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ABSTRACT
The multifaceted benefits of taint analysis have led to its
wide adoption in ex post facto security applications, such as
attack provenance investigation, computer forensic analysis,
and protocol reverse engineering. Unfortunately, the high
runtime overhead imposed by dynamic taint analysis makes
it impractical in many scenarios. The key obstacle is the
strict coupling of program execution and taint tracking logic
code. To alleviate this performance bottleneck, recent work
seeks to offload taint analysis from program execution and
run it on a spare core or a different CPU. However, since
the taint analysis has heavy data and control dependencies
on the program execution, the massive data in recording and
transformation overshadow the benefit of decoupling. In this
paper, we propose a novel technique to allow very lightweight
logging, resulting in much lower execution slowdown, while
still permitting us to perform full-featured offline taint
analysis, including bit-level and multi-tag taint analysis.
We develop StraightTaint, a hybrid taint analysis tool
that completely decouples the program execution and taint
analysis. StraightTaint relies on very lightweight logging
of the execution information to reconstruct a straight-line
code, enabling an offline symbolic taint analysis without
frequent data communication with the application. While
StraightTaint does not log complete runtime or input values,
it is able to precisely identify the causal relationships between
sources and sinks, for example. Compared with traditional
dynamic taint analysis tools, StraightTaint has much lower
application runtime overhead.

CCS Concepts
•Security and privacy → Software security engineer-
ing; Information flow control; Software reverse engineering;

1. INTRODUCTION
Taint analysis, as a special form of data-flow analysis [21,

38], has a variety of compelling applications in security
tasks. In addition to the runtime enforcement security
policies [30, 35], taint analysis on the binary code is
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also broadly used in ex post facto security applications,
such as attack provenance investigation [24, 46], computer
forensic analysis [23], malware analysis [7, 51], and reverse
engineering [8, 28, 49]. Static taint analysis (STA) [1, 36, 44]
aims to reason the causal data flow relationships between
sources and sinks prior to execution. However, static taint
analysis is not precise enough when the source code is
unavailable, especially for the obfuscated binary code. On
the other hand, dynamic taint analysis (DTA) [14, 30, 35],
propagating taint tags along the program execution path,
is accurate in many scenarios wherein static taint analysis
cannot achieve the needed precision. However, dynamic taint
analysis typically suffers from a high performance penalty. In
general, the state-of-the-art dynamic taint analysis tools such
as libdft [20] typically impose more than a 6X slowdown. In
the worst cases, the slowdown can easily go up to 20–30X [14,
30]. The high runtime overhead imposed by dynamic taint
analysis has severely limited its application scope.

The key obstacle to further improving the performance
of dynamic taint analysis is the tight coupling of program
execution and taint tracking logic code [39]. Taint analysis
has to maintain a shadow memory to map instruction
operands to their corresponding taint tags. To propagate
one taint tag between different residences, it typically takes
6–8 additional instructions [12]. In addition, since the taint
tracking code is interleaved with the program execution, the
frequent “context switches” between the application and taint
analysis code impose further pressure on both registers and
data cache (e.g., register spilling and cache miss), incurring
substantial overhead.

To lower the high performance overhead, multiple methods
have been proposed to offload taint tracking code to a
separate core or a different CPU. The existing work can be
roughly classified into two categories. The first category relies
on the pervasive multi-core systems to parallelize dynamic
taint analysis by logging runtime values that are needed for
taint analysis in another core [18, 19, 31, 40]. However, since
taint analysis has strong serial data and control dependencies
on the program execution, the parallelized taint analysis need
to be frequently synchronized for data communication (e.g.,
control flow directions and memory addresses), either through
customized hardware [31, 40] or shared memory [18, 19]. The
second category first records the application execution and
then replay the taint analysis on a different CPU [15, 42,
45, 48]. Similar to the limitation of the first category, the
large online logging data is also a barrier to achieving the
expected performance gains.

In this paper, we propose StraightTaint, a hybrid static
and dynamic method that achieves very lightweight logging,
resulting in much lower execution slowdown, while still
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permitting us to perform complete offline taint analysis
with incomplete inputs. In principle, StraightTaint belongs
to the aforementioned second category of decoupling DTA
approaches. Therefore, StraightTaint is an ideal fit for
ex post facto security applications. In StraightTaint, we
do not log all runtime values. Instead, we record control
flow profiling and execution state when taint seeds are first
introduced, which can be very lightweight. Based on the
logged branching information, we construct a straight-line
code trace for the offline taint analysis. The taint seeds
are marked as symbolic variables, and taint propagation is
like the symbolic execution on the constructed straight-line
code. With the initial execution state and the straight-line
code, most addresses of memory load and store operations are
computable. Symbolic memory indices can be narrowed down
to a small range by solving the path conditions. Compared
to a pure static approach, StraightTaint can still deliver
a similar level of precision as dynamic taint analysis. For
example, we are able to correctly identify the complicated
causal relationships among multiple sources and sinks (see
Section 6), while static taint analysis fails in such cases.

Restricted by computing resources, conventional DTA
exhibits several drawbacks in terms of incomplete taint
propagation strategies. First, since multi-tag taint prop-
agation consumes more shadow memory and introduces
much higher runtime overhead, most DTA tools choose
single-tag propagation as default [12, 20, 30, 35, 40, 54].
However, multi-tag taint analysis is indispensable to many
reverse engineering tasks, such as recovering the structure
of an unknown protocol format [8] and detecting encoding
functions in malware by counting different tainted input
bytes [7]. Second, when handling the complicated x86
arithmetic and logic operation instructions (e.g., add and
xor), previous DTA tools typically adopt some simple but
conservative propagation strategies for better performance.
One example is the prevalent “short circuiting” method: the
destination operand is tainted if any of the source operands
is tainted. As we will show, these conservative solutions will
result in precision loss in many scenarios. As StraightTaint
has completely offloaded the taint logic code to the offline
analysis, another benefit becomes visible: StraightTaint’s
offline taint analysis is flexible to support full-featured taint
propagation strategies. For example, supporting bit-level [48]
or multi-tag taint analysis is straightforward in our approach.
Each symbolic bit or variable can naturally represent a taint
tag with negligible additional overhead. Also, our symbolic
execution style taint propagation can faithfully simulate the
specific semantics of an instruction. Furthermore, based on
symbolic taint analysis on the straight-line code, we introduce
a new concept, Conditional Tainting ; that is, StraightTaint
is able to identify precisely the causal data flow relations
between sources and sinks, under what conditions. In this
way, new inputs and runtime values can be mapped to the
existing analysis results in certain scenarios so that the new
analysis can be more proactive.

