US 20110022893A1

a2y Patent Application Publication o) Pub. No.: US 2011/0022893 A1

a9 United States

Yang et al.

43) Pub. Date: Jan. 27, 2011

(54) DETECTING DATA RACE AND ATOMICITY
VIOLATION VIA TYPESTATE-GUIDED
STATIC ANALYSIS

(75) Inventors: Yue Yang, Redmond, WA (US);

Anna Gringauze, Redmond, WA

(US); Dinghao Wu, Redmond, WA

(US); Henning K. Rohde, Renton,

WA (US)

Correspondence Address:
WOLF GREENFIELD (Microsoft Corporation)
C/O0 WOLF, GREENFIELD & SACKS, P.C.
600 ATLANTIC AVENUE
BOSTON, MA 02210-2206 (US)
(73) Assignee: Microsoft Corporation, Redmond,
WA (US)

(21) Appl. No.: 12/507,230

(22) Tiled: Jul. 22, 2009

Publication Classification

(51) Int.CL

GOGF 11/36 (2006.01)
(52) US.Cl coooovoonn... 714/33; 714/38; 714/E11.207
(57) ABSTRACT

Mechanisms for analyzing computer instructions implement-
ing a program in which typestate analysis is informed by
concurrency analysis. The concurrency-guided typestate
analysis may simulate the “worst case” scenario due to thread
interleaving by transitioning a simulated state of the variable
to a special state whenever the variable is not guarded by its
intended guarding lock. While in the special state, the analy-
sis may assume that the state of the simulated variable is the
worst possible state with respect to processing operations that
may lead to an error depending on the state of the variable.
Thus, the analysis performed may assume that referencing the
variable in a state-dependent operation while the simulated
state of the variable is in the special state may lead to an error,
and the analysis may generate a warning, accordingly. The
analysis may process the computer instructions to infer which
lock is intended to guard a shared variable.
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typedef struct {

CRITICAL SECTION cs;
int* buffer;

} DATA;

void

void

void

ProcessBuffer (DATA* p) {
EnterCriticalSection (&p->Cs);

if (p->buffer == NULL) {
LeaveCriticalSection (&p->cs);
return;

1

LeaveCriticalSection (&p->cs);
// Do something
EnterCriticalSection (&p->cs);
*p->buffer = 1;
LeaveCriticalSection (&p->cs);

FreeBuffer (DATA* p) {
EnterCriticalSection (&p->Cs);
if (p->buffer) {
delete (p->buffer);
p->buffer = NULL;
1

LeaveCriticalSection (&p->cs);

FIG. 5A

AccessBuffer (DATA* p) {
if (p->buffer == NULL) {
return;
1
EnterCriticalSection (&p->cs);
if (p->buffer != NULL) {
cout << *p->buffer << endl;
1

LeaveCriticalSection (&p->cs);

FIG. 5B
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CRITICAL SECTION cs;

___guarded by (cs)

} DATA;

int* buffer;

FIG. 9A

Priority 1 (Lock is a field of parent of variable):

B w N

typedef struct |
CRITICAL SECTION
int* buffer;

} DATA 1;

cs;

Priority 2 (Lock reachable from parent of variable, but not at same level as variable):

5
6
7
8

9

10
11
12
13
14

typedef struct {
DATA LOCKS *dl;
int* buffer;

} DATA 2;

typedef struct {
CRITICAL SECTION
CRITICAL SECTION
CRITICAL SECTION
CRITICAL SECTION
} DATA LOCKS;

csl;
cs2;
cs3;
csé;

Priority 3 (Lock reachable from formal parameter location):

15

int ProcessBuffer (int

*buffer, CRITICAL SECTION *pcs);

Priority 4 (Lock reachable from global location):

16

CRITICAL SECTION global cs;

FIG. 9B
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DETECTING DATA RACE AND ATOMICITY
VIOLATION VIA TYPESTATE-GUIDED
STATIC ANALYSIS

BACKGROUND

[0001] Tools exist for analyzing software, whether in
source code format or in binary code format, to identify errors
or possible problems in the software or program. Such pro-
gram analysis tools may output warnings or errors, thus
allowing a developer of the program to make changes to the
program to fix the program, if necessary.

[0002] One type of program analysis tool for source code or
binary code is a lock analysis tool, sometimes known as a
concurrency analysis tool, which exists to detect possible
errors that may arise due to incorrect use of locks in multi-
threaded applications. An exclusive lock may be used to
“guard” a shared variable from concurrent access from dif-
ferent threads that would allow one thread to change the
variable in a way that would interfere with the other thread.

[0003] When a thread acquires a lock, the thread becomes
the lock owner, which blocks other threads from accessing the
shared variable until the owner thread releases the lock. Thus,
in order to ensure that accesses to a shared variable are pro-
tected, all accesses to the shared variable in the program may
need to be preceded by a lock acquisition and succeeded by a
lock release. In some programming languages, the burden
may fall on the developer to ensure that accesses to a shared
variable are always protected by a lock.

[0004] The situation when a shared variable is accessed by
at least two threads concurrently without being protected by a
lock, in which at least one of the accesses is a write, is often
known as a “race condition.” Lock analysis tools may detect
potentially problematic locking behavior, such as possible
race conditions by detecting when a variable is accessed
without being protected by a lock.

[0005] Another type of program analysis tool is a typestate
analysis tool, which may perform typestate analysis on vari-
ables in the program. Typestate analysis may uncover errors
in a sequential program flow that may indicate potential prob-
lems when particular operations intended to be invoked only
on variables with appropriate states are invoked with vari-
ables having an inappropriate state for the operation. That is,
typestate analysis may identify patterns in programs to indi-
cate possible errors that arise when a state-dependent opera-
tion accesses a variable that is in a state in which the state-
dependent operation may fail or cause an error condition to
occur. Thus, accessing a variable in a state-dependent opera-
tion may lead to an error condition when that variable is
associated with a particular set of type states. Yet, when the
variable is associated with another set of type states, access-
ing that variable in a state-dependent operation may not cause
an error.

[0006] One example of typestate analysis is NULL pointer
analysis, which may detect if a pointer variable is being
dereferenced when the type state of the pointer variable is
NULL. As is known in the art, a pointer variable is intended to
have a value indicating a memory location, so that derefer-
encing a pointer value attempts to access the memory con-
tents at the value of the memory location. Dereferencing a
pointer variable with a value of O (or NULL) in a program,
however, may often lead to an error condition, including a
possible program crash. A pointer with a value of 0 (or
NULL)usually points to memory in a protected location (e.g.,
a protected memory page), and as such, an access to a
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memory location of 0 by a user-mode program will often
cause an access violation exception, which may lead to a
crash. Higher-level programming languages, such as C#, may
have a more abstract interpretation of NULL in which an
exception is generated in the runtime software.

[0007] Besides program analysis tools, developers may
also make use of annotations. Annotations, such as those in
the format of the program annotation language (SAL),
designed by Microsoft Corporation, may describe the
intended usage of certain aspects of the program. For
example, annotations may describe how a function uses its
parameters or return values—the assumptions the function
makes about the parameters, and the guarantees the function
makes upon its return.

SUMMARY

[0008] While existing types of program analysis such as
conventional typestate analysis and conventional concur-
rency analysis may be useful in detecting certain types of
errors, they are not adequate for detecting subtle errors in
programming that may result when programs are executed in
a multithreaded environment. Conventional typestate analy-
sis is unable to understand threading effects, as it focuses
solely on sequential execution, and therefore would miss
many bugs introduced by threading issues. On the other hand,
conventional concurrency analysis most often focuses on
generic concurrency properties, such as the detection of race
conditions, and is often overly conservative, resulting in a
large amount of warnings that are benign.

[0009] Improved error correction is provided by a method
and/or a tool for error detection. Some embodiments provide
for a typestate-driven concurrency analysis for detecting race
conditions and atomicity violations in which the typestate
analysis is informed by concurrency analysis. The thread
interference effect (i.e., the effect of having concurrent
threads possibly accessing the same variable, whether at the
same time or in an interleaved approach) may be simulated by
reformulating a system performing typestate analysis so that
the state transition of a shared variable is at least partially
controlled by the locking state of that variable.

