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ABSTRACT

In case of emergencies (e.g., earthquakes, flooding), rapid responses are needed in order to address victims’
requests for help. Social media used around crises involves self-organizing behavior that can produce accurate
results, often in advance of official communications. This allows affected population to send tweets or text
messages, and hence, make them heard. The ability to classify tweets and text messages automatically, together
with the ability to deliver the relevant information to the appropriate personnel are essential for enabling the
personnel to timely and efficiently work to address the most urgent needs, and to understand the emergency
situation better. In this study, we developed a reusable information technology infrastructure, called Enhanced
Messaging for the Emergency Response Sector (EMERSE). The components of EMERSE are: (i) an iPhone
application; (i) a Twitter crawler component; (iii) machine translation; and (iv) automatic message
classification. While each component is important in itself and deserves a detailed analysis, in this paper we
focused on the automatic classification component, which classifies and aggregates tweets and text messages
about the Haiti disaster relief so that they can be easily accessed by non-governmental organizations, relief
workers, people in Haiti, and their friends and families.
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INTRODUCTION

As social media and more specifically, microblogging, become more integrated into the daily lives and everyday
communication patterns, scholars of disasters and emergency response see challenges and hope in these
practices. The existence of over four billion cell phones throughout the world, coupled with information sharing
sites such as Facebook, Flikr, Twitter, and virtual universal connectivity, provide the technological basis for
worldwide information collection, sharing and dissemination. These microblogging practices are often described
as rich sources of timely data that may offer affected individuals and responders valuable information.
According to (Vieweg, Hughes, Starbird, and Palen, 2010), microblogging is seen to have intrinsic value across
responder organizations and victims because of its growing ubiquity, communications rapidity, and cross-
platform accessibility. In disasters, average citizens on the ground can offer information describing the
magnitude of the crisis, keeping outsiders informed as to the status on the ground.

There have been several studies on the use of social media and microblogging during crisis, including studies
that have focused on the 2007 Virginia Tech shootings, the 2008 Northern Illinois University shootings, as well
as the 2007 southern California wildfires (Palen, Vieweg, Liu, and Hughes, 2009; Palen and Vieweg, 2008;
Vieweg, Palen, Liu, Hughes, and Sutton, 2008; Sutton, Palen, and Shklovski, 2008). For the greater part, these
scholarly and journalistic accounts argue that microblogging has the potential to provide for citizen
empowerment with a many-to-many information flow. Some researchers (Palen, Anderson, Mark, Martin,
Sicker, Palmer, and Grunwald, 2010) argue that social media used around crises involves self-organizing
behavior that can produce accurate results, often in advance of official communications.
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One example of microblogging being used during crisis was the 7.0 Earthquake in Haiti. This disaster led to the
mobilization of much of the world to support the relief effort, especially through novel uses of the cyberspace.
Relief workers, reporters, and non-governmental organizations (NGOs) have used tweets and text messages
extensively to spread and share information about the needs, events, and causalities in the Twitterworld.
Regular citizens have also employed Twitter to rally others to support relief efforts. Hope140.org provides RSS
feeds about tweets related to Haiti and suggests Twitter accounts to follow. Both Haitians and relief workers
have used mobile phones to send text messages regarding damages, resource needs, and security-related events.

Even though the earthquake damaged much of the communication infrastructure in Haiti, Haiti's Internet
connectivity was robust because most Haitian ISPs use satellite, rather than damaged undersea fiber optic cable
links, to connect to Internet. To help NGOs connect to satellites, telecommunication companies (e.g.,
International Telecommunications Union and Trilogy International Partners) quickly set up cellular systems.
Moreover, FrontLineSMS:Medic set up a free phone line, 4636, to allow affected population to send text
messages, and hence, make themselves heard (Munro, 2010).

While there is useful information in these tweets and text messages, they are not well-organized to allow critical
information (e.g., water, medical supply, food) to be delivered to those who need them in a timely and efficient
fashion. Relief workers from different organizations, such as NGOs, military units, and government agencies,
need IT support for analyzing tweets and text messages for ease of aggregation and targeted real-time
broadcasting. Hence, the ability to classify tweets and text messages automatically, together with the ability to
deliver the relevant information to the appropriate personnel are essential for enabling the personnel to timely
and efficiently work to address the most urgent needs, and to understand the emergency situation better in the
Emergency Response Sector.