We have developed a prototype of StraightTaint, a hybrid
taint analysis approach that completely decouples the
program execution and taint analysis. Our implementation
is based on Pin [25], for the effective parallelization of
runtime logging, and BAP [6], for precise offline symbolic
taint analysis with incomplete inputs. We have performed
comparative studies on a number of applications such as
common utility programs, SPEC2006, and real-life software
vulnerabilities. The results show that StraightTaint can
achieve a similar level of precision as dynamic taint analysis,

but with much lower online execution slowdown. The
performance experiments show that StraightTaint imposes
a small overhead on application execution performance,
with up to 3.25 times improvements to SPEC2006 on
average. Offline taint analysis takes approximately the
same amount of time as an advanced DTA tool. We also
demonstrate StraightTaint’s value in supporting multi-tag
taint propagation and conditional tainting in an attack
provenance investigation task. Such experimental evidence
shows that StraightTaint can be applied to various large-scale
ex post facto security applications.

In summary, we make the following contributions:

1. We propose StraightTaint, with a very lightweight
logging method to construct straight-line code and thus
completely decouple dynamic taint analysis for offline
symbolic taint analysis. StraightTaint greatly reduces
the program execution slowdown yet can compete with
dynamic taint analysis with a similar level of precision.

2. The limitation of previous decoupling taint work is
inefficiently collecting and transferring data from the
executing application to the analysis module. We
demonstrate that StraightTaint offline analysis does
not require complete runtime data but can still achieve
most tasks.

3. The completely decoupled offline taint analysis allows
StraightTaint to perform full-featured taint propagation
strategies. The symbolic execution style taint propa-
gation can accurately describe the intricate semantics
of the x86 instructions, and also naturally support
multi-tag and bit-level taint analysis.

4. We introduce a new concept, Conditional Tainting,
based on the symbolic taint analysis of straight-line
code. Conditional tainting not only reports more
precise and useful taint results but also opens many
new important applications.

We also summarize the main benefits associated with our
proposed taint analysis method.

1. Once a log is captured, it can be analyzed by Straight-
Taint multiple times. This feature is particularly useful
when the exact analysis task is hard to anticipate. In
our multi-tag taint propagation evaluation, we vary the
number of taint tags in each round. StraightTaint only
needs to log the required online data once and performs
the multiple propagation rounds offline.

2. StraightTaint makes it possible to conduct ex post facto
logging-based taint analysis in the cloud [32]. Service
providers can deploy lightweight online logging in their
services, and cloud hosts provide storage space for the
logged data. Users can require a service to audit their
sensitive data flow offline.

The rest of the paper is organized as follows. Section 2
provides the background information and an overview of our
approach. Section 3 describes efficient online logging and our
optimization. Offline symbolic taint analysis is discussed in
Section 4. Section 5.1 highlights a few of our implementation
choices. We present the evaluation of our approach in the rest
of Section 5 and demonstrate its applications in Section 6.
Related work is presented in Section 7. We conclude the
paper and discuss future work in Section 8.
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Figure 1: Conventional DTA vs. StraightTaint.

2. BACKGROUND AND OVERVIEW

2.1 Dynamic Taint Analysis Optimization
Dynamic taint analysis (DTA) is a form of information flow

analysis to trace the tainted data along program execution
path. Typically, the data derived from untrusted sources
are labeled as tainted (i.e., taint seeds). The propagation
of the tainted data will be tracked according to the taint
propagation policy. Then the taint status will be checked at
certain critical locations (i.e., taint sinks). DTA has been
broadly employed in software security applications. However,
an inherent limitation of conventional DTA is that taint
logic is strictly coupled with program execution. Figure 1
illustrates a conventional DTA tool built on dynamic binary
instrumentation (DBI). The taint tracking code is interleaved
with program execution, leading to frequent context switches
and resource competitions between the application and
taint analysis code. As a result, the application under
examination is significantly slowed down. Various advanced
DTA techniques have been proposed to achieve decent
runtime performance [3, 11]. For example, Minemu [3]
leverages the x86 SSE registers to provide lightweight
taint tracking for 32-bit applications. Unfortunately, they
either rely on an ad hoc emulator [3] or cannot work on
commodity hardware [11]. Decoupling taint analysis from
program execution has been demonstrated as an effective
approach. However, due to the heavy data and control-flow
dependencies on the application execution, decoupled taint
analysis cannot run independently. Intuitively, each memory
address and control transfer target have to be delivered to
the decoupled taint analysis. Therefore, the large logged
data is a barrier to further improving the performance.

As shown in Figure 1, our key insight is that taint analysis
can be completely decoupled from program execution,
without frequent online communication and synchronization.
Offline taint analysis can be performed based on control flow
information and very little runtime data (e.g., the initial
execution state when taint seeds are introduced). We notice
that memory reference operations in x86 architecture are
addressed through registers and constant offset calculations.
For example, mov ebx [4*eax+4] loads the content stored at
the address 4*eax+4 to ebx. With the initial execution state
and the straight-line code, most memory reference addresses
can be recovered. The proposed StraightTaint explores this
idea.

Note that the execution replay work [13, 33, 47], which
records required inputs and replays them on an offline
analysis, can be applied to decouple taint analysis as well.

Compared to StraightTaint, the logs are smaller, and the
online performance could be better. However, the logged
data contains little information about execution, making it
impossible for direct taint analysis. Furthermore, the offline
replay overhead is quite high. For example, Aftersight [13]
replays a single-tag taint analysis on a QEMU-based CPU
simulator, but the performance is as high as 100X slowdown.
Our solution represents a middle ground that balances the
performance between online logging and offline taint analysis.