[0010] In some embodiments, the analysis may simulate a
number of different scenarios (including all possible sce-
narios) due to thread interleaving. For example, the “worst
case” scenario due to thread interleaving may be simulated by
discarding the state information associated with a variable
whenever the variable is not guarded by its intended guarding
lock. This may be accomplished by transitioning the simu-
lated state of the variable to a special “unlocked-uninitial-
ized” state in which it is assumed that the state of the simu-
lated variable is the worst possible state with respect to
processing operations that may lead to an error depending on
the state of the variable. Thus, the analysis performed may
assume that referencing the variable in such a state-dependent
operation while the simulated state of the variable is in the
special “unlocked-uninitialized” state may lead to an error,
and the analysis may generate a warning, accordingly.
[0011] In addition, in order to more precisely simulate the
thread interference effect and determine which lock may be
intended to protect which variable(s), some embodiments
may apply inference techniques to automatically associate a
lock with a shared variable and/or to automatically associate
groups of shared variables as an atomic unit when it is
inferred that such a group of shared variables is intended to be
updated atomically.
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[0012] The foregoing is a non-limiting summary of the
invention, which is defined by the attached claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] The accompanying drawings are not intended to be
drawn to scale. In the drawings, each identical or nearly
identical component that is illustrated in various figures is
represented by a like numeral. For purposes of clarity, not
every component may be labeled in every drawing. In the
drawings:

[0014] FIG. 1 is an exemplary computing environment in
which race conditions or atomicity violations may occur;
[0015] FIG. 2 is an architectural block diagram of compo-
nents of a computer instructions analysis tool;

[0016] FIG. 3 is an architectural block diagram of types of
typestate analysis that may be performed by a computer
instructions analysis tool according to some embodiments;
[0017] FIG. 4 is a flowchart of a high-level process of
performing analysis on computer instructions, such that only
warnings uniquely detected by concurrency-guided typestate
analysis are output;

[0018] FIG.5A is an example of computer instructions that
displays a problem that may be detected by concurrency-
guided typestate analysis according to some embodiments,
but that would fail to be detected by either conventional
typestate analysis or by conventional concurrency analysis;
[0019] FIG. 5B is an example of computer instructions that
may be correctly determined to be benign by concurrency-
guided typestate analysis, but that may be incorrectly deter-
mined to be problematic by other types of analysis, such as
conventional concurrency analysis;

[0020] FIG. 6 is a state transitions diagram illustrating the
states of a variable being tracked by concurrency-guided
typestate analysis;

[0021] FIG. 7 is a flowchart of a detailed process of per-
forming concurrency-guided typestate analysis;

[0022] FIG. 8 is a flowchart of a process of analyzing com-
puter instructions to infer variable-lock associations;

[0023] FIG. 9A is an exemplary concurrency annotation;
and
[0024] FIG. 9B is a computer instructions example of types

of locations in which a lock associated with a shared variable
may appear in the computer instructions.

DETAILED DESCRIPTION

[0025] Theinventors have appreciated that the manufacture
of software could be improved by providing a tool for more
accurately detecting different types of race conditions. While
known conventional typestate analysis and conventional con-
currency analysis may be useful in detecting certain types of
errors, these two types of analysis are not adequate for detect-
ing subtle errors in programming that may result when pro-
grams are executed in a multithreaded environment. Conven-
tional typestate analysis is unable to understand threading
effects, as it focuses solely on sequential execution, while
conventional concurrency analysis most often focuses on
generic concurrency properties, such as the detection of race
conditions. The disjoint nature of conventional typestate
analysis compared to conventional concurrency analysis
results in missed bugs. Conventional typestate systems are
limited in the presence of concurrency because they would
miss many bugs introduced by threading issues. On the other
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hand, conventional concurrency tools are often overly con-
servative, resulting in a large amount of warnings that are
benign.

[0026] The inventors have further appreciated that having a
program be free from race conditions does not necessarily
guarantee correct synchronization, because program correct-
ness may often depend on an additional property known as
atomicity. Atomicity may require that every concurrent
execution of a set of operations is equivalent to some serial
execution of the same operations. A violation of the atomicity
property may also be termed a “high level race condition.”
[0027] The generation of a large amount of benign warn-
ings by concurrency tools is especially a problem for atom-
icity analysis. Many seeming violations to the atomicity
assumption are not harmful because they do not break any
critical invariants of concern to programmers.

[0028] The inventors have appreciated the need for
typestate analysis to be informed by concurrency analysis,
and accordingly have developed a typestate-driven concur-
rency analysis for detecting race conditions and atomicity
violations. The thread interference effect (i.e., the effect of
having concurrent threads possibly accessing the same vari-
able, whether at the same time or in an interleaved approach)
may be simulated by reformulating a system performing
typestate analysis so that the state transition of a shared vari-
able is at least partially controlled by the locking state of that
variable.

[0029] In some embodiments, the analysis may simulate a
number of different scenarios (including all possible sce-
narios) due to thread interleaving. For example, the “worst
case” scenario due to thread interleaving may be simulated by
discarding the state information associated with a variable
whenever the variable is not guarded by its intended guarding
lock. This may be accomplished by transitioning the simu-
lated state of the variable to a special “unlocked-uninitial-
ized” state in which it is assumed that the state of the simu-
lated variable is the worst possible state with respect to
processing operations that may lead to an error depending on
the state of the variable. Thus, the analysis performed may
assume that referencing the variable in such a state-dependent
operation while the simulated state of the variable is in the
special “unlocked-uninitialized” state may lead to an error,
and the analysis may generate a warning, accordingly.
[0030] In addition, in order to more precisely simulate the
thread interference effect, it may be important to accurately
determine which lock may be intended to protect which vari-
able(s), as well as any group of variables that may need to be
treated as an atomic unit. In order to address this issue, some
embodiments may apply inference techniques to automati-
cally associate a lock with a shared variable and/or to auto-
matically associate groups of shared variables as an atomic
unit.

[0031] Thus, the concurrency-guided typestate analysis
approach identified by the inventors has several advantages
over other approaches of performing conventional typestate
analysis or conventional concurrency analysis. The “thread-
sensitive” aspect of the analysis may extend traditional
typestate checking from the sequential context to the multi-
threaded context, thus identifying a range of typestate errors
that could not be identified using conventional typestate
analysis techniques. The “typestate-driven” aspect of the
analysis may also enable a more focused checking by pin-
pointing concurrency problems that could eventually lead to
typestate bugs, thus avoiding a large number of benign warn-
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ings that may be output when performing stand-alone con-
ventional concurrency analysis.

[0032] FIG.1is an exemplary computing environment 100
in which race conditions and atomicity violations may occur.
Computing environment 100 may include one or more appli-
cations, such as applications 102 and 104, that may execute
on top of an operating system 106. Applications 102 and 104
and operating system 106 may be implemented in any suit-
able way, and may be comprised of computer-executable
instructions. For example, applications 102 .. .104 may be a
word processing application, a web browser, an MP3 player,
or any other suitable application. Operating system 106 may
be any suitable operating system, such as variants of the
WINDOWS® operating system developed by Microsoft Cor-
poration.

[0033] Applications 102 . . . 104 and operating system 106
may execute on computer hardware 108. Computer hardware
108 may be any suitable computer hardware, such as a laptop
computer, desktop computer, server computer, mainframe
computer, mobile device, PDA, or cellular phone. Computer
hardware 108 may include one or more microprocessors,
such as processors 110 and 112, each of which may be any
suitable microprocessor implementing any suitable instruc-
tion set. Each processor may include one or more processing
cores. In the example of FIG. 1, processor 110 includes cores
114 and 116, and processor 112 includes cores 118 and 120.
Each of cores 114 . . . 120 may be able to simultaneously
execute one or more hardware threads of execution. For
example, core 114 may include support for simultaneously
executing hardware threads 122 and 124, core 116 may
include hardware threads 126 and 128, core 118 may include
hardware threads 130 and 132, and core 120 may include
hardware threads 134 and 136.

[0034] At least one of applications 102 . . . 104 and oper-
ating system 106 may be implemented as a multi-threaded
program. Multi-threaded programs include multiple software
threads that may be scheduled for simultaneous execution on
a component of computer hardware 108. For example, mul-
tiple software threads may be executing simultaneously on
one or more of processors 110 . . . 112, or in computing
environments such as that illustrated by FIG. 1 in which a
processor may contain multiple cores, each software thread
may be scheduled for execution on a different core of cores
114 . . . 120. Because each core in computing environment
100 includes support for multiple hardware threads, each
software thread may further be scheduled for execution on
one or more of hardware threads 122 . . . 136 in the example
of FIG. 1.

[0035] In a computing environment, such as computing
environment 100, that includes support for concurrent pro-
cessing of computer-executable instructions, such as multiple
concurrent threads of execution, problems in a multithreaded
program due to concurrency may be more pronounced than
when the same program executes in a computing environment
that does not support the concurrent execution of multiple
threads. Examples of concurrency-related issues that may
arise are race conditions, as discussed above, or atomicity
violations. An atomicity violation, also known as a high-level
race condition, may arise even if every access to a shared
variable is protected by a lock. In general, an atomicity vio-
lation may occur when a concurrent execution of a set of
operations is not equivalent to the serial execution of the same
operations.
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[0036] FIG. 2 is an architectural block diagram of compo-
nents of a computer instructions analysis tool 200, which may
execute on any suitable computer, such as a computer that
may exist in a development environment as part of manufac-
turing a software application that may execute in a multi-
threaded environment. The computer instructions analysis
tool may receive as input a plurality of computer instructions
202 for analysis. The computer instructions 202 may include
source code instructions and/or binary code instructions that
may specity actions by a computer, and may implement one
or more programs, including one or more multi-threaded
programs. The computer instructions 202 may be in any suit-
able representation, including source code in a programming
language, such as C or C++, or in an assembly language, that
may need to be compiled and/or assembled into object code
before execution on a computer. The computer instructions
202 may additionally or alternatively be the binary computer-
executable instructions in the input program being analyzed.
The computer instructions 202 may include one or more
annotations describing the use of the computer instructions. If
included in the computer instructions 202, the annotations
may be in any suitable format, including the program anno-
tation language (SAL) developed by Microsoft Corporation.
The computer instructions 202 may be received by the analy-
sis tool in any suitable format, including being read from
volatile or non-volatile computer memory or read from one or
more files accessed locally or over a computer network. The
computer instructions analysis tool 202 may be invoked in
any suitable way. For example, in embodiments in which the
computer instructions 202 may need to be built (e.g., com-
piled, assembled, and/or linked) before the program they
implement may be executed on a computer, the source analy-
sis tool 200 may be integrated into the build process for the
program and invoked automatically, or it may be invoked
separately from the build process, such as by a developer
interested in analyzing the computer instructions 202 during
the course of software development.

