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DATA RACE DETECTION USING
SEQUENTIAL PROGRAM ANALYSIS

TECHNICAL FIELD

The invention relates generally to analysis of concurrent
programs.

BACKGROUND

Data Races

Concurrent programs, also known as multithreaded pro-
grams, are found in a wide array of products and services,
from software device management to distributed scientific
computing. However, the fundamental nature of these pro-
grams, the fact that they contain multiple concurrently-
executing threads, can cause inter-thread conflicts which can
create errors or hanging conditions upon execution. These
errors can be particularly difficult to discover when pro-
gramming because oftentimes more than one asynchro-
nously-running thread is run on a single processor. The
instructions of the threads are interleaved, giving rise to a
potentially large number of different executions. Because of
this, an important, and difficult, part of the debugging and
analysis of a concurrent program involves finding potential
conflicts between threads.

One of these conflicts is known as a data race. Generally,
a data race is a condition where there exists an execution of
two or more threads such that the executing computer can
arrive at a state for which a) there are two threads which can
execute, b) both of these threads access a common variable,
and c) at least one of the accesses is a write access.

FIGS. 1a-1d illustrate two types of data race conditions
which can lead to unpredictable results. Avoiding these
unpredictable results is the goal of the program analysis
discussed below. FIGS. 1a and 15 illustrate one type of data
race, that of conflicting read and write instructions from two
different threads. In both Figures, there are two concur-
rently-executing threads which access a common variable,
referred to here as “a,” which starts with value 0. The
Figures illustrate two different executions of the instructions
of Threads 1 and 2. A data race occurs in this example when
a computer executing these threads reaches a state at which
either of the two executions illustrated could execute. Other
than the differing orders, described below, the variable
accesses in the Figures are the same.

In FIG. 1a, Thread 1, which contains the assignment
instruction “q=a,” reads the value of a as 0 and then assigns
that value to the variable q. After this point in time, Thread
2 then executes the instruction “a=1" which assigns the
value 1 to a. Thus, at the end of the execution of FIG. 14, a
has the value 1 and q has the value 0. In contrast, FIG. 15
illustrates a different execution in which Thread 2 writes to
variable a before Thread 1 reads from it. In this case, because
a is assigned a value by Thread 2 before Thread 1 is able to
read a, q ends up with the value 1. Thus, the two executions
illustrated in FIGS. 1a and 15 give two different results for
q.

FIGS. 1¢ and 14 illustrate another type of data race, that
of conflicting write instructions. As in FIGS. 1a and 15,
FIGS. 1c¢ and 1d illustrate different executions of instruc-
tions from two concurrently-executing threads. In FIG. 1c,
Thread 1 executes the instruction “a=0" before Thread 2
executes “a=1,” which results in a having the final value of
1. In contrast, FIG. 1d illustrates the two write commands
executing in a differing order, giving a a final value of 0.
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The illustrated examples of FIGS. 1a-d demonstrate that
executions of concurrently-executing threads can cause dif-
ferent values to be placed in certain variables, which can
cause a program to behave unpredictably or to fail to
execute. Oftentimes, these errors are solved by forcing the
competing threads to execute synchronously, which means
forcing the threads to operate under a common timing or
locking mechanism. The use of synchronous threads allows
a programmer to decide ahead of time that certain instruc-
tions cannot interfere with each other and to make allow-
ances for that by modifying the programming. However, in
order to utilize synchronicity, data races such as those
illustrated in FIGS. 1a-14 must be located.

Locating Data Races

Because data races are so timing-dependent, and may
occur under only certain precise conditions, searching for
them in a program can be a difficult, time-consuming
process. Some existing systems for data race detection, such
as model checking, attempt to statically explore every pos-
sible execution of a concurrent program by considering
every possible thread interleaving. Because this analysis is
done statically, it can be done at compile time without
requiring execution of the analyzed program. While these
systems are sound, that is, they find every possible error,
they may report false errors by identifying data races from
interleavings of instructions that cannot or will not happen.
By contrast, some existing systems analyze concurrent pro-
grams dynamically by executing the program and observing
its operation. These dynamic systems cannot guarantee to
locate every data race, however, and may report false errors.

While traditional static data race analysis is more sound
than dynamic analysis, it suffers from a number of disad-
vantages. Traditional static analysis can require the addition
of programmer annotations, which increases debugging
time. Additionally, because the execution time of such an
analysis grows exponentially with the number of threads in
the concurrent program, the time required to perform such
an analysis can be prohibitively expensive. In certain cir-
cumstances, such an analysis may never complete; it has
been proven that the general problem of detecting data races
in multithreaded programs is undecideable. That is, no
program can exist which can correctly identify every data
race in every concurrent program in a finite period of time.