Although tweets and text message classification can be performed with little or no effort by people, it still
remains difficult for computers. Machine learning offers a promising approach to the design of algorithms for
training computer programs to efficiently and accurately classify short text message data. Some of the main
challenges in classifying such data are as follows: (i) tweets and text messages contain only a few words and,
sometimes, require background information for accurate classification. For example, the message “I live in
Leogane, Route de Mellier Bongnotte #72, I need formula for my baby.” requires knowledge that formula refers
to baby food. The choice of features used to encode such data is crucial for the performance of learning
algorithms; (ii) tweets and text messages may belong to multiple categories (i.e., the multi-label problem); (iii)
there may be possible errors in the manually generated labels (i.e., categories) of messages, which can impact
the performance of learning algorithms; and (iv) the training (labeled) set is often limited in size.

Against this background, we propose and develop a reusable information technology infrastructure called
EMERSE (Enhanced Messaging for the Emergency Response SEctor) that classifies and aggregates tweets and
text messages about the Haiti disaster relief (originating in Haiti and elsewhere) so that they can be easily
accessed by NGOs, relief workers, people in Haiti, and their friends and families.

We focused on the choice of features that are used to represent short text messages in a multi-label setting. We
compared four types of feature representations provided as input to machine learning classifiers to accurately
classify text messages from the Haiti earthquake, submitted to Ushahidi-Haiti (http://haiti.ushahidi.com) through
phone, e-mail, Twitter, or web. These feature representations are obtained using: (i) a BoWs, (.e., all words in
the vocabulary) (McCallum and Nigam, 1998); (ii) feature abstraction methods, that find a partition of the set of
words in the vocabulary by clustering words based on the similarity between the class distributions that they
induce (Silvescu, Caragea, and Honavar, 2009); (iii) feature selection methods, that select a subset of features
based on some chosen criteria (Kira and Rendell, 1992); and (iv) Latent Dirichlet Allocation (LDA) (Blei, Ng,
and Jordan, 2003), that finds hidden topics in the data. The topic words (i.e., the words in each topic) can be
seen as discriminative features.

The results of our experiments show that feature abstraction generates features that can yield better performing
classifiers than those obtained by using a BoWs, features chosen by feature selection, and features as topic
words output by LDA. We also discuss the insights gained from these results and suggest directions of future
research to enhance the accuracy and coverage for classifying tweets and text messages for improved efficiency
and coordination during the response, transition, and recovery of extreme events.

The rest of the paper is organized as follows: Section 2 discusses the related work, Section 3 describes the
architecture of the EMERSE system, through an example; Section 4 presents a brief overview of feature
abstraction (Silvescu et al., 2009), Relief feature selection (Kira and Rendell, 1992), and LDA (Blei et al.,
2003). Section 5 provides experimental design and results, and Section 6 concludes the paper with a summary
and discussion.
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RELATED WORK

The problem of learning classifiers from short text messages has started to receive significant attention in the
machine learning literature. Healy, Delany, and Zamolotskikh (2005), Hidalgo, Bringas, Sanz, and Garcia
(2006), and Cormack, Hidalgo, and Sanz (2007) have previously addressed the problem of identifying spam
short messages, by employing various machine learning algorithms (such as Naive Bayes, SVM, Logistic
Regression, and Decision Trees) and various feature representations (such as BoWs, BoWs augmented by
statistical features, e.g., the proportion of upper case letters or punctuation in the text, orthogonal sparse word
bigrams, character bigrams and trigrams). Gupta and Ratinov (2008) have employed transfer learning techniques
to classify short online dialogs, by enriching the set of features using external data sources. Munro and Manning
(2010) have focused on classifying medical text messages, written in Chichewa language, that were received by
a clinic in Malawi, and have shown that incorporating morphological and phonological variation could improve
classification performance. Furthermore, Munro (2010) has presented a brief survey about the crowdsourced
translation to English of text messages written in Haitian Creole during the January 12 earthquake in Haiti.
Collaborating online, people around the world were able to translate more than 40,000 messages in a short time,
which led to saving hundreds of lives, and direct the food and medical aid to tens of thousands (Munro, 2010).
Starbird and Stamberger (2010) introduced a Twitter hashtag syntax for reporting events related to crisis.