[0037] The computer instructions analysis tool 200 may be
implemented as computer-executable instructions on one or
more computer-readable storage media. The analysis that
may be performed by the computer instructions analysis tool
may be part of an environment or process in which software is
manufactured. For example, in such an environment, a soft-
ware developer may develop a software program, which may
be comprised of the computer instructions 202, and analyze
computer instructions implementing the software program
with the computer instructions analysis tool 202. Based on the
results of the analysis, the software developer may then
modify the software, such as by making changes to the com-
puter instructions to fix issues identified by the analysis. The
modified software may then be recorded onto a computer-
readable storage medium, such as an optical disk or a hard
disk, and shipped to a computer manufacturer or a software
user.

[0038] Each of the components illustrated in FIG. 2 as
comprising the computer instructions analysis tool 200 may
be implemented as separate programs, as a single program, or
in any suitable number of programs configured to work
together as a coherent analysis tool. Functionality ascribed to
the components (or layers of components) comprising the
computer instructions analysis tool 200 may be distributed
among any suitable number of components or layers of com-
ponents, including a greater or lesser number of components
or layers of components than those illustrated in FIG. 2. For
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example, the functionality ascribed to a single component or
layer of components in FIG. 2 may also be divided among
multiple components or layers of components, and the func-
tionality ascribed to multiple components or layers of com-
ponents in FIG. 2 may alternatively be ascribed to a single
component or layer of components.

[0039] In the example of FIG. 2, the architecture of the
computer instructions analysis tool 200 may comprise an
intermediate representation layer 204 that may represent the
flow of the program implemented by computer instructions
202 into one or more control flow graphs (CFGs), such as
control flow graph 206. The intermediate representation layer
204 may also include processing annotations that may be
present in the computer instructions 202. The computer
instructions analysis tool may also include a layer of analysis
components, illustrated in FIG. 2 as analysis component 208.
Analysis component 208 may process the output of the inter-
mediate representation layer 204, such as the control flow
graph 206, to provide a path-sensitive dataflow engine with
integrated alias analysis (e.g., a flow-insensitive, field-sensi-
tive Andersen-style alias analysis), as well as providing sym-
bolic path simulation.

[0040] The outputofthelayer of analysis components, such
as analysis component 208, may be provided to alayer of one
or more client analyses component 210, such as conventional
concurrency analysis component 212, conventional typestate
analysis component 214, and concurrency-guided typestate
analysis component 216. Conventional concurrency analysis
component 212 may perform any suitable type of lock analy-
sis, and may be used to detect, for example, possible concur-
rency violations, race conditions or locking mismatch errors.
In some embodiments, conventional concurrency analysis
component 212 may also infer concurrency annotations,
when these are not expressly indicated in the computer
instructions 202.

[0041] Conventional typestate analysis component 214
may perform any suitable type of typestate analysis. Conven-
tional typestate analysis component 214 may perform its
analysis based on tracking the changing state of a variable in
a simulated path in a control flow graph, and detecting when
an operation in the computer instructions 202 references a
variable having a simulated state that may cause a computer
executing the operation to enter into an error state. However,
in some embodiments, conventional typestate analysis 214
may not consider such typestate issues as that discussed
above that may arise due to concurrency. Concurrency-
guided typestate analysis component 216 may perform
typestate analysis, but may additionally consider possible
typestate issues due to concurrent access to a shared variable
subject to typestate analysis by simulating the behavior that
may arise when multiple threads in the program implemented
by the computer instructions 202 may be running concur-
rently.

[0042] Insomeembodiments, the output ofthe components
in the client analyses component 210 may include warnings
indicating possible error conditions or items of concern in the
computer instructions 202. Such warnings may be provided
to a warning filter module 218, which may process the warn-
ings to selectively output or otherwise indicate to a user only
a subset of the warnings, such as warnings 220, produced by
one or more components in the client analyses component
210. The filtering may be done in any suitable way, taking into
account any suitable considerations. For example, in embodi-
ments in which some types of warnings output by two or more
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components in client analyses component 210 may indicate
an error associated with the same instruction or group of
instructions representing an operation in the input program,
the warning filter module 218 may compute the differences in
warnings outputted by two or more components in client
analyses components 210, and output only a set of warnings
that were output by one components in the client analyses
component 210 that were not output by another component of
client analyses component 210.

[0043] Exemplary types of typestate analyses 300 are illus-
trated in FIG. 3, such as NULL pointer analysis 302, double
free analysis 304, double close analysis 306 and uninitialized
variable analysis 308. All the types of typestate analyses 300
or a subset thereof may be implemented by either or both of
conventional typestate analysis component 214 and concur-
rency guided typestate analysis component 216 illustrated in
FIG. 2. These are examples of components that may identify
patterns in computer instructions to indicate possible errors
that result from a state-dependent operation in the computer
instructions referencing a variable that could have a state in
which execution of the state-dependent operation may cause
an error condition.

[0044] For example, NULL pointer analysis 302 may
detect if a pointer variable is being dereferenced when the
simulated state of the pointer variable is NULL. As is known
in the art, a pointer variable is intended to have a value of a
memory location, so that dereferencing a pointer value
attempts to access the memory contents at the value of the
memory location. Dereferencing a pointer variable with a
value of 0 or NULL may cause a program, whether an appli-
cation or an operating system, to crash.

[0045] Double free analysis 304 and double close analysis
306 are specific examples of a broader type of typestate
analysis known as “matching analysis,” or solving a matching
problem, of which any other specific examples may also be
analyzed by either or both of conventional typestate analysis
component 214 or concurrency-guided typestate analysis
component 216. In general, matching analysis applies when a
first operation performed on a variable leaves the variable in
a first state in which a second operation may be performed.
The second operation leaves the variable in a second state.
The second operation may only be performed on the variable
when the variable is in the first state. Thus, the second opera-
tion must be “matched” with a previous first operation.

[0046] Double free analysis 304 may apply to a program in
which memory is dynamically allocated and freed. When
memory is dynamically allocated, such as by calling a
dynamic allocation operation, the value of a memory location
of the dynamically allocated memory may be stored in a
variable. A subsequent free operation may reference the
pointer variable to deallocate the memory at the value of the
memory location stored in the variable. However, issuing a
free operation twice in a row on the same variable storing the
same memory location value without an intervening dynamic
memory allocation may result in unintended consequences,
such as corrupted memory or a program crash. Thus, double
free analysis 304 may detect when a given sequence of opera-
tions in a simulated path in a control flow graph results in
multiple free operations referencing the same memory loca-
tion without an intervening dynamic memory allocation
operation. The same problem may also occur in reverse, such
as if two dynamic memory allocation operations reference the
same variable without an intervening free operation. Such a
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“double allocation” problem may also result in unintended
behavior, such as memory leaks.

[0047] Double close analysis 306 is similar in nature to
double free analysis 304. An operation that opens a file typi-
cally stores information identifying the file in a file handle
variable after the file has been successfully opened. An opera-
tion that closes a file may reference a file handle variable, and
may rely on the file identified by the file handle variable to still
be in the open state. Issuing multiple close operations refer-
encing the same file handle variable identifying the same file
without an intervening open operation may result in unin-
tended consequences, such as a program crash or other errors.
Thus, double close analysis 306 may detect when a given
sequence of operations in a simulated path in a control flow
graph results in multiple close operations referencing the file
handle variable identifying the same file without an interven-
ing close operation.

[0048] Uninitialized variable analysis 308 may be another
form of typestate analysis that may apply to situations in
which a particular operation relies on the state of a variable
being initialized through some prior operation, such that if
particular operation references the variable before the vari-
able has been initialized, unintended consequences may
result. Thus, uninitialized variable analysis 308 may detect
when a given sequence of operations in a simulated path in a
control flow graph results in a particular operation referenc-
ing a variable in an uninitialized state (i.e., before the variable
has been initialized through a prior operation).

[0049] FIG. 4 is a flowchart of a high-level process of
performing analysis on computer instructions, such as com-
puter instructions 202, such that only warnings uniquely
detected by concurrency-guided typestate analysis are out-
put. The process may begin, for example, with the invocation
of the computer instructions analysis tool 200, illustrated in
FIG. 2, or may be implemented in general by computer-
executable instructions.

[0050] At block 402, the process may optionally infer con-
currency annotations by processing the computer instruc-
tions. This step may be done if annotations are not suitably
included in the computer instructions, and may be performed
by alock analyzer, such as conventional concurrency analysis
component 212 illustrated in FIG. 2. Inferring concurrency
annotations may involve inferring which lock may be
intended to protect a particular shared variable or set of shared
variables from concurrent access. A more detailed flowchart
of'the process of block 402 is illustrated in FIG. 8, discussed
at greater length below.

[0051] At block 404, the process may run a conventional
(i.e., non-concurrent) typestate analysis. That is, block 404
involves performing typestate analysis that is best suited for
sequential programs, and that may not consider typestate
issues that may arise due to concurrency. This step may be
implemented, for example, by conventional typestate analy-
sis component 214, and may involve performing any type of
typestate analysis, including any or all of the types illustrated
in FIG. 3. Performing the conventional typestate analysis may
resultin a first set of warnings being indicated by the tool. The
warnings may be indicated by the tool in any suitable way. For
example, the warnings may be output on a display screento a
user or they may be recorded in volatile or non-volatile com-
puter memory for later processing, and may be in any suitable
format, including text or binary.

