
41 }
42 }
43
44 DoubleCheckOnTamper(page, ver){
45 uint ver_recheck = PIA[page].version;
46 if (ver_recheck != ver)
47 return; // The page was already removed/

reused
48 alarm(); // A buffer overflow is detected
49 }

Fig. 2. Kruiser monitoring algorithm.

may be removed from the pool and used for other purposes, such
that false alarms may be issued.

To avoid false alarms, it is tempting to double check whether
the page has been removed from the heap page pool when a canary
is detected tampered. Specifically, a flag field indicating whether
the page is in the pool is contained in each entry. A process
removing the page out of the heap page pool resets the flag; when
a heap buffer corruption is detected, the monitor process double
checks the flag to make sure the page is still in the pool. A buffer
overflow is reported only when a canary is tampered and the flag
in the PIA entry is not reset. However, it cannot avoid the ABA
hazard as discussed below.

ABA hazard: An ABA hazard occurs when one process reads
a value A from some position, and then needs to make sure the

position is not updated since last access by reading it again and
comparing the second read value with A. However, between the
two reads, other processes may have updated the position from
value A to B then back to A. In our case, it may lead to an ABA
hazard if the monitor process intends to determine whether the
entry has been updated by reading the flag twice, considering that
other processes may have removed the page from the heap page
pool and then added it back between the two reads, such that the
idea of double-checking the flag can still lead to false alarms due
to ABA hazards.

Compared to the idea of walking along existing kernel data
structures, we apparently have conquered nothing except migrat-
ing the synchronization problems to the PIA structure. However,
as presented below, we propose a semi-synchronized algorithm
based on PIA to resolve all the problems without incurring false
positives or high overhead.

6.3 Semi-synchronized Non-blocking Cruising
We propose an efficient semi-synchronized non-blocking kernel
cruising algorithm, as shown in Fig. 2, that works with the PIA
structure. It resolves the concerns of race conditions without
introducing complex synchronization mechanisms, such as fine-
grained locks and intricate lock-free data structures.

We add an unsigned integer field version in each entry, which
records the “version” of the corresponding page. It is initialized
to be an even number when the corresponding page is not in the
heap page pool. Whenever a page is added into or removed from
the pool, its corresponding version number is incremented by one,
so that an odd version number indicates a heap page, and an even
number indicates a non-heap page. Because the size of the version
field is one word, the read and write of a version value is atomic,
which is critical for the correctness of our algorithm.

Avoid Concurrent Entry Updates: The kernel commonly
has its own synchronization mechanisms to prevent one page
frame from being manipulated for inconsistent purposes at the
same time. For example, Linux functions kmem getpages and
kmem freepages, which add page frames into and remove them
from the heap page pool, respectively, operate on page frame
in a critical section with lock protection. These two functions
correspond to AddPage and RemovePage in Fig. 2, respectively.
The PIA entry update operations can be put into the critical section
of these two functions; it is thus ensured that two processes cannot
update the same entry simultaneously. By leveraging the existing
synchronization mechanisms in kernel to maintain the PIA entries,
the additional overhead is minimal since updating metadata in a
PIA entry is fast. As long as the kernel prevents one page frame
from being manipulated by two processes simultaneously, there
should be synchronization mechanisms serving for this purpose,
so the “free-ride” is widely available.

Avoid Using Inconsistent Entry Value: Instead of preventing the
monitor process from reading inconsistent entry value, we allow
it to occur. However, we use a double-check algorithm to detect
potential inconsistency and avoid using inconsistent values. We
read the version field in an entry first (Line 26), and then retrieve
other entry fields followed by another read of the version field
(Line 33). The page is to be scanned if and only if the two reads
of the version field retrieve identical odd version numbers. Here
we assume the wraparound of the version value does not occur
between the two reads. Considering that page frame switch in and
out of the kernel heap pool is infrequent, it very unlikely that the

IEEE TRANSACTIONS ON CLOUD COMPUTING 6

version number wraps around a 32-bit unsigned integer between
the two reads.

Specifically, assume there is a non-heap page frame and the
AddPage function adds it into the heap page pool. In its critical
section it first updates the metadata and then the version number
(Line 8) in the corresponding page entry, such that if the monitor
process reads the version number of the entry being updated
and the read is before the version number update (Line 8), it
will retrieve an even number, which indicate a non-heap page.
The monitor process will bypass this page (Line 27) according
to our algorithm. A write memory barrier (Line 7) is inserted
before the version number update, which preserves an observable
update order. It is a convention to assume a sequential consis-
tency memory model in the parallel computing literature when
describing a concurrent algorithm; however, the observable update
sequence [24] is vital to the correctness of our algorithm, so we
point it out explicitly.

The version number is not incremented until RemovePage
removes the page from the pool. It does not need write memory
barriers around the version update because the enter and exit
of a critical section imply a full memory barrier, respectively.
Therefore, as long as the two reads of the version field retrieves
identical odd values, the retrieved metadata values are consistent.
Two read memory barriers (Line 30 and 32) are inserted into
the Monitor function, such that an observable load ordering is
enforced among the reads of the version number and metadata.
But note that the read and write memory barriers are not needed
on x86 and AMD64 platforms [25], as they already preserve the
loads and stores orders we need.

Identify TOCTTOU and ABA Hazards: Without locks or other
synchronization primitives, it is difficult to avoid TOCTTOU and
ABA hazards. Rather than avoiding the hazards, the algorithm
takes a different approach to recognizing potential hazards to avoid
false alarms. When a canary is found changed, the monitor process
does not report an overflow immediately. Instead, it makes sure
the page being checked has not ever been removed out, which
is indicated by the version number again. As long as the version
number does not change compared to the last read (Line 46), it
can be determined that the page has persisted as a heap page; in
this situation, if a canary is found corrupted, a buffer overflow is
reported without concerns of false positives.

Correctness Analysis: As shown in the Fig. 2, our monitor first
checks the version field of the PIA entry. If it is an even number,
the monitor will skip scanning canaries within this memory page.
After the monitor just finishes these operations, the kernel may
have initialized the canaries and PIA metadata for that page.
As a result, the newly allocated page has to wait for a cruising
cycle (i.e., the time to scan all the PIA entries) to get checked.
Our evaluations show that the maximum detection latency is less
than 40 milliseconds. Therefore, the time window for attackers to
recover the corrupted canary is very small. In addition, our secure
canary mechanism (section 7.4) guarantees that the corrupted
canary is extremely difficult to get recovered.

On the other hand, if the version field is an odd number, the
monitor will read the metadata stored in the PIA entry. In the
meanwhile, the kernel may be in the procedure of removing the
corresponding page from the heap page pool. Consequently, we
need to handle two situations shown in the Fig. 3.

For situation (1), the monitor finishes reading the PIA entry
and rechecking the version field before its value gets updated

Check Canary

Update Version

Number

Delete Page

Read PIA

Read Version

Number

Check Canary

Read PIA

Read Version

Number

Check Canary

(1)
(2)

Timeline

Monitor
Kernel

Read Version

Number

Read Version

Number

Fig. 3. Different situations for the monitor to read the version number
when it is updated by the kernel.

by the kernel. Since the PIA metadata is not changed for the
consistent version number, the monitor will use this metadata to
check the canaries. Before the checking is finished, the associated
memory page may be removed or reused. As a result, the monitor
may find the canary is tampered. To eliminate this false positive,
the monitor will recheck the version field again. If the value is
changed, it is a false alarm, Otherwise, it indicates a real buffer
overflow.

For situation (2), the monitor rechecks the version field of the
PIA entry after its value is already updated by the kernel. Since
the version number is changed, the monitor will skip scanning the
corresponding memory page. In this way, the unnecessary check
can be avoided.

