
Risk Assessment of Buffer “Heartbleed” Over-read
Vulnerabilities

Jun Wang, Mingyi Zhao, Qiang Zeng†, Dinghao Wu, Peng Liu
The Pennsylvania State University, University Park, PA 16802, USA
{jow5222, muz127, dwu, pliu}@ist.psu.edu, †quz105@cse.psu.edu

Abstract—Buffer over-read vulnerabilities (e.g., Heartbleed)
can lead to serious information leakage and monetary lost.
Most of previous approaches focus on buffer overflow (i.e., over-
write), which are either infeasible (e.g., canary) or impractical
(e.g., bounds checking) in dealing with over-read vulnerabilities.
As an emerging type of vulnerability, people need in-depth
understanding of buffer over-read: the vulnerability, the security
risk and the defense methods.

This paper presents a systematic methodology to evaluate
the potential risks of unknown buffer over-read vulnerabilities.
Specifically, we model the buffer over-read vulnerabilities and
focus on the quantification of how much information can be
potentially leaked. We perform risk assessment using the RUBiS
benchmark which is an auction site prototype modeled after
eBay.com. We evaluate the effectiveness and performance of
a few mitigation techniques and conduct a quantitative risk
measurement study. We find that even simple techniques can
achieve significant reduction on information leakage against over-
read with reasonable performance penalty. We summarize our
experience learned from the study, hoping to facilitate further
studies on the over-read vulnerability.

I. INTRODUCTION

The buffer over-read vulnerability [1] has gained much
attention after the Heartbleed [2] bug was discovered, which
threatens millions of Web services on the Internet [3]. A
buffer over-read happens when a program overruns a buffer’s
boundary and reads the adjacent memory. It is similar to
buffer overflow which is an over-write, but had been paid less
attention than over-write as it usually does not lead to memory
taint or control hijack. However, sensitive and security related
information such as passwords and keys can be leaked through
buffer over-read.

The root cause of buffer over-read is similar to that of
buffer overflow. It is typically resulted from insufficient or a
lack of bound checking for buffer read (write for overflow).
Extensive research has been devoted to this issue related to
buffer overflow and practical tools exist for partial mitigation.
For example, StackGuard [4] injects a canary right after the
return address to detect stack-based buffer overflow before
a function returns. Address Space Layout Randomization
(ASLR) [5], [6] makes the addresses of the target code such as
standard libc less predictable and thus increases the difficulty
of control transfer hijacking when a buffer is overflowed. These
techniques have been implemented in many compilers and
systems, but they are not applicable to the over-read issue.
There is also a large volume of research on direct bound
checking (e.g., [7], [8], [9]) and safe type system retrofitting
(e.g., [10], [11]). Bounds checking and safe type system
retrofitting can mitigate the over-read issue, but few is widely

adopted due to either excessive runtime overhead, expensive
cost of manual work, or insufficient mitigation in practice.

A number of programming techniques for writing solid and
secure code have been around to preserve memory safety. Al-
though some of them are initially intended to make the resulted
software more reliable, they are helpful in mitigating the buffer
over-read vulnerability. Zero out memory blocks or buffers
have been advocated and implemented in many systems. In
particular, Chow et al. [12] measured the performance over-
head on zero out heap buffers and stack frames at deallocation
time. They also experimented on zeroing out currently unused
stack part periodically. Initializing and padding buffers with
special characters are proposed to facilitate easier debugging
and fault localization. Maguire [13] uses “0xA3” and “0xCC”
for padding and initialization of buffers for Macintosh models
and Microsoft applications, respectively, due to a number of
reliability and debugging benefits.

These techniques are useful in mitigating buffer over-read
vulnerabilities or information leak in general; there is, however,
no quantitative study on their effectiveness with regard to
information leak through buffer over-reads. Some of these
techniques are known in the field, but were not reported with
any quantitative measures before to the best of our knowledge.
Moreover, one could view “Heartbleed” as a family of buffer
over-read vulnerabilities and there could be unknown zero-day
vulnerabilities exploitable by unknown “Heartbleed” attacks.
It is thus too restricted and not objective to evaluate the entire
risk of buffer over-read vulnerabilities solely based on the
specific Heartbleed bug. As an emerging type of vulnerability,
we need more research on the mitigation of the buffer over-
read vulnerability as well as the quantitative risk assessment
of the software systems deployed in the field.