Unlike these works, we focused on correctly classifying text messages for the emergency response sector by
determining a subset of features that are most informative for the target variable, either by selecting a subset of
features from the entire vocabulary using feature selection or LDA, or by constructing abstract features using
feature abstraction. In addition, our text message classification task is harder due to its multi-label nature (i.e.,
text messages may belong to multiple categories).

The topics related to emergency response (ER) form an ontology that can be applied to emergency response for
a wide range of relief operations. Ontology development tools such as Protege have been widely used for
developing ontology for different domains. Li, Liu, Ling, Zhan, An, Li, and Sha (2008) proposed an ontology
for emergency response (ER). The top level concepts of the proposed ontology include: aftermath-handling,
emergency-rescue, emergency-response, and response-preparation. Each concept is further refined by a set of
subconcepts. Emergency-rescue, for instance, include medical-aid, evacuation, and victim-assistance. Turoff,
Chumer, Van de Walle, and Yao (2006) have designed a dynamic emergency response management system
DERMIS, and have identified the characteristics of a good ER system.

EMERSE - ENHANCED MESSAGING FOR THE EMERGENCY RESPONSE SECTOR

Before presenting the details of message classification, we first provide a brief description of our EMERSE
system, which can best be described using two case scenarios: the first case involves survivors of Haiti
communicating to NGOs through the system, and the second involves NGOs communicating to survivors of
Haiti. Both scenarios involve classifying incoming messages and broadcasting outgoing messages to those who
subscribe for them.

Scenario 1: A woman, Mrs. A, in a village in Haiti notices several of her neighbors in the same village have
developed symptoms of a serious disease. She sends a short text message in French Creole through text
messaging to a local phone number advertised by the relief organizations. The message is forwarded to
EMERSE, which is first translated to English, then classified to the “Medical Needs” category. The name of the
village in the message is extracted, and its location identified. A U.S. relief worker, Mr. B, working for an NGO
for handling medical aid for the region in which the village is located has previously subscribed to the system
for receiving tweets in the “Medical Needs” category for the region he is responsible for. Mr. B notices a new
tweet sent by EMERSE that describes multiple villages with serious illness. Concerned about the potential to
trigger a pandemic, Mr. B. uses his smart phone to forward the tweets to several nearby temporary hospitals and
to the medical supply center of the NGO to alert them about the situation. Within an hour, a medical care team,
consisting of doctors and nurses from multiple hospitals, carrying medical supplies obtained from the NGO,
arrived at the village. Due to their prompt response, they were able to cure people in the infected villages.

Scenario 2: However, there were not enough vaccines for all the villages not infected by the disease yet. Mr. B
separated all the infected villagers from those not infected. Mr. B also helped Mrs. A and other villagers with
cell phones to create a Twitter account on Mr. B’s laptop, and register their cell phones to receive text messages
regarding the availability of medical supplies to the region. Three days later, the vaccine arrives at the medical
supply center of the NGO. The worker sends a tweet to EMERSE, which is classified as “Medical Supplies”
and broadcasted to those relief workers who subscribe for it. Mr. B receives the tweet, contacts the medical
supply center to reserve the amount needed for the village. Mr. B then sends a tweet (in English) to the
EMERSE account for the village to tell them to be in the village to receive vaccine within an hour, which is
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Figure 1: (a) EMERSE Architecture; (b) The iPhone Application

translated by the machine translation component to French Creole and sent to cell phones of the villages as well
as nurses in nearby hospitals. One hour later, Mr. B arrives at the village with nurses and enough vaccine for
the villagers. Because villagers with cell phones quickly inform other villagers, all the uninfected villagers have
gathered and are ready to receive the vaccine when Mr. B arrives. A potential outbreak of a dangerous infectious
disease is thus prevented because of EMERSE.

The EMERSE system architecture is presented in Figure 1(a). In addition to the automatic classification
component, the main components of the system are as follows: (i) an iPhone application; (ii) a Twitter crawler
component; and (iii) a machine translation component.

The iPhone application. We designed and implemented an iPhone application for NGOs and first responders, to
assist them in recording data (situation reports, rapid assessments, etc.), that are useful in organizing emergency
response. Currently, NGOs are using clipboards, pen, and paper to record observed information. Then, at the
field camps, these paper reports are processed and are phoned or emailed back to the command center and
distribution points (Beiser, 2010). However, newer technology is available and is being used on the ground.