The non-blocking algorithm is constructed using simple reads,
writes, and memory barriers without introducing complicated and
expensive synchronization mechanisms. The monitoring is wait-
free as it guarantees progress in a finite steps of its own execution;
i.e., it is non-blocking. The monitor process reads version numbers
to determine its control flow, so it is lightly synchronized, while
other processes manipulating heap pages make progress without
being synchronized or blocked by the monitor process. In other
words, the synchronization is one-way. That is why we call it a
semi-synchronized non-blocking cruising. On PIA entries, write-
write is synchronized with a free-ride from the existing kernel
functions, while read-write is not synchronized. It resolves the
concern of a variety of subtle race conditions without the need
of freezing the entire system for recheck. It does not have false
positives and enables efficient concurrent heap monitoring.

7 SYSTEM DESIGN AND IMPLEMENTATION

7.1 Architecture

The architecture, as shown in Fig. 4, can be divided into three
parts: VMM, Dom0 VM, and DomU VM. The Monitor Process
in Dom0 VM executing Monitor (Fig. 2) in an infinite loop to
monitor the kernel of DomU VM. A tiny component, namely
Memory Mapper, inside the VMM is used to map the kernel
memory of the monitored VM to the monitor process. For this
purpose, Memory Mapper needs to manipulate the user page
table of the monitor process, which is detailed in Section 7.2.
The custom driver in Dom0 VM is used to assist the monitor
process to release extra memory during the memory mapping.

IEEE TRANSACTIONS ON CLOUD COMPUTING 7

Custom

Driver

User Page

Table

Page Identity

Array

driver1

driverN

driver2

App

2

AppApp

1

3 5 7 6

4

8
0

Fig. 4. Kruiser Architecture. The numbers in the small circle indicate
Kruiser’s work flow.

The Page Identity Array and the interposition code reside in the
kernel space of DomU VM. By looking up this array, the Monitor
Process can get all the heap canary location information. To update
the PIA, the interposition code has to hook the slab allocations
and deallocations. For the PIA and interposion code protection,
Section 7.3 presents the solution.

The out-of-VM monitoring ensures performance isolation and
secureness, but usually leads to high overhead. The in-VM in-
formation collection provides native code execution and memory
access environments, but may be vulnerable to attacks. By ad-
dressing the problems, we combine the two schemes as a hybrid
solution to provide a secure and efficient monitoring.

7.2 Direct Memory Mapping

To achieve an out-of-the-box monitoring, a conventional method
is to run a monitor process in a trusted VM and perform virtual
machine introspection (VMI) via the underlying VMM. However,
frequent memory introspection would incur high performance
overhead. Each such operation requires VMM to walk the mon-
itored VM’s page table and map the target machine frames to
be accessible from the monitor process. To avoid this problem,
we introduce Direct Memory Mapping (DMM), by which the
monitor process can perform frequent memory introspection with
only one-time involvement of the VMM. Fig. 5 shows the basic
idea of DMM. By manipulating the underlying memory mapping,
the VMM can ensure the monitor to access the kernel memory of
the monitored OS directly. The procedure of DMM can be divided
into three stages.

First, the Monitor Process allocates a chunk of memory whose
size is determined by the maximum number of memory pages
used for DomU VM’s kernel heap (0© in Fig. 4). For Linux, the
kernel heap only resides in the memory pages that are directly
mapped by the OS kernel. In a 32-bit kernel, the maximum size
is 896MB even if the machine physical memory size is bigger
than 896MB. In a 64-bit kernel, the maximum size can be as
large as 64TB. The goal of this stage is to create a contiguous
range of virtual addresses. By properly manipulating the page table
entries (PTEs), the VMM enables the monitor process to access
the memory of the target OS kernel within the monitor’s virtual
address space. However, due to the demand paging mechanism
adopted by Linux, the PTEs are not actually established when the
host virtual addresses (HVAs) are created. Therefore, we need to
access all the created HVAs to trigger the creation of PTEs before
operating on them.

Monitor Process Target OS Kernel

Machine Physical Memory

Page

directory

Page

directory

Page table Page table

Dom0 DomU

Fig. 5. The direct memory mapping mechanism.

Second, the Monitor Process notifies the Custom Driver to
reclaim the newly allocated pages (1©) with the PTEs retained.
This is necessary because the Monitor Process only needs the
new HVAs and the corresponding PTEs but does not use the
allocated pages; returning these pages back can save a lot of
physical memory. Specifically, this stage consists of four steps.
1) The Custom Driver first walks the page table of the Monitor
Process to identify the PTEs for the memory chunk allocated
in the first stage (2©). 2) Then, with these identified PTEs, the
Custom Driver searches for the corresponding page descriptors
used by the page frame management. 3) After that, the Custom
Driver clears the relevant flags in these page descriptors (e.g.,
active flag), and resets their reference counters, map counters as
well as other related information. 4) Finally, the Custom Driver
invokes the API of the buddy system (i.e., free page()) to
release the page frames.

Third, after the Custom Driver finishes reclaiming pages, it
informs the Memory Mapper to perform DMM for the Monitor
Process (3©). By looking up the DomU’s physical-to-machine
(P2M) table (4©), the Memory collects all the machine frame
numbers (MFNs) of the DomU. With the mapping information,
the Memory Mapper updates the PTEs of the Monitor Process
accordingly. Specifically, given the newly allocated virtual address
range, the Memory Mapper walks the User Page Table to find the
corresponding PTEs (5©), whose page frame numbers are then
changed to the MFNs that are collected from the P2M table. In
this way, the Monitor Process can access the entire kernel of the
target OS with its own page table.

Once the Page Identity Array is allocated and initialized in
DomU VM, it invokes a hypercall to notify the underlying VMM
(6©), which then informs the monitor process to begin cruising
over the kernel heap (7©)(8©).

Reducing TLB Pressure. As the memory area that the Monitor
Process accesses may be large when a lot of kernel slabs are
produced, the kernel cruising may incur high TLB pressure. To
address this problem, we exploit the page size extension that is
supported by commodity microprocessors. Specifically, we set the
Page Size flag in the page directory entries, enabling the size of
page frames to be 2MB instead of 4KB (the page frame will be
4MB in size if it is in None-PAE mode). Note that to this end
we also need the hypervisor to support large pages. Fortunately,
Xen (with PAE enabled) mainly uses 2MB super pages to allocate
memory for guest VMs. On the other hand, to ensure the large
page to work properly, we require the starting virtual address
allocated for the monitor process should be 2MB-aligned. To meet
this requirement, the Monitor Process needs to allocate 2MB extra
memory during the first stage, and then adjust the starting virtual
address to be 2MB-aligned before performing DMM.

IEEE TRANSACTIONS ON CLOUD COMPUTING 8

Fig. 6. Memory protections in the kernel and monitor address space.

Address Translation. As the kernel heap is only located in the
memory region that is directly mapped into the kernel space,
the Monitor Process can access the kernel heap of the target
OS efficiently using simple address translation. Specifically, the
monitor first figures out the physical addresses of kernel objects
in the heap by subtracting the value of PAGE OFFSET3. Then, it
can get the private addresses by adding the physical addresses
to the starting address of the newly allocated memory area.
According to these user addresses, the Monitor Process can locate
the corresponding kernel objects.

7.3 In-VM Protection
Since the PIA data structure (metadata) and the interposition code
reside in the kernel space of DomU VM, attackers may manipulate
them directly after exploiting buffer overflow vulnerabilities. To
solve this problem, a conventional method is to move the data
structure and code to be protected into the hypervisor or another
trusted VM. However, it will incur significant performance over-
head when the world switches between the hypervisor and the
VM become frequent, especially for such fine-grained monitoring
as in our case. Instead, we employ the SIM [17] framework, which
enables a secure and efficient in-VM monitoring. Specifically, the
hypervisor creates a separate protected address space inside DomU
VM and puts the code and data to be protected in it, such that those
memory regions are protected from the DomU VM kernel by the
hypervisor, and the separate address space can only be entered and
exited through specially constructed protected gates.

