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ABSTRACT
In this work, we address the problem of algorithm plagia-
rism, which occurs when a plagiarist, violating intellectual
property rights, steals others’ algorithms and covertly imple-
ments them. In contrast to software plagiarism, which has
been extensively studied, limited attention has been paid
to algorithm plagiarism. In this paper, we propose two dy-
namic value-based approaches, namely N-version and anno-
tation, for algorithm plagiarism detection. Our approaches
are motivated by the observation that there exist some crit-
ical runtime values which are irreplaceable and uneliminat-
able for all implementations of the same algorithm. The N-
version approach extracts such values by filtering out non-
core values. The annotation approach leverages auxiliary
information to flag important variables which contain core
values. We also propose a value dependence graph based
similarity metric in addition to the longest common subse-
quence based one, in order to address the potential value
reordering attack. We have implemented a prototype and
evaluated the proposed schemes on various algorithms. The
results show that our approaches to algorithm plagiarism
detection are practical, effective and resilient to many auto-
matic obfuscation techniques.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
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1. INTRODUCTION
In recent years, plagiarism has raised great concern over

intellectual property protection. Plagiarists violate intellec-
tual property rights either by copying source/binary code or
by stealing and covertly implementing protected algorithms.
The first case is also known as software plagiarism, which
has been thoroughly discussed in many literatures [17, 23,
24, 26, 34, 37, 32, 36]. However, very little attention has
been paid to the second case, namely algorithm plagiarism.

Detection of algorithm plagiarism is desired in many prac-
tical scenarios. For example, when an algorithm is protected
by patent right, the owners of this algorithm need to defend
their proprietary by examining the plagiarism of this algo-
rithm in other programs. Another scenario is that software
companies often need to verify that their software products
do not plagiarize any patent protected algorithms before re-
lease to avoid lawsuits. In addition to its commercial poten-
tial, algorithm plagiarism detection can also provide impor-
tant insight into the identification of essential characteris-
tics of an algorithm. However, to the best of our knowledge,
there has been little previous work focusing on this topic.

Algorithm Plagiarism Detection vs. Software Pla-
giarism Detection. Although both algorithm plagiarism
detection and software plagiarism detection rely on assessing
the similarity between programs, they are fundamentally dif-
ferent. If two software products are independently developed
by two companies using the same algorithm, there exists no
software plagiarism because of the independence. Any valid
software plagiarism detection tool should indicate the same
conclusion. However, if the underlying algorithm belongs
to one company and is implemented stealthily by the other,
there exists algorithm plagiarism, which apparently cannot
be detected by any software plagiarism detection tools.

In fact, algorithm plagiarism detection is more challenging
than software plagiarism detection. A major reason is that
an algorithm can be independently implemented in differ-
ent ways by different programmers in different programming
languages. These implementation processes involve human



intelligence, coding style and creativity, which generate a lot
of diversities in the resulted code. These diversities are hard
to be described formally and can cause two programs im-
plementing the same algorithm to appear dramatically dif-
ferent from each other. As a result, how to “peel off” these
diversities and to capture the essential code-level character-
istics of an algorithm remains a big challenge. In contrast,
the diversities caused by software plagiarism assisted by au-
tomatic code obfuscation tools can be filtered out through
birthmarks and structural features [17, 23, 24, 26, 34, 37, 36,
32]. In other words, the gap between essential characteris-
tics of an algorithm and the (static/dynamic) exhibition of
the algorithm implementations is much larger than the gap
between the (static/dynamic) exhibition of a program and
that of the obfuscated versions of the program.

Although the diversities exist among different implemen-
tations of the same algorithm, we believe that an algorithm
still manifests distinct code-level characteristics that cannot
be concealed. Such distinct characteristic is considered as
a signature of an algorithm. In order to leverage this sig-
nature in algorithm plagiarism detection, there are two key
challenges: (1) what is a good signature of an algorithm; (2)
how to extract the signature of an algorithm from its imple-
mentations. In this work, we develop a dynamic value-based
plagiarism detection methodology that addresses both chal-
lenges. First, we use core values, i.e., the critical runtime
values that are irreplaceable and uneliminatable for all im-
plementations of the same algorithm, as the “signature” of
an algorithm. Then we propose two novel approaches to
extract core values from programs’ runtime values: the N-
version approach and the annotation approach. After that,
we propose two metrics: the longest common subsequence
(LCS) and the value dependence graph (VDG) to assess the
similarity between core values extracted from an algorithm’s
plaintiff implementation and its suspicious implementation.

In real-world, the verdict of an algorithm plagiarism case
is often algorithm specific, therefore we believe it is more
meaningful to provide an algorithm-level similarity score
than to draw a simple yes/no conclusion in algorithm plagia-
rism detection. We also realize that no universal detection
threshold can fit all algorithm plagiarism cases because the
potential threshold for each case may vary due to the algo-
rithm specific factors, e.g., how complex the algorithm is,
how specific it is described, etc.

The main contributions of this paper are as follows: (1)
to the best of our knowledge, this work is the first one on
algorithm level similarity assessment. (2) We innovatively
apply the idea of N-version programming in plagiarism de-
tection. (3) We also propose a novel approach that leverages
auxiliary information to extract core values, namely the an-
notation approach. We can do both manual annotation and
automatic annotation. Manual annotation is more accurate
while automatic annotation is more efficient. (4) Neither of
our two approaches requires the source code of a suspicious
program. (5) Besides the LCS similarity metric, we pro-
pose to use VDG to measure algorithm level similarity as
well. VDG can effectively defend against value reordering
attacks. The evaluation results show that our approaches to
algorithm plagiarism detection are practical, effective and
resilient to many automatic obfuscation techniques.