2.2 Incomplete Taint Propagation Strategies
As conventional DTA tools are subject to limited comput-

ing resources, typically they have to adopt incomplete taint
propagation strategies to achieve acceptable performance.
In many cases, such conservative strategies lead to the
precision loss. The first drawback comes from the single-
tag propagation. Most DTA tools associate each variable
with one shadow memory bit or byte to represent the taint
status: 1 means tainted and 0 means untainted. Although
single-tag works in some simple scenarios, multi-tag taint
analysis has much broader security applications. For example,
BitFuzz [7] assigns different taint tags to input bytes and
then detects encoding functions in malware by identifying
high taint degree; iBinHunt [26] utilizes multi-tag taint
analysis to reduce the number of possible basic blocks to
compare. Furthermore, many arithmetic and logic operation
results overlap the operands so that a taint tag may come
from multiple sources. Therefore, the multi-tag attribute is
essential for accuracy as well. The second limitation is due
to the conservative propagation strategies when dealing with
the complicated x86 instructions. These simple strategies
are fast but neglect the particular instruction semantics that
may affect the taint propagation results. In addition to the
frequently used “short circuiting” solution, some previous
work tracks the taint flow only through unary operations
(the output of a binary operation is set as untainted) to
achieve better parallelization [40].

Figure 2 presents a snippet of an encoding function, which
is frequently used in malware [7]. Figure 2 (a) lists a
straight-line code with complicated arithmetic operations.
Conventional DTA performs the taint analysis on this code
snippet with single-tag and “short circuiting” strategies.
Figure 2 (b) shows the propagation results: all variables are
tainted. Look carefully at line 3 in Figure 2 (a), the taint tag
of variable w derives from two taint seeds but conventional
DTA just labels it as a single tag. Besides, the variable
d will always be zero because c is the bitwise NOT of a.
However, the “short circuiting” propagation mistakenly label
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int a, b, c, d, w;
int low_bits = 0x0000ffff;
int high_bits = 0xffff0000;
1: a = read ();
2: b = read ();
3: w = (a ∧ low_bits) ∨ (b ∧ high_bits);
4: c = ~ a;
5: d = a & c;

(a) (b) 

1: Taint (a) = 1;
2: Taint (b) = 1;
3: Taint (w) = 1;
4: Taint (c) = 1;
5: Taint (d) = 1;

1: Taint (a) = tag1;
2: Taint (b) = tag2;
3: Taint (w) = (tag1 ∧ low_bits) ∨ (tag2 ∧ high_bits);
4: Taint (c) = ~ tag1;
5: Taint (d) = 0;

(c) 

Figure 2: Conventional single-tag taint propagation vs. StraightTaint multi-tag symbolic taint propagation:
(a) a sequence arithmetic operations; (b) conventional single-tag taint propagation results; (c) StraightTaint
multi-tag symbolic taint propagation results.
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Figure 3: The architecture of StraightTaint.

d as tainted, resulting in over-tainting [41]. A nature benefit
of StraightTaint’s offline taint analysis is that supporting full-
featured taint propagation strategies is straightforward, such
as multi-tag and bit-level taint analysis. Also, our symbolic
taint analysis on the straight-line code can capture intricate
details of the x86 instructions. Figure 2 (c) shows the results
of StraightTaint multi-tag symbolic taint propagation: w and
c are correctly tainted; the taint tags of d are cleaned as
expected. StraightTaint avoids the imprecision and over-
tainting problems introduced by previous incomplete taint
propagation strategies.

2.3 Architecture
Figure 3 illustrates the architecture of StraightTaint, which

consists of two stages: online logging and offline analysis.
The first stage, as shown in the left part of Figure 3, involves
very lightweight online logging to mainly record control flow
information. We built a logging tool using dynamic binary
instrumentation (DBI), enabling StraightTaint to work with
unmodified program binaries directly. The application under
examination is executing over the DBI and our logging tool.
Our logging tool dynamically instruments each executed basic
block to record the execution using tags that are unique for
each basic block. The basic block tags are written to a trace
buffer and then stored in a disk storage when the buffer is
filled up. Careful design of the online logging tool is crucial
for achieving better efficiency. Therefore, we propose three
guidelines and the details will be discussed in Section 3.

The generated log data is passed to the offline taint
analysis (the right component of Figure 3). This stage first
reconstructs the straight-line code trace from the log data,
and then lifts the x86 instructions to BIL [6], an RISC-
like intermediate language. The core of our symbolic taint
analyzer is an abstract taint analysis processor. Similar
to the shadow memory in DTA, StraightTaint maintains
a context structure to store symbolic taint variables and
concrete values. Our offline taint analyzer is able to carry out
both forward taint tracking to detect the effect of an intrusion,
and backward tracing to identify attack provenance. Even
without complete runtime data information, StraightTaint
can achieve comparable precision as dynamic taint analysis,
which will be discussed in detail in Section 4.

3. EFFICIENT ONLINE LOGGING
StraightTaint applies a lightweight logging to lower the

impact on application performance. Since not all the
instructions executed are of interest, we invoke online trace
logging when pre-defined taint seeds are first introduced. In
StraightTaint, a user can set the input data from keyboard,
file, network or function return value as taint seeds. To avoid
symbolic taint variables explosion in the offline analysis, we
leverage the concrete execution state when the taint seeds
are introduced to constrain fresh symbolic taint variables.
We collect an execution state by performing a process dump.
Beyond that, the executed control flow information is logged
to reconstruct the straight-line code later. Nondeterministic
variables (e.g., random numbers and time) that may affect
control flow are recorded as well.

The logged data are first stored in a memory buffer
and then dumped to disk storage when the buffer is filled
up. Three design goals guide us to achieving low online
logging overhead: 1) the logged data representation should be
compact so that trace buffer holds as much data as possible;
2) the application (i.e. producer) should not be blocked when
the full buffers are being consumed, that is, processing the
buffers asynchronously; 3) instrumentation overhead should
be minimized. We meet the first requirement by extending
an advanced trace profiling format [53]. To address the
second challenge, we propose an n-way fast buffering scheme
on multi-cores to parallelize profile consumption. At last,
we carefully design our instrumentation code to favor code
inlining and avoid frequent context switches. In Section 5.1,
we will introduce other Pin specific optimizations we adopted
to achieve enhanced performance gains.