[0052] The process may then proceed to block 406, in
which it may run concurrency-guided typestate analysis,
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which may take into consideration typestate issues that may
arise due to concurrent access to a shared variable. This step
may be implemented, for example, by concurrency-guided
typestate analysis component 216, and may involve perform-
ing any type of typestate analysis, including any or all of the
types illustrated in FIG. 3. In some embodiments, the type(s)
of'typestate analysis performed at block 406 may be the same
type(s) of typestate analysis as that performed at block 404.
For example, in both blocks 404 and 406, NULL pointer
analysis 302 and double close analysis 306 may be per-
formed. Performing the concurrency-guided typestate analy-
sis may result in a second set of warnings being output. The
warnings may be output in any suitable way, including in the
modes of output discussed above in connection with block
404. A more detailed flowchart of the process of block 406 is
illustrated in FIG. 7, discussed at greater length below.

[0053] Proceedingto block 408, the process may then com-
pare the first set of warnings (i.e., the warnings output by the
conventional, non-concurrent, typestate analysis) with the
second set of warnings (i.e., the warnings output by the con-
currency-guided typestate analysis). This may be done in any
suitable way, and may be implemented, for example, by warn-
ing filter module 218 of FIG. 2. The step at block 408 may
involve computing the differences between the first set of
warnings and the second set of warnings. The comparison
performed by block 408 may be based on lines or portions of
computer instructions indicated as having an issue by both the
non-concurrent typestate analysis and the concurrency-
guided typestate analysis.

[0054] Atblock 410, the process may then output all warn-
ings in the first set of warnings that are not in the second set of
warnings. This may be implemented, for example, by warn-
ing filter module 218 of FIG. 2. The output may be made in
any suitable way, including according to the modes of opera-
tions discussed in connection with block 404. In some
embodiments, the output produced by block 410 may be
displayed to a user, while the output of blocks 404 and 406
may be recorded at least temporarily in computer memory.
Thus, the step at block 410 outputs warnings that are uniquely
output by concurrency-guided typestate analysis that would
not have been generated by other types of analysis, such as
conventional typestate analysis. In some embodiments, con-
ventional typestate analysis may produce a significant num-
ber of potentially harmless warnings, while concurrency-
guided typestate analysis may produce warnings that more
accurately pinpoint potential problems in the computer
instructions. Thus, filtering out conventional typestate analy-
sis warnings from the output of the concurrency-guided
typestate analysis may result in even greater levels of accu-
racy in the ratio of reported warnings to actual potential
problems in the computer instructions. The warnings output
by the step at block 410 may be output or otherwise indicated
to the user in any suitable way, including by being stored in
volatile or non-volatile memory, such as a file, or displayed
onto a visual display. The process of FIG. 4 may then be done.

[0055] FIG. 5A is an example of computer instructions,
implemented in a programming language such as C, such as
may be analyzed by the computer instructions analysis tool
200 according to the process illustrated by the flowchart of
FIG. 4. The computer instructions of the example of FIG. 5A
displays a NULL pointer dereference problem that may be
detected by concurrency-guided typestate analysis, but that
would fail to be detected by either conventional typestate
analysis or by conventional concurrency analysis. While FIG.



US 2011/0022893 Al

5A illustrates a NULL pointer dereference problem on which
is performed NULL pointer analysis, it is to be appreciated
that similar situations may arise that may be detected by other
types of typestate analysis, such as any of the other types
illustrated in FIG. 3. FIG. 5A illustrates a data structure
(“DATA,” defined in lines 1-4) and two functions (“Process-
Buffer” defined in lines 1-12, and “FreeBuffer” defined in
lines 1-8) that perform operations on the data structure. The
data structure includes a pointer to a buffer (“buffer,” line 3)
and a lock (“cs,” line 2) associated with the pointer to the
buffer. As is known in the art, a lock may be associated with
a shared variable, in which a shared variable is a variable that
may be accessed by multiple threads executing concurrently.
A lock may be used with the intent to guard the variable from
concurrent access by the multiple threads. A particular por-
tion or region of computer instructions that is guarded by a
lock may be termed a “locking block,” “locking region,” or a
“critical section.” Thus, to ensure exclusive access by a thread
to the shared variable, whenever the shared variable is
accessed in the computer instructions, the computer instruc-
tions must first include an operation to enter a critical section
(also sometimes referred to as, “acquiring a lock™), in which
the operation to enter the critical section references the lock
associated with the shared variable. When exclusive access to
the shared variable is no longer required by a particular
thread, the computer instructions may then include an opera-
tion to leave the critical section (also sometimes referred to as,
“releasing a lock™), in which the operation to leave the critical
section references the lock associated with the variable. As
discussed above, a situation in which a shared variable is
accessed outside of a critical section, and thus not protected
by a lock, may lead to a condition known as a race condition.

[0056] As can be seen in the example of FIG. 5A, all
accesses to the buffer are within a critical section, and are thus
protected by the lock. For example, the access at line 7 is
preceded by an operation at line 6 to enter the critical section,
and succeeded by an operation at line 8 to leave the critical
section. Similarly, the subsequent access to the buffer at line
14 is surrounded by operations to enter and leave the critical
section. Thus, because all accesses to the shared variable are
protected by the lock, a lock analyzer such as conventional
concurrency analysis component 212 of FIG. 2 may not
detect any race conditions, and may therefore not indicate any
warnings to a user.

[0057] As discussed above, this example illustrates a
NULL pointer dereference problem. However, a NULL
pointer dereference problem may not have been detected by
conventional typestate analysis, such as typestate analysis
component 214 performing NULL pointer analysis 302.
NULL pointer analysis, when performed using a conven-
tional typestate analysis, may detect that a pointer variable is
not dereferenced when a value of the pointer variable deter-
mined by simulating a sequence of operations is NULL.
Considering the computer instructions in the example of FIG.
5A in sequence, as may be done in conventional typestate
analysis, may detect no problem. As can be seen, before the
pointer variable to the buffer is dereferenced in line 14, the
program implemented by the computer instructions has first
determined at line 7 that the pointer variable to the buffer is
not NULL. If the pointer variable had been NULL, the pro-
gram would have returned out of the ProcessBuffer function,
and would not have reached line 14.

[0058] However, a NULL pointer dereference problem
does indeed exist in the example of FIG. 5A, and can be
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detected when the possibility of concurrency is taken into
account. In the example of FIG. 5A, the functions Process-
Buffer and FreeBuffer may be executing concurrently by
different threads. Thus, after a first thread leaves the critical
section in line 11, a second thread may enter a critical section
at line 18, in which it may free up memory for the buffer (at
line 20) and set the value of the pointer variable to the buffer
to NULL (at line 21). While the second thread is in the critical
section of lines 18-23, the first thread may not enter the
critical section of lines 13-15. Thus, if the first thread is trying
to enter the critical section of lines 13-15, it must first wait
until the second thread leaves the critical section of lines
18-23. When the second thread does leave the critical section
atline 23, the first thread may then enter the critical section at
line 13. However, at this point, the value of the pointer vari-
able to the buffer has changed to NULL as a result of the
operations performed by the second thread. Thus, when the
first thread attempts to dereference the pointer variable at line
14, it may in fact be dereferencing a NULL pointer. Thus,
FIG. 5A illustrates an example of a situation in which the state
of the buffer variable changed from not-NULL to NULL
between the point when the first thread left the first critical
section at line 11 and the point when the first thread entered
the second critical section at line 13, thus leading to an error
condition in the execution of the state-dependent operation,
which in this case is a pointer dereference operation at line 14.
By taking into account issues that may arise due to concurrent
access to a shared variable, concurrency-guided typestate
analysis may detect these classes of problems that may not
have been easily detected by other approaches, including
conventional concurrency analysis or conventional typestate
analysis.

[0059] In addition to being able to detect problems that
could not be previously detected, concurrency-guided
typestate analysis may also be able to determine that what
may have been detected as a potential problem using another
form of analysis is, in fact benign. Thus, concurrency-guided
typestate analysis may produce fewer potentially misleading
warnings, thereby allowing a user to focus on warnings that
are more likely to be truly problematic. FIG. 5B is an example
of computer instructions that may be correctly determined to
be benign by concurrency-guided typestate analysis, but that
may be incorrectly determined to be problematic by other
types of analysis, such as conventional concurrency analysis.

[0060] FIG. 5B illustrates a common programming optimi-
zation technique that attempts to minimize the number of
times a lock is acquired and released. This technique may be
employed because in many programming environments,
acquiring a lock frequently may be associated with reduced
performance. The function AccessBuffer in FIG. 5B attempts
to print out the contents of the buffer only if a pointer variable
to the buffer does not have a NULL value. Thus, before
dereferencing the pointer variable pointing to the buffer in
order to print out the contents of the bufter at line 7, Access-
Buffer ensures in a check at line 6 that the value of the pointer
variable to buffer is not NULL. Because the buffer may be a
shared variable, the operations at lines 6-7 are protected by a
lock in a critical section to ensure that a NULL pointer deref-
erence does not occur. However, another access to the buffer
at line 2 is not in any critical section, which may cause a tool
performing conventional concurrency analysis to report a
warning of a possible race condition. In fact, the unprotected
access at line 2 is benign and most likely intentional. This may
be the case, for example, in situations in which printing out
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the contents of the buffer may not be a critical task that
absolutely must be performed whenever the buffer is not
NULL. The concurrency-guided typestate analysis may be
able to determine that the pointer dereference is suitably
protected in a critical section at line 7 based on the state of the
shared variable, and may thus not output a warning.