In contrast, analysis on single-threaded, or sequential,
programs has been shown to be decideable. Thus a number
of existing products have been developed and optimized to
perform static analysis on sequential programs. One such
tool is the SLAM system, discussed in “Proceedings of the
29" ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages” (ACM Press 2002). Tools such as
SLAM are widely available, useful to programmers, and
have been tested and optimized to provide efficient analysis.
As an example, many of these systems are optimized to
efficiently check on single variables and to ignore accesses
in an analyzed program that are unrelated to a target vari-
able. While these optimized tools would be useful for data
race checking, they have traditionally not been helpful to
programmers of concurrent systems because of the unde-
cidability and time-cost of analyzing concurrent programs.
What is needed is a system that would allow developers of
concurrent programs to take advantage of the efficiency of
existing sequential analysis tools when searching for data
races.
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SUMMARY

The data race detecting techniques described herein over-
come limitations of traditional systems by utilizing sequen-
tial program analysis tools to detect data races in concurrent
programs. In one implementation, this is done using a
program sequentializer module which creates a sequential
program from a concurrent program. The sequential pro-
gram contains assertions which cause an error message to be
produced when the concurrent program contains a data race.
In another implementation, the data race techniques employ
a method which receives a concurrent program and an
indication of a target variable to check for data races. The
method then creates a sequential program which contains
assertions which indicate the presence of a data race for the
target variable if they are not met. In yet another implemen-
tation, the data race techniques employ a computer-readable
medium containing instructions which, when executed,
receive a concurrent program and an indication of a target
variable to check for data races. The instructions then, when
executed, create a sequential program which contains asser-
tions which indicated the presence of a data race for the
target variable if they are not met.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a-14 illustrate examples of races between two
threads of a multithreaded program.

FIG. 2 is a block diagram of a system for performing data
race detection on a multithreaded program using a sequential
program analyzer.

FIG. 3 is a block diagram of components of one embodi-
ment of the sequential program of FIG. 2.

FIG. 4 is a flow diagram of one embodiment of a process
of creating a sequential program from a multithreaded
program.

FIG. 5 is a flow diagram of one embodiment of a process
performed by the sequentializer of FIG. 2 for adding instru-
mentation to a statement from a concurrent program.

FIG. 6 is a flow diagram of one embodiment of a process
performed by the sequentializer of FIG. 2 for adding instru-
mentation to a non-atomic statement from a concurrent
program.

FIG. 7 is a listing of code examples of instrumentation
added to a program to allow for data race detection.

FIGS. 84a-8f are block diagrams demonstrating an exem-
plary operation of a sequential program.

FIG. 9 is a block diagram of a suitable computing
environment for implementing the system of FIG. 2.

DETAILED DESCRIPTION

1. NNustrated Embodiment

The system and methods described herein are for a
sequentializing tool which creates a sequential program
from a concurrent one, allowing the program to be analyzed
by a static sequential program analyzer. The system and
methods allow for a substantially-sound static analysis of a
concurrent program identifying potential data races in a
program. Examples of variables for which data races may be
identified include, but are not limited to, resource access
flags or semaphores, data variables, file streams, and data-
base entries. Additionally, the system and methods allow for
the use of optimized program analysis tools, allowing for a
more-efficient analysis than with traditional static model-
checking routines. The system does this by adding global
variables and additional instrumentation to the concurrent
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4

program, resulting in a sequential program that nondeter-
ministically executes various threads of the concurrent pro-
gram and checks for concurrent accesses to a target variable.
By nondeterministically choosing from the various threads
at many points, the sequential program is able to emulate
many executions of the original concurrent program, and
can catch many of its inherent data race errors.

FIG. 2 illustrates one embodiment of a system for using
sequential program analysis to analyze a concurrent pro-
gram. In the illustrated embodiment, two software compo-
nents are shown, a sequentializer module 200 and a sequen-
tial program analyzer 210. In one embodiment, these
modules are maintained separately; examples include, but
are not limited to, stand alone applications, separate dynami-
cally-linked libraries, or software modules combined in
larger applications. In another embodiment, the modules 200
and 210 are combined to run in a single application. In some
embodiments, as described below, the sequentializer module
200 may take the form of a library or plug-in that is used by
the sequential program analyzer 210 in order to perform the
analysis. In another embodiment, the sequential program
analyzer is created independently from the sequentializer or
is created by a third party without being specially adapted
for the sequentializer.

In the illustrated embodiment, a concurrent program 220,
containing multiple threads 225 is received by the sequen-
tializer in order that it may be analyzed. In the illustrated
embodiment, the sequentializer 200, upon receiving the
concurrent program 220, creates a sequential program 230
containing a single thread 235. This program is created
based on the concurrent program 220 and in one embodi-
ment is created according to the method described below
with respect to FIGS. 4, 5, and 6. Additionally, the creation
of'the sequential program 230 is done in reference to a single
variable, adding instrumentation which allows the sequential
program analyzer 210 to check for data races on that variable
by checking assertions. In an alternate embodiment, instru-
mentation is added to provide analysis for multiple vari-
ables. In one embodiment, the concurrent program 220 and
the sequential program 230 are in the form of source code.
In various other embodiments, the programs take the form of
machine code, abstract syntax trees, or control-flow graphs.
In one embodiment, the threads 225 of the concurrent
program 220 are in the form of functions which are config-
ured to run asynchronously.

Once the sequential program 230 is created, it is given to
the sequential program analyzer 210 for analysis. In the
illustrated embodiment, one of two results then occurs, the
sequential program analyzer 210 either creates in indication
240 that there are no errors in the program or it produces an
error trace 250 which indicates the location and type of
error(s) in the sequential program 230. The information
located in the error trace 250 can then be used to locate a
problem in the original concurrent program 220.