The rest of the paper is organized as follows. We state
the problem in Section 2. Section 3 introduces the signature
selection. Section 4 describes the proposed approaches. Sec-
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Figure 1: The spectrum of program similarity

tion 5 addresses the recording problem. Section 6 presents
the implementation and the evaluation, followed by discus-
sion in Section 7. Finally, related work and conclusions are
presented in Section 8 and 9.

2. PROBLEM STATEMENT
The similarity between programs can be reflected at dif-

ferent abstraction levels, including purpose level, algorithm
level and implementation level, as shown in a similarity spec-
trum in Figure 1. On the implementation level, software
plagiarism detection, which has been well studied in the lit-
erature, focuses on separating semantic-preserving transfor-
mations/obfuscations (of a program) from independent pro-
gramming. Whenever software plagiarism exists, the plain-
tiff program and the plagiarist’s program use the same algo-
rithm. Hence, software plagiarism is a problem within “the
same algorithm”scope. Beyond this scope, algorithm plagia-
rism detection aims to see whether two programs implement
different algorithms or not. To the best of our knowledge,
there was no previous work discussing similarity assessment
on the algorithm level.

The goal of our work is to automatically detect algorithm
plagiarism, i.e., given one (or more) implementation(s) of a
plaintiff algorithm and one suspicious program, the proposed
methods can automatically assess their algorithm-level simi-
larity. As mentioned previously, there is no universal similar-
ity threshold for all algorithm plagiarism cases. Therefore,
instead of giving a yes/no answer, our approach provides
users with similarity scores between programs and lets users
make their own decisions.

This work is based on the following assumptions: (1) We
have the source code of at least one implementation of the
plaintiff algorithm; (2) We have preknowledge (e.g., input
and output) about the implementation(s) of the plaintiff al-
gorithm; (3) We assume the plaintiff has no access to the
source code of the suspicious program, but can provide the
executable file of the suspicious program to the detector.
These assumptions are reasonable in the real world. In most
cases, the owner of an algorithm must have implemented the
algorithm and is willing to provide the source code in order
to win a plagiarism lawsuit. In addition, the owner must
have preknowledge on her/his own algorithm.

3. SIGNATURE SELECTION
The first challenge in this work is to identify and represent

the signature of an algorithm. To address this challenge,
we first discuss and compare several candidates, and then
explain why core values are selected as the signature of an
algorithm.

3.1 Signature Candidates
There exist a wide range of properties that may be used

as a potential signature to characterize an algorithm.



System call sequence/graph is an essential character-
istic of a program that invokes many system calls. How-
ever, an examination of the algorithms listed in the “Algo-
rithm Design” book [20] indicates that few of these algo-
rithms involve system calls. This indicates that system call
sequence/graph is not suitable to characterize an algorithm.

Function call sequence/graph. Since most algorithms
use functions to reduce code duplication and to improve
modularity and readability, function calls are better than
system calls in this aspect. However, programmers have
huge flexibility to choose when and how to use functions. In
addition, function call sequence/graph can be easily changed
by splitting or merging functions, or by inserting useless
functions.

Control flow graph (CFG) represents the control flow
between basic blocks. When an algorithm is implemented
by different programmers, the implementation details could
cause significant differences in CFGs. Implementations in
different programming languages can also lead to different
CFGs. In addition, attackers can apply obfuscation tech-
niques, such as opaque predicates, control flow flattening
and loop unwinding, to change CFGs.

Data flow graph is similar to CFG. Graphs are used to
represent data flows between basic blocks. Similar to CFGs,
basic blocks as well as their relations in data flow graphs are
not stable when an algorithm is implemented in different
ways. Moreover, this property could be easily manipulated
by basic block splitting, irrelevant basic block injection, etc.

Instruction level control dependence characterizes
the instruction level control relations in a program. It suffers
the same problem as the CFG.

Instruction level data dependence characterizes the
relations among runtime values. We observe that when feed-
ing different implementations of the same algorithm with
the same input, some runtime values cannot be replaced or
eliminated. Therefore, these runtime values along with their
dependence, e.g., value sequence or value dependence graph,
are a good candidate to characterize an algorithm.

Given the comparison results, we choose the irreplaceable
and uneliminable values, namely core values, as the signa-
ture to characterize an algorithm.

3.2 Core Values
Runtime values are the values in the output operands of

machine instructions executed during runtime. Given an
input, the core values of an algorithm are a subset of the
runtime values of its implementations. They are derived
from the input and cannot be replaced or eliminated by im-
plementing the same algorithm in different ways.

Jhi et al. [17] have demonstrated that core values exist at
implementation level. Our experiments in Section 6 demon-
strate the existence of core values at algorithm level. The
approach used to extract program’s core values by Jhi et
al. [17] is not suitable to obtain core values at algorithm
level, since some of program’s core values are not core val-
ues of the algorithm behind this program. Consider two
programs independently implementing the same algorithm,
the core values of the programs may be different, but the
core values of the algorithm should remain the same.

In the next section, we propose two novel approaches to
extract algorithm-level core values.

4. OUR APPROACHES
In Section 3, we show that core values are a signature of

an algorithm implemented in a program. The next challenge
is how to extract core values from a program.

In principle there could be two ways to find core values.
First, if we know what core values are, we can directly iden-
tify them. Second, if we do not know what core values are
but we do know what core values are not, we can prune the
non-core values and hopefully the remaining set of values
mainly contains core values, if not all. Based on these two
ways, we propose the N-version approach to indirectly ex-
tract core values and the annotation approach to directly
extract core values.

4.1 N-version Approach
The N-version approach is inspired by N-version program-

ming [9, 4]. We use this approach to filter out the diversities
in independent implementations of the same algorithm while
keeping the persistent runtime values.