When developing the application for the iPhone platform, the user interface is extremely important. The
primary goal for this application was simplicity and accessibility. We would not want users to find pen and
paper faster than the iPhone! Furthermore, the capacity of the iPhone to take and tag photos can be extremely
useful in relaying information of a situation in a manner that words on a form cannot. Finally, geo-locating
capabilities with the iPhone provide location data for each submission so that the aid can be delivered as
precisely as possible. The location could be an indication of trust in the validity of the report, which is an
attractive feature. The application requires registration, but once registered, it allows submission of data related
to casualties, damage, aid needed, overall severity of the area, and a general notes page for anything else of
consequence. Data from each page is then submitted to a server, which enables the registration and submission
data to be saved remotely, and photos to be uploaded. In case of no service or internet access, the application
rolls over to local storage until access is available. However, the GPS still works via satellite and is able to geo-
locate data being recorded. Figure 1(b) shows the registration page and the main submission data page.

The Twitter crawler component. We designed and implemented a distributed crawl mechanism, which
effectively captures tweets of most relevance to the system, e.g. tweets referring to specific crisis events. The
crawler stores these tweets into a database allowing this information to be retrieved for effective analysis. The
crawler utilizes the Twitter© API that retrieves relevant tweets to user-input seed keywords (“earthquake”,
“haiti earthquake”, etc.) within a seven-day period as well as tweets that have been posted by specific users.
Each API call returns at most 1000 tweets and auxiliary metadata (e.g., creation time, geo-location, tweet id,
user id, etc.) in JSON format, which is written to a file on disk. This file is parsed and each tweet is written to a
postGRES database such that each tweet having the same id (returned by Twitter) appears only once. Since
Twitter assigns each new retweet with a different id, these are stored as unique database entries provided
retweets are returned when querying for a specific keyword. Furthermore, once the crawler downloads tweets
for specific keywords for the first time, it updates a timestamp column so that each request for more tweets is
limited only to the current date. (For the first request, the returned tweets may be for at most a seven-day
duration). Due to Twitter call limitations, the crawler typically sends about 150 keyword requests per hour.

The machine translation component. We utilize Google AJAX Language API' and Google Haitian Creole
translator® to translate tweets in French Creole and other languages. We observed posts in French, German,

! http://code.google.com/apis/ajaxlanguage/documentation/
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Japanese, Dutch, etc. related to the Haitian catastrophe. We tested the API with a sample of existing tweets in
French Creole from twitter and verified that the quality of the translations is high especially for the purposes of
our learning algorithms, in which the linguistic and grammatical errors like the order of verbs, etc. do not
matter. The Google API translates documents up to 1MB in size and can be used to translate 1GB translations
per year. This equates to more than 7 million tweets. Google’s quota has been implemented to prevent unethical
uses and denial of service attacks. Thus, we remain confident that in the unforeseen case that the volume of
tweets increases drastically, we will contact Google to allow us to allocate a higher quota and should be able to
procure these additional services.

Next, we present details of the automatic classification component of EMERSE.

LEARNING AND CLASSIFICATION

The supervised learning problem (Duda, Hart, and Stork, 2001) can be formally defined as follows. Given: (i) an
independent and identically distributed (iid) data set D of labeled examples (X;):)i-1.... Xi € X and y; € VY,
where X denotes a vocabulary of words and Y the set of all possible class labels; (ii) a hypothesis class FH
representing the set of all possible hypotheses that can be learned; and (iii) a performance criterion P (e.g.,
accuracy), then a learning algorithm L outputs a hypothesis # € F (i.e., a classifier) that optimizes P. During
classification, the task of the classifier / is to accurately assign a new example X, to a class label y € Y (see
Figure 2).

Learning Algorithm

Output h £ H |:D h(Ztest) =¥

st h(x:) & wi Y
Hypothesis class H
h: X =Y

new est example
S e L ey
x €EX eV

iid training data

Figure 2: Supervised Learning and Classification.