3.1 Trace Profiling
Application’s straight-line trace can be represented as a

sequence of basic blocks executed. A basic block is a straight-
line sequence of code with one entry point and one exit. A
naive approach is to record each basic block’s entry address.
On a 32-bit machine, a 4-byte tag is needed to label a basic
block. However, a full 4-byte tag is an excessive use and
would take up too much space. Zhao et al. [53] proposed
an efficient method, Detailed Execution Profile (DEP). DEP
uses only 2-byte tags to record most basic blocks and handles
special cases with extra escape bytes. DEP splits a 4-byte
address into 2 high bytes for H-tag and 2 low bytes for L-tag.
During control flow profiling, if two sequential basic blocks
share the same H-tag, only L-tag of each basic block is logged
into the profile buffer. If the two H-tags are different, an
escape tag 0x0000 followed by the new H-tag will be entered
into the buffer. Our trace profiling design is based on DEP
with a number of optimizations.

Certain x86 string instructions (MOVS, LODS, STOS, CMPS
and SCAS) with REP-prefix execute repeatedly. DBI tools [5,
25] usually treat REP-prefixed instructions as implicit loops. If
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a REP-prefixed instruction iterates more than once, iterations
after the first will cause a single instruction basic block
to be generated. In such case, we’ll see much more basic
blocks than we expect. To address this issue, we inspect
the first loop of REP-prefixed instructions and configure Pin
to disable unrolling following loops. And then we encode
REP-prefixed instructions with two consecutive escape values
0xffff, followed by an iteration number.1

We justify here why we choose to encode the basic
block executed rather than control flow branching decision
or Pin trace. First, it is possible to use a single bit
to log a basic block by recording the binary decision of
conditional jump [37], which leads to a much denser log data.
However, encoding 1-bit does not favor Pin code inline, which
introduces more instrumentation overhead. Also, recovering
straight-line code from 1-bit encoding is time-consuming.
Second, the single-entry, multi-exits property of Pin trace
makes the trace size cannot be uniquely decided. Third, static
program analysis [2, 19] can be used to remove the redundant
instrumentation points. However, recall that StraightTaint
works in an adversarial environment, in which the accurate
static features such as control flow graphs are typically not
available. Our design choice enables StraightTaint to analyze
obfuscated binaries.

3.2 Multithreaded Fast Buffering Scheme
In this section, we introduce our generic scheme that

supports concurrent buffering data on the multi-core platform.
We exploit underutilized computing resources to alleviate
the disk I/O bottleneck. The center of our design is a
buffering thread pool, in which multiple buffers enable the
instrumented application to continue executing and filling up
free buffers while multiple Pin-tool internal threads process
full buffers asynchronously. Figure 4 illustrates how the
buffering thread pool works, and the processing steps are as
follows.

1) When a program starts running, the application (i.e.,
producer) allocates a number of free buffers (8 buffers in
Figure 4).

2) Simultaneously, multiple Pin-tool internal threads are
spawned. We call them worker threads (8 worker threads in
Figure 4). The worker thread takes a buffer from the full-
buffer queue and dump buffer data to disk storage. Multiple
worker threads access a full buffer exclusively by acquiring
the buffer’s lock.

3) The application first fills one free buffer. When this
buffer becomes full, a callback function, BufferFull will be
called to perform two tasks: 1) enqueue the full buffer to
the global full-buffer queue and wake up one worker thread
to process it, 2) return the next available free buffer to the
application.

We bias the implementation of our buffering scheme to
lower the impact on the application execution. Specifically,
we create enough worker threads to ensure a full buffer
can be processed immediately by worker threads. Besides,
we dynamically adjust the number of buffers allocated
and the number worker threads created to optimize the
synchronization and load balancing. The availability of
unused cores and the size of a profile buffer have a great
impact on the runtime performance. In Section 5.2, we will
discuss how to tune these two factors.

1 The maximum REP-prefixed loop count in our evaluation
comes from gcc benchmark, which is 1770, far less than
two-byte number limit.

Application 

(producer)

Free buffer queue

Writing buffer 

ENQUEUE Worker thread 1

Worker thread 2

Worker thread 3

Worker thread 4

Full buffer queue
Worker threads 

5~8

ENQUEUE

 free buffer

Figure 4: Buffering thread pool.

4. OFFLINE SYMBOLIC TAINT ANALYSIS

4.1 Reconstruction of Straight-line Code
Given the trace collected from the online logging, recon-

structing a complete sequence of 4-byte starting addresses
of basic blocks is quite straightforward. The beginning of
the trace profile should be a special value 0x0000, followed
by an H-tag. Each basic block 4-byte entry address is the
concatenation of its corresponding H-tag and L-tag. Then
the x86 instructions of each basic block are extracted from the
application’s disassembly code. An elaborate knowledge of
the x86 ISA is required to accurately track taint propagation
at binary level. However, the cumbersome x86 ISA makes it
an extremely tedious work. For example, previous work such
as libdft [20] contains more than 5, 000 lines of code to handle
the x86 ISA complexity. Figure 2(a) shows such an example
involving complicated arithmetic operations. Even worse,
some instructions with implicit side effects only propagate
taint conditionally according to the contents of EFLAGS
(e.g., CMOVcc). To get rid of the intricate details of the x86
ISA, we lift up x86 instructions to BIL [6], an RISC-like
intermediate language. BIL leaves us only 25 instructions
that we need to analyze carefully for accurate taint tracking.
Note that with control flow information, we have resolved all
indirect control flow targets and conditional jump directions
in the straight-line IL code.

4.2 Symbolic Taint Analysis
By labeling the stream bytes of taint seeds as symbolic

variables, StraightTaint offline taint propagation is a kind
of symbolic execution on the straight-line code. Since each
taint seed byte can be associated with a fresh symbol, multi-
tag taint propagation is natural for StraightTaint. The
core of our symbolic taint analysis engine (as shown in
Figure 5) is an abstract processor, which maintains a context
structure as the execution state. The context structure
consists of a program counter pc, a variable context V and
a memory context M . For conciseness, we represent the
state of the abstract processor with the tuple s = (pc, V,M).
The variable context V contains all symbolic register values
(e.g., general purpose registers and bits of EFLAGS) and
temporaries. The temporaries are the expressions used in
the static single assignment form of BIL. We also explicitly
represent the return value of a function as a special variable
to facilitate detecting buffer overflow vulnerabilities. The
memory context M , with a structure analogous to the two-
level architecture of x86 virtual addressing, is a mapping
from memory addresses to their symbolic variables. By
interpreting the current IL at pc, a state of the abstract
processor s = (pc, V,M) is translated into a new state
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1: neg     reg 