We identify a subset of non-core values and then refine
runtime values by filtering out these non-core values. Let
PA be an implementation of an algorithm A, vPA be a run-
time value of PA taking I as input, and QA be any other
implementation of A. Then, the non-core values satisfy at
least one of the following properties:

• If vPA is not derived from I, vPA is a non-core value
of A.

• If vPA is not in the set of runtime values of QA taking
input I, vPA is a non-core value of A.

The N-version approach leverages both above properties
to eliminate non-core values. To leverage the first property,
i.e., values are not derived from input, we apply dynamic
taint analysis. With input as taint seed, all tainted values
are derived from input, while others are not. To leverage the
second property, we require multiple independent implemen-
tations of the plaintiff algorithm. After extracting runtime
values from each implementation with the same test input,
we filter out non-common runtime values. We also utilize
the relations among common values, e.g., the sequences of
values or the dependence among values, to characterize an
algorithm. The final remaining values as well as their rela-
tions are considered as the signature of the algorithm.

The architectural view of the N-version approach is shown
in Figure 2. Here, the plaintiff provides N (N ≥ 2) imple-
mentations of the algorithm. These implementations can be
source code or executables. For each implementation, the
value sequence extractor extracts a refined value sequence,
which only contains runtime values derived from the input.
Then the LCS (Longest Common Subsequence) extractor
generates a common value subsequence out of all these re-
fined value sequences. This common value subsequence is
considered as a signature of the plaintiff algorithm. For a
suspicious program, we usually have only one executable.
We also apply the value sequence extractor to extract its
value sequence, with the same test input as that used in
plaintiff implementations. Finally, the similarity detector
compares the signature of the plaintiff algorithm with the
value sequence of the suspicious program to calculate a sim-
ilarity score. Next we explain the details of each component.

Value sequence extractor extracts refined value se-
quence of programs. The same extractor is also used in
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Figure 2: The design of N-version approach

our previous work [17]. This component first leverages the
dynamic taint analysis technique [28] to only preserve the
runtime values derived from input. We run a program in
a virtual machine environment with the input as the taint
seed. The dynamic taint analyzer monitors the taint prop-
agation from the taint seed to registers and memory cells.
Registers and memory cells are tainted if they appear in des-
tination operands of any instructions that take values from
tainted registers or tainted memory locations as input. The
output values in these tainted destination operands are ap-
pended into a value sequence.

Besides dynamic taint analysis, we also employ several
other schemes to further refine the value sequence:

• Value-updating instructions only. A value-updating in-
struction is a machine instruction that does not pre-
serve input in its output. For example, add is a value-
updating instruction, while mov is not. The value se-
quence should only contain the output of value-updating
instructions.

• Sequential reduction. If the value of a register or mem-
ory cell is sequentially updated, the intermediate re-
sults, which are never read, will not be added into the
value sequence.

• Optimization-based refinement is only applied on plain-
tiff programs. It is used to filter out the values that
vary because of different compiler options. We use sev-
eral different optimized executables of the same pro-
gram to generate value sequences. Then, we calculate
the longest common subsequence of all these value se-
quences.

• Address removal. Memory addresses are not core val-
ues, because they may be changed by binary trans-
formation techniques, such as word alignment and lo-
cal variable reordering. Hence, we refine the value se-
quence by removing addresses.

LCS extractor generates the LCS of all refined value se-
quences for N implementations. Note that subsequence is
not necessary to be a consecutive part of the original value
sequences. This common subsequence is considered as core
values of the algorithm, since each value in the subsequence
is derived from the input and is present in all plaintiff im-
plementations.

Similarity detector compares the LCS of the N plain-
tiff implementations with the refined value sequence of the
suspicious program. It measures their similarity and calcu-
lates a similarity score. The similarity metric is described
in Section 4.3.

4.2 Annotation Approach
N-version approach requires multiple independent imple-

mentations of a plaintiff algorithm. Such requirement may

limit its application in practice. Given this, we propose the
second approach, the annotation approach, to extract core
values. It only requires the source code of one implemen-
tation of the plaintiff algorithm. Instead of obtaining core
values by filtering out “noise”, annotation approach resorts
to auxiliary information to identify core values directly. The
basic idea is to utilize the auxiliary information to identify
critical statements that generate core values. We insert an-
notations at these statements and then compile and run the
annotated code to extract the core values from the anno-
tated variables.

The scheme is shown in Figure 3. The code annotator adds
annotations to the source code either automatically or based
on knowledge of domain experts. These annotations identify
which variables in which statements will contain algorithm-
level core values during execution. The core value extractor
executes the annotated source code with a specific input
and records all runtime values flagged by annotations. It
also tracks the relations (e.g., the order of presence) among
core values in runtime. These values are core values, the
sequence of which is the signature of the plaintiff algorithm.
Meanwhile, the value sequence extractor generates a refined
value sequence during the execution of a suspicious program
given the same input as the plaintiff algorithm. After execu-
tion, the core value sequence of a plaintiff algorithm and the
refined value sequence of a suspicious program are compared
by the similarity detector which provides a similarity score.
Note that in annotation approach the value sequence extrac-
tor and similarity detector are the same as in the N-version
approach.

We choose to annotate on source code instead of on bi-
nary code because of the following reasons. First, every core
value is the runtime value of a variable in the source code.
That is to say an adequate annotation at source code level is
sufficient to extract all core values. Second, source code can
liberate the scheme from the large amount of intermediate
non-core values generated by machine operations. Third,
source code is written by programmers based on algorithm
descriptions, whereas binary code is generated from source
code by compilers. Therefore, the abstraction gap between
binary code and algorithm is larger than that between source
code and algorithm.

In the rest of this section, we will explain the design of
key components.