In this paper, we intend to fill in the gap by providing a
preliminary quantitative risk measurement on information leak
associated with buffer over-read for some popular mitigation
methods such as zeroing and padding buffers. We explore
and implement both in-line and concurrent versions of these
methods. We apply these techniques to the RUBiS benchmark
[14], and report our experience on four metrics we developed
for measuring information leak risks.

In summary, our main contributions are:
• We report the first experience on quantitative risk mea-

surement of information leak through buffer over-read.
The methodology can also be applied to other programs
for a quick risk assessment.
• We provide a summary of the current mitigation tech-

niques that are applicable to buffer over-read and measure
their effectiveness.
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• The preliminary quantitative risk measurement and ex-
perience we reported can facilitate further studies on the
issue.

The remainder of the paper is organized as follows. In
Section II, we introduce background, threat models, motiva-
tion, and examples. In Section III, we describe the details of
our methods and present the metrics on information leak risk
measurement. We validate our methods with a few case studies
in Section IV and present the experimental results in Section V.
We discuss some other issues and limitations in Section VI.
We then present the related work in Section VII and conclusion
in Section VIII.

II. OVERVIEW

A. Background

Although heap buffer overflow has been extensively re-
searched for many years, heap buffer over-read remains under-
studied and under-reported [15]. Our focus is the risk assess-
ment of heap buffer over-read vulnerabilities. Conceptually,
a buffer over-read attack involves a source buffer, a destina-
tion buffer, and the vulnerable operation(s) that are possibly
resulted from a bug in the program. Therefore, the victim of
over-read is the source buffer rather than the destination buffer,
whereas the victim is typically the destination buffer in a buffer
overflow attack.

We classify heap buffer over-read into three categories.

(1) memcpy-based. This is a major type of buffer over-
read vulnerabilities and possibly the most damage-causing (due
to Heartbleed) one. This happens when the size argument
of a memcpy function is accidentally or maliciously enlarged
so that more information than necessary or allowed is copied
to the destination. As this is the main focus of this paper,
further details will be introduced shortly in the next section.
Real world examples of this type of vulnerability include CVE-
2014-0160 (i.e., Heartbleed) and CVE-2009-2523.

(2) strcpy-based. This is another common vulnerability
in which unintended extra information is copied out (e.g.,
CVE-2009-2523). Different from memcpy-based over-read,
strcpy-based over-read is mostly due to the improper null
termination of the source string. Although there have been a
handful of studies on strcpy-based over-read in terms of
safe function alternatives [16], vulnerability detection [17],
and writing secure program in general [18], a real world
vulnerability leading to large-scale information leak does not
exist yet and thus the corresponding thread model is still
unclear. Therefore, in this report, we exclude this category
from consideration.

(3) Byte-level over-read and others. In addition to the
category (1) and (2) that are “chunk-level” over-read, byte-
level over-read vulnerabilities are also witnessed by the real
world (e.g., CVE-2004-0112, CVE-2004-0184). Instead of
reading out a chunk of memory as a whole piece, byte-level
over-reads usually access one element (of an array or a table)
at a time or loop over a range of elements. Insufficient or
even lack of bounds checking is always the root cause. Using
an index that exceeds the lower limit and the upper limit will
result in under-read and over-read, respectively. However, only
given the program binary, it is highly non-trivial to identity

the set of instructions with potential risks of being affected by
such over-read. Even with the availability of source code, it is
missing from existing literature on how to identify the potential
culprits. More importantly, the amount of information leakage
caused by byte-level over-read is usually minimal compared to
category (1) and (2), so we decide to also omit this category
in our risk assessment.

Therefore, this paper only focuses on a particular type of
heap buffer over-read: the memcpy-based buffer over-read.
Although the scope is limited to some extent, we argue that this
is the most attainable way to do risk assessment for heap buffer
over-read vulnerabilities at the time of this writing, which we
think is still in the early stage of buffer over-read research.

B. Threat Model

We now explain the details of memcpy-based buffer over-
read vulnerabilities. We will briefly introduce the Heartbleed
vulnerability and use it as the illustrative example. For more
details of the Heartbleed vulnerability, please refer to [2].

2580 buffer = OPENSSL_malloc(1 + 2 + payload +
padding);

2581 bp = buffer;
2582
2583 /*Enter response type, length and copy payload*/
2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);
2587 bp += payload;
2588 /* Random padding */
2589 RAND_pseudo_bytes(bp, padding);
2590
2591 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT,

buffer, 3 + payload + padding);

Fig. 1: A code snippet related to the Heartbleed vulnerability (from
t1 lib.c in openssl-1.0.1f).