In our case, we need to move the interposition code added in
the critical section of AddPage and RemovePage as well as the
PIA data structure in Fig. 2 to the protected memory regions. To
this end, we construct two shadow page tables (SPTs) specifying
different access permissions for the kernel and the In-VM monitor
part.4 As shown in Fig. 6, within a kernel address space, a process
is not allowed to access the monitor code and data regions, while
the kernel code cannot be executed after a process switches to the
monitor address space. To invoke the monitor’s code in the kernel
address space, the transition code is used to switch address spaces
and is executable in both address spaces. The transition code

3. In a 32-bit system, the offset value is 0xc0000000; in a 64-bit system, the
offset value is 0xffff880000000000.

4. Note that the In-VM monitor part only includes the PIA and the inter-
position code and will be referred to as the monitor in this section for short,
while the monitor process still runs out of the VM.

Fig. 7. Address space switching via transition pages in SMP.

modifies the CR3 register, which contains the physical address
of the root of the target shadow page table. By default, any change
of CR3 will result in a VMExit. Fortunately, a recent hardware
feature allows us to change the CR3 without being trapped to
the hypervisor if its value is in the CR3 TARGET LIST, which is
maintained by the hypervisor.

Address Space Maintaining and Switching in SMP. Main-
taining and switching shadow page tables in Symmetric Multi-
Processing (SMP) involves two challenges: 1) The SPTs for
the kernel address space and the monitor address space should
get synchronized for correctness. 2) The transition code should
determine the correct CR3 target when switching back to the
kernel address space.

To address the first challenge, a straightforward method is to
modify the hypervisor so that any changes to one SPT used by the
kernel (including allocating, changing and removing a SPT entry)
always propagate to the other SPT used by the monitor. Unfortu-
nately, this method will not only increase the extra synchronization
performance overhead but also add the implementation complex-
ity. Alternatively, our approach takes advantage of the fact that the
monitor only needs to access the kernel heap (for placing canaries)
and kernel stack (for accessing the arguments and storing local
variables), whose memory areas are only located in the pages that
are directly mapped by the OS kernel. Hence, by looking up the
P2M table, we could build the memory mapping in the SPT used
by the monitor with one-time effort, and then no synchronization
is needed.

For the second challenge, one common solution is to apply
a lock-based method so that only one single kernel component
can use the transition page to switch the address space back
and forth each time. However, doing so may affect the system
concurrency. Moreover, given multiple SPTs that could be used at
the same time in the SMP environments, this method may require
to save and restore the current CR3 value during the address space
switching. Since the instructions, MOV from CR3, cause VMExit
unconditionally, this approach could not reduce the performance
overhead. Instead, we take a different approach, which is shown
in Fig. 7. As the kernel components running on different CPUs
share the same monitor address space after the switch, only one
transition page is needed for the entry code.

On the other hand, considering the fact that different CPU may
use different SPT, we are required to generate different transition
pages for the exit code. Additionally, since each CPU may use
different SPTs and switch them as necessary, our system must
ensure that the CR3 target where the exit code is going to transfer
back equals to the address of shadow page directory being used
by the current CPU prior to entering the monitor address space.

IEEE TRANSACTIONS ON CLOUD COMPUTING 9

is canary

Object Object Object Object

Object

Object
Padding for

word alignment

Padding for cache

line alignment

Specific

cache

General

cache

Color

Slab

descriptor

Object

descriptor

Padding for cache

line alignment

The first object

The first object

(a) Attach one canary

to each object

(b) Put one additional canary

before the first object

Fig. 8. Placing canaries into kernel objects.

To this end, we modify hypervisor to update the CR3 target
used in the associated exit code when a per-CPU switches one
SPT to another. Accordingly, the hypervisor should also update
the CR3 TARGET LIST. To facilitate the monitor to select the
corresponding transition page for transferring the execution back
to the kernel component, we generate these pages according to the
different CPU ID, which can be easily determined by the monitor
(i.e., using the function smp processor id()).

Security Check. By invoking duplicate AddPage for the cor-
rupted page, attackers can recover the canaries. To avoid this
problem, we add one more check in the protected code to prevent
pages with odd PIA version numbers from being added again.
On the other hand, if attackers invoke RemovePage maliciously,
the final round of canary checking in the function can detect
overflows.

Additionally, we need to consider an attack scenario where the
exploit installs something (e.g., rootkit) on the system and then
reboots the kernel so that it would bypass our detection mecha-
nism. To address this problem, we could utilize the hypervisor to
mediate the reboot. Before the kernel is rebooted, we can pause
the system for a while such that the monitor process will discover
the corrupted canaries after scanning the entire kernel heap.

7.4 Placing Canaries
To detect underflows as well as overflows, it is straightforward
to place two canaries surrounding each buffer. Actually, Linux
with slab debug-enabled version has adopted this scheme to place
canaries. Unfortunately, this method does not make kernel objects
aligned in the first-level hardware cache, which may result in more
cache misses. To overcome this limitation, we only use one canary
instead of two canaries to surveil each kernel object. Since the
same type of kernel objects are grouped together inside a slab, our
approach can still detect the heap underflow attack occurred in
one object (but not the first one in a slab) by checking the canary
attached by the previous object.

As shown in Fig. 8(a), we apply two different ways to place
the canary. For the specific caches, we first pad the objects to be
word-aligned in size. Then, we add one word canary following the
object. Finally, to ensure the object get L1 cache line aligned, we
put some additional padding at the end of this object. On the other
hand, as the objects in general caches have already got L1 cache
line aligned in size, there is no need to change the form of these
objects. Instead, we place a canary in the last word of each object.
In addition, we hook the general object allocation function (i.e.,
kmalloc), and increase the original requested size by one word to
hold the canary.

Although the scheme above works well to detect underflows
(and overflows), it cannot deal with underflows occurred in the

first object, as there is no canary preceding it. To tackle this issue,
as shown in Fig. 8(b), we exploit the existing infrastructure to add
a canary before the first object. Specifically, if the slab descriptor
is located rightly before the first object, the canary is placed at the
end of this slab descriptor; or if there is a slab color,5 we put a
canary in the last word of this color.

Secure Canary Generation. To set canary values for kernel
objects, a practical solution should meet the two requirements:
1) after attackers have compromised the monitored kernel via
buffer overflows, they cannot recover the corrupted canaries; 2) the
canary generation and verification algorithms should be efficient
so that they will not affect the system performance and detection
latency. To satisfy these requirements, we employ a stream cipher
(RC4 [26]) to generate canary values. For each slab, we first
extract a random number from the entropy pool in Linux. Then,
this random number is used as a key “stretched” by RC4 into a
stream of bytes, the length of which is decided by the number
of objects inside the slab. Finally, each 4 bytes of this stream is
selected as a canary value for each object. On the other hand,
to facilitate canary checking, we store the key (i.e., the random
number) into the corresponding PIA entry for each slab.

Initially, the entropy pool is empty. As a result, extracting a
random number from the entropy pool at that time will cause a
problem. To address this issue, we modify the kernel to get the
initial random numbers from the underlying hypervisor during the
initialization. Specifically, the kernel first invokes a hypercall to
request a random number. Then, the hypervisor returns the result
by looking up Dom0 VM’s entropy pool. Once the kernel is fully
initialized, the hypervisor will shepherd the kernel to extract the
random numbers from its own entropy pool for the next requests.

Guaranteed Detection. With the In-VM protection and secure
canary generation, attackers can not hide their attacks in that 1)
The In-VM protection prevent attackers from manipulating the
PIA entries; 2) The canary generation based on the stream cipher
guarantees the difficulty for attackers to recover the corrupted
canaries within one cruising cycle. In addition, attackers cannot
change the memory mapping between the monitor process and the
monitored kernel in that the associated page table is maintained
by another trusted VM (i.e., Dom0). Therefore, the attacks are
bound to be detected within one cruising cycle after compromising
the system, unless the attackers know the exact canary value to
be corrupted beforehand, which usually implies the overread and
overrun vulnerabilities overlap for exactly the same buffer area.

Moreover, to improve the difficulty for attackers to compro-
mise and recover the canaries, we can change the linear scheme to
scan the PIA entries. Specifically, we utilize the random number
from the entropy pool as the first index for the PIA scan in each
crusing. In this way, the detection latency could be less than one
cruising cycle, thus reducing the kernel intrusion’s survival time
in probabilistic.