In the remaining of this section, we describe four methods, which produce feature representations that are used
as input to machine learning algorithms: (1) the BoWs approach; (2) feature abstraction; (3) feature selection;
and (4) Latent Dirichlet Allocation (LDA). The motivation for choosing these four methods is that they were
successfully used for text document modeling and classification. The “bag of words” approach is commonly
used for text classification; feature abstraction methods reduce a model input size by grouping “similar” features
into clusters of features; feature selection methods attempt to remove irrelevant or redundant features in order to
improve classification performance; and LDA models are designed to discover clusters of semantically related
words that co-occur in a collection of documents.

The BoWs approach. The BoWs approach is widely used by the machine learning community for many
classification tasks (see, for instance, (McCallum and Nigam, 1998)). Each example (i.e., a text message) is
drawn from a multinomial distribution of words from a vocabulary, and the number of independent trials is
equal to the length of the example. Hence, each example is represented by its words (used as features in the
classification model), which are assumed to be independent given the class variable.

Feature Abstraction. Feature abstraction methods are potentially successful techniques for producing
appropriate features for classification (Silvescu et al., 2009). They reduce the classifier input size by grouping
“similar” features to generate abstract features (also called abstractions). Silvescu et al. (2009) proposed an
approach to simplifying the data representation used by a learner by grouping features based on the Jensen-

2 http://code.google.com/p/translator-ht/
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Shannon divergence (Cover and Thomas, 1991) that result in minimal reduction in the mutual information
between features and the class variable.

Specifically, they used hierarchical agglomerative clustering to group the most “similar” features at each step of
the algorithm, based on the similarity between the conditional distributions of the class variable given the
features. The most “similar” features are identified as those that have the smallest Jensen-Shannon divergence
between the conditional distributions of the class that the features induce. As an effect, abstract features that are
predictive of the class variable are obtained. An example of an abstract feature can be “food”, which is more
general than the specific features “rice” and “formula” (i.e., baby food). The abstract feature is identified by the
group {rice, formula}.

Silvescu et al. (2009) have shown that abstraction reduces the model input size and helps improve the statistical
estimates of complex models (especially when data are sparse) by reducing the number of parameters to be
estimated from data. In this study, we have applied the feature abstraction approach of Silvescu et al. to generate
the abstract feature representation.

Feature Selection. Feature selection methods attempt to remove redundant or irrelevant features in order to
improve classification performance of learning algorithms (Guyon and Elisseeff, 2003). Feature selection selects
a subset of the available features based on some chosen criteria, and can substantially reduce the number of
model parameters. Kira and Rendell (1992) proposed an algorithm for feature selection, called Relief, which is
not heuristic-based, is robust to noise and to interaction among features.

Relief is a weight-based algorithm. At each step, Relief samples from the training data an instance x, and
determines x’s near-hit (the closest instance from the same class as x) and near-miss (the closest instance from
the opposite class of x) in the training data, by using p-dimensional Euclidian distance. A feature weight vector
is updated for each such triplet to determine the relevance of all features to the class variable. The algorithm
terminates after & steps and returns those features whose relevance level is above some user-specified threshold.
We have used the Relief algorithm to select a subset of features that are predictive to the class variable.

Latent Dirichlet Allocation. Latent Dirichlet Allocation (LDA) is an unsupervised method for detecting hidden
topics in the data proposed by Blei et al. (2003). LDA is a generative probabilistic model of a collection of
documents, which has been successfully used to perform dimensionality reduction for text classification (Wei
and Croft, 2009), where documents are multiple paragraphs and pages in length.

LDA models each document in a collection as a mixture of topics (drawn from a conjugate Dirichlet prior), and
each topic as a distribution over words in the vocabulary. The topic distribution of a document can be seen as a
lower dimensional representation of the document (where the dimensionality is equal to the number of topics).
Furthermore, the union of the words with high probability in each topic can be seen as a set of discriminative
features for the collection of documents. We have used these words to generate the topic words feature
representation.