2. Sequential Program Structure

FIG. 3 is a block diagram illustrating, in one embodiment,
the components of a sequential program 230, created by the
sequentializer 200. The illustrated embodiment shows an
example of a sequential program 230 during execution.
Function code and variables that exist in the concurrent
program are transferred to the newly-created sequential
program, but are not illustrated for the sake of clarity of the
illustration. In the illustrated embodiment, the sequential
program 230 contains a single runtime stack 305. While
concurrent programs can have runtime stacks for each
concurrently-running thread, a sequential program will only
have one stack. In one embodiment, this runtime stack
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contains various functions, both asynchronous and synchro-
nous, that are contained in the concurrent program from
which the sequential program 230 is created. In the illus-
trated example, threads a, b, and ¢ have been scheduled on
the runtime stack.

In the illustrated embodiment, the sequential program also
contains unscheduled threads 310a-c, each of which is
pointed to by a pointer in the multiset of thread pointers 320.
Each of the threads 310a-c¢ has been created during the
execution of the program by an asynchronous function call.
In a typical concurrent program, the threads would run on
their own runtime stacks. However, because there is only a
single runtime stack 305, the threads must remain unsched-
uled until the program schedules them and pushes them onto
the runtime stack 305. In one embodiment, the multiset is a
data structure that allows access to any thread pointer it
contains regardless of when or from where the pointer’s
thread was forked. This allows for a nondeterministic sched-
uling of the various forked threads. In other embodiments,
restrictions may be placed on the order in which threads are
scheduled in the sequential program.

Additionally, in the illustrated embodiment, the sequential
program 230 contains three global variables which are added
to the concurrent program on which the sequential program
is based. The first is the exception variable 340, referred to
in the illustrated embodiment as raise. This is a boolean
variable which, when set, causes a function to remove itself
from the runtime stack. As will be described below, the
exception is normally set to FALSE. However, if the sequen-
tial program 230 sets the exception variable to TRUE this
will cause the immediate removal from the runtime stack
305 of every function in a thread (of the concurrent program
320), until the entire thread is removed. This is similar to the
throwing of an exception in some languages. The removal of
a function from the stack is performed in order to mimic the
transfer of execution instructions from one thread to instruc-
tions from another, as happens in a concurrent program.

The second added global variable in the illustrated
embodiment is the access variable 350, referred to in the
illustrated embodiment as access. This is a variable which
tracks the current state of access of a targeted variable. In
one embodiment, assertions are inserted into the sequential
program which set the access variable depending on the type
of access the program is performing at a given time. In the
illustrated embodiment, the access variable is set to 0, which
means that the program is not in a state where the targeted
variable is being accessed. In one embodiment, the access
variable 350 can take a value of 1 if the targeted variable is
being read by a thread, and a value of 2 if the targeted
variable is being written to. In alternate embodiments, other
values or methods of recording the current access to the
target variable are used.

The third added global variable in the illustrated embodi-
ment is the multiset size variable 360 which limits the size
of the multiset 320. This variable parameterizes the analysis
of a concurrent program, reducing or increasing the com-
plexity of the sequential program by limiting the number of
unscheduled threads which can be held in the multiset before
being scheduled. In one embodiment, the multiset size
variable 360 is set by a user at the time the analysis is done.
In another embodiment, the variable is set to a default value.

In the illustrated embodiment, the sequential program 230
also contains sequentializing instrumentation 370, which
includes the schedule( ) function and the RAISE macro
statement. As will be explained below, this instrumentation
allows the sequential program to nondeterministically
schedule the various unscheduled threads 310a-c on the
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6

runtime stack 305 and to nondeterministically remove
scheduled threads from the stack, emulating multiple execu-
tions of the concurrent program from which the sequential
program 230 was created.

3. Creating a Sequential Program

FIG. 4 is a flow diagram of one embodiment of a process
performed by the sequentializer 200 and the sequential
program analyzer 210 for creating and testing the sequential
program 230 of FIG. 2. At block 405, the process begins by
receiving a concurrent program and an indication of the
target variable for which data race analysis will be per-
formed. As mentioned above, the received concurrent pro-
gram, in one embodiment, is source code, while in other
embodiments the received program is partially-compiled
before being sequentialized and is in the form of an abstract
syntax tree or control flow graph. After receiving a concur-
rent program, at block 410 code for the global exception,
access variables 340 and 350 and the thread pointer multiset
320 are added to the concurrent program code. At block 415,
instrumentation is then added to the concurrent program
code to cause it to perform as a sequential program and to
create assertions about the global access variable which, if
violated, will denote the presence of a data race. The process
of adding instrumentation is described in greater detail
below with respect to FIG. 5 and in one embodiment is
performed for every function in the concurrent program.
Once the instrumentation is added, the process proceeds to
block 420 where the sequential program 230 is analyzed
using the sequential program analyzer 210 to determine if
any of the added assertions failed. At decision block 425, the
process checks for an error from the sequential program
analyzer 210. If no error is found, the process, at block 430,
reports that no data race is found. If, however, an error is
discovered because one of the added assertions failed, the
process proceeds to block 440, where an error trace is
formed. Next, at block 445, the error trace may be analyzed
to determine exactly which assertion created the error, and
thus, which execution of the concurrent threads in the
concurrent program would cause a data race.