[0061] However, on the other hand, if the check at line 6 in
FIG. 5B had been omitted, this may constitute an actual
problem, as the value of the pointer variable may have been
set to NULL by another thread in between the check at line 2
and entering the critical section at line 5. This actual problem
(i.e., if the check at line 6 had been omitted) would have been
detected by concurrency-guided typestate analysis, but may
not have been detected by conventional typestate analysis, as
conventional typestate analysis would have been misled by
the prior check at line 2, and would not have taken into
account that the shared variable may have had a different state
due to concurrent access to the shared variable by multiple
threads. Thus, the analysis performed by concurrency-guided
typestate analysis more accurately pinpoints actual errors
than other analysis methods, both by the detection of errors
not capable of being detected by other analysis methods, and
also by avoiding the occurrence of mistakenly identifying
benign conditions as potential problems.

[0062] FIG. 6isastate transitions diagram that may be used
to track the states of a variable during concurrency-guided
typestate analysis. In this case, a variable is a pointer that may
have states relevant to high level race detection of “NULL,”
“Not-NULL,” or “unknown.” Other types of variables may
have other types of states. For example, variables represent-
ing a file handle may have states “open” or “closed.” The state
transitions may be implemented in any suitable way, includ-
ing, for example, by components of the computer instructions
analysis tool 200, such as concurrency-guided typestate
analysis component 216. It should be appreciated that while
the example of FIG. 6 refers to NULL pointer analysis, a
similar state transition diagram could be implemented that
would apply to other forms of typestate analysis.

[0063] Inorderto simulate the effects of concurrent threads
accessing a shared variable, the concurrency-guided typestate
analysis may, in some embodiments, simulate the “worst case
scenario” due to thread interleaving by discarding the state
information associated with a variable when the variable is
not protected (e.g., locked) by its intended lock. The simula-
tion may entail stepping through computer instructions rep-
resenting a control flow of the input program, and determin-
ing how each operation in the computer instructions may
change or set the state associated with the variable. Thus, if
the concurrency-guided typestate analysis were performed on
the example of FIG. 5A, assuming that the analysis has
inferred that “p—buffer” is intended to be guarded by
“p—>cs,” simulating the worst case scenario may by the analy-
sis would entail resetting the state of “p—sbuffer” to an
“unlocked” state when the guarding lock is released at line 7.
When a variable is in the “unlocked” state, the concurrency-
guided typestate analysis may assume the worst-case sce-
nario whenever the variable is referenced in any state-depen-
dent operations, in which the state dependent operation may
lead to an error condition depending on the state of the vari-
able. Thus, in the NULL pointer dereference problem, when
a variable is in the “unlocked” state, any pointer dereference
operation referencing the variable is considered a potential
error, and may result in a warning being indicated to the user.
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[0064] Inthe state transition diagram of FIG. 6, state 602 is
illustrated as being the “unlocked” state. As can be seen,
while the variable is in state 602, any pointer dereference
(illustrated as transition “*p”) leads to state 610, in which the
analysis may conclude that a possible error condition may
arise resulting from a race condition. In the embodiment
illustrated in FIG. 6, the variable will stay in the unlocked
state until the lock associated with the variable is acquired.
Thus, any explicit modifications to the value of the variable
(e.g., setting the value of the variable to NULL or not-NULL)
while the variable is in state 602 may be ignored by the
analysis, as any NULL pointer dereference may be inter-
preted as a potential error while the variable is in the state 602.

[0065] When the lock associated with the variable is
acquired while the variable is in state 602 (e.g., the
“unlocked” state), the variable may then transition to the
“locked-uninitialized” state, illustrated in FIG. 6 as state 604.
When the variable is in state 604, this may indicate that the
variable is protected, but that the current value of the variable
is unknown or uninitialized. The analysis may again assume
the worst case scenario, so that any pointer dereference opera-
tion referencing the variable while the variable is in state 604
may also be interpreted in all cases as a potential error, thus
transitioning the variable to state 612, in which a potential
error may be indicated to the user, illustrated in FIG. 6 as
resulting from an atomicity violation.

[0066] However, unlike in state 602, when the variable is in
state 604, modifications to the value of the variable may be
taken into account by the analysis. Thus, the analysis may
modify the value of the variable to NULL or non-NULL, as
appropriate, based on a simulated operation that sets the value
of the variable. This is illustrated in FIG. 6 as transitions to
states 606 and 608 when the value of the variable is set, such
as by a simulated operation, to Non-NULL and NULL,
respectively. While in either of state 606 or 608, the value of
the variable may continue to be tracked, as any other simu-
lated operations may further change its value from Non-
NULL to NULL, or vice-versa. Thus, while in state 606, if a
simulated operation sets the value of the variable to NULL,
the variable may then transition to state 608; conversely,
while in state 608, if a simulated operation sets the value of
the variable to Non-NULL, the variable may then transition to
state 606. While in states 606 and 608, any state-dependent
operation, such as pointer dereference operation may be pro-
cessed by the analysis based on the actual simulated value of
the variable. Thus, if a variable is in state 608, thus having a
NULL value, any pointer dereference operation referencing
the variable may result in the variable transition to state 614,
thus indicating that an error condition may result, illustrated
in FIG. 6 as NULL pointer dereference error. Conversely,
encountering a pointer dereference operation referencing the
variable while the variable is in state 606 may not resultin any
state transitions, as the variable may simply remain in state
606.

[0067] Itisto be noted that while the variable is in any of the
locked states (i.e., states 604, 606 and 608), encountering any
simulated operation that releases the lock associated with the
variable, thus un-protecting the variable, may result in the
variable transitioning to the unlocked state, illustrated in FI1G.
6 as state 602. This may be done to simulate the worst-case
scenario, because while a shared variable is unlocked, its
value may be changed at any time by another thread. Thus,
any assumptions about the value of the variable (e.g., whether
the variable is NULL or non-NULL) while the variable is
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unlocked may be misguided or incorrect, as the value of the
variable may be “silently” changed at any time by another
thread.

[0068] FIG. 7 is a flowchart of a detailed process of per-
forming concurrency-guided typestate analysis. The process
of FIG. 7 may begin with the invocation of the source instruc-
tion analysis tool 200 of FIG. 2 when the source instruction
analysis tool is configured to perform concurrency-guided
typestate analysis. The process may be implemented, for
example, by concurrency-guided typestate analysis compo-
nent 216. A higher-level treatment of the overall process,
including that illustrated by FIG. 7 is given by FIG. 4, as
discussed above. Before the invocation of the process of FIG.
7, in some embodiments, as illustrated in FIG. 4, shared
variables and locks may be associated into variable-lock asso-
ciations, in which each lock in a variable-lock association is
intended in the computer instructions to guard all variables in
the variable-lock association from concurrent access. The
variable-lock associations may be based on concurrency
annotations, either explicitly indicated in the computer
instructions or inferred from the usage patterns of the shared
variables and locks in the computer instructions.

[0069] Once the variable-lock associations have been
established, at block 702, the process may initialize the state
associated with each variable. While the state of a variable
may be represented in any suitable way, in some embodi-
ments, the state of a variable may be a tuple of two types of
states, a locking state and a type state associated with the
variable. The locking state associated with a variable may be
the “locked” state when the simulated state of the variable, at
a point while stepping through the program, is such that the
variable is currently guarded by the associated lock. The
locking state associated with a variable may be the
“unlocked” state when the simulated state of the variable
indicates that the variable is currently unguarded by the asso-
ciated lock. On the other hand, the type state may be set to the
uninitialized state when the locking state associated with the
variable is the unlocked state or when the locking state asso-
ciated with the variable is first set to the locked state after
having been set to the unlocked state.

[0070] Duringthe process of stepping through the program,
a state may be determined for each instruction or group of
instructions that constitutes a step. The type state may be
based on based on operations performed on the variable in the
computer instructions that modify the type state of the vari-
able at each step. A type state-setting operation may modify
the value of the variable itself. For example, in the NULL
pointer dereference problem, the type state associated with a
variable currently associated with a locking state set to
“locked” may be NULL or Non-NULL, depending on the
value assigned to it by operations in the computer instructions
that modify the value of the variable. In addition to or instead
of modifying the value of the variable itself, a type state-
setting operation may additionally or alternatively be an
operation that modifies the state of the program under analy-
sis, in which the modified program state is identified by the
value of the variable. For example, in the double close prob-
lem, the value of a file handle variable may be the identifier for
a file structure containing state information associated with a
file. The type state associated with the variable may be closed
or open, depending on the state information contained in the
file structure. Thus, a type state-setting operation in the con-
text of the double close problem could modify the state infor-
mation contained in the file structure identified by the file
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handle variable, rather than, or in addition to modifying the
value of the file handle variable itself.

[0071] Thus, at block 702, the process initializes the lock-
ing state of each variable to “unlocked” and the type state of
each variable to “uninitialized.”

[0072] Proceeding to block 704, the process may step
through the computer instructions to simulate at least one
control flow of the program implemented by the computer
instructions. This may be done in any suitable way, including
by making use of a control flow graph representing at least
one control flow of the program, such as control flow graph
206 illustrated in FIG. 2. As the process steps through the
computer instructions in at least one control flow of the pro-
gram, it may process operations referenced in the computer
instructions in order to perform the analysis.