Code annotator and annotation methods. Code an-
notator adds annotations to source code. These annotations
can be generated by different methods. One method is man-
ual annotation based on the knowledge of domain experts
(e.g., author of the algorithm). We can leverage experts’
full understanding of the algorithm and its implementation
to point out which variables reflect the critical logic of the
algorithm. This knowledge based annotation could be very
accurate for simple algorithms. However, as a manual pro-
cess, it becomes extremely time-consuming when the plain-
tiff algorithms become complex.

Given the drawback of manual annotation, we propose an
automatic annotation method. It combines the techniques
of static backward slicing and static forward slicing [38, 16].
Backward slicing starts from the output variables and ends
at the beginning of the implementation. The result of back-
ward slicing is the set of statements which affect the output.
In the opposite, forward slicing initiates from the input vari-
ables and terminates at the end of the implementation. The
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Figure 3: The design of annotation approach

1. int average(int x,int y, int z){
2.      int sum,avg;
3.      sum = x+y+z;
4. avg = sum / 3;
5.      return avg;
6. }
7. void main(){
8.      int x,y,avg;
9.      printf ("Enter two numbers:"); 
10.     scanf("%d",&x);
11.     scanf("%d",&y);
12.     scanf("%d",&z);
13.     avg =  average(x,y,z);
14.     printf("The average is: %d",avg);
15.  }

1. int average(int x,int y, int z){
2.       int sum,avg;
3.       sum = x+y+z; __Log_Value(sum);
4. avg = sum / 3; __Log_Value(avg);
5.       return avg;
6. } 
7. void main(){
8.       int x,y,z,avg;
9.       printf ("Enter three numbers:");
10.      scanf("%d",&x);
11.      scanf("%d",&y);
12.      scanf("%d",&z);
13.      avg =  average(x,y,z); __Log_Value(avg);
14.      printf("The average is: %d",avg);
15. }

Figure 4: Forward slicing and backward slicing an-
notation example

result of forward slicing is the set of statements affected by
the input. The intersection of these two sets is the state-
ments that derive the output from the input. After finding
these important statements, we add an annotation to the
result variable in each statement.

Figure 4 shows an example. The left part is the original
source code. First, we specify input variables and output
variables by preknowledge. x, y, z are the input variables
and avg is the output variable. The second step is to apply
static forward slicing and backward slicing based on the in-
put and output variables. Line 3, 4 and 13 are statements
in the intersection of resulting sets from forward slicing and
backward slicing. Based on the slicing result, we add anno-
tations to these statements. The right part is the annotated
code.

Although automatic annotation method is not as accurate
as the manual method in identifying core values, it is often
effective enough to detect algorithm plagiarisms while much
more efficient and scalable.

Core value extractor is used to extract core values from
an implementation of the plaintiff algorithm. The extractor
runs in a virtual machine environment, where a special sys-
tem call is inserted to handle the annotation. The parameter
of this system call is the annotated variable. When an an-
notation is encountered in execution, this system call will be
invoked to record the runtime value of the variable.

4.3 Similarity Metric
After extracting the signature (i.e., core value sequence) of

a plaintiff algorithm and the value sequence of a suspicious
program, the similarity detector measures their similarity in
terms of the proportion of values common to both sequences.
We apply the longest common subsequence (LCS) algorithm
to obtain the common value sequence of two programs. Let
|s| be the length of a sequence s, then the similarity score is
calculated by the following formula. Since our approach is
input sensitive, we randomly choose multiple inputs and the
final similarity score is the average of all similarity scores.

1. n1 = ( (uint32) b[i]     << 24 );
2. n2 = ( (uint32) b[i+1] << 16 );  
3. n3 = ( (uint32) b[i+2] <<  8  );  
4. n4 = ( (uint32) b[i+3]           );
5. n   = n1 | n2 | n3 | n4;

1. n1 = ( (uint32) b[i+3]           );
2. n2 = ( (uint32) b[i+2] <<  8  ); 
3. n3 = ( (uint32) b[i+1] << 16 );
4. n4 = ( (uint32) b[i]     << 24 );
5. n   = n1 | n2 | n3 | n4;

Figure 5: Reordering problem example

Similarity score =
|common value seq|
|signature seq|

5. ADDRESS REORDERING PROBLEMS
Although the LCS metric is efficient, it is sensitive to value

reordering. For example, an adversary can reduce the length
of the LCS by exchanging the order of independent instruc-
tions or independent basic blocks. As shown in Figure 5, two
code segments are semantically equivalent, but the length of
their LCS is only 2. To defend this attack, we propose a
technique to organize a value sequence into subsequences
showing unchangeable partial ordering of the values. To get
such reordering-intolerant subsequences, we build dynamic
value dependence graphs (VDGs) of the core values. Then
we use a novel path comparison technique to check whether
the reordering-intolerant subsequences of the plaintiff pro-
gram are similar to any paths in the VDG of the suspect
program.

Definition 1. (Value Dependence Graph). Given a pro-
gram P , its value dependence graph VDG(P ) is a directed
acyclic graph G(VP , EP ), where VP is a set of vertices each
of which represents a runtime value that is the output of
some instruction of P , EP is a set of edges (a, b) such that
a ∈ VP , b ∈ VP , a 6= b, and the runtime value represented
by b is derived from the runtime value represented by a.

Since we have implementations of plaintiff algorithm PA
and the suspicious program S, we can construct VDGs from
their runtime values (refined to expose the core values).
Both VDG(P) and VDG(S) are acyclic graphs. Then, if
there is no path between two nodes in the VDG, they are
independent. In other words, all values on a path from the
root node to a leaf node have ordering dependence, so re-
ordering techniques cannot change their orders.