4. Adding Instrumentation

FIG. 5 is a flow diagram illustrating, in one embodiment,
a process performed by the sequentializer 200 for adding
instrumentation to a statement of a concurrent program. In
one embodiment, the process of FIG. 5 is performed for each
statement in the concurrent program which changes the state
of the program. In other embodiments, the process of FIG.
5 may be applied only to preselected types of statements.
The instrumentation is to cause, in a preferred embodiment,
the resulting sequential program to nondeterministically
schedule threads on its single runtime stack, to nondeter-
ministically force threads to remove themselves from the
stack while they are operating, and to nondeterministically
create assertions before the target variable is read or written
too. In this manner, a large number of executions of the
concurrent program 220 can be simulated by the sequential
program 230 and various accesses to the target variable in
each execution can be checked for a data race.

Beginning at block 505, the sequentializer 200 adds a call
to the schedule( ) function of the sequentializing instrumen-
tation 370. As mentioned above, the schedule( ) function,
along with the RAISE macro, allows the sequential program
to nondeterministically schedule and remove threads from
the runtime stack, emulating multiple executions of a con-
current program. The schedule( ) function in particular is
configured to schedule unscheduled threads on the runtime
stack 305 a nondeterministic number of times each time it is
called. This helps the sequential program emulate many
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different executions of threads that are forked in the con-
current program. In one embodiment the schedule( ) is
associated with helper functions put( ) and get( ), which add
and remove forked thread pointers to the multiset of thread
pointers 320, respectively. In one embodiment, in order to
emulate as many executions as possible, the get( ) function
nondeterministically chooses a function from the multiset of
thread pointers 320. In an alternative embodiment, the
functions put( ) and get( ) are replaced with direct access to
the multiset of thread pointers 320.

One embodiment of a simplified version of the
schedule( ) function, given in a C-style language, is as
follows:

schedule( ) {

var f;
iter {

f = get();

0);

raise = FALSE;
}

In this code example, the keyword iter represents iteration
of its block a nondeterministic number of times. Thus, in one
embodiment, every time schedule is called it will schedule
a nondeterministic number of threads on the runtime stack
305. This nondeterministic number can be anywhere from 0
to the number of threads present in the program, so long as
get( ) is able to find a new thread. After each thread is
scheduled and returns, schedule( ) also sets the raise flag to
FALSE in case the thread was returned because the raise
variable was set. In alternate embodiments, the schedule( )
function is not added as source code, but as changes to a
control flow graph, an abstract syntax tree, or as machine
code.

Continuing to block 510, the sequentializer 200 then adds
a nondeterministic choice to execute the RAISE macro. In
one embodiment, shown in the instrumentation examples of
FIG. 7, this is performed by including a choice command
which creates a nondeterministic choice for the sequential
program between executing RAISE or doing nothing. In one
implementation, RAISE is a compiler-inlineable macro
statement defined as:

RAISE={raise=TRUE; return}

Because the raise flag is set when the statements of the
RAISE macro are executed, each function in the currently-
executing thread will return until the entire thread is
removed from the runtime stack 305, at which point the
schedule( ) function, which scheduled the returned thread in
the first place, will set the raise flag to FALSE and nonde-
terministically schedule another thread or allow execution to
continue with the last thread pushed on the stack. In one
embodiment, RAISE is referred to as an exception macro, as
it simulates the action of throwing an exception in languages
that recognize exception throwing.

Next, at decision block 515, the sequentializer 200 deter-
mines if the statement for which instrumentation is being
added is an atomic statement. In one embodiment, this is a
statement which will not allow another thread to interrupt
during its execution, in order to prevent concurrent execu-
tion problems. Because statements that are atomic cannot
give rise to different executions, there is no need to further
instrument the statement and the process ends. If, however
the statement is not atomic, it may be interrupted during its
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execution, and additional instrumentation is helpful. Thus, at
block 520 the additional instrumentation is added. This is
described in further detail with respect to FIG. 6.

FIG. 6 is a flow diagram illustrating, in one embodiment,
a process of the sequentializer 200 for adding additional
instrumentation to a non-atomic statement. The process
starts at decision block 605, where the sequentializer deter-
mines if the statement potentially accesses the target vari-
able. In one embodiment, this access includes either a read
or a write. In one embodiment, this is done by checking for
any writes or reads from variable pointers. In another
embodiment, pointer analysis is performed to determine
which pointers cannot refer to the target variable, and these
variable pointers are ignored for the purposes of decision
block 605. In one embodiment, the pointer analysis is
performed for all variable pointers at the beginning of the
data race analysis; in another embodiment, pointer analyses
are performed at the time of instrumentation.

If there is no potential target variable access, the sequen-
tializer 200 continues to decision block 615. If, however
there is potential target variable access, the sequentializer
continues to block 610 where it adds one or more nonde-
terministic choices to include an assertion about the type of
access being performed before executing the RAISE macro.
In one embodiment, these assertions and the RAISE execu-
tion are added to the code of the sequential program before
the actual target variable access can take place. In another
embodiment, if more than one potential target variable
access is contained in the statement being instrumented, then
multiple assertions are added, one for each type of access,
such that a nondeterministic choice exists for each one of
them. The assertions have two purposes. The first is to set the
global access variable in order to indicate that a particular
type of target variable access is about to take place. The
second is to assert what the status of the access variable
should be before a target variable access. This assertion, if
it is incompatible with current state of the access variable,
will then cause the sequential program analyzer to indicate
an error, which further indicates the presence of a data race.