EXPERIMENTS AND RESULTS

Ushahidi Text Message Data Set. The data set used in our experiments is the Ushahidi data set
(http://haiti.ushahidi.com/), which consists of 3,598 text messages from the Haiti earthquake. We used a subset
of 2,116 text messages of the Ushahidi data set, for which the English translation is available. While text
messages are available in both Haitian Creole and English languages, we used only the English version, as
Munro and Manning (2010) found no significant improvement from one language to another on a similar task.
The messages have been manually labeled into 10 categories: (1) medical emergency; (2) people trapped; (3)
food shortage; (4) water shortage; (5) water sanitation; (6) shelter needed; (7) collapsed structure; (8) food
distribution; (9) hospital/clinic services; and (10) person news. A message may belong to multiple categories.
For example, the message “Good evening ONG, I'm very happy for the aid you're giving to the people, I thank
you. But in my zone that's to say Lamenten 54 Rue St Juste we need shelter and food.” belongs to both shelter
needed and food shortage categories. In experiments, we compared the predicted labels produced by machine
learning algorithms against the manual labels generated by people. Note that we could have employed the
machine translation component of our EMERSE system to translate messages from Haitian Creole to English.
However, as already stated, our main focus here is on the automatic classification component of EMERSE.

Experimental Design. Next, we describe two different ways for performing classification: classification by
keywords and classification by Support Vector Machine (SVM), which is a machine learning algorithm.
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Classification by keywords is a simple technique for automatic classification. For each class (or category), we
identify a set of keywords as follows: we sort the words from the vocabulary based on their frequency of
occurrences in the messages that belong to that particular class. The top & most frequent words from each class
are considered as the keywords for each class. We ensure that there are no overlapping keywords among classes.
During classification, each example is assigned to a particular class if it contains at least one keyword from the
set of keywords for that class.

Classification by SVMs. SVM classifiers are among the most effective machine learning algorithms for many
complex binary classification problems (Burges, 1998). Given a set of labeled inputs (x;,)i=1.._ 1, X; € R and y;
€ {-1,+1}, learning an SVM classifier is equivalent to learning a decision function f{x) whose sign represents
the class assigned to input x. This can be achieved by solving a dual quadratic optimization problem. During
classification, an unlabeled input x,,, is classified based on the sign of the decision function, sign(f(X.)) (i.e., if
S(Xwes0)>0, then X, is assigned to the positive class; otherwise, X, is assigned to the negative class) (Vapnik,
1998).

Our experiments using SVMs are designed to explore what feature representations of short text messages,
provided as input to SVMs, result in best classification performance. We used four types of feature
representations to enable learning SVM classifiers on the Ushahidi text message data set:

e a bag of words representation, i.e., all words in the vocabulary. After stemming and removing stop
words, and words with document frequency less than 3 (i.e., words that occur in less than 3 messages),
the vocabulary size is 1525 (McCallum and Nigam, 1998);

e abag of m words chosen using the Relief feature selection method (FS) (Kira and Rendell, 1992);

e a bag of m abstractions over all words in the vocabulary, i.e., an m-size partition of the vocabulary
obtained by grouping words into m abstract terms based on the similarity between the class
distributions that they induce (FA) (Silvescu et al., 2009);

e abag of m topic words output by Latent Dirichlet Allocation (LDA) as the top 20 words from £ topics
(the number of topic words m is bounded by 20xk) (TW) (Blei et al., 2003).

In our experiments, we used the WEKA implementation (Hall, Frank, Holmes, Pfahringer, Reutemann, and
Witten, 2009) of SVM with the default parameters, and the MALLET implementation (McCallum, 2002) of
LDA. The LDA parameters are set to default, except for the number of iterations of Gibbs sampling, which is
set to 3,000, and the random seed, which is set to 1. The number of topics & is set to 9 (chosen to be close to the
number of categories in the data set). This results in m=165 topic words. Hence, we trained classifiers for
m=165 for all of the above feature representations. In the case of feature abstraction, the 165-size partition of the
vocabulary produces classifiers that use smaller number of “features” compared to the BoWs representation,
(i.e., 1525 words) and at the same time, the model compression is not very stringent so as to lose important
information in the data through abstraction.

Because a text message may belong to one or more categories, in the classification component of the EMERSE
system, once a text message is received, it is desirable to assign it to all the categories it belongs to, and hence,
deliver it to the appropriate departments, in a timely and efficient fashion. The classification problem in which
examples belong to multiple categories is referred to as the multi-label classification problem. To solve this, we
considered a natural decomposition into 10 “one vs. others” binary classification problems, and trained 10
binary classifiers, one for each category. The categories assigned to a text message are those predicted as
positive by each of the 10 classifiers.