OpenSSL implements the TLS Heartbeat Extension [19],
which allows the client to send a heartbeat request to the server,
who will then reply the same payload back to keep the connec-
tion alive. Fig. 1 shows a code snippet of openssl-1.0.1f
for constructing heartbeat response message. In line 2586,
memcpy function copies data of payload size from the
source buffer pl, which contains the heartbeat request mes-
sage, to the destination buffer bp. However, since both the
payload variable and the pl buffer are controlled by the
attacker, and there is no check to make sure that the actual
length of the pl buffer is equal to payload, the attacker can
provide a very short heartbeat request message while setting
the payload variable to a large value up to 216. Thus, the
memcpy function will read beyond the boundary and copy
sensitive data to the bp buffer, which is eventually sent to the
attacker (line 2591).

Fig. 2 further illustrates the information leak caused by
the memcpy-based over-read. There are actually two types
of information leak. The first type is to steal information
previously used and left in the heap memory. For example,
if the vulnerable buffer pl has been used to handle a previous
user’s request, and the data in the buffer is not cleared or
initialized (e.g., the uninitialized area in Fig. 2), then memcpy
will copy such data to the intermediate buffer which will be
then sent to the attacker. Note that existing approaches on
bounds checking [7], [8], [9] does not really handle this type
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Fig. 2: Illustration of heap buffer over-read in the Heartbleed vulner-
ability.

of information leak, because they only check memory access
at the end of the buffer. The second type is to steal information
that are stored out of the current buffer. More specifically, if the
over-read reaches a buffer that is located after the vulnerable
buffer and the buffer is currently filled with sensitive data, then
those data will be leaked also. Since the attacker utilizes both
types of leakage to steal sensitive information, we will not
separate them in later discussions.

C. Motivation and Challenges

To evaluate the risks of heap buffer over-read vulnerabili-
ties associated with memcpy, our initial attempt was to capture
the instances of memcpy that are exploitable by the attacker.
If we can achieve this, the risk assessment will be accurate.
In practice, however, we found it is extremely hard to do so.
The main challenge is that there lacks a reliable method that
can accurately pinpoint those vulnerable memcpys.

Although a few commercial tools, such as Coverity [20]
and CodeSonar [21], can now detect the Heartbleed bug, none
of them did it before the bug was disclosed. Otherwise the
Heartbleed bug might not have stayed there for that long,
namely around two years. In this sense, it is reasonable to
suspect that there could be more complicated and obscure zero-
day buffer over-read vulnerabilities associated with some other
memcpys that are unknown. Thus, only using the Heartbleed
vulnerability to assess the entire risk of buffer over-read vul-
nerabilities of a program is neither objective nor representative.
If an attacker exploits a different bug to do buffer over-read,
what the attacker can get might be very different from what
he can get using Heartbleed. Moreover, it is fundamentally
difficult to verify a memcpy is never exploitable; and it is also
hard to predict how soon an exploit will happen. Therefore,
our intention is to come up with a generic methodology for
buffer over-read vulnerability risk assessment before the next
“Heartbleed” arrives. As the result, we choose a conservative
principle for our risk assessment, that is, every memcpy could
be abused by the attacker.

D. First Glance

To see how different it is to look at all memcpys instead
of only considering the Heartbleed bug in regard of evaluating
the risk, we first try to get some early sense. Since Apache
and Nginx are the two major targets of Hearbleed attacks [3],
we perform a preliminary analysis on the two Web servers.

TABLE I: Statistics of OpenSSL, Apache, and Nginx

Program # memcpy LOC
openssl-1.0.1f 184 50K
httpd-2.2.14 380 283K
nginx-1.3.9 156 122K

(a)

12.3%

87.7%

(b)

22.0%

78.0%

Heartbleed All memcpy()

(c)

29.7%

70.3%

Fig. 3: A rough estimate on the ratio of data leakage of Heartbleed
and all memcpy when Heartbleed attack happens (a) one, (b) two,
and (c) three times during a one-minute user session

First, we count the number of memcpys as well as lines
of code in OpenSSL, Apache and Nginx, shown in Table I.
In OpenSSL, we already know that 184 memcpys out of
50K LOC lead to one Heartbleed vulnerability. Therefore,
we probably can infer that there might be two heap buffer
over-read vulnerabilities that are still unknown in Apache and
another one hidden in Nginx.