2: sbb     reg, reg 

3: and     reg, (val1 - val2) 

4: add     reg, val2

(a) (b) 

1:  if (reg)  cf = 1;

     else      cf = 0;

2: reg = reg - reg - cf;

3: reg = reg | (val1 - val2);

4: reg = reg + val2;

if (reg)  reg = val1;

else      reg = val2;

(c) 

Figure 6: Example: branchless logic code (reg
stands for register; va1 and val2 are two tainted
variables).

s′ = (pc′, V ′,M ′) and V ′ and M ′ are updated according
to the semantic of the IL. At the same time, StraightTaint
checks whether a location of interest (i.e., taint sink) is
tainted by checking whether its value is a symbolic expression.
After the last IL is simulated, pc is set to halt and V and
M are not updated anymore.

We start offline taint analysis when the pre-defined taint
seeds are first introduced to the application. Besides the taint
seeds, there could be other uninitialized variables such as
the stack pointer and memory contents. In principle, we can
assign a fresh symbolic variable to each uninitialized variable.
However, symbolic taint analysis with an unconstrained
initial state can quickly reach the memory capacity and lead
to the problem of “over-tainting” [41] as well. Our solution
is to leverage a process dump to assign other uninitialized
variables with concrete values, only leaving the taint seeds as
symbolic variables. Here we use another common example to
show the value of symbolic execution style taint propagation.
To reduce the number of conditional jumps, some compiler
optimization options translate conditional instructions into
a sequence of arithmetic operations. Figure 6 (a) shows
such an example we find in our test cases. Figure 6 (b) lists
the semantics for each instruction. The net result of the
sequence of arithmetic operations is presented in Figure 6
(c), which is actually a branch condition. The taint tag of
reg is either from val1 or val2. StraightTaint successfully
propagate taint tags for this tricky case, while previous tools
such as Temu [52], libdft [20], and FlowWalker [15] all fail.

4.3 Memory Reference Address Resolution
Another feature of StraightTaint’s offline taint analysis is

that we do not record memory reference addresses, which are
typically calculated through general registers and constant
offsets. Our observation is that, with the initial execution
state and the straight-line code, most memory reference
addresses can be decided along the symbolic taint analysis.
Figure 7 (a) shows how we resolve an indirect memory access.
Since we have resolved each indirect jump target in the

i = read ();

j = read ();

j < 8

j > 4

A[j] = i

BB1

  

jmp eax

BB2

mov ebx [4*eax+4]

  

(a)  Indirect memory 

access

(b) Symbolic memory 

index

Figure 7: Example: memory reference address
resolution.

straight-line code (See Section 4.1), the memory indirect
access through eax in BB2 can be determined. To solve
a memory address address_a that is cannot be computed
accurately (e.g., heap memory allocation), we allocate
memory on-the-fly. Inspired by micro execution [16], we use
return value of malloc(1) as address_a, which guarantees
that address_a would not conflict with an existing address.
Then we assign a symbolic variable to represent the content
of address_a, and subsequent reading at address_a will
return the same symbolic value. A symbolic index happens
when a symbolic variable is used as the index of a memory
lookup, such as the conversion function of ASCII to Unicode,
to lower, and to upper. Intuitively a symbolic memory index
could point to any memory slot. We deal with this problem
by solving path conditions. As shown in Figure 7 (b), the
path conditions along the straight-line code restrict the range
of symbolic memory index j within 4 < j < 8. Then we
conservatively label all the possible memory values as tainted.
For the example in Figure 7 (b), A[5], A[6], and A[7] will be
tainted.

4.4 Conditional Tainting
As x86 conditional control transfer instructions typically

depend on the value of the EFLAGS register (e.g., jz and jo)
our virtual registers also keep track of bit-level symbolic
variables for EFLAGS. When a symbolic expression is used
in a conditional jump instruction, we collect it as a branch
condition. After a complete symbolic taint propagation run,
the conjunction of all branch conditions is the Taint Logic
Constraints. Thus, the values that satisfy the taint logic
constraints are the concrete taint seeds that would lead the
program to execute the same taint tracking operations as the
one symbolically tainted. With taint logic constraints, which
are solved by a theorem prover (e.g., Z3 [29]), previously taint
analysis results can be mapped to new inputs and runtime
values without DTA again!

4.5 Optimization
Like Pin’s block cache to save the overhead of frequently

executed basic block retranslation, we take a similar approach
to speed up our offline symbolic taint analysis. We call
it “sub-trace cache” (see “sub-trace cache” component in
Figure 5). We merge sequential basic blocks that have one
predecessor and one successor as a sub-trace, which can
be viewed as an extended basic block. We represent the
input-output relations of a sub-trace as a set of symbolic
formulas and maintain a lookup table in the sub-trace unit.
Therefore, the successive runs can directly reuse previous
results, without the need for recomputing them. Another
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primary optimization we adopt is function summary. Most
well-known library functions have explicit semantics (e.g.,
C strings manipulation functions defined in string.h), and
many of them even do not affect taint propagation (e.g.,
strcmp). Therefore, we turn off symbolic taint analysis at
the boundary of these functions and update context according
to their semantics summaries. For a sequence of adjacent
memory access introduced by REP-prefixed instructions, we
recover the number of repetitions from trace profile and
perform batch processing instead of byte by byte operations.

5. IMPLEMENTATION AND EVALUATION

5.1 Implementation
To demonstrate the idea of StraightTaint, we implemented

a prototype including online logging based on the Pin DBI
framework [25] (version 2.12) with 2, 660 lines of code in
C/C++, and offline symbolic taint analysis engine on top
of BAP [6] (version 0.8) with 4,540 lines of OCaml code.
We rely on BAP to convert assembly instructions to IL and
convert IL expressions to CVC formulas. We use Z3 [29]
as our constraint solver. The saving and loading of sub-
trace cache lookup table are implemented using the OCaml
Marshal API, which encodes arbitrary data structures as
sequences of bytes and then store them in a disk file.