7.5 Locating Canaries

To locate and verify canaries in the Monitor Process, we hook
the slab allocations and deallocations to store the metadata into
the PIA entries, one of which is shown in Fig. 9. The mem field
record the starting address of the first object within the slab. As
each PIA entry corresponds to one physical page, we only need to

5. A slab color is a padding put in the beginning of each slab to optimize
the hardware cache performance.

IEEE TRANSACTIONS ON CLOUD COMPUTING 10

1 struct PIA_entry{
2 unsigned int version;
3 short mem;//the starting address of the first

object
4 short slab_size;//the size of the slab

descriptor
5 int obj_size;//the actual size used by each

object
6 int buffer_size;//the whole size for each

object
7 int number;//the number of objects in this slab
8 unsigned int key;//the key for canary

verification
9 };

Fig. 9. PIA entry.

remember the last 12 bit of the address, which equals the offset
within one page. For the obj size field, we store the actual object
size, including the size of padding for word alignment.

By adding the start address of one object and its actual object
size, we can get the canary address. To acquire the start address of
the next object, the PIA entry contains the buffer size field, which
refers to the whole object size after adding the canary as well as
the padding for cache line alignment. The num field indicates the
number of objects within a slab. To locate the canary that resides
in the slab descriptor, we record the slab descriptor size in the
slab size field, which additionally includes the size of the object
descriptor and the following padding. With the starting address
of the first object subtracting the slab descriptor size, we get the
starting address of the slab descriptor and then locate the canary,
whose offset within the slab descriptor is predetermined. On the
other hand, if the slab descriptor is kept off the slab, we set the
value of the slab size to zero. Accordingly, we employ a different
method to locate the canary before the first object. In particular,
we check whether the starting address of the first object is page-
aligned, if not, it indicates there is a color placed in the front.
Then, we can check the canary safely.

As introduced previously, kernel heap are managed in different
slabs, one of which consists of one or more physically contiguous
pages. Therefore, the slab that contains several pages should
correspond to several entries in the PIA. In order to facilitate
recording the slab canary information into PIA entries, we just
use the first associated entry to store the whole information, and
keep other associated entries empty.

It is worth mentioning that we utilize the page allocator to
dynamically allocate kernel memory for the PIA data structure
during the kernel’s initialization. Basically, the total memory
occupied by the PIA is determined by the number of pages in the
heap. However, the proportion is unchanged even if all the physical
memory are used by the kernel heap. Since each PIA entry has
only 24 bytes in our implementation, the memory overhead is as
low as 24/4096 for each memory page. For 1 GB physical memory,
it just needs 6 MB memory to store the PIA. Furthermore, it is
possible to reduce the size of the PIA entry by packing its fields.

7.6 Porting to 64-bit System
To apply our protection mechanism for the 64-bit system (i.e.,
x86-64 Linux 2.6.24), minimal changes of our implementation are
needed. Since the size of 64-bit kernel heap is much larger than the
32-bit, the first change is to reset the kernel compile configuration.
By doing so, the buddy system can allocate a large number of
contiguous memory pages for storing the Page Identity Array

(PIA). The second change is to put the PIA initialization code onto
the location before the kernel cache is initialized. If not doing so,
the kernel will crash. The third change is to adjust the data type
so that the system can work correctly. For example, the size of a
canary is set to a word size and a half word size in the 32-bit and
64-bit system respectively. To update the PIA entry, we need to
obtain the physical page frame given the slab page allocation. In
the 64-bit system, the kernel virtual to physical address conversion
is a little different from that of the 32-bit system.

To monitor the 64-bit kernel heap, we utilize the recent KVM
hypervisor (version 2.9.0). In KVM, the guest VM runs as a
regular Linux process. To access the kernel heap of the guest
VM, the monitor is deployed as a separate process and makes use
of the memory sharing mechanism. Specifically, we first develop
a custom kernel module to register a virtual device. Then, the
monitor process opens this virtual device to map the physical
memory region of the guest VM to its own address space. To
obtain the host physical addresses allocated for the guest VM,
we need to look up the GPA to HPA mapping maintained by the
hypervisor. To reduce the engineering effort, we do not implement
the in-VM protection mechanism for the 64-bit system.

8 EVALUATION

To evaluate Kruiser, we developed a prototype of Kruiser based
on 32-bit Linux and the Xen hypervisor (with PAE enabled), and
conducted effectiveness tests and measured performance overhead.
All the experiments were run on a Dell Precision Workstation with
two 2.26GHz Intel Xeon quad-core processors and 6GB memory.
The Xen hypervisor (with PAE enabled) version is 3.4.2. We used
Ubuntu 8.04 (linux-2.6.24 with PAE enabled) as Dom0 system and
Ubuntu 8.04 (linux-2.6.24 with PAE disabled) as DomU system
(with HVM mode). For this DomU system, we allocated 1 GB
memory and 4 VCPU. Moreover, we ported Kruiser to KVM
for monitoring the kernel heap of the 64-bit Ubuntu 8.04 system
(linux-2.6.24). The guest VM was allocated 2 GB memory and 4
VCPU.

8.1 Effectiveness
To test whether Kruiser can detect heap buffer overflows,
we deliberately introduced four explicit vulnerabilities [27],
[2] in the Linux kernel, and then exploited these bugs.
In our first test, we modified the kernel function cms-
ghdr from user compat to kern, making it process some user-
land data without sanitization, such that malicious users launch
heap-based buffer overflow attacks via the sendmsg system call.
For the second test, we loaded a vulnerable kernel module that is
developed by ourselves. The function of this module is to use a
dynamic general buffer to store certain data transferred from the
user-land. However, the module does not perform boundary check
when it stores the user data. In the third test, we also employed
a loadable kernel module to export a bug in kernel space. Unlike
the second test, we constructed a specific slab in this module,
and allocated the last object in this slab to store certain user-land
information [2]. As a result, this vulnerability enables attackers to
overwrite a page next to the slab by transferring large size data into
the kernel object. In the fourth test, we crafted a vulnerable kernel
module and then exploited the kernel heap overflow vulnerability
to mimic a realistic kernel attack for privilege escalation. To this
end, we used the kmalloc function to allocate two kernel objects.
One object was used to directly store the data transferred from

IEEE TRANSACTIONS ON CLOUD COMPUTING 11

the user-land, while the other object contained a function pointer
that is invoked periodically. After carefully preparing the heap
layout where the two kernel objects became adjacent, we could
carry out the overflow attack to overwrite the function pointer,
and then execute the shellcode to raise the process credential. We
then launched four types of heap-based buffer overflow attacks,
respectively. Each attack was executed 10 times and Kruiser
detected all these overflows successfully.

In addition to the synthetic attacks, we also exploited two
real-world heap buffer overflow vulnerabilities [28], [29] in
Linux. For the first one, we sent particularly crafted ASN.1 BER
data to trigger a heap overflow. In the second test, we used a
special eCryptfs file whose encrypted key size is larger than
ECRYPTFS MAX ENCRYPTED KEY BYTES to overflow a
buffer. Kruiser detected all the realistic overflows.

The above experimental results indicate that Kruiser is effec-
tive in defending against kernel heap buffer overflow attacks.

8.2 Performance Overhead

To evaluate the performance of our monitoring mechanism, we
carried out a set of experiments. First, we executed the micro-
benchmark to measure the overhead at the kernel function call
level. Then, we ran the SPEC CPU2006 Integer benchmark to
test the application-level overhead. Each of these experiments
was conducted in three different environments, including original
Linux, Kruiser with SIM protection (referred as SIM-Kruiser
subsequently), and Kruiser without SIM protection.

