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ABSTRACT
Existing code similarity comparison methods, whether source
or binary code based, are mostly not resilient to obfuscations.
In the case of software plagiarism, emerging obfuscation tech-
niques have made automated detection increasingly difficult.
In this paper, we propose a binary-oriented, obfuscation-
resilient method based on a new concept, longest common
subsequence of semantically equivalent basic blocks, which
combines rigorous program semantics with longest common
subsequence based fuzzy matching. We model the semantics
of a basic block by a set of symbolic formulas representing the
input-output relations of the block. This way, the semantics
equivalence (and similarity) of two blocks can be checked
by a theorem prover. We then model the semantics simi-
larity of two paths using the longest common subsequence
with basic blocks as elements. This novel combination has
resulted in strong resiliency to code obfuscation. We have
developed a prototype and our experimental results show
that our method is effective and practical when applied to
real-world software.

Categories and Subject Descriptors
D.2.m [Miscellaneous]: Software protection

General Terms
Security, Verification

Keywords
Software plagiarism detection, binary code similarity com-
parison, obfuscation, symbolic execution, theorem proving

1. INTRODUCTION
With the rapid growth of open-source projects, software

plagiarism has become a serious threat to maintaining a
healthy and trustworthy environment in the software industry.
In 2005 there was an intellectual property lawsuit filed by
Compuware against IBM [15]. As a result, IBM paid $140
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million in fines to license Compuware’s software and an
additional $260 million to purchase Compuware’s services.
Examples such as this point to a critical need for computer-
aided, automated software plagiarism detection techniques
that are capable of measuring code similarity.

The basic research problem for code similarity measure-
ment techniques is to detect whether a component in one
program is similar to a component in another program and
quantitatively measure their similarity. A component can
be a set of functions or a whole program. Detecting code
similarity is faced with an increasing challenge caused by
emerging, readily available code obfuscation techniques, by
which a software plagiarist transforms the stolen code in
various ways to hide its appearance and logic, not to mention
that often the plaintiff is not allowed to access the source
code of the suspicious program.

Existing code similarity measurement methods include
clone detection, binary similarity detection, and software
plagiarism detection. While these approaches have been
proven to be very useful, each of them has its shortcomings.
Clone detection (e.g., MOSS [38]) assumes the availability of
source code and minimal code obfuscation. Binary similarity
detection (e.g., Bdiff [8]) is binary code-based, but it does not
consider obfuscation in general and hence is not obfuscation
resilient. Software plagiarism detection approaches based
on dynamic system call birthmarks [53, 54] have also been
proposed, but in practice, they incur false negatives when
system calls are insufficient in number or when system call
replacement obfuscation is applied [56]. Another approach
based on core value analysis [29] requires the plaintiff and
suspicious programs be fed with the same inputs, which is
often infeasible. Consequently, most of the existing methods
are not effective in the presence of obfuscation techniques.

In this paper, we propose a binary-oriented, obfuscation-
resilient method named CoP. CoP is based on a new concept,
longest common subsequence of semantically equivalent ba-
sic blocks, which combines rigorous program semantics with
longest common subsequence based fuzzy matching. Specifi-
cally, we model program semantics at three different levels:
basic block, path, and whole program. To model the se-
mantics of a basic block, we adopt the symbolic execution
technique to obtain a set of symbolic formulas that represent
the input-output relations of the basic block in consideration.
To compare the similarity or equivalence of two basic blocks,
we check via a theorem prover the pair-wise equivalence of
the symbolic formulas representing the output variables, or
registers and memory cells. We then calculate the percent-
age of the output variables of the plaintiff block that have a
semantically equivalent counterpart in the suspicious block.
We set a threshold for this percentage to allow some noises
to be injected into the suspicious block. At the path level, we



utilize the Longest Common Subsequence (LCS) algorithm
to compare the semantic similarity of two paths, one from the
plaintiff and the other from the suspicious, constructed based
on the LCS dynamic programming algorithm, with basic
blocks as the sequence elements. By trying more than one
path, we use the path similarity scores from LCS collectively
to model program semantics similarity. Note that LCS is
different from the longest common substring. Because LCS
allows skipping non-matching nodes, it naturally tolerates
noises inserted by obfuscation techniques. This novel combi-
nation of rigorous program semantics with longest common
subsequence based fuzzy matching results in strong resiliency
to obfuscation.

We have developed a prototype of CoP using the above
method. We evaluated CoP with several different experi-
ments to measure its obfuscation resiliency, precision, and
scalability. Benchmark programs, ranging from small to
large real-world production software, were applied with dif-
ferent code obfuscation techniques and semantics-preserving
transformations, including different compilers and compiler
optimization levels. We also compared our results with four
state-of-the-art detection systems, MOSS [38], JPLag [44],
Bdiff [8] and DarunGrim2 [19], where MOSS and JPLag are
source code based, and Bdiff and DarunGrim2 are binary
code based. Our experimental results show that CoP has
stronger resiliency to the latest code obfuscation techniques
as well as other semantics-preserving transformations, and
can be applied to real-world software to detect code reuse or
software plagiarism.

In summary, we make the following contributions.

• We propose CoP, a binary-oriented, obfuscation-resilient
method for software plagiarism or code reuse detection,
with strong obfuscation resiliency.

• We propose a novel combination of rigorous program se-
mantics with the flexible longest common subsequence
resulting in strong resiliency to code obfuscation. We
call this new concept the Longest Common Subsequence
of Semantically Equivalent Basic Blocks.

• Our basic block semantic similarity comparison is new
in the sense that it can tolerate certain noise injection
or obfuscation, which is in sharp contrast to the rig-
orous verification condition or weakest precondition
equivalence that does not permit any errors.

The rest of the paper is organized as follows. Section 2
presents an overview of our method and the system architec-
ture. Section 3 introduces our basic block semantic similarity
and equivalence comparison method. Section 4 presents how
we explore multiple paths in the plaintiff and suspicious pro-
grams and calculate the LCS scores between corresponding
paths. The implementation and experimental results are
presented in Section 6. We analyze the obfuscation resiliency
and discuss the limitations in Section 7. The related work is
discussed in Section 8 and the conclusion follows in Section 9.

2. OVERVIEW
2.1 Methodology

Given a plaintiff program (or component) and a suspi-
cious program, we are interested in detecting components
in the suspicious program that are similar to the plaintiff
with respect to program behavior. Program behavior can
be modeled at different levels using different methods. For
example, one can model program behavior as program syntax.
Obviously, if two programs have identical or similar syntax,
they behave similarly, but not vice versa. As program syntax
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can be easily made different with semantics preserved, this
syntax-based modeling is not robust in the presence of code
obfuscation. Another example to model program behavior
uses system call dependency graphs and then measure pro-
gram behavior similarity with subgraph isomorphism. This
method is also not very robust against obfuscations as an
adversary can replace system calls.