In one embodiment, different assertion functions exist for
reading and writing to the target variable. One embodiment
of a simplified reading assertion for a target variable r, given
in a C-style language, is as follows:

check,(v) {
if (v ==&r)
{assert(access = 2); access = 1;}

Similarly, one embodiment of a simplified writing asser-
tion is as follows:

check,,(v) {
if (v ==&r)
{assert(access == 0); access = 2;}

In the embodiments listed above, the checking functions
receive function pointers which are checked against the
target variable. In an alternate embodiment, the checking
functions check variables instead of pointers. In both of the
simplified checking functions, the variable pointer is first
checked to see if it is currently referring to the target
variable. If so, then assertions are made about access to
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check any current access that may be going on with respect
to the target variable. In the case of the reading checking
function check,( ), the function asserts only that there is not
a write going on. In the case of the writing checking function
check,( ), the function asserts that there is neither a read nor
a write going on. If the assertions take place without creating
errors, then the checking functions set access to indicate the
type of target variable access that is about to take place.
Then, continuing in block 610, the RAISE macro is executed
before the actual target variable access is performed.

It is these checking functions, followed by an immediate
execution of RAISE that, in one embodiment, do the work
of locating data races in the concurrent programming. By
setting the value for access and then immediately removing
the entire thread from the runtime stack 305 through an
execution of RAISE, the instrumentation emulates the inter-
ruption of the thread that has just set the value for access
with whichever thread is nondeterministically scheduled
next. And if this thread contains an access to the target
variable which would create a data race, its checking func-
tion will cause an error when it attempts to assert an
incorrect value for access. It is by nondeterministically
choosing many different accesses and thread scheduling
orders that the sequential program is able to search for many
of the potential data race problems that might exist.
Examples of the checking functions can be found below,
with respect to FIG. 7.

The sequentializer 200 then continues to decision block
615, where it determines if the statement calls another
function within its own thread. If the statement does not call
a function in its own thread, the sequentializer continues to
block 625. If, however, the sequentializer determines that
the statement is calling a function in its own thread, the
sequentializer, at block 620, adds a check to see if the raise
variable is set when the called function returns. If the raise
variable is set, the calling function immediately returns
itself. In one embodiment, it is these added raise checks that
cause an entire thread to return function-by-function and
remove itself from the runtime stack 305 when the RAISE
macro is executed. An example of the check added in block
620 can be found below in entry 735 of FIG. 7.

Continuing to decision block 625, the sequentializer 200
then determines if the statement forks a new thread. If not,
the process of FIG. 6 ends and no more instrumentation is
added. If so, instrumentation is added that adds a pointer to
the newly-forked thread to the multiset of thread pointers
320 (block 630). In one embodiment, this is performed by
checking to see if the size of the multiset 320 has reached the
size of the multiset size variable 360. If so, the thread is
simply scheduled immediately. If not, a pointer to the thread
is then added to the multiset 320, so that it can be nonde-
terministically scheduled by the sequential program 230.

FIG. 7 lists examples of instrumentation that, in one
embodiment, are added to code of the concurrent program
220 to create the sequential program 230. In the illustrated
embodiment, the left column denotes statements that are
contained in the concurrent program, and the right column
denotes instrumented statements for the sequential program.
While the illustrated embodiment utilizes source code
manipulation, alternate embodiments act on abstract syntax
trees, control-flow graphs, or compiled code. Additionally,
while a C-style language is used in these examples, other
embodiments exist for other languages and programming
environments. In the illustrated embodiment, the keyword
choice{ } is used to represent a nondeterministic choice
between two or more sets of instructions, the sets separated
by “[ ].” The keyword skip, used in the illustrated embodi-
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ment as one of the nondeterministic choices, denotes con-
tinuing on to the next instruction, in essence skipping the
nondeterministically-chosen options. Other embodiments
may use different terminology or keywords to implement
nondeterministic choices with the option of doing nothing.

In one embodiment, certain characteristics are shared by
many or all of the different listings. Each of the instrumented
sequential code examples 705-745 contain a call to sched-
ule( ) before any other instructions. As was mentioned
above, the repeated call to schedule( ) allows nonscheduled
threads to nondeterministically interrupt the operation of the
current thread, thus adding this instrumentation helps the
sequential program 230 emulate the various operations of
the concurrent program 220. Additionally, listings 705-745
each contain the nondeterministic choice { } keyword with
at least one of the options including an execution of RAISE.
Again, for each instrumented statement, this allows the
sequential program to emulate the current thread by nonde-
terministically getting interrupted before executing the
original instruction. The one example that does not include
an execution of RAISE, listing 745, does not have any
executable instructions besides return. Thus, it is not useful
in the illustrated embodiment to execute the RAISE macro
at that point. In other embodiments, RAISE may be executed
before every statement.

Listings 705 and 710 illustrate instrumentation of simple
assignment statements. In each, there is a nondeterministic
option to make a check, ( ) call before executing RAISE.
Because both 705 and 710 are assignment statements,
check, () is used to ensure that writing to the value v does
not cause a data race on the target variable. Additionally, in
both 705, where a variable v is set to a constant ¢, and 710,
where a variable pointer v is set to the address of a variable
v,, there is no reading of the value of a variable, thus there
is no call to check,( ).