When implementing the Pin-tool, we create thread-local
storage (TLS) slot to store and retrieve per-thread buffer
structure. Note that Pin-tools are unable to work with either
pthreads library or Win32 threading API. We utilize the
Pin thread API to spawn worker threads and implement
a counting semaphore using Pin’s own binary semaphore.
To make the best use of Pin’s code cache effect, we
enlarge the maximum number of basic blocks per Pin
trace from 3 to 8. We also use GCC’s built-in macro
“__builtin_expect()” to provide the compiler with the
branch prediction. Furthermore, we perform low-overhead
buffering of data through Pin’s fast buffering APIs, which
support inlining a callback function when a buffer becomes
full. We also force Pin to use fastcall calling convention to
pass arguments via registers to avoid emitting stack access
instructions (i.e., push and pop). StraightTaint’s efficient
multithreaded control flow profiling Pin-tool is available at
https://github.com/s3team/bincfp.

Our testbed contains two machines. One is a server
machine, which is equipped with two Intel Xeon E5-2690
processors (16-core with 2.9GHz ) and 128GB of RAM.
Another is a desktop, consisting of Intel Core i7-3770
processor (Quad Core with 3.40GHz) and 8GB memory. Both
are running Ubuntu 12.04. The data presented throughout
this section are all mean values. We calculate them by
running five repetitions of each experiment case.

5.2 Buffer Size and Worker Threads
We studied two factors that may affect StraightTaint online

logging performance: 1) the buffer size of control flow profile;
2) the number of available worker threads. We first survey
the impact of various buffer size. In order to achieve enough
parallelism, the number of worker threads is set to 16 and 4,
respectively. The total buffer sizes are therefore the number
of worker threads × single buffer size. We choose SPEC
CPU2006 with test workload as the training set. As shown
in Figure 8, roughly the overhead decreases as the buffer
size is increased. This is mainly due to the reduction of
free/full buffer switches, and worker threads spend less time
on synchronization. As the buffer size is beyond a certain
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Figure 8: Normalized slowdown on 16-core and 4-
core systems when profile buffer size varies.

point (64MB for the 16-core system and 128MB for the 4-core
system), the slowdown is increased a little. We attribute this
to the large total buffer sizes (e.g., 16 × 256MB) interfering
with the application’s working set. Then we fix the buffer
size to 64MB for the 16-core system and 128MB for the
4-core system and alter the number of worker threads. In
general, the performance is better as more worker threads
are added. Due to the maximum parallelism and the tuned
buffer size, 16 worker threads with 64MB buffer size achieve
the optimum result. We set these two parameters as default
configuration and conduct the following experiments on the
16-core system.

5.3 StraightTaint vs. libdft
We first compare StraightTaint with libdft [20], a state-of-

the-art inlined DTA tool built on Pin (“libdft” bar). In aid
of evaluating the application performance slowdown imposed
exclusively by StraightTaint, we develop a simple tool
(nullpin) to measure Pin’s environment runtime overhead,
which runs a program under Pin without any form of analysis
(“nullpin” bar). We also measure the logging overhead
without buffering the profile data to disk (“online-no I/O”
bar). Under this configuration, the application never stalls
to wait for free profile buffers, which can represent the
upper bound of performance improvement attainable by
StraightTaint. Viewed from a different angle, “online-no
I/O” bar also indicates the overhead introduced by Pin’s
instrumentation. All runtime data2 presented in this section
are normalized to application native execution time (without
running Pin).

Figure 9 shows the normalized overhead of running SPEC
CPU2006 int benchmark suite with reference workload. Since
the reference workload is CPU-intensive, we expect that these
results can estimate the worst case scenarios. On average,
StraightTaint’s online logging exhibits a 3.06X slowdown to
native execution, while libdft lags behind as much as 9.96X,
indicating that StraightTaint speeds up application execution
by a factor of 3.25. It is noteworthy that if taking nullpin as
the baseline, the slowdown exclusively introduced by Straight-
Taint is only 1.97X while for libdft is 6.43X. This number is
in line with the observations by the previous work [12, 39];
that is, performing one taint propagation operation normally
needs six extra instructions. The overhead incurred by
StraightTaint’s online instrumentation is 2.16X (“online-no
I/O” bar), compared to Pin’s environment runtime overhead

2The “online” bar is calculated by counting wall-clock time
because we have to consider the I/O time introduced by our
buffering scheme. Other bars are calculated by counting
CPU time.
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Figure 9: StraightTaint vs. libdft: slowdown on
SPEC CPU2006.

(1.55X), 39.4% extra performance penalty added. Due to
the CPU bounded test suite, StraightTaint has to put more
efforts to deal with large amount of I/O. Therefore, additional
41.7% overhead to “online-no I/O” version is introduced.

On average, StraightTaint generates about 2.8GB of raw
trace profiling data for SPEC2006’s reference workload.
Compared to the raw 4-byte tag profile size, the relative
size of StraightTaint is only 49.2%. In general, StraightTaint
outperforms DEP’s encoding [53] by 5 percentages in terms of
smaller profiling data size. It is worth mentioning that we see
a significant size reduction for the h264ref benchmark, from
DEP’s 4.8GB to 2.1GB. The reason is h264ref intensively
utilizes REP-prefixed instructions, which are very well handled
by StraightTaint’s optimization.

The last bar for each application in Figure 9 presents the
performance of symbolic taint analysis, which is normalized
to native execution as well. Since we have decoupled
taint tracking from program execution, offline symbolic
taint analysis avoids the overhead introduced by DBI’s
environment and computing resource competitions. On the
other hand, symbolic taint analysis engine is in fact an
interpreter for each IL, which is much slower than native
execution. To alleviate this issue, we have applied a number
of optimization methods (discussed in Section 4.5). The
net result is that our offline symbolic taint analysis takes
approximately the same amount of time as libdft (10.06X for
StraightTaint and 9.96X for libdft on average). In several
cases (e.g., perlbench and h264ref), StraightTaint’s offline
part outperforms libdft. Considering that StraightTaint is
aiming to shift dynamic taint analysis cost to the offline
analysis phase, this degree of slowdown is tolerable. In
Section 8, we will discuss several possible ways to further
accelerate offline taint analysis.