Instead, we propose to use formal program semantics to
capture program behavior. If two programs have the same
semantics, they behave similarly. However, formal semantics
is rigorous, represented as formulas or judgments in formal
logics, with little room to accommodate similarity instead
of the equivalence relation. If two programs, or components,
have the same formal semantics, their logical representations
are equivalent. If they are similar in terms of behavior,
their formal semantics in a logical representation may be
nonequivalent. That is, it is hard to judge similarity of two
logical representations of program semantics.

To address this problem, we combine two techniques. The
first is to model semantics formally at the binary code basic
block level. We not only model basic block semantics equiva-
lence, but also model similarity semantically. The second is
the longest common subsequence. Based on the basic block
semantics equivalence or similarity, we compute the longest
common subsequence of semantically equivalent basic blocks
between two paths, one from the plaintiff (component) and
the other from the suspicious.1 The length of this common
subsequence is then compared to the length of the plaintiff
path. The ratio calculated indicates the semantics similarity
of the plaintiff path as embedded in the suspicious path.
Note that the common subsequence is not compared to the
suspicious path since noise could be easily injected by an
adversary. By trying more than one path, we can collectively
calculate a similarity score that indicates the semantics from
the plaintiff (component) embedded in the suspicious, poten-
tially with code obfuscation or other semantics preserving
program transformations applied.

In other words, the program semantics is modeled collec-
tively as path semantics based on basic block semantics, and
we compute a ratio of path semantics similarity between
the plaintiff (component) and the suspicious. The semantics
similarity is modeled at two levels, one at the binary code
basic block level and one at the path level. Note that we
are actually not intended to discover what the semantics are
of the plaintiff and suspicious programs, but rather to use
the semantics to measure the basic block and path similarity,
and thus report a similarity score indicating the likelihood
that the plaintiff component is reused, with obfuscation or
not, legally or illegally.

2.2 Architecture
The architecture of CoP is shown in Figure 1. The inputs

are the binary code of the plaintiff (component) and suspi-

1Here we refer semantically “equivalent” basic blocks to the
blocks that are semantically similar with a score above a
threshold which will be presented in the next section.



cious program. The front-end then disassembles the binary
code, builds an intermediate representation, and constructs
control-flow graphs and call graphs. We then compute the
longest common subsequence (LCS) of semantically equiv-
alent basic blocks (SEBB). We explore multiple path pairs
to collectively calculate a similarity score, indicating the
likelihood of the plaintiff code being reused in the suspicious
program. To compute the LCS of SEBB of two given paths,
we must be able to compute the semantic equivalence of two
basic blocks. The basic block similarity computation com-
ponent in Figure 1 is for this purpose. We rely on symbolic
execution to get symbolic formulas representing the input-
output relation of a basic block. Specifically, we compute
a symbolic function for each output variable (a register or
memory cell) based on the input variables (registers and
memory cells). As a result, a basic block is represented as a
set of symbolic formulas. The semantic equivalence of two
basic blocks are then checked by a theorem prover on their
corresponding sets of symbolic formulas. Since obfuscations
or noise injection can cause small deviations on semantics
leading to nonequivalent formulas, we accommodate small
deviations by collectively checking whether an output for-
mula in one basic block has an equivalent one in the other,
with possible permutations of input variables. We then set
a threshold to indicate how semantically similar two basic
blocks are. When the score is above the threshold, we re-
gard them as “equivalent” during the LCS calculation. The
details of basic block semantics similarity and equivalence
computation are presented in the next section.

3. BLOCK SIMILARITY COMPARISON
Given two basic blocks, we want to find how semantically

similar they are. We do not compute their strict semantic
equivalence since noise can be injected by an adversary.

3.1 Strictly Semantic Equivalence
Here we describe how to compute the strictly semantic

equivalence of two basic blocks. Take the following code
snippet as an example:

p = a+b; s = x+y;
q = a-b; t = x-y;

For the sake of presentation, we do not use assembly code.
At the binary code level, these variables are represented as
registers and memory cells. These two code segments are
semantically equivalent. The only difference is the variable
names. At binary code level, different registers can be used.

Via symbolic execution, we get two symbolic formulas
representing the input-output relations of the left “basic
block.”

p = f1(a, b) = a+ b
q = f2(a, b) = a− b

Similarly, for the right “basic block” we have

s = f3(x, y) = x+ y
t = f4(x, y) = x− y

We then check their equivalence by pair-wise comparison
via a theorem prover and find that

a = x ∧ b = y =⇒ p = s

and similarly for q and t.
Strictly semantic equivalence checking asserts that there

are equal number of input and output variables of two code
segments and that there is a permutation of input and out-
put variables that makes all the output formulas equivalent
pair-wise between two segments. That is, when one of the fol-
lowing formulas is true, the two code segments are regarded
as semantically equivalent.

a = x ∧ b = y =⇒ p = s ∧ q = t
a = x ∧ b = y =⇒ p = t ∧ q = s
a = y ∧ b = x =⇒ p = s ∧ q = t
a = y ∧ b = x =⇒ p = t ∧ q = s

A similar method is used in BinHunt [24] to find code
similarity between two revisions of the same program. This
can handle some semantics-preserving transformations. For
example, the following code segment can be detected as
semantically equivalent to the above ones.

s = x+10;
t = y-10;
s = s+t;
t = x-y;

However, this method is not effective in general when code
obfuscation can be applied, for example, noise can be easily
injected to make two code segments not strictly semantic
equivalent.

3.2 Semantic Similarity
Instead of the above black-or-white method, we try to

accommodate noise, but still detect semantic equivalence of
basic blocks. Consider the following block of code.

u = x+10;
v = y-10;
s = u+v;
t = x-y;
r = x+1;

Two temporary variables u and v, and a noise output
variable r are injected. Strictly checking semantic equivalence
will fail to detect its equivalence to the other block.

Instead, we check each output variable of the plaintiff
block independently to find whether it has an equivalent
counterpart in the suspicious block. In this way, we get

a = x ∧ b = y =⇒ p = s
a = x ∧ b = y =⇒ q = t

which are valid, and conclude a similarity score of 100% since
there are only two output variables in the plaintiff block and
both of them are asserted to be equivalent to some output
variables in the suspicious block.

3.3 Formalization
Since we do not know in general which input variable in one

block corresponds to which input variable in the other block,
we need to try different combinations of input variables. We
define a pair-wise equivalence formula for the input variable
combinations as follows.