Contrasting these simple statements are the more complex
statements given in the listings 715, 720, and 725. In each
of the original statements for these listings, either a vari-
able’s value or the value that it points to is being read. In
addition, there are still assignments to variables or to values
being pointed to by variables. Thus, the nondeterministic
choice { } includes a check,( ) or a check, () for each
variable value accessed, followed by a RAISE, giving rise to
more nondeterministically-chosen executions of the sequen-
tial program. This nondeterministic branching effect is use-
ful because data races can occur on any of the variables, or
values that variables point to.

Listing 730 illustrates that, in one embodiment, an atomic
statement contains no further instrumentation than a call to
schedule( ) and an execution of RAISE. This corresponds to
the decision made in decision block 515 to forego further
instrumentation on atomic statements.

Listing 735 illustrates one embodiment of the instrumen-
tation of a function call. In addition to the call to
schedule( ) and the nondeterministic choice{ }, the sequen-
tial code is further instrumented with the instruction “if
(raise) return,” which, as mentioned in the discussion above
with respect to block 620, allows each function in a cur-
rently-executing thread to return if RAISE sets the raise flag.
Additionally, although the call to v,( ) is left in the instru-
mented code, the statements of the function v,( ) are
typically also instrumented.

Listing 740 illustrates, in one embodiment, an asynchro-
nous call to a function. In the concurrent program, this call
would create a new thread. As mentioned above with respect
to block 630, the instrumentation adds a pointer to the
newly-forked thread to the multiset of thread pointers 320.
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Thus, the added instrumentation first checks, using a size( )
helper function which reports the number of thread pointers
in the multiset, if the multiset has space, i.e. whether the
current size of the multiset has reached the global multiset
size or not. If there is room, the thread is added to the
multiset to be nondeterministically scheduled, and if not, the
thread is immediately scheduled by calling the pointer to the
thread. In the case that the thread is immediately scheduled,
an instruction to set raise to FALSE is added, in case the
scheduled thread later returns due to to an execution of
RAISE. As mentioned above, besides instrumentation add-
ing these calls to the v,( ) function, the statements of the
function itself are instrumented as well. As mentioned
above, listing 745, an instrumented return statement, con-
tains only an added call to schedule( ) because, in the
illustrated embodiment, execution of RAISE would be
supertluous.

5. Example Operation of a Sequential Program

FIGS. 8a-8f illustrate one embodiment of an exemplary
operation of a sequential program 230 for a single exem-
plary execution with a target variable v. In one embodiment,
this execution is simulated by the sequential program ana-
lyzer 210 while it performs the process of block 420 and
checks for failed assertions in the sequential program. In
FIGS. 8a-8f, the left column illustrates instructions currently
being executed as the execution proceeds. The center col-
umn illustrates the current state of the runtime stack 305
after the instructions are executed, and the right column
illustrates the status of the global access variable. While the
example of FIGS. 84-8f show only one execution, in one
embodiment, the execution would be one of numerous
nondeterministically-chosen executions for the sequential
program 230.

In FIG. 8a, two threads, a and b, have been pushed onto
the runtime stack, with b currently executing. At the point in
time represented in FIG. 8a, no access has yet been made to
the target variable, so access currently has value 0. Next, in
FIG. 8b, a call to schedule( ) is made and the schedule( )
function nondeterministically chooses to schedule thread q
onto the runtime stack 305. As no access has yet been made
to the target variable, access remains at 0. Next in FIG. 8¢,
another call to schedule( ) is made and the schedule( )
function nondeterministically chooses to schedule thread x
onto the runtime stack.

In FIG. 84, the sequential program 230, while executing
thread x, executes the instruction “v=5.” Thus, by the
instrumentation discussed above, the program is offered,
among other nondeterministic choices, a choice to invoke
the check, (v) function and then execute RAISE. The
example of FIGS. 8¢-8d illustrates an example where that
choice is made, and so access is set to 2 to indicate that a
write is taking place, and the thread x is removed from the
runtime stack.

Next, in FIG. 8e, schedule( ) is again invoked and it
nondeterministically chooses to schedule thread p on the
runtime stack. The access variable remains at 2 in order to
check for any other accesses of the target variable that may
result out of this particular execution. Finally, in FIG. 8f, the
sequential program, while executing thread p, executes the
instruction “m=v.” Because this involves a reading of the
value of v, a nondeterministic choice to invoke check,(v) and
then RAISE is made. And because check,(v) makes an
assertion that access is not equal to 2, the assertion will fail.
This failure, when noticed by the sequential program ana-
lyzer will produce an error trace, which, when studied, will
report the particular thread scheduling and instructions that
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lead to the failed assertion. This, in turn, will isolate the data
race created by the threads x and p.

In one embodiment, because of the nature of the instru-
mentation, in particular the location of calls to schedule( )
and executions of RAISE, a sequential program created from
a concurrent program by the process above will not neces-
sarily emulate every possible execution of the concurrent
program. However, because instrumentation is added before
every state-changing statement in the concurrent program, a
large number of executions are emulated.

Formally, if every thread in a given concurrent program is
given a unique identifier in the set N={1, 2, . . . }, then for
any finite set X = N, a language [.,_c N can be defined whose
strings can represent possible executions of a sequential
program created from that concurrent program. The lan-
guage is defined recursively by:

L, ={i*LKi*L,1%{i},X|,K.X; form a partition of
X}

Thus, given an execution of the threads of a sequential
program created by the above process with an unbounded
multiset of thread pointers, and labeling the threads by their
unique identifiers, there is a string in [, which matches the
labeling of the execution of the program. This also means
that if the labeling of an execution of a concurrent program
would not match a string in L., then it will not be emulated
by the process described above.