5.1 VDG Comparison
Both VDG(P) and VDG(S) are constructed during run-

time given the same test input. The runtime values along
with their dependence are recorded. Each value is rep-
resented by a node and dependence among values is rep-
resented by edges. Once VDG(P) and VDG(S) are ex-
tracted, we propose a dynamic programming algorithm to



check whether dynamic data dependence paths in the VDG(P)
are similar to any path in the VDG(S). These paths trans-
form an initial input to a final output. For each such path p
in VDG(P), we find a path in VDG(S) which has the largest
LCS with p. Since all the values contained in p have partial
ordering dependence, they cannot be reordered.

We calculate the longest matched path in VDG(S) of p
following Formula (1) and (2), where pi is the ith node in
p, nj is a node in VDG(S), vpi and vnj represent the values
of pi and nj , respectively. The computational complexity is
O(|p||VS |2), where |p| is the length of path p and |VS | is the
number of nodes in VDG(S).

LCS(pi, nj) =





0, if i = 0 or j = ROOT

maxt(LCS(pi−1, nt)) + 1,

if vpi = vnj , t ∈ {parents of j}
max{LCS(pi−1, nj), maxt(LCS(pi, nt))},

if vpi 6= vnj , t ∈ {parents of j}

(1)

LCS(p, VDG(S)) =max
nl

(LCS(p|p|, nl)),

nl ∈ {leaf node of VDG(S)}
(2)

5.2 VDG Reduction
We further improve the performance of VDG compari-

son by removing useless nodes and edges from VDG(S). We
remove the nodes whose values do not appear in VDG(P)
by merging the nodes to the nearest predecessors or suc-
cessors if possible. When such node has only one prede-
cessor/successor, we merge it to its predecessor/successor.
Both the construction of VDG(S) and the reduction can be
done in O(|ES | + |VS |) time, where |ES | is the number of
edges in VDG(S) and |VS | is the number of nodes in VDG(S).
Since the computational complexity of path comparison is
O(|p||VS |2), reducing node size will significantly improve its
performance.

5.3 VDG Similarity Metric
When p, a path of VDG(P) is compared to VDG(S), the

per-path similarity score is computed as follows:

PSSpath(p, VDG(S)) =
LCS(p, VDG(S))

|p|
Given a set of paths extracted from VDG(P), we use the
weighted average of per-path similarity scores as the path
comparison score of two graphs, because long paths are more
likely to serve the main purpose of P and to reduce the
chance of false positives. Since P is provided by the plain-
tiff, we have control over the source code and the compilation
process to make sure that P would not contain a large num-
ber of dummy instructions. The path comparison score of
VDG(P) and VDG(S) is calculated as follows:

PCS(VDG(P ), VDG(S)) =

|ρ|∑
i=1

ωiPSSpath(pi, VDG(S))

where ρ is the set of paths selected from VDG(P), |ρ| is the
number of paths in ρ, pi ∈ ρ and |pi| is the length of path
pi. ωi, the weight of ith path is defined as

ωi =
|pi|∑|ρ|

k=1 |pk|

Table 1: The similarity scores in MD5 experiment
with various inputs

# of plaintiff implementations
1 2 3 4 5

Min 0.609 0.629 0.720 0.731 0.814
Max 0.832 0.997 1.000 1.000 1.000
Avg 0.729 0.891 0.934 0.962 0.980

Table 2: The similarity scores in AES experiment
with various inputs

# of plaintiff implementations
1 2 3

Min 0.206 0.337 0.480
Max 0.536 0.963 1.000
Avg 0.413 0.623 0.826

Table 3: The similarity scores in max flow exper-
iment with various inputs

Similarity of same algorithm
# of plaintiff implementations

1 2 3
Min 0.452 0.521 0.787
Max 0.992 1.000 1.000
Avg 0.676 0.787 0.886

Similarity of different algorithms
1 2 3

Min 0.011 0.077 0.113
Max 0.148 0.164 0.164
Avg 0.102 0.133 0.128

6. IMPLEMENTATION AND EXPERIMENT
We implement the value sequence extractor inside QEMU

0.9.1 [7] by adding dynamic taint analyzer. The static back-
ward slicing and forward slicing utilize the CodeSurfer 2.1
API [15]. Core value extractor is implemented by adding a
new system call which is dedicated to flag core values.

We evaluate the effectiveness of our approaches by con-
ducting proof-of-concept experiments. For each approach,
we measure the similarities in the following three cases: (1)
implementations of the same algorithm (2) implementations
of different algorithms with the same purpose, and (3) im-
plementation of different algorithms with different purposes.
More experiments are conduct for the automatic annotation
approach, since it is more practical. All tested algorithms
are representative and well-known. The evaluation is per-
formed on a Linux machine with Intel Pentium 4 2.80 GHz
CPU and 1 GB RAM.

6.1 Effectiveness of the N-version Approach
In this part of the evaluation, we use three algorithms:

MD5, AES and network flow. We obtain multiple implemen-
tations of each plaintiff algorithm. All implementations are
from open source libraries. To assure that these implemen-
tations are independent, we use MOSS, an online software
plagiarism detection service [2], and VaPD, a dynamic value-
based software plagiarism detection system [17], to measure
their pair-wise similarities. A low pair-wise similarity would
suggest independent. Therefore, we filter out the implemen-
tations with high similarity scores.

MD5. We have 6 independent implementations of MD5.
First, to verify the existence of algorithm level core values
that present in all implementations, we obtain the common
value sequence of the first n (1 ≤ n ≤ 6) implementations,
respectively (when n = 1, the common value sequence is
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(c) Max Flow

Figure 7: The similarity scores of the annotation approach

itself). As shown in Figure 6, the length of common value
sequence converges quickly as N increases and eventually
becomes stable. Similar results are observed for the other
two algorithms. This indicates that the irreplaceable and
uneliminable core values of an algorithm do exist. Detailed
results cannot be included here due to space limitation.