Definition 1. (Pair-wise Equivalence Formulas of Input
Variables) Given two lists of variables: X = [x0, . . . , xn], and
Y = [y0, . . . , ym], n ≤ m. Let π(Y ) be a permutation of the
variables in Y . A pair-wise equivalence formula on X and Y
is defined as

p(X,π(Y )) =

n∧
i=0

(Xi = πi(Y ))

where Xi and πi(Y ) are the ith variables in X and the per-
mutation π(Y ), respectively.

For each output variable in the plaintiff block, we check
whether there exists an equivalent output variable in the
suspicious block with some combination of input variables
pair-wise equivalence.



/* push  ebp */

r_esp_1 = r_esp_1-0x4;

mem[r_esp_1] = r_ebp_1;

/* mov  ebp, esp */

r_ebp_1 = r_esp_1

/* sub  esp, 0x40 */

r_esp_1 = r_esp_1-0x40

/* mov  ebx, eax */

r_ebx_1 = r_eax_1

/* and  eax, 0 */

r_eax_1 = r_eax_1&0x0

/* lea  ecx, [ebx] */

r_ecx_1 = r_ebx_1

/* sub  esp, 0x4 */

r_esp_2 = r_esp_2-0x4

/* mov  [esp], ebp */

mem[r_esp_2] = r_esp_2

/* mov  ebp, esp */

r_ebp_2 = r_esp_2

/* sub  esp, 0x40 */

r_esp_2 = r_esp_2-0x40

/* xchg  eax, ebx */

r_temp = r_ebx_2

r_ebx_2 = r_eax_2

r_eax_2 = r_temp

/* xor  eax, eax */

r_eax_2 = 0x0

/* mov  ecx, ebx */

r_ecx_2 = r_ebx_2

Symbolic inputs block 1: 

r_ebp_1 = i0; 

r_esp_1 = i1; 

r_eax_1 = i2;

Symbolic inputs block 2:

r_ebp_2 = j0;

r_esp_2 = j1;

r_eax_2 = j2;

Outputs

r_ecx_1 = i2; 

r_eax_1 = 0x0;

 r_ebx_1 = i2; 

r_esp_1 = i1-0x44; 

r_ebp_1 = i1-0x4;

mem[i1-0x4] = i0;

Outputs

r_ecx_2 = j2; 

r_eax_2 = 0;

 r_ebx_2 = j2; 

r_esp_2 = j1-0x44; 

r_ebp_2 = j1-0x4;

mem[j1-0x4] = j0;

Figure 2: Basic block symbolic execution

Definition 2. (Output Equivalence) Given two basic blocks,
let X1 and X2 be the lists of inputs and Y1 and Y2 be the lists
of output variables, respectively; if |X1| ≤ |X2|. Assume the
first block is the plaintiff block and the second the suspicious
block. Formally, we check

∀y1 ∈ Y1. ∃y2 ∈ Y2, p(X1, π(X2)).

p(X1, π(X2)) =⇒ f1(X1) = f2(X2).

where f1(X1) and f2(X2) are the symbolic formulas of y1
and y2 obtained by symbolic execution, respectively.

Each output equivalence formula is checked by a theorem
prover. Based on whether there is an equivalent output vari-
able in the suspicious block for each plaintiff output variable,
we compute a semantic similarity score that indicates how
much semantics of the plaintiff block has been manifested in
the suspicious block. Assume there are n output variables
in the plaintiff block, and we find p of them have semanti-
cally equivalent counterparts in the suspicious block. The
semantics embedding of the plaintiff into the suspicious is
calculated as p/n.

Another method is to consider all the input variable pair-
wise permutations and check output variable equivalence
simultaneously. This method leads to more than exponential
number of theorem prover invocations instead of quadraticon
the number of output variables, for each input variable com-
bination, which is another drawback of the aforementioned
strictly equivalence checking method.

3.4 Example
Our tool works on binary code. Figure 2 shows the binary

code and its symbolic execution of two semantically equiva-
lent basic blocks: the left one is the original basic block; the
right one is the corresponding obfuscated basic block. The
assembly instructions are in bold font.

Due to the noise from syntax differences caused by code
obfuscation, most state-of-the-art binary diffing tools, such as
DarunGrim2 [19] and Bdiff [8], are unable to identify whether
or not the two basic blocks are semantically equivalent. Based
on our basic block comparison method, CoP is able to detect
that the semantics of the original block has been mostly

embedded in the obfuscated block. In addition, it identifies
different instructions that have the same semantics. For
example, and eax, 0 is semantically the same as xor eax, eax,
and lea ecx, [ebx] is semantically the same as mov ecx, ebx.

4. PATH SIMILARITY COMPARISON
Based on the basic block semantics equivalence checking

(i.e., similarity score above a threshold), we calculate a path
embedding score for each linearly independent path [36, 55]
of the plaintiff against the suspicious program using the LCS
of semantically equivalent basic blocks.

4.1 Starting Blocks
The LCS of semantically equivalent basic blocks compu-

tation is based on the modified longest path algorithm to
explore paths from starting points. We present how to iden-
tify the starting points from the plaintiff and suspicious
programs, and with two starting points how to explore lin-
early independent paths to compute the highest LCS score
(i.e., the LCS score of the longest path). It is important
to choose the starting point so that the path exploration
is not misled to irrelevant code parts in the plaintiff and
suspicious programs. We first look for the starting block
inside a function of the plaintiff program. This function
can be randomly chosen or picked by an investigator with
pre-knowledge of the plaintiff code. To avoid routine code
such as calling convention code inserted by compilers, we
pick the first branching basic block (a block ends with a
conditional jump instruction) as the starting block. We then
check whether we can find a semantically equivalent basic
block from the suspicious program. This process can take as
long as the size of the suspicious in terms of the number of
basic blocks. If we find one or several semantically equivalent
basic blocks, we proceed with the longest common subse-
quence of semantically equivalent basic blocks calculation.
Otherwise, we choose another block as the starting block
from the plaintiff program, and the process is repeated.

4.2 Linearly Independent Paths
At the path level, we select a set of linearly independent

paths [36, 55] from the plaintiff program. For each selected
path, we compare it against the suspicious program to cal-
culate a path embedding score by computing the LCS of
semantically equivalent basic blocks. Once the starting block
of the plaintiff program and several candidate starting blocks
of the suspicious program are identified, the next is to explore
paths to calculate a path embedding score. For the plaintiff
program, we select a set of linearly independent paths, a
concept developed for path testing, from the starting block.
A linearly independent path is a path that introduces at
least one new node that is not included in any other linearly
independent paths. We first unroll each loop in the plaintiff
program once, and then adopt the Depth First Search algo-
rithm to find a set of linearly independent paths from the
plaintiff program.