Micro-Benchmark. To evaluate the performance of the APIs
exported by the slab allocator, we implemented a kernel module
that invokes the APIs to allocate specific kernel objects with
varied bytes (from 20 to 400 bytes). More specifically, we first
used kmem cache create to create a specific cache. Then,
we invoked kmem cache alloc twice to allocate two kernel
objects from that cache. Since there was no available slab when
the cache was just created, the first allocation triggered the
construction of a slab, which included initialization of all the
objects in this slab. For the second allocation, it just returned
an already prepared object from the slab. Next, we released
these objects by invoking kmem cache free. Finally, we issued
kmem cache destroy to destruct the whole cache as well as its
slab. To measure the execution time, we recorded the hardware
time stamp counter register (with the instruction rdtsc) right
before and after invoking these APIs. Table 1 shows the average
execution time of Kruiser and SIM-Kruiser, which are normalized
by the execution time of original Linux. From this table, we can
see that there are three kernel APIs (i.e., kmem cache create,
kmem cache alloc(2nd), and kmem cache free) with (or less
than) 8% performance overhead. This is reasonable because we
only add some small code to these functions. However, the ker-
nel APIs kmem cache alloc(1st) and kmem cache destroy
impose a little expensive overhead. There are two major sources
for this overhead added by Kruiser and SIM-Kruiser: (1) gener-
ating secure canaries, and (2) checking canaries. Moreover, SIM-
Kruiser incurs additional overhead caused by the context switch
between the OS kernel and the In-VM monitor.

Application Benchmark. For application-level measurement, we
executed the SPEC CPU2006 Integer benchmark suite. Fig. 10
shows that the average performance overhead for both Kruiser and
SIM-Kruiser are negligible. When the slab allocation is frequent,

TABLE 1
The average normalized execution time of kernel APIs with Kruiser and

SIM-Kruiser when compared with original Linux.

Kernel APIs Kruiser SIM-Kruiser
kmem cache create 1.07 1.08
kmem cache alloc(1st) 5.13 5.76
kmem cache alloc(2nd) 1.05 1.06
kmem cache free 1.06 1.06
kmem cache destroy 4.37 4.95

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

ge
o.

 m
ea

n

E
x
ec

u
ti

o
n
 t

im
e

SIM-Kruiser Kruiser

Fig. 10. SPEC CPU2006 performance (normalized to the execution time
of original Linux).

the performance overhead is a little bit higher, such as in gcc;
however, the maximal performance overhead is less than 3%.

Performance Cost to Dom0. To test the performance effect on
the Dom0 VM, we measured the time to build the standard Linux
kernel (linux-2.6.24) using the command make. The experiment
shows the performance cost added by our monitor process is very
small (i.e., less than 5%) when we compile the Linux kernel
using a single thread. However, the performance overhead will
be very obvious (i.e., more than 50%) when we compile the
kernel using multiple threads. The main reason for this cost is
that the compiling threads need to contend with the monitor
process located in the Dom0 VM for the CPU resources. If the
CPU resources are adequate, the add-on performance cost would
be negligible. Otherwise, the Dom0 VM’s performance would be
affected to a certain degree.

Performance Cost on the 64-bit system. To facilitate monitoring
the 64-bit system, we exploited the recent KVM hypervisor (ver-
sion 2.9.0). To evaluate the performance cost on the 64-bit system,
we also utilized the SPEC CPU2006 benchmarks. As shown in
Fig. 11, the maximal cost of these benchmarks is less than 2%.
Compared with the original 64-bit system, the performance cost
introduced by our protection is very small.

8.3 Scalability

For the scalability measurement, we tested the throughput of
the Apache web server with concurrent requests. Specifically,
we ran Apache 2.2.8 to serve a 3.7KB html web page. We
used ApacheBench 2.3 running on another machine—a Dell
PowerEdge T310 Server with a 1.86G Intel E6305 CPU, 4 GB
memory and Ubuntu 8.04 (linux-2.6.24)—to measure the Apache
throughput over a GB LAN network. Each time we issued 10k
http requests with various numbers of concurrent clients, and
we observed that the number of the kernel heap buffer object
allocation increases along with the concurrency level. As shown
in Fig. 12, the performance overhead imposed by Kruiser and

IEEE TRANSACTIONS ON CLOUD COMPUTING 12

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

E
x

ec
u

ti
o

n
 t

im
e

Orgin Kruiser

Fig. 11. SPEC CPU2006 performance on the 64-bit system (normalized
to the execution time of original Linux).

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Concurrency

R
eq

u
es

ts
 p

er
 s

ec
o
n
d

Original

SIM-Kruiser

Kruiser

Fig. 12. Throughput of the Apache web server for varying numbers of
concurrent requests.

SIM-Kruiser are both relatively stable. On average, Kruiser only
incurs about 3.8% performance degradation and SIM-Kruiser
about 7.9%.

In addition, we ran multiple VM instances that are monitored
by one monitor process. Due to the user address space limita-
tion, one monitor can only simultaneously check three VMs in
maximum. Moreover, since the CPU resource is limited, each
monitored VM was only allocated one VCPU. Before monitor-
ing multiple VMs, the monitor needs to map the VM’s kernel
memory to its user address space. After that, we utilized PARSEC
benchmarks to measure the performance overhead for each VM.
Fig. 13 shows that the performance degradation is minimal when
one monitor checks three VMs in parallel.

8.4 Memory Overhead
In addition to allocating the fixed-size memory for the PIA
structure, Kruiser needs to add 4 bytes canary for each kernel
heap object. To test the memory overhead introduced by our
modified slab allocator, we developed a kernel module to invoke
the kmalloc function to allocate a number of kernel objects, whose
sizes are randomly selected between 1 to 1024 bytes. We recorded
the number of memory pages used for the slab allocator right
before and after these memory allocations. In this way, we can
figure out the number of pages that are used for the newly allocated
objects. Table 2 shows the added slab pages depending on the
number of live allocated objects in the kernel heap. Compared
with the native Linux, Kruiser introduce little memory overhead.

8.5 Detection Latency
We recorded the average cruising cycles (i.e., the average time for
scanning all the PIA entries) for different applications in SPEC
CPU2006, in order to evaluate the detection latency, which is
less than or equal to the cruising cycle at the attack time. As

0.6

0.7

0.8

0.9

1

1.1

N
o

rm
a
li

z
e
d

 o
v

e
rh

e
a
d

VM1 VM2 VM3

Fig. 13. PARSEC performance.

TABLE 2
Added slab pages for native Linux and Kruiser depending on the

number of allocated kernel objects.

Kernel Heap Objects Native Linux Kruiser
1000 2 2

10,000 28 32
100,000 246 250

shown in Table 3, 10 of 12 applications’ average cruising cycles
are shorter than 29 ms, and the other two applications’ are below
40 ms. We also recorded the number of scanned kernel objects in
each cruising cycle. The results indicate that the average cruising
cycle is mainly determined by the average number of scanned
kernel objects. Let N be the number of scanned kernel objects
and T the average time for the monitor process to check a kernel
object. We have C = NT , where C is the cruising cycle. We can
reduce the cruising cycle by keeping N small. One approach is
to divide the PIA entries into different parts, and for each part,
we create a separate monitor process. Another approach is to
only monitor objects in general caches. This is practical because
attackers mainly exploit this category of buffers in the real world.

During the cruising cycle, our monitor scans n kernel ob-
jects. We assume the scanning time for each object is the same,
representing it as t. Moreover, the probability of scanning one
object from n objects is assumed to be the same. Based on these
assumptions, we can calculate the mathematical expectation E of
the scanning time as follows:

E =
1

n

n∑
i=1

i× t =
1 + n

2
× t

In our experiment, the value of n × t is between 29ms-40ms,
so the mathematical expectation is around between 14.5ms-20ms.

If an attacker can compromise the kernel via heap overflow
within one cruising cycle, our monitor may not identify the heap
corruption and then stop the attack instantly. However, thanks to
the secure canary, the attacker may not be able to recover the
corrupted canary within one cruising cycle. Thus, the heap attack
will be detected after our monitor finishes scanning all the kernel
objects.

9 DISCUSSION AND LIMITATIONS

Like other canary-based systems [6], [13], [75], our system cannot
detect the attacks that only overwrite a critical location inside

IEEE TRANSACTIONS ON CLOUD COMPUTING 13

TABLE 3
Different cruising cycle for different applications in the SPEC CPU2006
benchmark (The cruising number refers to the number of kernel objects

that are scanned in each cruising cycle).