Second, we further run the RUBiS benchmark (the detailed
experiment setup will be introduced in Section V) using
Apache with OpenSSL to get a rough ratio of data leakage
between the Heartbleed bug and all the other memcpys. Here,
we run 16 user sessions for about one minute. We perform
the Heartbleed attack on each user session by over-reading
32KB data for once, two times, three times, respectively. For
all the other memcpys, we set the size of data over-read to
be the original (intended) memory copy size. Fig. 3 (a), (b),
and (c) show the ratio of data leakage between Heartbleed and
all memcpys from the three experiments. We can see that the
Heartbleed bug only contributes around 10% to 30% to all the
potential data leakage.

As the result, given a technique targeting at heap buffer
over-read vulnerabilities, it is insufficient to only evaluate
the effectiveness against one particular known bug. Instead,
one needs to consider all instances of memcpy to perform a
comprehensive risk evaluation.

III. RISK ASSESSMENT

The risk assessment for the memcpy-based heap buffer
over-read vulnerabilities boils down to two questions: (1) How
to collect the potential heap buffer information leak? (2) How
to quantify the potential heap buffer information leak? In this
section, we describe our methodology to address these two
questions.

A. How to collect the potential heap buffer information leak?

Since we consider every memcpy potentially vulnerable,
we dynamically hook each occurrence of memcpy and sim-
ulate buffer over-read attacks by copying out additional N
bytes (after the intended size bytes in the src buffer) and
write to a log file. The N bytes are therefore regarded as
information leak. As the size N is usually controlled by the
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attacker and hence hard to predict, we do not specify the exact
value as part of our method. Nevertheless, there could be many
heuristics and strategies on choosing the over-read size. For
example, in Heartbleed attackers can read at most 64KB (i.e.,
216) because the size argument is converted from a short
integer of two bytes. Some heuristics can also be employed to
estimate the upper limit of N used by a reasonable attacker, for
instance, the maximum size of malloc request. In addition,
one can also use a stochastic process (e.g., Gaussian process)
to generate a sequence of variable over-read size. In sum, it is
better for system administrators or security officers who adopt
our method to determine the size N depending on the target
platform and workload, such as the type of web server, the type
of client requests, the characteristics of web pages being hosted
(e.g., static or dynamic, page size, etc.). In our experiment, we
select fixed size of 1KB, 16KB, and 32KB to simulate the
buffer over-read attack and collect data leak.

The implementation is straightforward. We simply hook
every memcpy using the LD_PRELOAD trick, calculate the
range of victim buffer, and copy the data out and dump to a
log file. The benefit of using LD_PRELOAD is that our risk
assessment can directly handle off-the-shelf binaries without
the need of source code. It should be pointed out that in real
world programs the source buffer of memcpy can also be on
stack and data segment. To remove these memcpys from our
consideration, we check the virtual addresses of source buffers
against the memory map /proc/self/maps and skip those
memcpys. After running the target program with certain test
inputs or benchmarks, the log file will contain the (simulated)
leaked data.

B. How to quantify the potential heap buffer information leak?

The quantification of information leak is the top challenge
of our risk assessment. We develop four metrics to quantify the
information leakage in different aspects. In reality, since people
may or may not know what data is targeted by an attacker,
we come up with two assumptions: a weak assumption and
a strong assumption. In the weak assumption, we assume we
are uninformed of what data is targeted by the attacker. We
propose Metric 1 and 2 below to perform a macroscopic mea-
sure on the gross information leakage. The strong assumption
means that we are aware of the target of the attacker (e.g.,
private key, username-password pair). We propose Metric 3
and 4 below to conduct a fine-grained examination. Note that
although we only demonstrate in Section V the application
of these metrics using a particular benchmark, the metrics
themselves are meant to be general. The four metrics are
described as follows:

Metric 1: Volume of Information-carrying Bytes. Not
every byte leaked to the attacker carries meaningful informa-
tion. For example, if the victim buffer is filled with zeros,
there is virtually no meaningful information being leaked.
So we can use both the size and ratio of the information-
carrying bytes to quantify how much gross information is
leaked. How to differentiate meaningful bytes and meaningless
bytes depends on the particular defense techniques. In our case
studies (introduced shortly in Section IV), we pick a special
ASCII control code 0x06 (ACK) to be used in the defense
techniques to clean the heap memory. For example, if a 1MB
log file contains 700KB non-0x06 characters, the ratio of
information carrying bytes would be 70%.