4.3 Longest Common Subsequence of Seman-
tically Equivalent Basic Blocks

The longest common subsequence between two sequences
can be computed with dynamic programming algorithms [17].
However, we need to find the highest LCS score between
a plaintiff path and many paths from the suspicious. Our
longest common subsequence of semantically equivalent basic
blocks computation is essentially the longest path problem,
with the incremental LCS scores as the edge weights. The
longest path problem is NP-complete. As we have removed
all back edges in order to only consider linearly independent
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Figure 3: An example for path similarity calculation.
The black blocks are inserted bogus blocks. There
is an opaque predicate inserted in M that always
evaluates to true at runtime which makes the direct
flow to the node 5 infeasible.

Figure 4: The δ and γ tables store the intermediate
LCS scores and the directions of the computed LCS,
respectively. The three arrows on the left indicate
the parent-child relationship between two nodes in
the suspicious program during the LCS computation.
For example, in the computed LCS, the parent node
of node 2 is node 1, instead of node 5.

paths, the plaintiff and suspicious programs are represented
as directed acyclic graphs (DAGs). In such case, the longest
path problem of a DAG G can be converted to the short-
est path problem of −G, derived from G by changing every
weight to its negation. Since the resulted weight graphs
contain “negative” weights, the Dijkstra’s shortest path algo-
rithm is not applicable, but still the problem is tractable as
other shortest path algorithms such as Bellman-Ford can be
applied.

Instead, we adopt breadth-first search, with interactive
deepening, combined with the LCS dynamic programming to
compute the highest score of longest common subsequence
of semantically equivalent basic blocks. For each step in the
breath-first dynamic programming algorithm, the LCS is
kept as the “longest path” computed so far for a basic block
in the plaintiff program.

Algorithm 1 shows the pseudo-code for the Longest Com-
mon Subsequence of Semantically Equivalent Basic Blocks
computation. The inputs are a linearly independent path P
of the plaintiff program, the suspicious program G, and a
starting point s of the suspicious program. Our algorithm
uses the breadth-first dynamic programming LCS to explore
the suspicious program. The intermediate LCS scores are
stored in a memoization table δ. An index r points to the
current row of the memoization table. The table δ is different
from the conventional dynamic programming memoization
table in that δ is a dynamic table. Each time, we encounter
a new node, or a node with higher LCS scores, a new row
is created in the table. The table γ is used to store the
directions of the computed LCS [17, p. 395, Fig. 15.8]. The

Algorithm 1 Longest Common Subsequence of Semantically
Equivalent Basic Blocks

δ: the LCS dynamic programming memoization table
r: the current row of the δ table
γ: the direction table for the LCS search
σ: the array stores the intermediate LCS scores
n: the length of the plaintiff path P

1: function PathSimilarityComparison(P,G,s)
2: enq(s,Q) // Insert s into queue Q
3: Initialize the LCS table δ
4: Initialize the σ array to all zero
5: r ← 0 // set the current row of table δ
6: while Q is not empty do
7: currNode ← deq(Q)
8: for each neighbor u of currNode do
9: LCS(u,P)

10: end for
11: end while
12: ~ = maxr

i=0(δ(i, n)) // get the the highest score
13: if ~ > θ then // higher than the threshold
14: RefineLCS()
15: ~ = maxr

i=0(δ(i, n))
16: end if
17: return ~
18: end function

19: function LCS(u,P)
20: δ(u, 0) = 0
21: for each node v of P do
22: if SEBB(u,v) then // semantically eq. blocks
23: δ(u, v) = δ(parent(u), parent(v)) + 1
24: γ(u, v) = ↖
25: if σ(u) < δ(r, v) then
26: r++
27: end if
28: else
29: δ(u, v) = max(δ(parent(u), v), δ(u, parent(v)))
30: γ(u, v) = ← or ↑
31: end if
32: if σ(u) < δ(r, v) then
33: σ(u) = δ(r, v)
34: enq(u,Q)
35: end if
36: end for
37: end function

vector σ is used to store the intermediate highest LCS scores
for each node.

The inputs of the function LCS() are a node u of the
suspicious program and the linearly independent path P .
Function LCS() calculates the LCS of two paths, where the
first path is denoted by a node in the suspicious program.
The LCS path computed so far at its parent node (current
node in the algorithm) is augmented with this node to form
the suspicious path. The function SEBB() tells whether
two basic blocks are semantically equivalent or not. The
RefineLCS() function refines the computed LCS so far by
merging potential split or obfuscated basic blocks (see the
next subsection for the LCS refinement).

The detailed process works as follows, using Figure 3 as a
running example. The intermediate LCS scores (stored in
δ) and the directions of the computed LCS (stored in γ) are
showed in Figure 4. We first set s as the current node and
insert it into the working queue Q (Line 2); then we initialize
δ with one row in which each element equals to 0 (the first



row in Figure 4), and initialize the scores (stored in σ) of all
nodes in the suspicious to 0 (Line 4). For its neighbor node
1, we found a node of P semantically equivalent to it and its
new score calculated by the function LCS (Line 22 and Line
23) is higher than its original one; thus, a new row is created
in δ (Line 26; the second row in Figure 4). Next, we update
the score of node 1 and insert it into the working queue
(Line 33 and Line 34). During the second iteration (Line 6),
for node 1, we cannot find a node in P that is semantically
equivalent to either of its neighbors node M or node a; no
new row is added to δ. Both their new scores are higher than
their original ones; hence, their scores are updated and both
them are inserted into the working queue (Line 33 and Line
34). The third iteration have two current nodes: node M
and node a. For node M , its neighbor node N does not have
a semantically equivalent node in P ; hence, no new row is
added to δ and node N is inserted into the working queue
after its score is updated. Another neighbor node 5 has a
semantically equivalent node in P ; hence, a new row is added
to δ (Line 26; see the third row in Figure 4) and it is inserted
into the working queue after updating its score. For node a,
we cannot find a node in P that is semantically equivalent to
either of its neighbors node b or node c; hence, no new row
is added to δ, and the scores of both node b and node c are
updated and both nodes are inserted into the working queue.
During the forth iteration, node N has a neighbor node 2
which has a semantically equivalent node in P and it gets
a new score higher than its original one; thus, a new row is
added into δ (see the forth row in Figure 4). To calculate its
new sore, the function LCS needs first to find its parent node
which is node 1 and uses the cell value of the row with respect
to nodes 1 to calculate each cell value of a new row (shown
in Figure 4). Then the right-most cell value of this new row
is the new score for node 2. The process repeats until the
working queue is empty. When the working queue is empty,
we obtain the highest score from the right-most column of δ
(Line 12), and compare it with a threshold (Line 13). If it is
higher than the threshold, the RefineLCS() will update the
δ table (see the next subsection), and a new highest score
will be obtained (Line 15); otherwise, the LCS computation
is completed.