5.4 StraightTaint vs. FlowWalker
FlowWalker [15] is perhaps the closest work to Straight-

Taint in its goals: we are both offline taint analysis in record
and replay style. Similar to StraightTaint, FlowWalker also
records limited CPU context on top of Pin to calculate the
memory address offline. However, FlowWalker lacks fine-
grained optimizations in both online logging and offline taint
analysis (see Section 7). In this experiment, we evaluate
StraightTaint (short for ST) and FlowWalker (short for FW)
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Figure 10: StraightTaint vs. FlowWalker: slowdown
on common Linux utilities.

on four common Linux utilities that represent three kinds of
workload.3 The program tar is I/O bounded, whereas bzip2
and gzip are CPU intensive program, and scp represents a
middle level between these two cases. We use tar to archive
and extract GNU Core utilities 8.13 package (∼50MB). And
then we apply bzip2 and gzip to compress and decompress
the archive file of Core utilities. For scp, we copy the
archive file of Core utilities over 1Gbps link. We achieve a
similar improvement with the SPEC CPU2006 experiment.
As shown in Figure 10, StraightTaint imposes a average
2.48X slowdown to native execution, with a 1.86 times speed
up to FlowWalker. Besides, StraightTaint’s offline taint
analysis is faster than FlowWalker with a factor of 1.14. We
attribute this to our sub-trace cache and function summary
optimizations.

5.5 Offline Symbolic Taint Analysis
Next we evaluate the accuracy of our offline symbolic taint

analysis in the task of software attack detection. To this
end, we test ten recent software vulnerabilities using a set of
exploits listed in Table 1. These test cases are chosen from
CVE vulnerability data source4 with two criteria: 1) It is
easy to mark the locations of taint sinks in the binary code
so that we can count the tainted bytes at the same place;
2) we have exploits that can trigger these vulnerabilities
(not all the CVE vulnerabilities have related exploits). All
of these applications are compiled with the option “gcc -
O2”. Taking these exploits as inputs, we apply StraightTaint
on each application and check taint tags at various taint
sinks (e.g., function return value). In all cases, StraightTaint
successfully detects the attacks without false negatives. At
the same time, we count the number of tainted (or symbolic)
bytes at the end of taint analysis. We compared StraightTaint
with Log-all and Pure SE. Log-all means recording complete
runtime data (e.g., each memory address and control transfer
target) during online logging, and then use the data for
offline taint analysis. Log-all represents vanilla decoupled
offline taint analysis, but its result is accurate. Pure SE does
symbolic taint analysis but without concrete execution state
initialization (see Section 4.2) and memory reference address
resolution (see Section 4.3). As shown in Table 1, the taint

3SPEC2006’s reference workload is too huge for FlowWalker
to work out the result in reasonable time.
4http://www.cvedetails.com/
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Table 1: StraightTaint successfully detects various intrusions with the listed exploits.

Program Vulnerability CVE ID
# Taint (Symbolic) Bytes

Log-all StraightTaint Pure SE
nginx validation bypass CVE-2013-4547 45 45 1,035

mini httpd validation bypass CVE-2009-4490 66 66 2,706
libpng denial of service CVE-2014-0333 72 80 2,256
gzip integer underflow CVE-2010-0001 94 94 6,490

tiny server validation bypass CVE-2012-1783 125 131 12,171
coreutils buffer overflow CVE-2013-0221 252 272 –

libtiff buffer overflow CVE-2013-4231 268 280 –
waveSurfer buffer overflow CVE-2012-6303 384 384 –

grep integer overflow CVE-2012-5667 608 644 –
regcomp validation bypass CVE-2010-4052 1,124 1,186 –
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Figure 11: Normalized slowdown when the number
of taint tags varies.

bytes added by StraightTaint is quite close to the Log-all.
StraightTaint introduces additional taint bytes to 6 cases, but
no one is beyond 5%. Most likely, our conservative approach
to dealing with symbolic memory indices results in the small
additional taint bytes. In contrast, symbolic taint analysis
with a completely unconstrained initial state (pure SE) incurs
taint variable explosion. Pure SE fails in the last 5 test cases
due to quickly reaching the memory capacity. Note that we
also identify 14 code segments which can fail DTA tools with
incomplete taint propagation strategies. One such example
has been shown in Figure 6. In contrast, StraightTaint’s
full-featured offline taint analysis succeeds in all cases.

At last, we show that StraightTaint can support multi-tag
taint analysis naturally. We test a lightweight web server,
thttpd,5 with a 400-byte size HTTP request as input. The
X-axis numbers in Figure 11 represent different taint tags
we assigned: 1 taint tag indicates the whole 400 bytes are
labeled as a single taint tag; 2 taint tags means that the
first 200 bytes are labeled as one taint tag and the next 200
bytes are labeled as another one; 400 taint tags means each
input byte is associated with a different taint tag. Following
the similar style, we vary the number of taint tags in each
round. At the same time, we compare two DTA tools
(Temu [52] and Dytan [14]) which also support multi-tag
taint analysis. The baseline for each tool is their single-
tag version. As shown in Figure 11, it is apparent that as
the number of taint tags increases, both Temu and Dytan
imposes high additional overhead; while StraightTaint only
introduce 1.48X showdown in the worst case. Please note
that this evaluation demonstrates StraightTaint’s another
notable feature: once a log is captured, it can be analyzed
multiple times. In our multiple round testing, StraightTaint
only needs to record the required data once and performs

5http://acme.com/software/thttpd/

the different multi-tag propagation rounds on top on the
straight-line code. By contrast, both Temu and Dytan have
to rerun at each round.

6. CASE STUDY: ATTACK PROVENANCE
ANALYSIS

Because of the offline analysis property, StraightTaint is
an ideal fit for ex post facto security applications. In this
section, we demonstrate the merit of StraightTaint with a
case study of attack provenance investigation. The goal is
to reveal the provenance of intrusions or suspicious events
(e.g., information leaks). The previous work [22, 24] did
this by generating causal graph linking root causes and
suspicious events. Certainly DTA can be utilized to precisely
generate causal dependence between taint source and taint
sink. We show that StraightTaint is able to get a similar level
of precision as DTA with multi-tag backward propagation.
The test case is wget,6 an open source tool for retrieving
files from web. We execute wget with the command “wget
www.google.com www.bing.com”.