For all experiments, we report the average F1 measure obtained in a 5-fold cross-validation experiment. F/

measure is the harmonic mean of precision (P) and recall (R), i.e., p_2PR, , TP and ,__ TP . TP,
P+R TP + FP TP + FN

FP, and FN denote true positives, false positives, and false negatives, respectively. We present results for each

individual binary classifier and for the multi-label classifier. For the latter, precision and recall are computed as

follows: Z]’:TP, and ZZTP, , where TP, FP;, and FN; denote true positives, false positives,

= R==w
2. (TP, +FP) 2. (TP, +FN))
and false negatives, respectively, for the i classifier.
Results. Table 1 shows the comparison of average F1 measure (along with 95% confidence intervals) obtained
using the classification by keywords and the classification by binary SVMs trained on the Ushahidi text message

data set for each of the ten categories. The feature representations used to train the SVM classifiers are as
follows: (i) BoWs; (ii) abstractions used as “features” in the classification model, which are obtained by feature
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abstraction (FA); (iii) features selected by Relief feature selection (FS); and (iv) topic words, output by LDA
(TW). Table 2 shows similar results for the multi-label classification setting.

Class Classification Support Vector Machines
by Keywords BoW FA FS ™

medical emergency 0.20 0.29 £ 0.06 | 0.27 +0.08 | 0.12 +0.07 | 0.11 £ 0.05
people trapped 0.52 0.68 £0.11 | 0.74 £ 0.09 | 0.64 +0.14 | 0.62 £ 0.23
food shortage 0.71 0.71+0.02 | 0.73 4+ 0.03 | 0.71 = 0.06 | 0.72 £ 0.07
water shortage 0.63 0.66 £0.03 | 0.67 £ 0.02 | 0.63 +0.04 | 0.65 £ 0.03
water sanitation 0.83 0.91+0.01 | 0.944+0.01 | 0.96+0.01 | 095+ 0.01
shelter needed 0.57 0.52+0.02 | 0.524+0.05 | 0.44 +0.07 | 048 £ 0.04
collapsed structure 0.38 042 +£0.08 | 033 £0.15 | 0.31 £0.16 | 0.39 £0.20
food distribution 0.24 0.27 £0.05 | 0.27 £ 0.03 | 0.18 +0.07 | 0.17 £ 0.09
hospital/clinic services 0.55 0.56 £0.04 | 0.59 £ 0.06 | 0.47 +=0.08 | 0.51 £ 0.05
PETSON News 0.28 0.55+0.06 | 0.59 £ 0.04 | 0.39 +0.10 | 045 £ 0.04

Table 1: Comparison of average F1 Measure (with 95% confidence intervals) obtained in 5-fold
cross-validation experiments using classification by keywords and classification by binary SVM
classifiers trained on the Ushahidi text message data set for each of the ten classes. The feature
representations used to train the classifiers are as follows: (i) “bag of words™ (BoW); (ii) abstractions
used as “features” in the classification model, which are obtained by feature abstraction (FA); (iii)
features selected by Relief feature selection (FS); and (iv) topic words, output by LDA (TW).

Classification Support Vector Machines
by Keywords BoW FA ES W
Multi-label classification 0.47 0.56 +0.01 | 0.59 + 0.01 | 0.54 £0.03 | 0.56 4 0.03

Table 2: Comparison of average F1 Measure (with 95% confidence intervals) obtained in 5-fold
cross-validation experiments using classification by keywords and classification by binary SVM
classifiers trained on the Ushahidi text message data set for the multi-label classification. The feature
representations used to train the classifiers are as in Table 1.

As can be seen from Table 1 and 2, classification by keywords, despite its simplicity, often produces results that
are comparable with those obtained by using SVM classifiers. Furthermore, feature abstraction (FA)
significantly outperforms BoWs for most of the categories from the Ushahidi text message data set, using SVM
classifiers. This suggests that FA can help minimize overfitting (through parameter smoothing). For few
categories, for example shelter needed, FA-based SVM matches the performance of BoW-based SVM with
substantially smaller number of features, i.e., 165 and 1525 features are used for training FA-based SVM and
BoW-based SVM, respectively.