Here we use the example in Figure 3 to illustrate a few
interesting points. The first is how to deal with opaque
predicate insertion. The node M is such an example. Since
our path exploration considers both branches, we do not need
to solve the opaque predicate statically. Our approach does
not need to consider path feasibility, but focuses on shared
semantically equivalent basic blocks. The second interesting
scenario is when some basic blocks are obfuscated. For
example, node 3 in P is split into two blocks and embedded
into G as node 3a and node 3b. In this case, the basic block
similarity comparison method determines neither node 3a

nor node 3b is semantically equivalent to node 3 in P . To
address this, the LCS refinement which tentatively merges
unmatched blocks has been developed.

4.4 Refinement
Here we discuss some optimization techniques we developed

to improve the obfuscation resiliency, which are implemented
in the LCS Refinement.

Conditional obfuscation. Conditionals are specified by
the flags state in the FLAGS registers (i.e., CF, PF, AF, ZF,
SF, and OF). These flags are part of the output state of a
basic block. However, they can be obfuscated. We handle
this by merging blocks during our LCS computation. No
matter what obfuscation is applied, eventually a semantically
equivalent path condition must be followed to execute a

semantically equivalent path. Thus, when obfuscated blocks
are combined, we will be able to detect the similarity.

Basic block splitting and merging. The LCS and
basic block similarity comparison algorithms we presented
so far cannot handle basic block splitting and merging in
general. We solve this problem by the LCS refinement. First,
CoP finds the consecutive basic block sequences which do
not have semantically equivalent counterparts in the suspi-
cious through backtracking. Then for each such sequence
or list, CoP merges all basic blocks, as well as two basic
blocks which are right before and after the sequence, into one
code trunk. Finally, it adopts a method similar to the basic
block comparison method to determine whether or not two
corresponding merged code trunks (one from the plaintiff and
the other from the suspicious) are semantically equivalent
or similar. If the two merged code segments are semanti-
cally equivalent, the current longest common subsequence
of semantically equivalent basic blocks is extended with the
code segment in consideration. This method can handle basic
block reordering and noise injection as well. One may wonder
when blocks are merged the intermediate effects stored on
the stack may be missed. However, since we consider both
memory cells and registers as input and output variables of
basic blocks, the intermediate effects are not missed.

5. FUNCTION AND PROGRAM SIMILAR-
ITY COMPARISON

Once we have computed the path similarity scores (the
lengths of the resulted LCS), we calculate the similarity
score between the two functions. We assign a weight to each
calculated LCS according to the plaintiff path length, and the
function similarity score is the weighted average score. For
each selected function in the plaintiff program, we compare
it to a set of function in the suspicious program identified
by the potential starting blocks (see Section 4.1), and the
similarity score of this function is the highest one among
those. After we calculate the similarity scores of the selected
plaintiff functions, we output their weighted average score as
the similarity score of the plaintiff and suspicious programs.
The weights are assigned according to the corresponding
plaintiff function size.

6. IMPLEMENTATION AND EVALUATION

6.1 Implementation
Our prototype implementation consists of 4,312 lines of

C++ code measured with CLOC [13]. The front-end of
CoP disassembles the plaintiff and suspicious binary code
based on IDA Pro. The assembly code is then passed to
BAP [7] to build an intermediate representation the same as
that used in BinHunt [24], and to construct CFGs and call
graphs. The symbolic execution of each basic block and the
LCS algorithm with path exploration are implemented in the
BAP framework. We use the constraint solver STP [23] for
the equivalence checking of symbolic formulas representing
the basic block semantics.

6.2 Experimental Settings
We evaluated our tool on a set of benchmark programs

to measure its obfuscation resiliency and scalability. We
conducted experiments on small programs as well as large
real-world production software. We compared the detection
effectiveness and resiliency between our tools and four ex-
isting detection systems, MOSS [38], JPLag [44], Bdiff [8]
and DarunGrim2 [19], where MOSS and JPLag are source
code based, while Bdiff and DarunGrim2 are binary code



based. Moss is a system for determining the similarity of
programs based on the winnowing algorithm [45] for docu-
ment fingerprinting. JPlag is a system that finds similarities
among multiple sets of source code files. These two systems
are mainly syntax-based and the main purpose has been
to detect plagiarism in programming classes. Bdiff is a bi-
nary diffing tool similar to diff for text. DarunGrim2 [19]
is a state-of-the-art patch analysis and binary diffing tool.
Our experiments were performed on a Linux machine with a
Core2 Duo CPU and 4GB RAM. In our experiments, we set
the basic block similarity threshold to 0.7 and require the
selected linearly independent paths cover at least 80% of the
plaintiff program.

6.3 Thttpd
The purpose of the experiments of thttpd, openssl (see

Section 6.4), and gzip (see Section 6.5) is to measure the
obfuscation resiliency of our tool. In our first experiment,
we evaluated thttpd-2.25b [43] and sthttpd-2.26.4 [48], where
sthttpd is forked from thttpd for maintenance. Thus, their
codebases are similar, with many patches and new building
systems added to sthttpd. To measure false positives, we
tested our tool on several independent program, some of
which have similar functionalities. These programs include
thttpd-2.25b, atphttpd-0.4b, boa-0.94.13 and lighttpd-1.4.30.

In all of our experiments, we select 10% of the functions
in the plaintiff program (or component) randomly, and test
each of them to find similar code in the suspicious program.
For each function selected, we identify the starting blocks
both in the plaintiff function and the suspicious program (see
Section 4).

6.3.1 Resilience to Transformation via Different Com-
piler Optimization Levels

Different compiler optimizations may result in different
binary code from the same source code, but preserve the
program semantics. We generated different executables of
thttpd-2.25b and sthttpd-2.26.4 by compiling the source code
using GCC/G++ with different optimization options (-O0,
-O1, -O2, -O3, and -Os). This has produced 10 executa-
bles. We cross checked each pair of the 10 executables on
code reuse detection and compared the results with Darun-
Grim2 [19], a state-of-the-art patch analysis and binary diff-
ing tool. Figure 5 shows the results with respect to four of
the ten executables compiled by optimization levels -O0 and
-O2. Results with other optimization levels are similar and
we do not include them here due to the space limitation.