Benchmark
Maximum Minimum Average Average

cruising cruising cruising cruising
number number number cycle(µs)

perlbench 107,824 105,145 106,378 39,259
bzip2 79,085 76,325 76,682 27,662
gcc 78,460 76,810 77,413 27,774
mcf 82,885 79,328 79,540 28,156
gobmk 80,761 80,345 80,519 28,606
hmmer 81,278 80,435 80,591 28,635
sjeng 81,437 80,259 80,535 28,610
libquantum 80,911 80,317 80,407 28,493
h264ref 80,756 80,337 80,480 28,572
omnetpp 82,109 80,796 81,088 28,836
astar 81,592 81,022 81,097 28,897
xalancbmk 99,436 82,747 88,454 30,190

the kernel object in concern without touching any canary. For
example, a kernel module may invoke the kmalloc function to
allocate a struct that contains a string buffer and a function
pointer such that attackers could corrupt the function pointer by
overflowing the neigbouring buffer. Moreover, if attackers are
able to read the kernel memory by exploiting memory exposure
vulnerabilities, they could also bypass our detection mechanism.

The second problem is that our system cannot detect the buffer
overflow attacks that occur in the noncontiguous memory area.
The main reason is our monitor only map and check the physically
contiguous pages. To monitor noncontiguous memory buffers, we
need to add hooks to the noncontiguous memory management.
Specifically, the secure canary should be added to the end of the
buffer. Then, the monitor should dynamically map the memory
address for concurrent monitoring. Adding these functionalities
to our system could increase some performance overhead. Fortu-
nately, buffer overflows in the noncontiguous memory area is very
rare in the real world.

In our current implementation, our system only supports the
SLAB allocator for heap monitoring. To make our method work
with the SLUB/SLOB allocators, some modifications to these allo-
cators are needed. For example, we need to change the allocation
metadata for recording the canary information. To add a canary
into the end of a kernel buffer, we need to hook the corresponding
SLUB/SLOB construction routines.

Although our prototype system is based on an earlier version
of Linux (v2.6.24), our method could be applied to recent versions
of Linux. For example, Linux recently introduces KASLR for
randomizing the kernel code location in memory when the system
boots. Since the SLAB allocator begins to work after the kernel
code is loaded, our approach would be compatible with KASLR.
To mitigate the Meltdown security vulnerability, kernel page-
table isolation (KPTI) is introduced in recent Linux kernels. Our
protection mechanism and KPTI can coexist in that KPTI does not
need any modification to the SLAB allocator.

Due to the limited memory resource, we just carry out the
experiment for a 64-bit system with 2 GB memory. For the
experiment with a large memory (e.g., 64 GB), our method will
introduce proportional memory overhead for storing the static PIA.
Moreover, since most of the PIA entries are empty during the
kernel heap monitoring, the detection latency will be increased.
To address this issue, a potential method is to re-design the PIA
structure. For example, the PIA structure could be re-designed

Kernel

VMM

VM1

Monitor1App

Kernel

VM2

App

Kernel

VMM

VM1

Monitor

App

Kernel

VM2

App

Monitor2

(a)

(b)

Fig. 14. Different schemes for system deployment.

by using three-level page tables, which contain hierarchical PIA
directories and PIA entries. When the monitor process traverses
along the PIA directory, it could bypass empty PIA entries
corresponding to large bulks of contiguous pages.

Currently, our system cannot handle the case when the P2M
table changes due to the page swap. To deal with this issue, we
should hook the updating operation on the P2M table and then
remap the machine frames for our monitor process. In addition,
some modifications to the monitoring algorithm may be needed
for the page mapping synchronization.

To deploy our system into cloud platforms, we have two
different schemes, which is shown in Fig. 14. For the scheme a,
we use one monitor to check different VMs. The main advantage
of this scheme is to facilitate monitoring multiple VMs in parallel.
However, this scheme will result in longer detection latency. For
the scheme b, different VMs are monitored by different monitors.
Compared with the first scheme, it may take more CPU resources,
but the cruising cycle will be lower. To apply our method to
the virtualization environment when the extended page table
mechanism is enabled, we could take advantage of the recent in-
VM monitoring framework [30] based on Intel EPTP-switching
feature.

10 RELATED WORK

10.1 Countermeasures Against Buffer Overflows
Over the past few decades, there has been extensive research in
this area. We divided existing countermeasures against buffer over-
flows into seven categories: (1) buffer bounds checking [31], [32],
[8], [9], [10], [12], [33], [34], [35], [36], (2) canary checking [6],
[7], [13], (3) return address shadow stack or stack split [37], [38],
[39], [40], [41], (4) non-executable memory [42], [43], (5) non-
accessible memory [44], [45], [46], (6) randomization and obfus-
cation [47], [42], [48], [49], and (7) execution monitoring [50],
[51], [52], [53], [15]. Few countermeasures are suitable for high
performance kernel heap buffer overflow monitoring and no one
has been deployed in production systems.

Kruiser falls into the category of canary checking. Canary was
firstly proposed in StackGuard [6], which tackles stack-smashing
attacks by putting a canary word before the return address on
stack. A buffer overflow that overwrites the return address would

IEEE TRANSACTIONS ON CLOUD COMPUTING 14

corrupt the canary value first. The approach has been integrated
into GCC and Visual Studio. Robertson et al. [13] applied canary
to protecting heap buffers. When a heap buffer is overrun, the
canary of the adjacent chunk is corrupted, which, however, is
not detected until the adjacent chunk is coalesced, allocated, or
deallocated; i.e., the detection relies on the control flow. Larry
H. [54] extended this idea to detect kernel heap buffer overflows.
Different from these in-lined approaches, our approach enforces a
constant concurrent canary checking and thus does not have the
limitation. In addition, the secure canary conception is new.

The previous work Cruiser [18], among the existing coun-
termeasures, first proposed concurrent buffer overflow cruising
in user space using custom lock-free data structures. Unlike
Cruiser that hooks per heap buffer allocation and deallocation,
Kruiser explores the characteristics of kernel heap management
to interpose the much less frequent operations that switch pages
into and out of the heap page pool, such that our system relies
on on a fix-sized array data structure instead of the lock-free data
structures to maintain the metadata. The monitoring algorithms
are thus very different. In addition, the hybrid monitoring scheme
differs a lot from the user space monitoring.

Compared with the methods based on probabilistic mem-
ory safety (e.g., DieHard [55] and DieHarder [56]), Kruiser
imposes negligible performance overhead. Nevertheless, Kruiser
focuses on kernel heap, while DieHard and DieHarder have only
been demonstrated for user-space programs. Our previous work
Cruiser [18] on user-space buffer overflow monitoring presents
detailed comparison with DieHarder on performance for the SPEC
CPU2006 benchmark. In addition, DieHard and DieHarder con-
sume more memory than Kruiser, which may be a problem for
kernel.

10.2 Virtual Machine Introspection

Garfinkel and Rosenblum [57] first proposed the idea of perform-
ing intrusion detection from outside of the monitored system.
Since then, out-of-VM introspection has been applied to control-
flow integrity checking [58], [59], malware prevention, detection,
and analysis [60], [61], [62], [63], [64], [65], [66], [67], [19], [68],
[69], and attack replaying [70]. They monitor static memory areas
(e.g. kernel code, Interrupt Description Table), interpose specific
events such as page faults, trace system behaviors, or detect
violations of invariants between data structures. Considering the
volatile properties of heap buffers, these approaches are infeasible
for kernel heap buffer overflow monitoring; for example, it is
impractical to interpose every memory write on the heap. Some
approaches detected buffer overflow attacks as a side effect by
detecting corrupted pointers or control flows, but cannot deal with
non-pointer and non-control data manipulation on heap buffer ob-
jects. Approaches, such as kernel memory mapping and analysis,
can be misled by buffer overflow attacks or perform better without
heap corruption. Our approach can be complementary to them
providing lightweight heap buffer overflow detection.