Compared to feature selection (FS) and topic words (TW), FA significantly outperforms both of them for the
same number of features used in the classification model, on all categories except water sanitation. Although
topic models have been successfully applied to documents that are multiple paragraphs and pages in length, we
found that they do not work very well when applied to short text messages.

It is interesting to note that the performance of binary SVM classifiers varies significantly from one category to
another, with some categories being harder to classify than others, e.g., medical emergency vs. water sanitation.
This could be due to not very informative features that are used to represent the data. Hence, design of better
suited feature representations for such categories will be studied in future work.

SUMMARY AND DISCUSSION

Summary. In this study, we presented a system, called Enhanced Messaging for the Emergency Response
SEctor (EMERSE), whose main components are: (i) automatic message classification; (ii) an iPhone
application; (iii) a Twitter crawler component; and (iv) machine translation. While each component is important
in itself and deserves a detailed analysis, in this paper we focused on the automatic classification component
with the goal to correctly classify messages and deliver them to the appropriate departments in a timely and
efficient fashion. We compared four types of feature representations for learning SVM classifiers to accurately
classify text messages about the Haiti disaster relief (originating in Haiti and elsewhere) so that they can be
easily accessed by NGOs, other relief workers, people in Haiti, and their friends and families. These feature
representations are: BoWs, abstract features (or abstractions), features selected using feature selection, and topic
words output by LDA.
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The results of our experiments on the Ushahidi text message data set show that using abstract features makes it
possible to construct predictive models that use significantly smaller number of features than those obtained
using a BoWs representation. The resulting models are competitive with, and often significantly outperform
those that use the BoWs feature representation. Moreover, abstract features yield better performing models than
features selected by Relief feature selection, and than topic words extracted using LDA.

Discussion. Even though Ushahidi has deployed an online report system (ushahidi.com) for Haiti, the proposed
EMERSE system offers four important benefits not provided by Ushahidi. First, EMERSE will automatically
classify tweets and text messages into topic, whereas Ushahidi collects reports with broad category information
provided by the reporter. Second, EMERSE will also automatically geo-locate tweets and text messages,
whereas Ushahidi relies on the reporter to provide the geo-location information. Third, in EMERSE, tweets and
text messages are aggregated by topic and region to better understand how the needs of Haiti differ by regions
and how they change over time. The automatic aggregation also helps to verify reports. A large number of
similar reports by different people are more likely to be true. Finally, EMERSE will provide tweet broadcast
and GeoRSS subscription by topics or region, whereas Ushahidi only allows reports to be downloaded.

In learning from real-world text message data, other challenges may be encountered, hence making the learning
problem harder. We point out one of the most important challenges, i.e., possible errors in manually labeling
text messages, and provide potential solutions that will be addressed in future work. As an example, the text
message “We in Canada turjo quote, we need food, water and tents. count on your participation” belongs to
Food distribution. However, this example is very similar to “Good evening ONG, I'm very happy for the aid
you're giving to the people, I thank you. But in my zone that's to say Lamenten 54 Rue St Juste we need shelter
and food.”, which belongs to Food Shortage. In future work, we plan to create a new category that will contain
examples from both Food distribution and Food Shortage.

Furthermore, possible errors in labeling may occur due to the presence of general terms in a text message. For
example, the text message “We need help at Mahotiere 79. Since the catastrophe, we have not seen anyone from
the government” is labeled as Food distribution and Water sanitation in the Ushahidi data set. However, there is
no indication of the type of help needed. For example, people at Mahotiere 79 may need medical assistance or
shelter. To distribute this message to food and water departments may be very inefficient if the people have
other more urgent needs. Instead, we propose to use a general category, which consists of these types of
messages. Hence, the general department can efficiently determine what the needs are and act accordingly.

Other future directions. Further research may also include: (i) Exploration of other types of abstraction based
on semantically related words; (ii) Design of an emergency response ontology (expressed in OWL), which will
be made easily accessible through Protege ontology library; (iii) Classification of tweets about Haiti, provided
by Twitter. Here, because large amounts of unlabeled tweets are available, we will employ semi-supervised
learning techniques that can incorporate information available in the unlabeled data to learn more robust
classifiers; (iv) Details and analysis of the other components of EMERSE, e.g., the iPhone application, which
assists NGOs and first responders in recording data that are useful in organizing emergency response.
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