6. Computing Environment

The above described sequentializer 200 and sequential
program analyzer 210 (FIG. 2) can be implemented on any
of a variety of computing devices and environments, includ-
ing computers of various form factors (personal, worksta-
tion, server, handheld, laptop, tablet, or other mobile),
distributed computing networks, and Web services, as a few
general examples. The data race detection using sequential
program analysis can be implemented in hardware circuitry,
as well as in sequentializer software 200 and sequential
program analyzer 210 executing within a computer or other
computing environment, such as shown in FIG. 9.

FIG. 9 illustrates a generalized example of a suitable
computing environment 900 in which the described tech-
niques can be implemented. The computing environment
900 is not intended to suggest any limitation as to scope of
use or functionality of the invention, as the present invention
may be implemented in diverse general-purpose or special-
purpose computing environments.

With reference to FIG. 9, the computing environment 900
includes at least one processing unit 910 and memory 920.
In FIG. 9, this most basic configuration 930 is included
within a dashed line. The processing unit 910 executes
computer-executable instructions and may be a real or a
virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions
to increase processing power. The memory 920 may be
volatile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or
some combination of the two. The memory 920 stores
software 980 implementing the sequentializer 200 and the
sequential program analyzer 210.

A computing environment may have additional features.
For example, the computing environment 900 includes
storage 940, one or more input devices 950, one or more
output devices 960, and one or more communication con-
nections 970. An interconnection mechanism (not shown)
such as a bus, controller, or network interconnects the
components of the computing environment 900. Typically,
operating system software (not shown) provides an operat-
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ing environment for other software executing in the com-
puting environment 900, and coordinates activities of the
components of the computing environment 900.

The storage 940 may be removable or non-removable,
and includes magnetic disks, magnetic tapes or cassettes,
CD-ROMs, CD-RWs, DVDs, or any other medium which
can be used to store information and which can be accessed
within the computing environment 900. The storage 940
stores instructions for the sequentializer 200 and the sequen-
tial program analyzer 210.

The input device(s) 950 may be a touch input device such
as a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, or another device that provides input to
the computing environment 900. The output device(s) 960
may be a display, printer, speaker, CD-writer, or another
device that provides output from the computing environment
900.

The communication connection(s) 970 enable communi-
cation over a communication medium to another computing
entity. The communication medium conveys information
such as computer-executable instructions, audio/video or
other media information, or other data in a modulated data
signal. A modulated data signal is a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media include wired or
wireless techniques implemented with an electrical, optical,
RF, infrared, acoustic, or other carrier.

The techniques herein can be described in the general
context of computer-executable instructions, such as those
included in program modules, being executed in a comput-
ing environment on a target real or virtual processor. Gen-
erally, program modules include routines, programs, librar-
ies, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract
data types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib-
uted computing environment.

For the sake of presentation, the detailed description uses
terms like “emulate”, “determine,” “indicate,” and
“execute,” to describe computer operations in a computing
environment. These terms are high-level abstractions for
operations performed by a computer, and should not be
confused with acts performed by a human being. The actual
computer operations corresponding to these terms vary
depending on implementation.

While preceding embodiments are directed toward the
detection of data races, alternate embodiments utilize the
sequentializing tool for non-data race debugging and/or
other analysis of concurrent programs. Because the sequen-
tial program non-deterministically emulates multiple execu-
tions of the input concurrent program, debugging can be
performed for error conditions other than data races which
result from concurrently-executing threads. In one such
alternate embodiment, debugging is performed for checking
of an assertion existing in the concurrent program before the
program is sequentialized.

One example of such an assertion is for a stopping flag
designed to halt execution of threads in a device driver. Use
of the sequentializing tool allows executions resulting in
improper violations of the stopping flag assertion to be
located by a sequential program analyzer. Because the
sought-after bug is in assertion conditions, the debugging in
this instance may be made without the addition of any new
assertions. Thus, in some embodiments, debugging of cer-
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tain conditions may be made through sequentializing alone.
Other examples of assertions which can be checked through
use of the sequentializer include, but are not limited to,
assertions on flags or semaphores controlling thread execu-
tion order, access permissions for database entries, variables,
or files, or network access.

In view of the many possible embodiments to which the
principles of our invention may be applied, we claim as our
invention all such embodiments as may come within the
scope and spirit of the following claims and equivalents
thereto.

We claim:

1. A computer comprising one or more computer-readable
media and a processor, the computer-readable media con-
taining instructions, which, when executed by the processor
on the computer, cause the computer to perform the actions
of a system for detecting a data race in a multithreaded
concurrent program, the system comprising:

a program sequentializer module configured to receive
code for a concurrent program as input and create as
output a single-threaded sequential program utilizing a
single run-time stack having assertions;

wherein, when the sequential program is analyzed by a
program analyzer, the assertions cause an error mes-
sage to be produced by the program analyzer when the
concurrent program contains a data race;

wherein the program sequentializer module is further
configured to add data structures to the received code,
the added data structures at least comprising:

a multiset of thread pointers which comprises pointers
to threads which have been created but have not yet
been scheduled on the runtime stack; and

a global boolean exception variable which, when set,
causes the single-threaded sequential program to
remove from the runtime stack the currently-execut-
ing thread.