Metric 2: Information Entropy (Compression Ratio).
In information theory, entropy is used to indicate the quantity
of information. In the literature of quantitative information
flow, various entropy measures have been explored, including
Shannon entropy, guessing entropy, and min-entropy [22].
In our context, since there is not a clear way to do word
segmentation or text segmentation against the log file, we
use compression ratio to approximate the information entropy
of the leaked data. Particularly, we leverage three different
compression algorithms (gzip, bzip2, and xz). The higher
the compression ratio is, the higher entropy the leaked data
contains.

Metric 3: Sensitive Data Quantity. Apparently, if we
know the exact sensitive data (e.g., server private key) or
we are able to identity sensitive data based on the patterns
(e.g., email address), we can perform targeted analysis to
quantify the amount of information leakage. In our experiment
on the RUBiS benchmark, for instance, the user name and
password of a user with ID 1234 will be “user1234” and
“password1234”, respectively. As a result, we can search for
such patterns from the log file and count the total number of
valid username-password pairs.

Metric 4: Unique Sensitive Data Quantity. Since the
data over-read by multiple memcpys could have overlaps, it
is necessary to remove the redundancy and check the amount
of unique sensitive data leaked. Different from Metric 3 which
implies how big the chance is for an attacker to get something
valuable, this metric reveals how much unique entities can be
affected. The entities can be registered users, customers, and
websites. In our experiment, for example, the number of leaked
username-password pair indicates the number of users of the
auction site that are affected.

IV. CASE STUDIES

To validate our risk assessment methodology, we perform
case studies on four different sets of approaches adopted
from existing literature, which are all aimed at mitigating
information leakage in buffer over-read attacks.

A. Padding at Allocation

Assuming the same attack with the same length of over-
read, one intuition to reduce the amount of information leakage
is to increase the memory allocation size, in other words to pad
the memory object with additional memory, and initialize the
memory (including both original and padding) with zero bytes.
Actually, similar padding ideas have already been proposed in
DieHard [23] and OpenBSD to tolerate memory errors such as
buffer overflows, dangling pointers, and reads of uninitialized
data.

Ideally, if the padding bytes are longer enough, larger than
the upper limit of over-read size used by attacker, the attacker
can get nothing except his own memory content. This will lead
to zero information leak. In reality, however, the upper limit of
over-read size could be very large (e.g., 64KB in Heartbleed)
and even not foreseeable in case of zero-day attacks. Too large
padding size could cause dramatic increase in the memory
consumption as well as performance overhead. We choose a
simple heuristic, i.e., making the padding size to be the same
as the original allocation size. The merit of doing so is the
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deterministic space overhead, that is, the heap will be at most
as twice large as the original heap. To achieve this, we simply
hook every malloc, double the requested size, perform real
malloc, and zero out the allocated memory. The following
code snippet demonstrates this procedure.

void* malloc_hook(size_t size) {
void *ret = malloc(size*2);
if (ret) {

memset(ret, 0, size*2);
}
return ret;

}

B. Erasing at Deallocation (Inline)

It has long been a secure programming guideline that sen-
sitive data should be properly erased after the processing has
done with it. This idea can also help to lower the chance and
amount of information leakage. This idea has been explored
in data lifetime research to defend against memory disclosure
attacks [12]. We reimplement this technique for glibc heap
memory management by hooking free, retrieving the chunk
size, and then zeroing out the chunk. The code snippet shown
below demonstrates this idea.

void free_hook(void *ptr) {
if (ptr) {

size_t size = malloc_usable_size(ptr);
memset(ptr, 0, size);

}
free(ptr);

}

C. Erasing at Deallocation (Concurrent)

We also attempt to reduce the performance overhead of
the inline heap erasing by exploring a concurrent technique
proposed in Cruiser [24]. As shown in Fig. 4, the key idea is to
migrate the heap erasing task to a concurrent eraser thread and
leverage lock-free data structure to achieve non-blocking and
efficient synchronization between user threads and the eraser
thread. Since the design and implementation of this technique
is not the focus of this paper, we only provide a brief overview
of this technique as below.