In contrast to out-of-VM monitoring, SIM [17] puts the
monitor back into the VM and enables secure in-VM monitoring
by providing discriminative memory views for the monitored
system and the monitor. Our approach makes use of this technique
to protect the heap metadata, while the monitor process still
runs out-of-VM to achieve parallel monitoring, leveraging the
multiprocessor architecture. The hybrid scheme enables a secure
and efficient monitoring.

10.3 OS Kernel Security

OSck [19] also performs kernel space cruising for rootkit detec-
tion. As OSck does not synchronize the running kernel and the ver-
ification process, it needs to suspend the system when an anomaly
is detected to avoid false positives, while our approach does not
need to stop the world for detection. In addition, OSck does not
check generic buffers allocated using kmalloc, which are common
attack targets, while Kruiser checks the whole kernel heap. Liu
et al. [71] propose a hardware-based approach for concurrent
introspection of guest VMs. This approach does not require any
modification to the guest OS, and it combines the HTM hardware
feature and virtualization to detect rootkits concurrently. Wang et
al. [72] present a kernel rootkit detection technique that leverages
the hardware performance counter and virtualization technique.
Compared with these rootkit detection methods, our approach
focuses on detecting kernel heap overflows.

kMVX [73] and UniSan [74] are developed to address the ker-
nel information leak problems (e.g., out-of-bounds read), whereas
our Kruiser design focuses on handling the out-of-bounds write
problem. Similar to our work, KASAN [75] could be applied to
detecting out-of-bounds write and use-after-free bugs in a Linux
kernel. Since KASAN relies on inline security checks, it incurs
considerable performance overhead. As a result, the KASAN tool
may not be suitable for real-time kernel protection. To defend
against data-oriented attacks in the kernel, Song et al. present a
DFI protection system called KENALI [76] that is based on the
LLVM compiler. Different from KENALI, our system utilizes the
virtualization technology for kernel heap data monitoring, which
requires minimal changes to the kernel.

11 CONCLUSION

We have presented KRUISER, a semi-synchronized concurrent
kernel heap monitor that cruises over heap buffers to detect
overflows in a non-blocking manner. Unlike traditional techniques
that monitor volatile memory regions with security enforcement
inlined into normal functionality (interposition) or by analyzing
memory snapshots, we perform constant monitoring in parallel
with the monitored VM on its live memory without incurring
false positives. The hybrid VM monitoring scheme provides high
efficiency without sacrificing the security guarantees. Attacks are
bound to be detected within one cruising cycle. Our evaluation
has shown that Kruiser imposes negligible performance overhead
on the system running SPEC CPU2006 and 7.9% throughput
reduction on Apache. The concurrent kernel cruising approach
leverages increasingly popular multi-core architectures; its effi-
ciency and scalability manifest that it could be deployed in cloud
environment.

ACKNOWLEDGMENT

This work was partially supported by NSFC 61602035, AFOSR
FA9550-07-1-0527 (MURI), ARO W911NF-09-1-0525 (MURI),
NSF CNS-0905131, NSF CNS-1223710, and AFRL FA8750-08-
C-0137.

REFERENCES

[1] NIST. National Vulnerability Database, http://nvd.nist.gov/.
[2] sqrkkyu and twzi, “Attacking the core: Kernel exploiting notes,” 2007,

http://phrack.org/issues.html.

IEEE TRANSACTIONS ON CLOUD COMPUTING 15

[3] C. S. Technologies, “OpenBSD IPv6 mbuf
remote kernel buffer overflow,” 2007,
http://www.securityfocus.com/archive/1/462728/30/0/threaded.

[4] T. Mandt, “Kernel pool exploitation on Win-
dows 7,” 2011, https://media.blackhat.com/bh-dc-
11/Mandt/BlackHat DC 2011 Mandt kernelpool-wp.pdf.

[5] j00ru, “Exploiting a windows 10 pagedpool off-by-one over-
flow,” 2018, https://j00ru.vexillium.org/2018/07/exploiting-a-windows-
10-pagedpool-off-by-one/.

[6] C. Cowan and C. Pu, “StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks,” in Usenix Security ’98, January
1998, pp. 63–78.

[7] IBM, “ProPolice detector,” http://www.trl.ibm.com/projects/security/ssp/.
[8] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of all

pointer and array access errors,” in PLDI ’04, pp. 290–301.
[9] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and

Y. Wang, “Cyclone: A safe dialect of C,” in Usenix ATC ’02, June 2002,
pp. 275–288.

[10] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: type-safe retrofitting of legacy software,” ACM Trans. Pro-
gram. Lang. Syst., vol. 27, no. 3, pp. 477–526, 2005.

[11] R. W. M. Jones and P. H. J. Kelly, “Backwards-compatible bounds
checking for arrays and pointers in C programs,” in the International
Workshop on Automatic Debugging, 1997.

[12] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow
detector,” in NDSS ’04, pp. 159–169.

[13] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur, “Run-time detection
of heap-based overflows,” in LISA ’03, pp. 51–60.

[14] P. Argyroudis and D. Glynos, “Protecting the core: Kernel exploitation
mitigations,” in Black Hat Europe ’11.

[15] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: intrusion
detection using parallel execution and monitoring of program variants
in user-space,” in EuroSys ’09, pp. 33–46.

[16] M. Dalton, H. Kannan, and C. Kozyrakis, “Real-world buffer overflow
protection for userspace & kernelspace,” in Usenix Security ’08, pp. 395–
410.

[17] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM monitoring
using hardware virtualization,” ser. CCS ’09, pp. 477–487.

[18] Q. Zeng, D. Wu, and P. Liu, “Cruiser: Concurrent heap
buffer overflow monitoring using lock-free data structures,” in
Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’11. New
York, NY, USA: ACM, 2011, pp. 367–377. [Online]. Available:
http://doi.acm.org/10.1145/1993498.1993541

[19] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, “Ensuring
operating system kernel integrity with OSck,” ser. ASPLOS ’11, pp. 279–
290.

[20] Z. Wang and X. Jiang, “HyperSafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proceedings of the 2010
IEEE Symposium on Security and Privacy, ser. SP ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 380–395.

[21] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM conference on Computer and
communications security, ser. CCS ’10. New York, NY, USA: ACM,
2010, pp. 38–49.

[22] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: a hardware-assisted
integrity monitor,” in Proceedings of the 13th international conference
on Recent advances in intrusion detection, ser. RAID’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 158–177. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1894166.1894178

[23] W. Mauerer, Professional Linux Kernel Architecture. Wrox Press, 2008.
[24] D. Mosberger, “Memory consistency models,” Operating Systems Re-

view, vol. 17, no. 1, pp. 18–26, January 1993.
[25] P. E. Mckenney, “Memory barriers: a hardware view for software hack-

ers,” 2009.
[26] Wikipedia, “RC4,” http://en.wikipedia.org/wiki/RC4.
[27] D. Roethlisberge, “Omnikey Cardman 4040 Linux driver buffer over-

flow,” 2007, http://www.securiteam.com/unixfocus/5CP0D0AKUA.html.
[28] US-CERT/NIST, “CVE-2008-1673.” [Online]. Available:

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1673
[29] ——, “CVE-2009-2407.” [Online]. Available:

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2407
[30] B. Shi, L. Cui, B. Li, X. Liu, Z. Hao, and H. Shen, “Shadowmonitor:

An effective in-vm monitoring framework with hardware-enforced isola-
tion,” in Research in Attacks, Intrusions, and Defenses. Cham: Springer
International Publishing, 2018, pp. 670–690.

[31] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards
automated detection of buffer overrun vulnerabilities,” in NDSS’00, pp.
3–17.

[32] N. Dor, M. Rodeh, and M. Sagiv, “CSSV: towards a realistic tool for
statically detecting all buffer overflows in C,” in PLDI ’03, June 2003,
pp. 155–167.

[33] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
an efficient and backwards-compatible defense against out-of-bounds
errors,” in Usenix Security ’09, pp. 51–66.

[34] E. D.Berger, “HeapShield: Library-based heap overflow protection for
free,” Univ. of Mass. Amherst, Tech. Report, 2006.