To test the effectiveness of N-version approach, we ran-
domly choose N (2 ≤ N ≤ 5) implementations as plain-
tiff programs, while the rest are suspicious. Some statis-
tics of similarity scores are shown in Table 1. These results
demonstrate that as N increases, the similarity scores be-
tween plaintiff algorithm and plagiarized program increase
as well. In other words, the ability to detect algorithm pla-
giarism is improved. When N = 3, the minimum similarity
is 0.720, which is enough to identify algorithm plagiarism.
Figure 6 also indicates that as N increases, similarity scores
increase and converge to be stable.

AES. We use 3 implementations as plaintiff programs and
the other one as the suspicious program. The statistics of
similarity scores are shown in Table 2. Some similarity scores
are not high enough to distinguish the same algorithm from
different algorithms. The reason is that in AES, a lot of
intermediate values are independent, so they could be in
any order. Figure 5 shows an example. It may result a false
negative. In Section 6.3, we will show that by using a VDG-
based metric we are able to eliminate this false negative.

Both MD5 and AES have only one algorithm each, so we
cannot test the false positive.

Maximum flow algorithms. We have four implemen-
tations of the Ford-Fulkerson algorithm and another imple-
mentation of the push-relabel algorithm. The result is shown
in Table 3. We are able to distinguish the case of the same
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Figure 6: The similarity scores and lengthes of com-
mon value sequences for MD5

algorithm from that of different algorithms with the same
purpose. For different algorithms, the similarity scores are
all very low, irrespective of N .

Conclusion. Results in Table 1, 2 and 3 demonstrate
that as N increases, similarity scores of implementations of
the same algorithm increase, while similarity scores of im-
plementations of different algorithms are not affected. This
indicates that applying multiple implementations can signif-
icantly reduce noises in core value extraction. The results
also show that based on the LCS metric, false negative exists
due to the value reordering problem.

6.2 Effectiveness of the Annotation Approach

6.2.1 Manual Annotation Approach
We perform proof-of-concept experiments on algorithms

of MD5, AES and network maximum flow. For each algo-
rithm, we randomly choose one implementation as plaintiff
and manually annotate its source code. The rest of imple-
mentations are treated as suspicious programs. The results
are shown in Figure 7. All similarity scores are higher than
0.85 when the plaintiff program and suspicious program im-
plement the same algorithm. The similarity scores between
implementations of different maximum flow algorithms are
all around 0.25. The results indicate that the manual anno-
tation approach can distinguish the case of the same algo-
rithm from the case of different algorithms.

6.2.2 Automatic Annotation Approach
First, we conduct the same experiments as for the man-

ual annotation approach, except that the plaintiff programs
are automatically annotated through static forward slicing
and backward slicing. The results are also shown in Fig-
ure 7. For both MD5 and AES algorithms, the similarity
scores between implementations of the same algorithm are
slightly lower than those measured by the manual annota-
tion approach, but are still higher than 0.80. For the max
flow algorithms, automatic annotation annotates the same
variables in the plaintiff program as the manual annotation
does, since max flow algorithms only contain calculation op-
erations in very few statements. The automatic annotation
approach is effective for all above three applications.

Besides the above three applications, we also conduct ex-
periments on 6 other applications. The list of all applications
and their algorithms is shown in Table 4.

Algorithms with the same purpose. We first com-
pare the similarities in two cases: (1) the same algorithm
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Figure 8: The similarity scores of automatic anno-
tation with the LCS Metric

and (2) different algorithms with the same purpose. For
each application, we choose one plaintiff implementation and
two suspicious implementations, one of which implements
the same algorithm with the plaintiff implementation and
the other does not. We measure their similarity scores by
giving 10 randomly generated inputs to each of them. Fig-
ure 8 shows the experiment results. It indicates that for
each application, there is a significant gap between simi-
larity scores of the same algorithm and those of different
algorithms, although no universal threshold can be applied
for all applications. The low similarity scores (< 0.7) for
the same algorithm in the SHA2 and Fibonacci applications
are caused by the value reordering problem, which will be
solved in Section 6.3. The high similarity score of different
algorithms for greatest common divisor (GCD) application
is caused by the reason that the brute force algorithm goes
through every integer until the GCD is found. As a re-
sult, all integers between the GCD and the smaller integer
are in its value sequence, therefore there are false matches,
which will be eliminated by the VDG metric. The same
algorithm for the convex hull application does not achieve
high similarity scores (around 0.65) because the suspicious
program optimizes the algorithm and does less calculations.
Even though, the differences between similarity scores of
the same algorithm and those of different algorithms are
still large enough to distinguish them from each other. As a
result, the automatic annotation approach is effective to dis-
tinguish the same algorithm from different algorithms with
the same application.

Table 4: The List of Applications and their algo-
rithms

Applications Plaintiff
Algorithm

The Different
Algorithm

MD5 MD5 -
AES AES -
SHA2 SHA2 -

MaxFlow Ford-Fulkerson Push-relabel
Convex hull Monotone chain Graham scan
Fibonacci Exponentiation

by squaring
Iterative

Greatest common
divisor

Extended
Euclidean

Brute force

Prime
factorization

Wheel Fermat

Multiplication Karatsuba Long
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Figure 9: The similarity scores of automatic anno-
tation with the VDG metric

Algorithms with different purposes. We evaluate the
similarities between algorithms of different applications in
Table 4. Since our approach is input sensitive, we choose
28 pairs of different algorithms, each pair of which can ac-
cept the same input. The results are quite positive: 20
pairs have the similarity scores lower than 1%. The other 8
pairs have the similarity scores between 1% and 30%. These
higher similarity scores are all caused by the reason that
the plaintiff algorithm is simple and has short core value se-
quence, while the suspicious one is complicated with much
longer core value sequence, which increases the chance of
false matches. As a result, for simple plaintiff algorithms,
the plaintiff can use manual annotation to assure the accu-
racy of core value annotation and to reduce false matches.
Even applying automatic annotation, all the similarity scores
between programs implementing algorithms with different
purposes are low enough to be distinguished from those be-
tween programs implementing the same algorithm.