User
Threads

Eraser 
Thread

..
.

malloc()

free()

Heap

hook

erase memory

Fig. 4: Architecture of concurrent heap buffer erase

We hook every call to free, push the target pointer to a
queue, and return immediately. Meanwhile, we create a dedi-
cated eraser thread to read pointers out of the queue, perform
memory erasing, and then call the glibc free to do real
deallocation. We implement the queue data structure based on
the single-producer single-consumer FIFO lock-free ring buffer
proposed by Lamport [25]. This data structure (not shown in
Fig. 4) enables a producer thread and a consumer thread to

concurrently perform operations (i.e., enqueue and dequeue)
on the ring buffer. The following pseudocode highlights the
workflow of this technique.

void free_hook(void *ptr) {
if (ptr) {

enqueue(ptr);
}

}
void* eraser_thread() {

while(!stop){
void *ptr = dequeue();
memset(ptr, 0, malloc_usable_size(ptr));
free(ptr);

}
return NULL;

}

D. Concurrent Erasing plus Padding

Based on the concurrent heap erasing, we further combine
it with the technique of padding at allocation. Theoretically,
we simply need to integrate the two techniques together.
In practice, we realize that all the newly allocated memory
returned by malloc have already been erased by an earlier
free. Therefore, it is unnecessary to zero out the memory
again. So we only need to hook the malloc and do memory
allocation with double request size.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We base our experiment on the RUBiS [14] benchmark
which is commonly used for evaluation by the systems research
community, especially on emulating real world workload of
websites that use dynamic content. The RUBiS benchmark
is an auction site prototype modeled after eBay.com. It con-
tains three types of user sessions, namely buyers, sellers,
and visitors, as well as 26 types of interactions, such as
ViewItem, PutBid, BuyNow, Sell, etc. The workload generator
can simulate many clients that follow a markov model to
browse and take actions on the auction site and there is also
some “thinking time” between the actions.

Client 
Emulator

Apache

PHP

MySQL

Fig. 5: Experiment setup of the RUBiS benchmark

We select the PHP version of RUBiS implementation and
set up a three-tier testbed, including a web server, a database,
and a client emulator as shown in Fig. 5. We use Apache
version 2.2.12 with PHP version 5.3.2 and MySQL version
5.1.73. The client emulator is compiled and run using Java
6. We collect the information leakage from the Apache web
server. On the client side, we simulate 100 users concurrently
browsing the website. Since the size of the log file grows
so quickly, we pause the client emulator every one minute,
perform the measurement, delete the log files and then resume
the client emulator for another one minute. All the results
reported below are averaged over 10 rounds of such iterations.
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Fig. 6: Experimental results of Metric 1, 2, and 3 on baseline and the four techniques: T0-baseline, T1-padding, T2-erasing (inline), T3-erasing
(concurrent), T4-erasing (concurrent) + padding.

B. Risk Assessment

Metric 1. In the log files dumped from the baseline run
(i.e., without applying any technique), we found that the ASCII
control code 0x06 rarely appears under our experiment setup.
So we choose 0x06 for the four techniques to do memory
cleaning. We then count the number of this particular value
in the log files and compute the ratio over the entire file size.
In order to get a more consistent comparison, buffer over-read
attacks using size 1KB, 16KB, and 32KB are simulated in the
same run. That is, we hook memcpy and do three write’s
to three log files that correspond to the three over-read sizes.

The results are shown in Fig. 6(a). The ratio of information-
carrying bytes for the baseline is nearly 100%, while the
others are mostly below 80%. This indicates that all of the
four techniques can reduce the information-carrying bytes. The
larger the over-read size is, the less percentage of information-
carrying bytes the attacker can get. For the over-read size of
32KB, the average ratio of information-carrying bytes reduces
to 63.4%. It is interesting to point out that attackers usually
tend to try over-read with a longer length as they think they
will gain more information. However, using a longer size will
increase the possibility of failure (e.g., causing a crash). Now
our results seem to indicate that the belief of “longer over-read
size will lead to more data leakage” does not always hold. So
an attacker using a shorter size can still gain similar amount
of information. From the attackers’ perspective, however, this
sounds to be a good news.

Comparing the four different techniques, the rough conclu-
sion is that erasing plus padding is better than purely erasing,
which is in turn better than purely padding. The inline erasing
is oftentimes better than the concurrent erasing because in
concurrent erasing, user threads calling free and the eraser
thread erasing the memory are asynchronous events so that
there is a small time window during which the data is still
left on memory. However, this advantage comes with some
performance penalty (see Section V-C).