[0073] The process discussed below may be performed for
each shared variable in a variable-lock association. The pro-
cess may then proceed to block 706, in which it may check
whether the process is done stepping through the computer
instructions. If it has determined that it is not done stepping
through the computer instructions, the process may proceed
to block 706, in which the process may determine whether the
current state of the shared variable is the unlocked state,
which may signify that the simulated state of the variable is
not currently protected by its associated lock.

[0074] Ifitis determined that the simulated locking state of
the variable is the unlocked state, then the process branches to
bothblocks 710 and 712. The branch may be performed either
sequentially or serially, as some embodiments may operate in
either fashion. At the branch for block 710, the process may
then determine whether the current operation is a type state-
dependent operation. Thus, the computer instructions may
comprise type state-dependent operations. A type state-de-
pendent operation may depend on the type state of the shared
variable such that for a first set of type states associated with
the variable, instructing a computer to execute the type state-
dependent operation may lead to a particular error condition,
while for a second set of type states of the variable, instructing
acomputer to execute the type state-dependent operation may
not lead to the particular error condition. For example, in the
example of the NULL pointer dereference problem, a type
state-dependent operation may correspond to dereferencing a
pointer variable. The first set of type states may correspond to
the NULL state, while the second set of type states may
correspond to the Non-NULL state.

[0075] If it is determined at block 710 that the current
simulated operation is a type state-dependent operation, then
the process may proceed to block 714, in which it may indi-
cate a warning. The warning may be any suitable type of
warning. In some embodiments, the warning may describe
the potential error as a race condition error. The warning may
be indicated in any suitable way, or in any suitable format, as
discussed in connection with FIG. 4. The process may then
proceed back to block 704, in which it may continue to step
through the computer instructions.

[0076] On the other hand, if it is determined at block 710
that the current simulated operation is not a type state-depen-
dent operation, the process may proceed back to block 704.
[0077] At the branch of block 712, the process may deter-
mine if the current simulated operation is an operation in
which the lock associated with the variable is acquired. If so,
the process may proceed to block 716, in which it may change
the state of the variable to the “locked-uninitialized” state.
The “locked-uninitialized” state may indicate the variable has
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been locked, but that the current value of the variable is
unknown or uninitialized. Thus, “locked-uninitialized” may
be a short-hand for specifying that the locking state of the
variable is locked and the type state of the variable is “unini-
tialized.” The process may then proceed back to block 704.
[0078] On the other hand, if it is determined at block 712
that the current simulated operation is not an operation in
which the lock associated with the variable is acquired, the
process may proceed back to block 704.

[0079] On the other hand, if it is determined at block 708
that the locking state of the variable is not the “unlocked”
state, then the state of the variable must be “locked,” and the
process may then proceed to block 718. At block 718, the
process may check if the current simulated operation releases
the lock associated with the variable. If so, the process may
proceed to block 720, in which it may transition the locking
state of the variable to the unlocked state. In some embodi-
ments, at this step, the type state associated with the variable
may also be set to the “uninitialized” state. The process may
then proceed back to block 704.

[0080] Returning back to block 706, if it is determined that
the process is done stepping through the computer instruc-
tions, the process may then be done at this point. At the end of
the process, any warnings generated by the process may be
output. As discussed in connection with FIG. 4, the resulting
warnings may then be processed, such as by a filter. The
filtered results may then be indicated to a developer, allowing
him to take action to fix any necessary issues pinpointed by
the analysis.

[0081] On the other hand, if it is determined at block 718
that the current simulated operation does not release the lock
associated with the variable, then the process may proceed to
block 721 in which the process may determine if the current
operation is a type state-setting operation, as discussed above.
This may involve tracking how the type state of the variable
may change when the current operation in the computer
instructions is a type state-setting operation that may set the
type state of the variable. For example, in the example of the
NULL pointer dereference discussed above, the value of the
variable may change based on a type state-setting operation
that sets the value of the variable to a NULL or a Non-NULL
value. When a simulated operation is encountered that
changes the value of the variable, the type state of the variable
may change. For example, if the variable had been in the
“locked-uninitialized” state, it may be in another known,
locked state (e.g., “locked-NULL” or “locked-Non-NULL,”
in the case of NULL pointer dereference analysis) upon
encountering a simulated operation that changes the value of
the variable. If the current operation is a type state-setting
operation, then the process may proceed to block 722, in
which it may change the type state of the variable based on the
changes to the type state of the variable that would be made by
the type state-setting operation. The process may then pro-
ceed to block 724. On the other hand, if the current operation
is not a type state-setting operation, the process proceeds
directly to block 724.

[0082] At block 724 in which it determines whether the
current state of the variable is the “locked-uninitialized” state.
Because the locking state of the variable at this point may be
known to be the locked state, this step may involve checking
to see if the type state associated with the variable is the
“uninitialized” state. If so, then the process may proceed to
block 710, in which, as discussed above, it may check
whether the current operation is a type state-dependent opera-
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tion. Ifitis determined at block 710, that the current operation
is a type state-dependent operation, the process may proceed
to block 714, in which it may indicate a warning. Any suitable
warning may be indicated. In some embodiments, the warn-
ing may describe the possible error as an atomicity violation.
The process then proceeds back to block 704. Otherwise, if it
is determined at block 710 that the current operation is not a
type state-dependent operation, the process may then proceed
back to block 704.

[0083] On the other hand, if it is determined at block 724
that the current simulated state of the variable is not “locked-
uninitialized,” then the process proceeds to block 726. At
block 726, the process may determine whether the current
simulated operation is a type state dependent operation that, if
referencing the variable in its current simulated state, would
lead a program implemented by the computer instructions to
a particular error condition based on the current simulated
state of the variable. In general, as discussed above, when the
type state associated the variable is in the first set of type
states, then a type state-dependent operation that references
the variable may lead to an error condition, while when the
type state associated with the variable is in the second set of
type states, then a type state-dependent operation that refer-
ences the variable may not lead to an error condition. For
example, in the NULL pointer dereference analysis, this step
would involve checking if the current simulated operation is
an operation that dereferences the variable, and if so, if the
variable has a value of NULL. If it is determined at block 726
that the current simulated operation is a type state dependent
operation that, if referencing the variable in its current simu-
lated type state, would lead a program implemented by the
computer instructions to a particular error condition based on
the current simulated type state of the variable, then the pro-
cess may proceed to block 714, in which it may indicate a
warning. The process may indicate any suitable warning. In
some embodiments, the warning may describe the error as the
particular type of typestate violation, for example, a NULL
pointer dereference error. The process may then proceed back
to block 704. Otherwise, if it is determined at block 726 that
the current simulated operation is not a state dependent opera-
tion that, if referencing the variable in its current simulated
state, would lead a program implemented by the computer
instructions to a particular error condition based on the cur-
rent simulated state of the variable, then the process may
proceed back to block 704.

[0084] FIG. 8 is a flowchart of a process of analyzing com-
puter instructions to infer variable-lock associations. Infer-
ring variable-lock associations, or which lock is intended to
guard a particular variable, may be important when perform-
ing concurrency-guided typestate analysis. As discussed
above, during the course of the analysis, the typestate of a
variable may change based on whether the variable is pro-
tected by the lock that is intended to guard the variable,
thereby possibly changing the result of the analysis. Thus, the
result of the analysis may be different if the variable is not
correctly associated with the lock that is intended to guard it.
The process of FIG. 8 may be invoked by the computer
instructions analysis tool 200, and may be implemented by
one or more components of the source instruction analysis
tool, such as the conventional concurrency analysis 212.

[0085] As discussed above, some computer instructions
may explicitly indicate through annotations, for example, an
association between a shared variable and a lock, thus indi-
cating that the lock is intended to guard the shared variable.
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FIG. 9A illustrates an exemplary concurrency annotation in
line 3, indicating that the “buffer” variable is “guarded_by”
the “cs” lock. Moreover, the concurrency-guided typestate
analysis performed according to some embodiments can
additionally or alternatively infer such variable-lock associa-
tions based on usage patterns in the computer instructions of
the shared variables and the locks. Some embodiments may
employ a heuristic-based approach that may be motivated by
the inventors’ observation that programmers are often correct;
thus, in some embodiments the inference analysis may infer
the assumptions made by programmers of the computer
instructions based on evidence exhibited by particular code
paths.

[0086] At block 802, the process involves, for each shared
variable, associating a lock with the shared variable. The step
of block 802 may comprise analyzing each locking block or
critical section, and to associate the lock with the variable if
the variable is first accessed after acquiring the lock and is last
accessed before the lock is released. The inventors have rec-
ognized that developers generally attempt to minimize the
locking scope in order to improve performance and avoid
deadlocks. For example, in the computer instructions
example of FIG. 5A, the shared variable “p—buffer” is
accessed immediately after “p—scs” is acquired. If
“p—buffer” does not need to be guarded by “p—=cs,” the
access to “p—buffer” could have been moved before the lock
acquire operation.

[0087] Furthermore, the inventors have recognized that a
plurality of variables may frequently be associated with the
same lock such that the plurality of variables should be treated
as an atomic unit. For example, a point object may be com-

[TaRt)

prised of separate “x” and “’y” variables. Thus, when updating
justone of variable “x” or “y,” a lock may need to be acquired
to protect the other variable to ensure that the two variables
are updated atomically and have a consistent state. Such a
plurality of variables may be termed a bundle.