2. The computer of claim 1, wherein the system further
comprises a sequential program analyzer module which
analyzes the single-threaded sequential program and pro-
duces error messages if assertions are not met and wherein
the assertions are created to be checked by the sequential
program analyzer.

3. The computer of claim 1, wherein:

the multiset of thread pointers is limited to a maximum
number of pointers; and

the added data structures further comprise a global mul-
tiset size variable, which indicates the maximum num-
ber of pointers.

4. The computer of claim 1, wherein:

the program sequentializer module is further configured to
receive an indication of a target variable which will be
analyzed for data races; and

the added data structures further comprise a global access
variable which indicates, for the analyzed target vari-
able, the current type of access being requested of the
analyzed target variable.

5. The computer of claim 4, wherein the program sequen-
tializer module is further configured to insert instrumenta-
tion into the received code, the instrumentation at least
comprising:

a scheduling function which selects a thread pointer from
the multiset and schedules the thread indicated by the
pointer on the runtime stack;

an exception macro which sets the global boolean excep-
tion variable and causes an executing thread to be
removed from the runtime stack;
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a read-checking function, which checks to see that the
global access variable does not indicate that the target
variable is being written to and then sets the global
access variable to indicate that the target variable is
being read from; and

a write-checking function, which checks to see that the
global access variable does not indicate that the target
variable is being read from or written to and then sets
the global access variable to indicate that the target
variable is being written to.

6. The computer of claim 5, wherein the read-checking
and write-checking functions contain assertions about the
global access variable which can be checked by the sequen-
tial program analyzer module.

7. The computer of claim 5, wherein the instrumentation
is inserted so that it will execute nondeterministically in the
single-threaded sequential program.

8. The computer of claim 1, wherein the single-threaded
sequential program output by the sequentializer module is in
the form of source code.

9. The computer of claim 1, wherein the single-threaded
sequential program output by the sequentializer module is in
the form of an abstract syntax tree or a control-flow graph.

10. The computer of claim 1, wherein the code for the
concurrent program received by the sequential analyzer is in
the form of source code.

11. The computer of claim 1, wherein the code for the
concurrent program received by the sequential analyzer is in
the form of an abstract syntax tree or control-flow graph.

12. A method of analyzing a concurrent program for data
races, the method comprising:

receiving a concurrent program;

receiving at least one target variable to be analyzed for
data races; and

creating a single-threaded sequential program utilizing a
single runtime stack from the concurrent program, the
single-threaded sequential program containing asser-
tions such that, during an analysis of the sequential
program, when the assertions are not met, the analysis
of the sequential program indicates the presence of a
data race in the concurrent program for the target
variable;

wherein creating a single-threaded sequential program
comprises adding instrumentation and variables to the
concurrent program which cause the functions of the
concurrent program to be executed sequentially; and

the added variables include:

a multiset of thread pointers which comprises pointers
to threads which have been started but have not yet
been scheduled on the runtime stack of the sequential
program; and

a global boolean exception variable which, when set,
causes the sequential program to remove from the
runtime stack the currently scheduled thread.

13. The method of claim 12, wherein:

the added variables include:

a global access variable which denotes, for the analyzed
variable, the current type of access being requested of
the variable.
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14. The method of claim 13, wherein the added instru-

mentation includes:

a scheduling function which selects a thread pointer from
the multiset and schedules it on the single runtime

5 stack;

an exception macro which sets the global boolean excep-
tion variable and causes an executing thread to be
removed from the single runtime stack;

a read-checking function, which checks to see that the
global access variable does not indicate that the target
variable is being written to and then sets the global
access variable to indicate that the target variable is
being read from; and

a write-checking function, which cheeks to see that the
global access variable does not indicate that the target
variable is being read from or written to and then sets
the global access variable to indicate that the target
variable is being written to.

15. The method of claim 14, wherein the read-checking
and write-checking functions contain assertions about the
global access variable which can be checked by a sequential
program analyzer.

16. The method of claim 14, wherein the instrumentation
is inserted so that it will execute nondeterministically in the
single-threaded sequential program.

17. A computer-readable storage medium containing
instructions which, when executed, cause a computer to
perform a method of checking a concurrent program for one
or more violations of assertions, the method comprising:

receiving a concurrent program; and

creating a single-threaded sequential program utilizing a
single runtime stack from the concurrent program at
least in part by adding instrumentation and variables
which cause the functions of the concurrent program to
be executed sequentially, the sequential program con-
taining assertions such that, during an analysis of the
sequential program, when the assertions are not met,
the analysis of the sequential program indicates the
presence of an error in the concurrent program

wherein the added variables include:

a multiset of thread pointers which comprises pointers
to threads which have been started but have not yet
been scheduled on the runtime stack of the sequential
program; and

a global boolean exception variable which, when set,
causes the sequential program to remove from the
runtime stack the currently scheduled thread.

18. The computer-readable storage medium of claim 17
wherein the added instrumentation further includes:

a scheduling function which selects a function pointer
from the multiset and schedules it on the runtime stack;
and

an exception macro which sets the global boolean excep-
tion variable and causes an executing thread to be
removed from the runtime stack.
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