Metric 2. As shown in Fig. 6(b), we use three compression
algorithms to approximate the entropy of information con-
tained in the leaked data. We first calculate the compression
ratio for each compression algorithm on every test cases
and use the compression ratio of gz on the baseline as the
normalization factor to normalize the compression ratio of
others. The over-read sizes of the test cases shown in Fig. 6(b)

are all 16KB. The difference between the average compression
ratios of the three algorithms is attributed to their inherent
difference in compression and encoding schemes. Overall, the
techniques using erasing are more effective in reducing the
information entropy than the padding technique. The average
entropy of T2, T3, and T4 is almost only half of the baseline’s
entropy, indicating that these techniques are indeed able to
mitigate the information leakage to a great extent.

Metric 3. For the RUBiS benchmark, we define the user’s
information as sensitive and thereby targeted by attackers.
Specifically, the sensitive information of a user include first
name, last name, email address, nickname (i.e., username),
and password. As mentioned earlier, in the RUBiS benchmark
every user has a unique user ID and these sensitive information
all share the same pattern: [keyword][user ID]. For example, all
of the usernames and passwords have the pattern of “user[user
ID]” and “password[user ID]”, respectively. Consequently, we
analyze the log file and search for the sensitive information by
pattern matching with regular expressions.

Interestingly, we found that not all the results that match
the patterns are valid. The log file fragment shown in
Fig. 7(a) gives an example. The strings “User1642528” and
“Great1642528” are the valid last name and first name of
the user whose user ID is “1642528”. However, the strings
“user164252” and “password16” are truncated by other data
and thus invalid. We regard these invalid results as false
positives and filter them out through correlating with the client
emulator to check the validity of user IDs. It is worth mention-
ing that knowing the first part of a password greatly reduces the
search space for a brute-force password attack. Since further
quantifying the difficulty of password cracking is beyond the

(a)

(b)

Fig. 7: Leaked data showing (a) some sensitive information and (b)
a valid username-password pair
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TABLE II: Metric 4 – Quantity of Unique Sensitive Data

Over-read Size Type
I: all, II: username-password pair T0 T1 T2 T3 T4

1KB I 9 5 2 2 1
II 2 1 1 1 0

16KB I 9 5 2 3 2
II 2 1 1 1 1

32KB I 9 7 3 5 3
II 2 2 1 1 1

focus of this paper, we simply regard these truncated password
as invalid. In addition, to also avoid counting the sensitive
information leaked by the same user (which is virtually not
an information leak), we modify the client emulator to create
different groups of users for every 1-minute interval. As such,
we check every interval (except the first one) against the users
in the previous intervals to determine the sensitive data leak.

Fig. 6(c) shows the quantity of sensitive information re-
trieved from the leaked data. Since the username-password pair
is normally considered much more sensitive and can be used
to directly compromise a user account, we additionally mea-
sure the quantity of valid username-password pairs. Fig. 7(b)
shows a fragment containing a complete pair of username and
password. For all the test results in Fig. 6(c), we can observe
a clear difference on the quantity of sensitive data leaked with
and without the mitigation techniques. The huge difference
suggests that even a simple technique might be able to reduce
the risk to a large extent.

Metric 4. Lastly, we apply Metric 4 to measure the quantity
of unique sensitive data leaked. Table II lists the numbers
of different test cases over the three sizes. As for the over-
read size, we can see that the difference it makes is quite
minimal, especially for the baseline which is totally the same
across 1KB, 16KB, and 32KB. On the other hand, the four
techniques are further proven to be effective. The number of
unique username-password pairs for T4 is even reduced to zero
under the 1KB over-read size.

C. Performance Comparison

We further compare the performance of the four techniques
in terms of microbenchmark runtime overhead, web server
throughput overhead and memory overhead. First, we write a
microbenchmark which allocates a series of memory ranging
from 10 bytes to 20KB (∼200MB in total), does some compu-
tation, sleeps for a while (to simulate I/O), deallocates all the
memories, and repeats this iteration for 50 times. Fig. 8 shows
the runtime of the microbenchmark in different test cases.
Compared to (inline) padding and inline erasing, concurrent
erasing incurs much less runtime overhead, which is even
lower than the baseline. The reason is that in the concurrent

0 2 4 6 8 10 12 14 16 18
Runtime (s)

Concurrent
+Padding

Concurrent

Inline

Padding

Baseline

Fig. 8: Runtime comparison on microbenchmark

TABLE III: Throughput and memory overhead on Apache

Techniques Throughput Overhead Memory Overhead
Padding 0.4% 2.6%
Inline 0.2% 0%

Concurrent 0.1% 3.9%
Concurrent + Padding 0.1% 6.2%

erasing, the main thread does not even need to do the real stuff
in free (which is delegated by the eraser thread).