[0088] Thus, at block 804, the process may infer that mul-
tiple shared variables should be grouped into variable
bundles, in which all the variables in the bundle are in the
same variable-lock association, and are thus all associated
with the same lock. The inference may be done in any suitable
way. In some embodiments, if the same lock seems to be used
to guard a group of variables, then the process may infer that
all variables in the group need to be processed atomically, and
thus belong in the same variable bundle.

[0089] The process may then proceed to block 806, in
which it may, for each shared variable, select the best fitting
lock from a candidate set of associated locks, in which the
selection is based on a priority assigned to the location of the
lock definition in the computer instructions. FIG. 9B illus-
trates exemplary locations for a lock corresponding to four
different priorities. In the example illustrated by FIG. 9B a
lower priority number for the lock location is preferred when
selecting a best fitting lock.

[0090] Inthe example of FIG. 9B, the highest priority (pri-
ority 1) pertains to alock that is a field of a parent of the shared
variable. Thus, if shared variable “buffer” is being protected,
its parent is the “DATA_1" data structure, of which the lock
“cs” 1s also a field. The second highest priority (priority 2) in
the example of FIG. 9B may pertain to a lock reachable from
the parent of the variable, but that is not at the same level as the
variable. Thus, in priority 2, shared variable “buffer” is now a
field of the “DATA_2” data structure. Unlike “DATA_1,”
“DATA_2” does not contain a lock at the same level as
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“buffer.” Rather, “DATA_2” contains a pointer to another data
structure, “d1,” which itself contains locks, including lock
“cs1.” Thus, “cs1” is reachable from the parent of “buffer,”
but is not at the same level as “buffer.” The third highest
priority (priority 3) in the example of FIG. 9B corresponds to
a lock reachable from a formal parameter location. In line 15,
the function definition for ProcessBuffer includes a formal
parameter “pcs.” The fourth highest priority (priority 4) in the
example of F1IG. 9B may correspond to a lock reachable from
a global location, and therefore, may be reachable from any
point in the program. In the example of FIG. 9B, “global_cs”
is a global lock.

[0091] Returning to FIG. 8, the inference analysis may
choose the guarding lock from a non-empty priority level that
has the highest priority. In some embodiments, locks reach-
able from the shared variable itself may be ignored, as the
inventors have recognized that such locks are probably
intended to protect fields of the shared variable (in situations
in which the shared variable is a pointer to a structure, for
example), but not the shared variable itself. Once the best-
fitting guarding lock has been selected to be associated with a
shared variable, the method of FIG. 8 may be done at this
point.

[0092] Having thus described several aspects of at least one
embodiment of this invention, it is to be appreciated that
various alterations, modifications, and improvements will
readily occur to those skilled in the art.

[0093] Such alterations, modifications, and improvements
are intended to be part of this disclosure, and are intended to
be within the spirit and scope of the invention. Accordingly,
the foregoing description and drawings are by way of
example only.

[0094] The above-described embodiments of the present
invention can be implemented in any of numerous ways. For
example, the embodiments may be implemented using hard-
ware, software or a combination thereof. When implemented
in software, the software code can be executed on any suitable
processor or collection of processors, whether provided in a
single computer or distributed among multiple computers.

[0095] Further, it should be appreciated that a computer
may be embodied in any of a number of forms, such as a
rack-mounted computer, a desktop computer, a laptop com-
puter, or a tablet computer. Additionally, a computer may be
embedded in a device not generally regarded as a computer
but with suitable processing capabilities, including a Personal
Digital Assistant (PDA), a smart phone or any other suitable
portable or fixed electronic device.

[0096] Also, a computer may have one or more input and
output devices. These devices can be used, among other
things, to present a user interface. Examples of output devices
that can be used to provide a user interface include printers or
display screens for visual presentation of output and speakers
or other sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or in other audible format.

[0097] Such computers may be interconnected by one or
more networks in any suitable form, including as a local area
network or a wide area network, such as an enterprise network
or the Internet. Such networks may be based on any suitable
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technology and may operate according to any suitable proto-
col and may include wireless networks, wired networks or
fiber optic networks.

[0098] Also, the various methods or processes outlined
herein may be coded as software that is executable on one or
more processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming lan-
guages and/or programming or scripting tools, and also may
be compiled as executable machine language code or inter-
mediate code that is executed on a framework or virtual
machine.

[0099] In this respect, the invention may be embodied as a
computer readable medium (or multiple computer readable
media) (e.g., a computer memory, one or more floppy discs,
compact discs, optical discs, magnetic tapes, flash memories,
circuit configurations in Field Programmable Gate Arrays or
other semiconductor devices, or other tangible computer stor-
age medium) encoded with one or more programs that, when
executed on one or more computers or other processors, per-
form methods that implement the various embodiments of the
invention discussed above. The computer readable medium
or media can be transportable, such that the program or pro-
grams stored thereon can be loaded onto one or more different
computers or other processors to implement various aspects
of the present invention as discussed above.

[0100] The terms “program” or “software” are used herein
in a generic sense to refer to any type of computer code or set
of computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of the present invention as discussed above. Addition-
ally, it should be appreciated that according to one aspect of
this embodiment, one or more computer programs that when
executed perform methods of the present invention need not
reside on a single computer or processor, but may be distrib-
uted in a modular fashion amongst a number of different
computers or processors to implement various aspects of the
present invention.

[0101] Computer-executable instructions may be in many
forms, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc. that perform particular tasks or implement particu-
lar abstract data types. Typically the functionality of the pro-
gram modules may be combined or distributed as desired in
various embodiments.

[0102] Also, data structures may be stored in computer-
readable media in any suitable form. For simplicity of illus-
tration, data structures may be shown to have fields that are
related through location in the data structure. Such relation-
ships may likewise be achieved by assigning storage for the
fields with locations in a computer-readable medium that
conveys relationship between the fields. However, any suit-
able mechanism may be used to establish a relationship
between information in fields of a data structure, including
through the use of pointers, tags or other mechanisms that
establish relationship between data elements.

[0103] Variousaspects of the present invention may be used
alone, in combination, or in a variety of arrangements not
specifically discussed in the embodiments described in the
foregoing and is therefore not limited in its application to the
details and arrangement of components set forth in the fore-
going description or illustrated in the drawings. For example,
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aspects described in one embodiment may be combined in
any manner with aspects described in other embodiments.
[0104] Also, the invention may be embodied as a method,
of which an example has been provided. The acts performed
as part of the method may be ordered in any suitable way.
Accordingly, embodiments may be constructed in which acts
are performed in an order different than illustrated, which
may include performing some acts simultaneously, even
though shown as sequential acts in illustrative embodiments.
[0105] Use of ordinal terms such as “first,” “second,”
“third,” etc., in the claims to modify a claim element does not
by itself connote any priority, precedence, or order of one
claim element over another or the temporal order in which
acts of a method are performed, but are used merely as labels
to distinguish one claim element having a certain name from
another element having a same name (but for use of the
ordinal term) to distinguish the claim elements.

[0106] Also, the phraseology and terminology used herein
is for the purpose of description and should not be regarded as
limiting. The use of “including,” “comprising,” or “having,”
“containing,” “involving,” and variations thereof herein, is
meant to encompass the items listed thereafter and equiva-
lents thereof as well as additional items.

What is claimed is:

1. A computer-readable storage medium loaded with com-
puter-executable instructions, that, when executed on at least
one processor in a computer, implement a tool that performs
a method of analyzing computer instructions, the computer
instructions specifying actions by a computer and the com-
puter instructions implementing a multi-threaded program,
the method comprising:

processing the computer instructions to infer a plurality of

variable-lock associations, each variable-lock associa-
tion of the plurality of variable-lock associations being
comprised of a variable and a lock associated with the
variable, both the variable and the lock being referenced
in the computer instructions, wherein, for each variable
in a variable-lock association, the processing comprises
inferring a lock that, when referenced in an operation in
the computer instructions that instructs the computer to
enter a critical section, guards the variable from concur-
rent access, and wherein each variable is associated with
a locking state and a type state, the locking state associ-
ated with a variable being the locked state when the
variable is currently guarded by the associated lock and
the locking state associated with a variable being the
unlocked state when the variable is currently unguarded
by the associated lock, the type state being the uninitial-
ized state when the locking state associated with the
variable is the unlocked state or when the locking state
associated with the variable is first set to the locked state,
the type state otherwise being based on operations per-
formed on the variable in the computer instructions that
modify the type state of the variable;

stepping through the computer instructions to simulate at

least one control flow of the program; and

while stepping through the computer instructions, for each

variable in a variable-lock association of the plurality of

variable-lock associations:

when the locking state associated with a variable is the
unlocked state and when the lock associated with the
variable is referenced in an operation in the program
that instructs the computer to enter a critical section,
then setting the locking state associated with the vari-
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able to the locked state and setting the type state
associated with the variable to the uninitialized state;
when the lock associated with the variable is referenced
in an operation in the program that instructs the com-
puter to leave a critical section, then setting the lock-
ing state associated with the variable to the unlocked
state and setting the type state associated with the
variable to the uninitialized state;
when the locking state associated with the variable is the
locked state, tracking the type state associated with
the variable, the type state of the variable being based
on operations in the computer instructions that
modify the type state of the variable, wherein the
computer instructions comprise type state-dependent
operations that are dependent on the type state of a
variable, such that when a variable is associated with
atype state in a first set of type states, executing a type
state-dependent operation referencing the variable
instructs the computer to enter into a particular error
condition, and when a variable is associated with a
type state in a second set of type states, executing the
type state-dependent operation referencing the vari-
able does not instruct the computer to enter into the
particular error condition; and
when the variable is referenced in a type state-dependent
operation in the computer instructions, then:
when the type state of the variable is the uninitialized
state or when the type state of a variable is a state in
the first set of type states, then indicating a warning.
2. The computer-readable storage medium of claim 1,
wherein:
warnings indicated by the method of claim 1 comprise a
first set of warnings; and
the method further comprises:
processing the computer instructions to perform non-
concurrent typestate analysis on the computer instruc-
tions, wherein the non-concurrent typestate analysis
analyzes the computer instructions sequentially with-
out regard for concurrency to indicate a second set of
warnings; and
outputting a third set of warnings to a user, wherein the
third set of warnings comprise warnings that are in the
first set of warnings that are not also in the second set
of warnings.
3. The computer-readable storage medium of claim 1,
wherein:
the first set of type states comprises the NULL type state,
the NULL type state being a type state in which a vari-
able has a simulated value of NULL;
the second set of states comprises the Non-Null type state,
the Non-Null type state being a type state in which a
variable has a simulated value that is not NULL; and
referencing a variable in a type state-dependent operation
comprises an operation that instructs a computer to
dereference the variable.
4. The computer-readable storage medium of claim 1,
wherein:
the first set of type states comprises the close type state, the
close type state being a type state in which a variable has
a simulated value identitying a file that is closed;
the second set of states comprises the open type state, the
open type state being a type state in which a variable has
a simulated value identifying a file that is open; and
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referencing a variable in a type state-dependent operation
comprises an operation that instructs a computer to close
the file identified by the variable.

5. The computer-readable storage medium of claim 1,

wherein:

the first set of type states comprises the freed type state, the
freed type state being a type state in which a variable has
a simulated value identifying a memory location whose
contents have been freed;

the second set of states comprises the allocated type state,
the allocated type state being a type state in which a
variable has a simulated value identifying a memory
location whose contents have not been freed; and

referencing a variable in a type state-dependent operation
comprises an operation that instructs a computer to free
the contents of the memory location identified by the
variable.

6. The computer-readable storage medium of claim 1,

wherein:

the first set of type states comprises the non-initialized type
state, the non-initialized type state being a type state in
which a variable has a simulated value indicating that the
variable has not been initialized;

the second set of states comprises the initialized type state,
the initialized type state being a type state in which a
variable has a simulated value indicating that the vari-
able has been initialized; and

referencing a variable in a type state-dependent operation
comprises an operation that instructs a computer to enter
into an error state when the value of the variable indi-
cates that it has not been initialized.

7. The computer-readable storage medium of claim 1,
wherein at least one variable-lock association comprises a
plurality of variables associated with a single lock.

8. The computer-readable storage medium of claim 7,
wherein the plurality of variables are intended to be updated
by operations in the computer instructions as a single atomic
unit.

9. A method of manufacturing a computer-readable storage
medium encoded with a computer program, the method com-
prising:

analyzing computer instructions representing operations

that implement a computer program, wherein the ana-

lyzing comprises:

identifying a first region of computer instructions repre-
senting operations of the computer program, the first
region of computer instructions being protected by a
lock, the last operation represented in the first region
of computer instructions being an operation that
instructs a computer to release the lock;

identifying a second region of computer instructions
representing operations of the computer program, the
operations represented in the second region of com-
puter instructions being executed in a control flow of
the computer program subsequent to the operations
represented in the first region of computer instruc-
tions, the second region of computer instructions
being protected by the lock;

determining whether a state-dependent operation is rep-
resented in the second region of computer instruc-
tions, the state-dependent operation referencing a
variable associated with the lock, wherein a state-
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dependent operation instructs a computer to enter into
a an error condition based on the state of the variable;
and

when it is determined that a state-dependent operation is
represented in the second region of computer instruc-
tions, indicating a warning;

modifying the computer instructions based on at least one
warning indicated by the analyzing; and

recording a modified program on the computer-readable
storage medium, the modified program being imple-
mented by the modified computer instructions.

10. The method of manufacturing a computer-readable

storage medium of claim 9, wherein:

the first operation represented in the second region of com-
puter instructions is an operation that instructs the com-
puter to acquire the lock; and

no state-setting operation referencing the variable is rep-
resented in the second region of computer instructions
after the first operation and before the state-dependent
operation, wherein a state-setting operation referencing
a variable is an operation that sets the value of the state
of the variable.

11. The method of manufacturing a computer-readable

storage medium of claim 9, wherein:
the first operation represented in the second region of com-
puter instructions is an operation that instructs the com-
puter to acquire the lock;
a state-dependent operation instructs a computer to enter
into an error condition when the state-dependent opera-
tion references a variable having a state in a first set of
states;
a state-dependent operation does not instruct a computer to
enter into an error condition when the state-dependent
operation references a variable having a state in asecond
set of states;
determining whether a state-setting operation referencing
the variable is represented in the second region of com-
puter instructions after the first operation and before the
state-dependent operation, wherein a state-setting
operation referencing a variable is an operation that sets
the value of the state of the variable; and
when it is determined that a state-setting operation refer-
encing the variable is represented in the second region of
computer instructions after the first operation and before
the state-dependent operation, indicating a warning
comprises:
indicating a warning when the state of the variable set by
the state-setting operation is a state in the first set of
states; and

not indicating a warning when the state of the variable
set by the state-setting operation is a state in the sec-
ond set of states.

12. The method of manufacturing a computer-readable
storage medium of claim 9, wherein the analyzing further
comprises determining that the variable is associated with the
lock, the determining comprising processing at least one
annotation in the computer instructions, the annotations indi-
cating that the variable is intended to be protected by the lock
to prevent concurrent access to the variable.

13. The method of manufacturing a computer-readable
storage medium of claim 9, wherein the analyzing further
comprises determining that the variable is associated with the
lock, the determining comprising processing the computer
instructions to infer that the variable is intended to be pro-
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tected by the lock to prevent concurrent access to the variable,
the inferring based on a usage pattern in the computer instruc-
tions of the variables and the lock.

14. The method of manufacturing a computer-readable
storage medium of claim 13, wherein inferring that the vari-
able is intended to be protected by the lock comprises asso-
ciating the lock with the variable when the variable is first
accessed in a block of the computer instructions after an
operation in the block of the computer instructions that
instructs a computer to acquire the lock and the variable is last
accessed in the block of the computer instructions before an
operation in the block of the computer instructions that
instructs a computer to release the lock.

15. The method of manufacturing a computer-readable
storage medium of claim 13, wherein inferring that the vari-
able is intended to be protected by the lock comprises asso-
ciating the lock with the variable by selecting the best fitting
lock from a candidate set of associated locks, in which the
selection is based on a priority assigned to the location of a
lock definition in the computer instructions for each lock in
the candidate set of associated locks.

16. A method of analyzing computer instructions, the com-
puter instructions specifying actions by a computer and the
computer instructions implementing a program, the method
comprising:

stepping through the computer instructions to simulate at

least one control flow of the program; and

while stepping through the computer instructions, for each

variable in at least one variable-lock association, each

variable-lock association being comprised of a variable

and a lock associated with the variable that is intended to

guard the variable from concurrent access:

when the lock associated with the variable is referenced
in an operation in the computer instructions that
instructs the computer to leave a critical section, then
changing a locking state associated with the variable
to an unlocked state; and

when the locking state associated with the variable is the
unlocked state and when the variable is referenced in
a type state-dependent operation in the computer
instructions, then indicating a warning, a variable
being further associated with a type state, wherein
executing a type state-dependent operation referenc-
ing a variable instructs a computer to enter into a
particular error condition when the variable is associ-
ated with a type state in a first set of type states and
executing a type state-dependent operation referenc-
ing a variable does not instruct a computer to enter
into the particular error condition when the variable is
associated with a type state in a second set of type
states.

17. The method of claim 16, wherein the method further
comprises, while stepping through the computer instructions:

when the lock associated with the variable is referenced in

an operation in the computer instructions that instructs
the computer to enter a critical section, then changing
the locking state associated with the variable to a locked
state, and changing the type state associated with the
variable to an uninitialized state; and

when the locking state associated with the variable is the

locked state, when the type state associated with the
variable is the uninitialized state, and when variable is
referenced in a type state-dependent operation in the
computer instructions, then indicating a warning.



US 2011/0022893 Al Jan. 27,2011

14
18. The method of claim 17, wherein the method further states and not indicating a warning when the type state
comprises, while stepping through the computer instructions atsstomated with the variable is in the second set of type
. . . . . states.
when the lo.cklng state associated with the variable is the 19, The method of claim 18, wherein:
locked state: the variable has a value during the execution of the program
when the variable is referenced in a type state-setting on a computer; and o )
operation in the computer instructions that instructs a the type state-setting operation in the computer instruc-
. . tions comprises an operation that sets the value of the
computer to perform instructions that set the type state variable
ofthe variable to a new type state, then changing the type 20. The method of claim 18, wherein:
state associated with the variable to the new type state; the variable has a value during the execution of the program
and on a computer; and

when the type state associated with the variable is not the the.type state-setting operation n the computer 1nstruc-
tions comprises an operation that modifies a program

uninitialized state and when the V.arlab.le is referenced in state, wherein the modified program state is identified by
a type state-dependent operation in the computer the value of the variable.
instructions, then indicating a warning when the type

state associated with the variable is in the first set of type ok Rk ok