From Figure 5, we can see our tool CoP is quite effective
compared to DarunGrim2 [19]. Both CoP and DarunGrim2
have good results when the same level of optimizations is
applied (see the left half of Figure 5). However, when different
optimization levels (-O0 and -O2) are applied, the average
similarity score from DarunGrim2 is only about 13%, while
CoP is able to achieve an average score of 88%.

To understand the factors that caused the differences, we
examined the assembly codes of the executables, and found
these differences were mainly caused by different register
allocation, instruction replacement, basic block splitting and
combination, and function inline and outline. Due to the
syntax differences caused by different register allocation and
instruction replacement, DarunGrim2 is unable to determine
the semantic equivalence of these basic blocks; while CoP is
able to identify these blocks as very similar or identical.

Two interesting cases are worth mentioning. The first case
is the basic block splitting and combination. One example
is the use of conditional move instruction (e.g., cmovs). We
found that when thttpd-2.25b was compiled with -O2, there
was only one basic block using the cmovs instruction; when
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Figure 5: Code similarity scores resulting from dif-
ferent compiler optimization levels. Higher is better
since these two programs share codebase. (Legend:
Ti and Si stand for thttpd and sthttpd compiled with
-Oi, respectively.)

it was compiled with -O0, there were two basic blocks. CoP
addresses this by merging neighboring blocks through the
LCS Refinement. As a result, CoP found the two basic blocks
compiled by -O0, when merged, were semantically equivalent
to the one block compiled by -O2.

Another interesting case is function inline and outline.
There are two basic scenarios. One is that the inlined/outlined
function is a user-defined or statically-linked library func-
tion; another is that the inlined/outlined function is from a
dynamically linked library function. Let us take de dotdot(),
a user-defined function in thttpd-2.25b, as an example. The
function is inlined in httpd parse request() when it is com-
piled with -O2, but not inlined with -O0. It is similar for
sthttpd-2.26.4. CoP handles this by “inlining” the callee func-
tion, since its code is available, during the LCS computation.
In the second scenario, where the inlined/outlined function is
a dynamically linked library function (e.g., strspn()), CoP is
not able to “inline” the callee function, which may result in a
lower similarity score. However, inlining some function here
and there does not significantly affect the overall detection
result of CoP since we can test all the functions. One may
wonder whether an adversary can hide stolen code in a dy-
namically linked library. Our assumption is that the source
or binary code of the plaintiff program and at least binary
code of the suspicious program is available for analysis. Al-
though CoP, relying on static analysis, has some difficulty to
resolve dynamically linked library calls, it is able to analyze
the dynamically linked library as long as it is available, and
identify the stolen code if exists.

6.3.2 Resilience to Transformation via Different Com-
pilers

We also tested CoP on code compiled with different com-
pilers and compared with DarunGrim2 [19]. We generated
different executables of thttpd-2.25b and sthttpd-2.26.4 using
different compilers, GCC and ICC, with the same optimiza-
tion option (-O2). Figure 6 shows the detection results. With
different compilers, the differences between the resulted code
are not only caused by different compilation and optimization
algorithms, but also by using different C libraries. GCC uses
glibc, while ICC uses its own implementation. The evaluation
results show that CoP still reports good similarity scores
(although a little bit lower than those of using the same
compiler), but DarunGrim2 failed to recognize the similarity.

6.3.3 Resilience to Code Obfuscations
To evaluate the obfuscation resiliency, we used two com-

mercial products, Semantic Designs Inc.’s C obfuscator [47]



Table 1: Detection results (resilience to single code obfuscation)
Obfuscation Similarity score (%)

Category Transformation
Source code based Binary code based
MOSS JPLag DarunGrim2 Bdiff CoP

Layout
Remove comments, space, and tabs 47 62 100 100 100

Replace symbol names, number, and strings 22 90 100 100 100

Control

Insert opaque predicates – – 47 43 95
Inline method – – 32 34 91

Outline method – – 38 33 90
Interleave method 45 40 32 19 89

Convert multiple returns to one return 75 91 98 86 97
Control-flow flattening – – 5 3 86

Swap if/else bodies 72 78 81 73 98
Change switch/case to if/else 74 51 69 51 94

Replace logical operators (&&, ?:, etc.) with if/else 79 95 97 88 96

Data
Split structure object 83 87 93 82 100
Insert bogus variables 93 88 86 75 100

Table 2: Detection results (resilience to multiple code obfuscation)

Obfuscation
Similarity score (%)

Source code based Binary code based
MOSS JPLag DarunGrim2 Bdiff CoP

Insert opaque predicates, convert multiple returns to one return – – 33 29 89
Inline method, outline method – – 25 20 87

Interleave method, insert bogus variables 29 27 30 15 88
Swap if/else bodies; Split structure object 38 51 53 39 91
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Figure 6: Code similarity scores resulting from dif-
ferent compilers. Higher is better since these two
programs share codebase. (Legend: Pc stands for
program P compiled with compiler c, where P is ei-
ther T for thttpd or S for sthttpd, and c is either G
for GCC or I for ICC, respectively.)

and Stunnix’s CXX-obfuscator [49], as the source code ob-
fuscation tools, and two open-source products, Diablo [20]
and Loco [35], as the binary code obfuscation tools. We also
utilized CIL [39] as another source code obfuscation tool. CIL
possesses many useful source code transformation techniques,
such as converting multiple returns to one return, changing
switch-case to if-else, and replacing logical operators (&&,
?:, etc.) with if-else.

Component vs. Suspicious. In the previous tests, we
evaluated the similarity between two programs. In this test,
we evaluated whether a component from the plaintiff program
is reused by a suspicious program. The experiments we con-
ducted with different compilers and compiler optimizations
between thttpd and sthttpd can be viewed as a special case of
the component vs. suspicious scheme. The motivation is that,
for software plagiarism or code reuse scenarios, the original
software developers often have insights on the plaintiff pro-
gram and can point to the critical component. Therefore, we
can test critical components to see whether they are reused

in the suspicious program. In this experiment, we test on a
small component, function httpd parse request() vs. thttpd
and MD5 vs. openssl. In our subsequent experiment, we test
in large program components: the Gecko rendering engine
vs. the Firefox browser.

The obfuscation techniques can be divided into three cate-
gories: layout, control-flow, and data-flow obfuscation [14].
Each category contains different obfuscation transformations.
We chose 13 typical obfuscation transformations [14] from all
the three categories to obfuscate thttpd, and then compiled
the obfuscated code to generate the executables. We com-
pared the detection results of CoP with those of four state-
of-the-art plagiarism detection systems including MOSS [38],
JPLag [44], DarunGrim2 [19] and Bdiff [8]. We evaluated on
code with a single and multiple obfuscations applied. The
single and multiple obfuscation results are shown in Table 1
and Table 2, respectively.