As shown in Figure 12, wget receives two URLs as
command line arguments and then downloads their respective
index.html files (index1.html is from www.google.com and
index2.html is from www.bing.com). Supposing we have
already got these two downloaded files, an interesting
question is“which exact URL are they derived from?” “google,
bing or both?” Apparently DTA can precisely identify
such mappings by forward taint tracking with multiple tags.
Please note the pseudo-code of Figure 12: two files are
generated subsequently when the loop is unrolling. As a
result, static taint analysis, without runtime information,
fails to identify causal relations between sources and sinks.

We take the input buffer of fwrite, which is used to
generate HTML file, as symbolic taint sinks. Then we
apply StraightTaint for backward tainting along the straight-
line trace. Of course without runtime values and inputs,
StraightTaint is unable to exactly correlate the concrete
URL to its corresponding file. However, compared to
pure static approaches, StraightTaint catches conditional
causal relationships between two sinks and sources: the first
downloaded file is derived from the first URL input and the
second one is related to the second URL. Another benefit of
StraightTaint’s conditional tainting is that we are possible
to directly map previous taint analysis results to new inputs
and runtime values. For example, supposing new command
for wget is “wget www.bing.com www.google.com”, with the
previous conditional causal relationship, we can get the exact
mappings immediately without running DTA again.

6http://www.gnu.org/software/wget
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www.google.com www.bing.com

index1.html index2.html

wget

 /* convert links to local files */

 int count = sizeof(downloaded_set)

 for(i=0; i<count; i++)

 {

     convert_links (file, url);

 }

Figure 12: Causal relationship between two sinks
and two sources.

7. RELATED WORK
Decoupling Dynamic Taint Analysis. To address the

performance bottleneck of dynamic taint analysis (DTA),
two major approaches have been proposed to decouple
taint analysis from program execution. The first category
parallelizes dynamic taint analysis by delivering the needed
runtime values to another core, in which the taint analysis is
running [18, 19, 31, 40, 27]. DECAF [18] extends Temu [52]
to support asynchronous heavyweight taint propagation.
However, DECAF does not show the performance gains
introduced by its asynchronous tainting. TaintPipe [27]
parallelizes DTA in a pipeline style. Because of the strict
synchronization requirement, some tools in the first category
adopt incomplete taint propagation strategies to catch
up the application execution. The second direction, like
StraightTaint, first records the application execution and
then replay the taint analysis on a different CPU [15,
42, 45, 48]. The most related work to StraightTaint
is FlowWalker [15], which also uses Pin to record CPU
context, and then performs a multi-tag assembly level taint
propagation offline. However, StraightTaint reveals two
distinct advantages. First, we design a more compact
profile structure and multithreaded fast buffering scheme
to parallelize the runtime data logging. Second, our offline
taint analysis is performed on a side-effect free intermediate
language instead of cumbersome x86 instructions. As
demonstrated in our evaluation, StraightTaint outperforms
FlowWalker with better performance and accuracy.

As we have pointed out, due to the large amount
data in exchange, the two approaches mentioned above
may not achieve the expected performance improvements.
Recently, ShadowReplica [19] alleviates such communication
overhead by performing an advanced static analysis to remove
redundant taint logic code. As a result, it achieves a
decent performance in the evaluation. Our work differs
from ShadowReplica in that StraightTaint does not depend
on fine-grained static analysis of binary code. Therefore,
StraightTaint can be applied to reverse engineering tasks
such as malware analysis [7, 51] and code deobfuscation [49].

Dynamic Symbolic Execution. Another related area
to StraightTaint’s offline taint analysis is dynamic symbolic
execution, namely concolic testing [4, 10, 9, 17], a method
of combining concrete execution with symbolic execution.
StraightTaint is similar to the concolic testing in that we map
symbols to taint seeds and then perform the symbolic taint
analysis along a recorded execution trace. Also, StraightTaint

can benefit from symbolic execution optimization work
to speed up taint analysis, such as memoized symbolic
execution [50]. However, we have different goals. Dynamic
symbolic execution is mainly for automatic input generation
to explore more paths while our primary interest lies in
accurate taint analysis on the straight-line code. In addition,
concolic testing relies on complete runtime information while
StraightTaint only depends on limited runtime information.
The recent work, Hercules [34], also mentions the idea of
using symbolic execution for precise taint tracking. However,
StraightTaint has a strikingly different purpose with Hercules.
Hercules is for reproducing crashes in benign application
binaries; while StraightTaint is designed to speed up reverse
engineering tasks on binary code.

8. DISCUSSIONS AND CONCLUSION
StraightTaint is a prototype to demonstrate that com-

pletely decoupling dynamic taint analysis is feasible. The
performance of online logging and offline taint analysis can
be further improved. Currently, the upper bound of online
logging performance that we can achieve is restricted by Pin’s
environment runtime overhead. One of our future work is
to leverage the advanced binary reassembling development
toolkits such as Uroboros [43] so that we can insert the
taint tracking code directly into the disassembled code and
then compile it to the binary code again. In this way, we
can remove DBI’s environment overhead. StraightTaint’s
offline taint analysis is as fast as, but not faster than, DTA
on average, since in StraightTaint the semantics of taint
operations are simulated. One future work to speed up
offline taint analysis is to construct a recompilable straight-
line program from execution trace. As a result, we can
apply another round of DTA directly on the straight-line
program. Currently, StraightTaint works on sequential
programs. To support taint analysis for multi-threaded
programs, we have to carefully handle the complicated inter-
thread taint propagation, such as concurrent accesses to
shared locations and corresponding taint tag updates. We
plan to explore these directions in future.

We have presented StraightTaint, a novel technique for
completely decoupling dynamic taint analysis for offline
symbolic taint analysis. Unlike previous approaches, Straight-
Taint does not rely on complete runtime values or inputs,
which enables very lightweight logging and much lower online
execution slowdown. StraightTaint can also support full-
featured, multi-tag, and bit-level taint analysis with low
extra overhead. We have evaluated StraightTaint on a set of
applications such as utility programs, SPEC2006, and real-life
software vulnerabilities. The results show that StraightTaint
can rival dynamic taint analysis at a similar level of precision,
but with a much lower online execution slowdown and more
flexible functionalities. The experimental evidence indicates
that StraightTaint can be applied to speed up various ex
post facto security applications with full-featured offline taint
analysis.
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