[35] T. K. Tsai and N. Singh, “Libsafe: Transparent system-wide protection
against buffer overflow attacks,” in DSN ’02, pp. 541–541.

[36] K. Avijit and P. Gupta, “Tied, libsafeplus, tools for runtime buffer
overflow protection,” in Usenix Security ’04, pp. 4–4.

[37] StackShield, 2000, http://www.angelfire.com/sk/stackshield/.
[38] T. Chiueh and F. Hsu, “RAD: A compile-time solution to buffer overflow

attacks,” in ICDCS ’01, pp. 409–417.
[39] M. Prasad and T. Chiueh, “A binary rewriting defense against stack based

buffer overflow attacks,” in Usenix ATC ’03, pp. 211–224.
[40] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated stack

protection,” in Usenix Security ’01, pp. 55–66.
[41] J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer, “Architecture support for

defending against buffer overflow attacks,” in Workshop Evaluating &
Architecting Sys. Depend., 2002.

[42] The PaX project, http://pax.grsecurity.net/.
[43] Solar Designer, “Non-executable user stack,” 1997, http://www.open

wall.com/linux/.
[44] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and

access errors,” in the Winter 1992 Usenix Conference, pp. 125–136.
[45] Valgrind, http://valgrind.org/.
[46] Electric Fence, “Malloc debugger,”

http://directory.fsf.org/project/ElectricFence/.
[47] E. Bhatkar, D. C. Duvarney, and R. Sekar, “Address obfuscation: an

efficient approach to combat a broad range of memory error exploits,” in
Usenix Security ’03, pp. 105–120.

[48] C. Cowan and S. Beattie, “PointGuard: protecting pointers from buffer
overflow vulnerabilities,” in Usenix Security ’03, pp. 91–104.

[49] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized instruction set emulation to disrupt binary code
injection attacks,” in CCS ’03, pp. 281–289.

[50] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution via
program shepherding,” in Usenix Security ’02, pp. 191–206.

[51] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow in-
tegrity,” in CCS ’05, pp. 340–353.

[52] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in OSDI ’06, pp. 147–160.

[53] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a secretless frame-
work for security through diversity,” in Usenix Security ’06, pp. 105–120.

[54] L. H., “Linux kernel heap tampering detection,” 2009,
http://www.phrack.org/issues.html?issue=66&id=15.

[55] E. D. Berger and B. G. Zorn, “DieHard: probabilistic memory safety
for unsafe languages,” in Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation, ser.
PLDI ’06. New York, NY, USA: ACM, 2006, pp. 158–168.

[56] G. Novark and E. D. Berger, “DieHarder: securing the heap,” in Pro-
ceedings of the 17th ACM conference on Computer and communications
security, ser. CCS ’10. New York, NY, USA: ACM, 2010, pp. 573–584.

[57] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in NDSS ’03, pp. 191–206.

[58] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent kernel
control-flow attacks,” ser. CCS ’07, pp. 103–115.

[59] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes,” ser. SOSP
’07, pp. 335–350.

[60] K. Kourai and S. Chiba, “HyperSpector: virtual distributed monitoring
environments for secure intrusion detection,” ser. VEE ’05, pp. 197–207.

[61] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Antfarm:
tracking processes in a virtual machine environment,” ser. Usenix ATC
’06.

[62] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” ser. CCS ’08, pp. 51–62.

[63] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture
for secure active monitoring using virtualization,” ser. Oakland ’08, pp.
233–247.

[64] A. Lanzi, M. I. Sharif, and W. Lee, “K-Tracer: A system for extracting
kernel malware behavior,” in NDSS ’09.

IEEE TRANSACTIONS ON CLOUD COMPUTING 16

[65] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping
kernel objects to enable systematic integrity checking,” ser. CCS ’09, pp.
555–565.

[66] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware analysis with un-
tampered and temporal views of dynamic kernel memory,” ser. RAID’10,
pp. 178–197.

[67] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “SigGraph: Brute force
scanning of kernel data structure instances using graph-based signatures,”
ser. NDSS ’11.

[68] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” ser.
Oakland ’11.

[69] P. Mishra, V. Varadharajan, E. Pilli, and U. Tupakula, “Vmguard: A vmi-
based security architecture for intrusion detection in cloud environment,”
IEEE Transactions on Cloud Computing, 2018.

[70] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “Detecting past and
present intrusions through vulnerability-specific predicates,” ser. SOSP
’05, pp. 91–104.

[71] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen, “Concurrent and
consistent virtual machine introspection with hardware transactional
memory,” in High Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on, Feb 2014, pp. 416–427.

[72] X. Wang and R. Karri, “Reusing hardware performance counters to detect
and identify kernel control-flow modifying rootkits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 3, pp. 485–498, March 2016.

[73] S. Österlund, K. Koning, P. Olivier, A. Barbalace, H. Bos, and C. Giuf-
frida, “kmvx: Detecting kernel information leaks with multi-variant ex-
ecution,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. ACM, 2019, pp. 559–572.

[74] K. Lu, C. Song, T. Kim, and W. Lee, “Unisan: Proactive kernel memory
initialization to eliminate data leakages,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. ACM, 2016, pp. 920–932.

[75] T. L. Kernel, “The kernel address sanitizer (kasan).” [Online]. Available:
https://www.kernel.org/doc/Documentation/dev-tools/kasan.rst

[76] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee, “Enforcing
Kernel Security Invariants with Data Flow Integrity,” in Proceedings of
the 2016 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2016.

Donghai Tian is an Assistant Professor in School of Computer Science
and Technology, Beijing Institute of Technology, China. His research
interest lies in security issues in computer systems and networks, in-
cluding areas ranging from operating system security, software security
and network security, to virtualization technologies. From 2009 to 2011,
he was a visiting student in Pennsylvania State University, USA. He
received his Ph.D. degree from Beijing Institute of Technology, China
in 2012.

Qiang Zeng is an Assistant Professor in the Department of Computer
Science and Engineering at University of South Carolina. He received
his Ph.D. degree from Pennsylvania State University. He currently works
on cloud, smartphone security and self-healing software. He is also
interested in emerging security challenges in other areas. He has rich
industry experience and has worked in the IBM T.J. Watson Research
Center, the NEC Lab America, Symantec and Yahoo.

Dinghao Wu is an Associate Professor in College of Information Sci-
ences and Technology, Pennsylvania State University. His research
interest includes software security and programming languages. Prior
to joining Penn State, he was a research engineer at Microsoft in the
Center for Software Excellence and the Windows Azure Division. He
received his Ph.D. degree from Princeton University in 2005.

Peng Liu received his BS and MS degrees from the University of
Science and Technology of China, and his PhD from George Mason
University in 1999. He is a Professor of Information Sciences and Tech-
nology, founding director of the Center for Cyber Security, Information
Privacy, and Trust, and founding director of the Cyber Security Lab at
Penn State University. His research interests are in all areas of computer
and network security. He has published a monograph and over 220
refereed technical papers. His research has been sponsored by NSF,
ARO, AFOSR, DARPA, DHS, DOE, AFRL, NSA, TTC, CISCO, and HP.
He has served on over 90 program committees and reviewed papers for
numerous journals. He is a recipient of the DOE Early Career Principle
Investigator Award. He has co-led the effort to make Penn State a
NSA-certified National Center of Excellence in Information Assurance
Education and Research. He has advised or co-advised around 20 PhD
dissertations to completion.

Changzhen Hu received his Ph.D. degree from Beijing Institute of
Technology, China in 1996. He holds the Professor and the Associate
Dean of School of Computer Science and Technology, Beijing Institute of
Technology, China. His research interest includes information security,
network, and pattern recognition.

[77] D. Tian, Q. Zeng, D. Wu, P. Liu, and C. Hu, "Kruiser: Semi-synchronized
 Non-blocking Concurrent Kernel Heap Buffer Overflow Monitoring," in
 Proceedings of the 19th Network and Distributed System Security Sympo-
 sium (NDSS), San Diego, CA, 2012.