We analyzed how CoP addresses these obfuscation tech-
niques. The layout obfuscations do not affect binary code,
but impair the source code based detection systems. The
data obfuscations also do not affect CoP because its basic
block comparison method is capable of addressing noise input
and output, and is insensitive to data layout changes.

Control-flow obfuscations reduce quite a bit the scores
reported by MOSS, JPLag, DarunGrim2, and Bdiff, but
have little impact on CoP. We analyzed the obfuscation that
changes the switch/case statements to if/else statements.
This obfuscation is done by CIL as source-to-source transfor-
mation in our experiment. GCC applied an optimization on
the switch/case statements. It generated either a balanced
binary search tree or a jump table depending on the number
of the case branches. We then conducted further experiments
on this case. When GCC generated a balanced binary search
tree code, the similarity scores between two code segments
(one contains switch/case statements and the other contains
the corresponding if/else statements) reported by MOSS,
JPLag, DarunGrim2, Bdiff, and CoP are 0%, 34%, 38%,
36%, and 90%, respectively. When GCC generated a jump
table, the similarity scores are 0%, 31%, 19%, 16%, and 92%,
respectively. The result shows our method is quite resilient
to advanced code obfuscations.



We especially note that existing tools are not resilient to
the control flow flattening obfuscation [14], which transforms
the original control flow with a dispatch code that jumps
to other code blocks. Control flow flattening has been used
in real world for software software protection. For example,
Apple’s FairPlay code has been obfuscated with control flow
flattening. Clearly this defeats syntax-based methods. CoP is
able to get good score against control flow flattening because
of our symbolic execution based path exploration and basic
block semantics LCS similarity calculation method.

6.3.4 Independent Programs
To measure false positives, we also tested CoP against four

independently developed programs: thttpd-2.25b, atphttpd-
0.4b, boa-0.94.13, and lighttpd-1.4.30. Very low similarity
scores (below 2%) were reported.

6.4 Openssl
This experiment also aims to measure the obfuscation

resiliency. We first evaluated openssl-1.0.1f [41], openssh-
6.5p1 [40], cyrus-sasl-2.1.26 [18], and libgcrypt-1.6.1 [33],
where openssh-6.5p1, cyrus-sasl-2.1.26, and libgcrypt-1.6.1
use the library libcrypto.a from openssl-1.0.1f. We tested
our tool on completely irrelevant programs to measure false
positives. These programs include attr-2.4.47 [3] and acl-
2.2.52 [1].

In this experiment, we test whether the suspicious pro-
grams contain an MD5 component from the plaintiff program
openssl-1.0.1f. The MD5 plaintiff component was compiled
by GCC with the -O2 optimization level. To measure obfus-
cation resiliency, we conducted the similar experiments as
on thttpd. The detection results showed that openssh-6.5p1
which is based on openssl-1.0.1f contains the MD5 compo-
nent of openssl-1.0.1f. Their similarity scores were between
87% and 100%, with obfuscations applied. We especially
noted that the scores for openssl-1.0.1f vs. libgcrypt-1.6.1
and cyrus-sasl-2.1.26, with obfuscations applied, are between
12% and 30%. With further investigation, we confirmed that
although both libgcrypt-1.6.1 and cyrus-sasl-2.1.26 are based
on openssl-1.0.1f, their MD5 components are re-implemented
independently. For the completely irrelevant programs acl-
2.2.52 and attr-2.4.47, very low similarity scores (below 2%)
were reported.

6.5 Gzip
In our third experiment, we first evaluated our tool on

gzip-1.6 [27] against its different versions including gzip-1.5,
gzip-1.4, gzip-1.3.13, and gzip-1.2.4. We also tested gzip-
1.6 against two independent programs with some similar
functionalities, bzip2-1.0.6 [9] and advanceCOMP-1.18 [2],
to measure false positives.

The plaintiff program gzip-1.6 was compiled by GCC with
the -O2 optimization level. To measure obfuscation resiliency,
we conducted the similar experiments as on thttpd and openssl.
The results showed that the similarity scores between gzip-1.6
and gzip-1.5, gzip-1.6 and gzip-1.4, gzip-1.6 and gzip-1.3.13,
and gzip-1.6 and gzip-1.2.4, are 99%, 86%, 79%, and 42%,
respectively. Moreover, when various obfuscation were ap-
plied, the average similarity score only reduced around 9%,
indicating that our tool is resilient to obfuscation. From the
results, we can see that the closer the versions, the higher the
similarity scores. For the independent programs bzip2-1.0.6
and advanceCOMP-1.18, very low similarity scores (below
2%) were reported. Because we have presented a detailed
analysis of how our tool addresses various obfuscation tech-
niques for the experiment of thttpd, due to the space limit,
we do not include the similar analysis here.
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6.6 Gecko
To measure the scalability of detecting large real-world

production software, we chose the Gecko layout engine as
the plaintiff component, and evaluated it against the Firefox
web browser. We select 8 versions of Firefox, each of which
includes a different version of Gecko. Thus, we have 8 plaintiff
components (8 Gecko versions) and 8 suspicious programs.
We cross checked each pair of them and the results are shown
in Figure 7. The line graph contains 8 lines. The results
showed that the closer two versions are the more similar their
code is. Especially. the highest score of each line is the case
where the Gecko version is included in that Firefox version.
To measure false positives, we also checked CoP on Gecko
vs. 4 versions of Opera (11.00, 11.50, 12.00, and 12.16) and 3
versions of Google Chrome (28.0, 29.0, and 30.0), which do
not use Gecko as layout engine. CoP reported scores below
3% for all cases.

7. DISCUSSION
7.1 Obfuscation Resiliency Analysis

The combination of the rigorous program semantics and
the flexibility in terms of noise tolerance of LCS is powerful.
Here we briefly analyze its obfuscation resiliency. Obfuscation
can be classified into three categories: layout, control-flow,
and data-flow obfuscations [14].

Layout obfuscation. Because CoP is a semantic-based
plagiarism detection approach, layout obfuscation (e.g., com-
ments, space and tabs removal, identifier replacement, etc.)
does not have any effect.