Conclusion. Manual annotation is more effective but
needs domain experts to annotate the source code manually.
Although automatic annotation is not as accurate as manual
annotation, the detection accuracy is good enough to tell the
same algorithm from different algorithms.

6.3 VDG Based Metric
Both the N-version and the annotation approach can adopt

VDG as a metric to measure algorithm-level similarities. We
perform the same experiments on the VDG metric as in Sec-
tion 6.1 and 6.2. Due to the limited space, we only show the
results of automatic annotation using the VDG metric in
Figure 9. Since both SHA2 and Fibobacci implementations
suffer from the value reordering problem, their similarity
scores are significantly increased. For the brute force algo-
rithm of the GCD application, false matches are eliminated
because its VDG is wide with all paths shorter than 3, which
are not matched to the paths in the plaintiff VDG. The other
results are similar to the results in Figure 8. Thus automatic
annotation approach using VDG as the metric is effective in
detecting algorithm similarity.

In addition, previously we have one false negative in Sec-
tion 6.1, when the N-version approach is applied to detect
similarity of the AES implementations with the LCS met-
ric. The false negative is eliminated when we adopt the
VDG metric. Its similarity scores are significantly increased
(minimum score = 0.757, when N = 3).



We also evaluate the scalability of VDG-based comparison
with large graphs. We use a large file as input to MD5
implementations. The VDG(P) has 75k nodes, with the
maximum path length of 21k. The VDG(S) has 448k nodes
originally and 75k nodes after reduction. The running time
of the path comparison process is less than 4 hours. This
result indicates the capability of our approach in handling
large graphs.

6.4 Resiliency to Automatic Obfuscation
Plagiarists can exploit automatic obfuscation tools to ob-

fuscate their implementation of the plagiarized algorithms
to further evade detection. In this section, we evaluate the
resiliency of our approaches to such cases.

We apply 3 different automatic obfuscation tools: Seman-
tic Designs Inc’s C obfuscator [3], Diablo link-time optimizer
based obfuscator (Loco) [25] and binobf [1]. The first one is
source code based while the latter two are binary based. The
features of Semantic Designs Inc’s C obfuscator include, but
are not limited to, identifier scrambling, format scrambling,
loop rewriting, and if-then-else rewriting. Loco can obfus-
cate binaries by control flow flattening and opaque predicate.
Binobf performs junk insertion, opaque predicate, jump ta-
ble spoofing, etc.

We obfuscate the suspicious program of each application
by these three tools and repeat the experiments in Sec-
tion 6.2. The core value sequences of obfuscated suspicious
programs are almost the same as those of original programs.
The only differences are caused by several value reordering
cases. As a result, the similarity scores are nearly the same
as in Section 6.2. After we applied VDG as similarity metric
to eliminate value reordering problem, the similarity scores
become the same as in Section 6.3. Due to the space limita-
tion, we omit the detailed results in this paper. The results
show our approach is resilient to automatic obfuscation tech-
niques.

7. DISCUSSION

7.1 Counterattacks
Software obfuscation techniques. An attacker may

apply obfuscation techniques to evade algorithm plagiarism
detection. Since our approaches apply core values as sig-
nature, we mainly focus on obfuscation methods that ma-
nipulate runtime values. These methods include noise injec-
tion, irrelevant instruction reordering and data transforma-
tion [12].

Our approach is resilient to noise injection. Injecting noise
to suspicious program may cause false matches and will raise
the chance of accusation, so if a plagiarist knows the mech-
anism of our approach, he will never try to evade detection
by injecting random noise. However, if a lot of noise is in-
jected, the size of value sequence or VDG could dramatically
increase. This will slow down the similarity score computa-
tion. Our solution filters out values that are not present in
the value sequence or VDG of the plaintiff program before
performing the similarity computation.

Our VDG metric is resilient to irrelevant instruction re-
ordering as discussed in Section 5.

Data transformation is another possible counterattack to
evade plagiarism detection. Splitting or merging variables
can change the runtime values. For example, a single byte
value b can be split into 8 bytes, each of which represents

one bit of b. Another example is that an array of four bytes
can be merged into one integer. However, whenever this
value is used, the original value has to be assembled back,
unless the adversary adopts complicated methods to convert
all operations on the original variable type to operations on
the new one, which is usually not practical. As long as
these original values are restored, our approach can detect
the plagiarism. Therefore, our approach is resilient to most
variable splitting and merging attacks and raises the bar for
plagiarism and increase its cost—simple data transformation
attacks will be caught and sophisticated transformation has
a high overhead for the plagiarists.

Optimization. Attackers can utilize different compilers
or compiler optimization options to change the executables
of their plagiarized programs. However, based on the def-
inition of core values, runtime values that vary from dif-
ferent compilers and optimization options are not core val-
ues. Therefore, compiler optimization does not eliminate
core values. Hence, our approaches are not affected by these
optimization techniques.

Another way of changing runtime values is to optimize
the algorithm for implementation. If a plagiarist optimizes
a plaintiff algorithm and then implements it, the similarity
score will decrease. This can be solved by applying man-
ual annotation, because experts master complete knowledge
about core values of an algorithm. For a complex algorithm,
in order to reduce similarity score, a significant amount of
optimization is required. The resulting algorithm after such
optimization may no longer be considered as the same as
the original algorithm.