Second, we use Apache web server and ApacheBench
version 2.3 to measure the web server throughput overhead
and RSS memory overhead. The concurrency of ApacheBench
is 50 and the number of request is 10,000 for each run.
We repeat the test 10 times and take the average for each
measurement. The experiments are done on a DELL T310
server with 2.53GHz quad-core CPU and 4GB RAM. The
result in Table III shows that the throughput overhead for
all four techniques is negligible. As for memory overhead,
padding and concurrent erasing will each increase roughly 3%,
which is still very small.

VI. DISCUSSION AND LIMITATIONS

It should be pointed out that the results of risk measurement
and performance of different mitigation techniques are affected
by various factors, including the characteristics of programs,
the workloads, how the sensitive data is defined, etc. Even in
our own experiment, for example, the performance comparison
for the microbenchmark and the web server are not in line with
each other. Therefore, we encourage system administrators
or security officers to do their own measurement if they are
interested in adopting our method to do risk assessment.

In Metric 3 and 4, we only measure the leakage of sensitive
data across intervals. In theory, it is also useful to measure the
leakage within the same interval (i.e., one user steals the data
of a concurrent user). However, this requires hacking into the
web server to associate each invocation of memcpy with the
corresponding user ID and involves modifying and recompiling
the program, which may not be a practical option in many
cases. We plan to explore non-intrusive ways to achieve this
in the future.

Another limitation is that given the limited disk space, our
current approach suffers from the fast growing speed of the
log files. One solution is to embed the analysis component into
the data collection component so that the analysis component
can consume the data on the fly and the log files are no longer
needed. However, doing this integration might change the heap
memory layout and thus affect the results. We leave this issue
for future work.

VII. RELATED WORK

It has been well accepted that sensitive data (e.g., pass-
words, SSN, and bank accounts) scatters in memory and thus
becomes a favorable target of attacks. The investigation by
Chow et al. further reveals that many popular applications,
such as Mozilla and Apache, take virtually no measures to
limit the lifetime of sensitive data they handle [12]. While
their work aims at tracking the lifetime of tainted sensitive
data, we focus on quantifying the risks of information leakage
on sensitive data.
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There exist approaches that quantify information leaks in
a few different aspects [22], [26], [27]. For example, [26]
proposes to minimize and constrain information leaks in out-
bound web traffic by checking fixed data pattern against the
HTTP protocol. Heusser and Malacaria [27] introduces a
technique to decide if a program conforms to a quantitative
policy via model checking. Baring a similar purpose but a
different focus in mind, we present the first quantitative study
on the information leaks of buffer over-read vulnerabilities.

Zeroing data upon deallocation is an important security
practice [18], [28], which, however, is not well taken in
practice. Chow et al. thus propose to zero data upon deal-
location automatically [12]. We have included this strategy in
our comparison. In addition to considering deallocated data,
our method also evaluates the risk of information disclosure
targeting allocated data. Harrison and Xu [29] have focused
on the disclosure of cryptographic keys at both allocated and
deallocated data, and proposed combined solutions to minimize
the threat. However, their approaches require modification of
library and kernel code. Zeng et al. [30] propose a new end-
to-end defense against zero-day buffer over-read vulnerabilities
and evaluate their solution with the Heartbleed attack. In our
work we examine a set of simple non-intrusive approaches
that can be applied to mitigate information leakage caused by
buffer over-read.

VIII. CONCLUSION

The research on buffer over-read vulnerability is gaining
more and more attentions from both academia and indus-
try recently. This is mainly due to the vast damage that
the Heartbleed bug has caused and, more importantly, it is
much more difficult to detect and fully defeat compared to
buffer overflow attacks. As the Heartbleed bug has remained
undiscovered for about two years, it is entirely possible that
zero-day “Heartbleed” over-read vulnerabilities still exist or
will be introduced. To evaluate new counter-measures against
buffer over-read attacks, people would need to perform risk
assessment on all the potential information leakage caused by
unknown “Heartbleed” vulnerabilities.

We present a set of feasible metrics to quantitatively
evaluate the risks associated with memcpy operations in buffer
over-read attacks. We develop practical methods to collect and
measure information leakage in real world programs. We report
our experiments on an auction site prototype modeled after
eBay.com. Our experience reveals that even some simple non-
intrusive techniques can achieve reasonable defense against
buffer over-read in terms of information leakage as well as
performance.
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