Control-flow obfuscation. CoP deals with basic block
splitting and combination by merging blocks. Basic block
reordering can also be handled by merging blocks. After
merging, the order does not matter to the symbolic execu-
tion used in the basic block similarity comparison if there is
no dependency between two blocks or instructions. Instruc-
tion reordering is also taken care by the symbolic execution.
Function inline and outline is handled by inter-procedural
path exploration in the LCS computation. It is virtually
impossible to solve opaque predicates; however, CoP can tol-
erate unsolvable conditions since it explores multiple possible
paths in the suspicious program for the LCS computation.
CoP also has no difficulty on control-flow flattening, branch
swapping, and switch-case to if-else conversion obfuscation
since it is based on the path semantics modeling which nat-
urally takes control-flow into consideration (these are also
analyzed and illustrated in our evaluation section). It is
similar for the obfuscation that converts multiple returns to
one return. The obfuscation that replaces logical operators
can be handled by symbolic execution and path semantics
modeling with LCS. Rewriting a loop including reversing a
loop and unrolling a loop is another possible counterattack.



However, automatic loop rewriting is very difficult because
they could result in semantically different programs. So far,
we are not aware of such tools to our best knowledge. One
might manually reverse or unroll a loop, but its impact could
be very limited in a large program; moreover, it requires a
plagiarist understands the loop and involves a lot of manual
work, which compromises the initial purpose of plagiarism.

Data-flow obfuscation. There are two scenarios. The
first scenario is that the obfuscation is applied inside a basic
block, e.g., bogus variables insertion in a basic blocks. Since
our basic block semantics similarity comparison can tolerate
variations in the suspicious block, it has no effect no matter
how many bogus variables are inserted in the suspicious
block except for increased computation cost. Note the block
from the plaintiff is not obfuscated, and the base of block
comparison is the plaintiff block. In the other scenario,
obfuscation is applied in a inter-block manner. An example
is splitting structure objects and dispersing each part into
several basic blocks. Since we compare semantics at the
machine code level and merge multiple block when it is
necessary, this attack can be dealt with unless an object is
split into two basic blocks far away enough that they are not
merged in CoP.

7.2 Limitations
CoP is static with symbolic execution and theorem proving.

It bears the same limitations as static analysis in general.
For example, static analysis has difficulty in handling indirect
branches (also known as computed jumps, indirect jumps,
and register-indirect jumps). This problem can be addressed
to some extent by Value-Set Analysis (VSA) [5, 6]. In addi-
tion, a plagiarist can pack or encrypt the original code (e.g.,
VMProtect [52] and Code Virtualizer [42]); our current tool
does not handle such cases.

Symbolic execution combined with automated theorem
proving is powerful, but has its own limitations. For example,
for theorem proving, it cannot solve the opaque predicates
or unsolved conjectures (e.g., the Collatz conjecture [16, 31]),
but the impact could be very limited in large programs. Also,
its computational overhead is high. In our experiment with
thttpd and sthttpd, it took as long as an hour to complete,
and in our Gecko vs. Firefox experiment, it took half a day.
Currently we perform brute-force search to find pairs of
semantically equivalent basic blocks with which to start the
path exploration and LCS computation. We plan to develop
heuristics and optimizations to minimize the calls to the
symbolic execution engine and theorem prover in the future.

8. RELATED WORK
There is a substantial amount of work on the problem of

finding similarity and differences of two files whether text
or binary. The classic Unix diff and diff3, and its Windows
derivation Windiff, compare text files. We discuss the work
focusing on finding software semantic difference or similarity.

8.1 Code Similarity Detection
SymDiff [32] is a language-agnostic semantic diff tool for

imperative programs. It presents differential symbolic execu-
tion that analyzes behavioral differences between different
versions of a program. To facilitate regression analysis, Hoff-
man et al. [28] compared execution traces using LCS. Our
work is mainly motivated with obfuscation in the context
of plagiarism detection, while these works do not consider
obfuscation. Our work is also different from binary diffing
tools based mainly on syntax (e.g., bsdiff, bspatch, xdelta,
JDiff, etc.). Purely syntax-based methods are not effective
in the presence of obfuscation. Some latest binary diffing

techniques locate semantic differences by comparing intra-
procedural control flow structure [21, 19, 24]. Although such
tools have the advantage of being more resistant to instruc-
tion obfuscation techniques, they rely heavily on function
boundary information from the binary. As a result, binary
diffing tools based on control flow structure can be attacked
by simple function obfuscation. iBinHunt [37] overcomes this
problem by finding semantic differences in inter-procedural
control flows. CoP adopts similar basic block similarity com-
parison method, but goes a step further in this direction by
combining block comparison with LCS.

8.2 Software Plagiarism Detection
Mainly motivated by obfuscation, our work compares bet-

ter with software plagiarism detection work. We discuss here
the more relevant research along several axes.

Static plagiarism detection or clone detection. This
type work includes string-based [4], AST-based [51, 57] token-
based [30, 38, 44], and PDG-based [34, 22]. The methods
based on source code are less applicable in practice since the
source code of the suspicious program is often not available
for analysis. In general, this category is not effective when
obfuscation can be applied.

Dynamic birthmark based plagiarism detection. Sev-
eral dynamic birthmarks can be used for plagiarism detection,
including API birthmark, system call birthmark, function
call birthmark, and core-value birthmark. Tamada et al. [50]
proposed an API birthmark for Windows application. Schuler
et al. [46] proposed a dynamic birthmark for Java. Wang
et al. [53, 54] introduced two system call based birthmarks,
which are suitable for programs invoking many different
system calls. Jhi et al. [29] proposed a core-value based birth-
mark for detecting plagiarism. Core-values of a program
are constructed from runtime values that are pivotal for the
program to transform its input to desired output. Zhang et
al. [58] further proposed the methods of n-version program-
ming and annotation to extract the core-value birthmarks for
detecting algorithm plagiarism. A limitation of core-value
based birthmark is that it requires both the plaintiff pro-
gram and suspicious program to be fed with the same inputs,
which sometimes is difficult to meet, especially when only a
component of a program is stolen. Thus, core-value approach
is not applicable when only partial code is reused.

8.3 Others
Symbolic path exploration [11, 25, 26, 12, 10] combined

with test generation and execution is powerful to find software
bugs. In our LCS computation, the path exploration has a
similar fashion, but we only discover linearly independent
paths [36, 55] to cover more blocks with few paths.

9. CONCLUSION
In this paper, we introduce a binary-oriented, obfuscation-

resilient software plagiarism detection approach, named CoP,
based on a new concept, longest common subsequence of
semantically equivalent basic blocks, which combines the rig-
orous program semantics with the flexible longest common
subsequence. This novel combination has resulted in more
resiliency to code obfuscation. We have developed a proto-
type. Our experimental results show that CoP is effective
and practical when applied to real-world software.
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