7.2 Partial Plagiarism
Less self-disciplined developers may steal an algorithm by

implementing and embedding it in a large program. Since
only a small part of the whole program is plagiarized, it is
difficult to detect. To detect partial plagiarism, we need
to make sure the inputs to the plaintiff algorithm and the
suspicious module are the same. Then we can search in
value sequence of the suspicious program to find a subse-
quence that matches the sequence of plaintiff algorithm. To
this end, a feasible solution on partial plagiarism detection
must be able to identify suspicious modules in a suspicious
program. One possible solution is to leverage some charac-
teristics of a specified algorithm to provide a hint about the
location of suspicious modules, such as invoking special sys-
tem calls or APIs. We leave this issue as part of our future
work.

7.3 Limitations and Future Work
We discuss a few limitations of our methods in this sec-

tion. First, our detection results rely on the selection of a
similarity score threshold to decide whether or not an al-
gorithm is plagiarized. However, there is no such univer-
sal threshold for all algorithms, because the threshold may
vary for each algorithm depending on how complex it is, how
specific it is described, etc. To this end, instead of giving
a yes/no answer, our approach provides users with similar-
ity scores between programs as initial evidences. Based on
these evidences, users can take further investigations, which
often involve non-technical actions. Second, our value-based
methods are input sensitive. This means it is possible that
different algorithms handle certain input in the same way.
This may cause false positives. Nevertheless, since we choose



multiple inputs randomly, this risk would be effectively mit-
igated in practice. Third, our approaches leverage dynamic
taint analysis to extract values derived from input. It suf-
fers from the common limitations of dynamic taint analy-
sis techniques [8]. A plagiarist could use anti-taint-analysis
techniques to hide core values. Solutions to this issue still
remain an open question. Forth, we conduct experiments
on well-known algorithms that are representative in differ-
ent areas. Compared to large commercial/open source soft-
ware products, the code sizes of collected implementations
are relatively small. The reason why our experiments are
not conducted on large software is that it is hard, if not
impossible, to find a large software implementing one single
algorithm. Nevertheless, we will consider extracting indi-
vidual algorithms from these large software products and
evaluating our scheme on extracted algorithms as one of
our future works. Finally, our value based approaches are
not applicable to all algorithms, since they rely on extract-
ing runtime values from tainted value-updating instructions.
Some algorithms e.g., sorting algorithms and finding mini-
mum/maximum value in an array, contain very few of such
instructions.

8. RELATED WORK

8.1 Software Plagiarism Detection
The most related work to algorithm plagiarism detection

is software plagiarism detection.
Static birthmark based plagiarism detection: Liu

et al. [23] proposed a program dependence graph (PDG)
based approach, which is vulnerable to some obfuscation
techniques such as control flow flattening and opaque predi-
cates. Tamada et al. [33] proposed four static birthmarks for
Java programs: Constant Values in Field Variables (CVFV),
Sequence of Method Calls (SMC), Inheritance Structure (IS)
and Used Classes (UC). These birthmarks can be changed
by some obfuscation techniques, such as method call re-
ordering. Myles et al. [27] statically analyzed executables
to obtain opcode sequences of length k. Then they used K-
gram techniques to measure the similarity. This approach
is vulnerable to instruction reordering and junk instruction
insertion.

Dynamic birthmark based plagiarism detection:
Jhi et al. [17] proposed to use core values as birthmark to de-
tect software plagiarism. Lu et al. [24] presented a dynamic
opcode n-gram birthmark, which is vulnerable to instruc-
tion reordering and irrelevant instructions insertion. Myles
et al. [26] developed a whole program path (WPP) birth-
mark, which is robust to opaque prediction, but is still vul-
nerable to some other obfuscations such as loop unwinding.
Tamada et al. [34] used dynamic API birthmark for win-
dows applications. Their approach relied on the sequence
and the frequency of API invocations. Schuler et al. [32]
proposed a dynamic API-based birthmark for Java. Both
Java and Windows API-based birthmarks are platform de-
pendent. Wang et al. [37, 36] introduced a system call based
birthmark. Their approach is not suitable for programs that
invoke few system calls.

8.2 Clone Detection
Clone detection is a technique to find duplicate code. Be-

sides being used to decrease code size and facilitate main-
tenance, clone detection can also be used to detect software

plagiarism. Existing source code clone detection techniques
include String-based [5], Tree-based [6, 18], Token-based [19,
31, 29] and PDG-based [21, 14, 22]. Sæbjørnsen et al. [30]
proposed a tree-based clone detection in binary code. Most
clone detection techniques do not take code obfuscation into
consideration. As a result, they are not robust to some ob-
fuscation techniques.

As discussed in Section 1, neither software plagiarism de-
tection nor clone detection tools can be applied to detect
algorithm plagiarism. To the best of our knowledge, there is
no other work on algorithm plagiarism detection. Our ap-
proaches do not require source code of suspicious programs
and are applicable to any programming language. More-
over, our approaches are resilient to many kinds of attacks
discussed in the previous section.

8.3 Software Watermarking
There exists a large volume of literatures on software wa-

termarking (e.g. [11, 13, 35, 10]). Software watermarking
embeds secret information into a program to protect intel-
lectual property. The embedded information can be used to
identify the ownership of the program. However, since soft-
ware watermarks are embedded into implementations, they
cannot be used to protect algorithms.

9. CONCLUSION
In this work, we propose two dynamic value-based ap-

proaches, i.e., N-version and annotation, to detect algorithm
plagiarism. To the best of our knowledge, our work is the
first one focusing on algorithm plagiarism detection. We
evaluate the proposed approaches on different algorithms.
The evaluation results indicate that our approaches can de-
tect algorithm plagiarism effectively. We believe our work
has laid a foundation as a first step towards a practical solu-
tion to algorithm plagiarism detection for intellectual prop-
erty protection.
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