
139© Springer Nature Switzerland AG 2020
C. J. Anumba, N. Roofigari-Esfahan (eds.), Cyber-Physical Systems in the Built
Environment, https://doi.org/10.1007/978-3-030-41560-0_8

Chapter 8
Model Checking – Case Study
of a Temporary Structures Monitoring
System

Dongpeng Xu, Xiao Yuan, Dinghao Wu, and Chimay J. Anumba

8.1  �Introduction

Model checking or property checking is a formal computer science method for eval-
uating the extent to which a model meets a given specification. This involves using
appropriate symbolic algorithms to traverse the model and check if the specifica-
tions, typically expressed as temporal logic formulas, are met. The effectiveness of
cyber-physical systems is dependent largely on how well the cyber and physical
elements work together. In such systems, any inconsistencies in the system model
could result in either failure or unintended consequences. In this chapter, we present
a case study of the model checking of a CPS-based temporary structures monitoring
system, which was the presented in detail in Chap. 7. We use model checking to try
to detect the vulnerabilities in the system. The case study shows that model check-
ing can identify vulnerabilities in a CPS-based system and help developers fix the
vulnerabilities.

D. Xu
University of New Hampshire, Durham, NH, USA
e-mail: dongpeng.xu@unh.edu

X. Yuan
Pacific Asset Management Co., Ltd., North Bergen, NJ, USA
e-mail: yuanxiao-006@cpic.com.cn

D. Wu (*)
Pennsylvania State University, University Park, PA, USA
e-mail: duw12@psu.edu

C. J. Anumba
College of Design, Construction and Planning, University of Florida, Gainesville, FL, USA
e-mail: anumba@ufl.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41560-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-41560-0_8
https://doi.org/10.1007/978-3-030-41560-0_7
mailto:dongpeng.xu@unh.edu
mailto:yuanxiao-006@cpic.com.cn
mailto:duw12@psu.edu
mailto:anumba@ufl.edu

140

8.2  �Temporary Structures Monitoring System

With the objective of real time and remote inspection of temporary structures,
Temporary Structures Monitoring (TSM) system has been developed based on the
principles of Cyber-Physical System (CPS). The development of the TSM involves
the selection of hardware, such as data acquisition (DAQ) instruments, physical
temporary structures, and software environments, such as virtual modeling system,
DAQ system for data calibration and transmission, database for data storage, and
the communication network. These are fully described in Chap. 7 and by Yuan
et al. (2016).

8.2.1  �System Design

The CPS-based TSM system in our case study consists of physical temporary struc-
tures and their virtual models, which are integrated through a CPS bridge. The
architecture of TSM system is shown in Fig. 8.1. In general, the physical and cyber
system is connected through the CPS bridge, which enables the mutual

Fig. 8.1  System architecture of CPS-based TSM system

D. Xu et al.

https://doi.org/10.1007/978-3-030-41560-0_7

141

communication between the physical structures and the computing system. In par-
ticular, the CPS bridge is supported by the DAQ system and on-cloud database for
information collection and exchange; from the physical to cyber system, DAQ sys-
tem works in transforming information from temporary structures to their virtual
model; from the cyber to physical system, the potential hazards of the physical
structures will be identified and located in the 3D model, and then communicated to
the project managers and safety supervisors through portable devices to take actions
to prevent potential accidents.

Generally the prototyping system works in the way that first of all the DAQ sys-
tem attached to the temporary structures continuously collect and sends information
to the database; second, the CPS-based TSM system conducts structural perfor-
mance analysis every 2 seconds; third, if potential structural failure has been identi-
fied, the 3D model will highlight the corresponding components in alarming color.
To guarantee timely communication of the potential hazards, the warning message
will also be sent to the construction workers and other safety supervisors through
portable devices for immediate attentions. Based on the warning information of
potential location and causes of problems, the construction workers and project
managers shall take corresponding actions to prevent temporary structures acci-
dents. The system workflow is displayed in Fig. 8.2.

Fig. 8.2  System workflow

8  Model Checking – Case Study of a Temporary Structures Monitoring System

142

8.2.2  �System Operation of CPS-Based Temporary
Structural Monitoring

As shown in Fig. 8.3, the TSM system prototype enables the interaction between
temporary structures and computing system through a virtual model platform,
which is developed as a plug-in at Autodesk Navisworks. This plug-in is named as
“CPS Monitor”. The user-interface of the TSM system consists of the 3D model of
temporary structures and the table of property of each component. By clicking the
tool button of “CPS Monitor”, the window of TSM system appears with the value
of warning threshold and system log window presented. The threshold value for
each component is identified based on several criteria, including official regulation,
practical concerns as well as the capability of the materials used. In particular, the
threshold value of the inclination of each component is set according to the require-
ment of safety managers based on their project experience. The loading threshold is
identified based on the component capability specified by the manufacturers’ guide
while the threshold value of base settlement is based on practical concerns, as the
disconnection is an obvious signal indicating the base settlement. The threshold
value for plank displacement is set according to the OSHA regulation. For user-
friendly consideration, the threshold value is updated and saved based on the last
record. Users can modify the threshold value frequently at their convenience. By
clicking the “start” button, the TSM system evaluation of temporary structures
starts. In general, the information is updated every 2 seconds continuously to check
the change of temporary structural integrity. Base on the evaluation result, the TSM
system responds correspondingly if potential hazards have been identified. At the
virtual model, the components in question will be highlighted with alarming color
for immediate attention. To make sure all the workers have received the warning

Fig. 8.3  User interface of CPS-based TSM system

D. Xu et al.

143

message, the log window close to the virtual model demonstrates the working prog-
ress of the system indicating if the warning messages have been sent to the workers
on the construction job site (as shown in Fig. 8.4). Take the base settlement of a
frame scaffold for example; one can easily noticed that there is a potential problem
due to the structural deficiency of one scaffold post (highlighted in red). Meanwhile,
for the end users carrying portable devices, alarms along with detailed information
of the structure deficiencies will be displayed through the mobile app of “TSM”
installed in the portable devices. For a quick view of the potential problem, a picture
of the 3D model with highlighted components in alarming color will be presented
with a few text message stating the components in problem (as shown in Fig. 8.4).
If the end user wishes to have detailed information, he or she can tap the button of
“detail”, which then displays the analysis of structure performance of each compo-
nent (as shown in Fig. 8.5). In this case, the construction workers can immediately
understand that the structure deficiency of the post is due to the ground settlement
of post 1. With this information, the end users are expected to have a better under-
standing of the hazardous situation and take corrective actions to address potential
structural failures and injuries.

8.3  �Model Checking CPS

Model checking methods are useful for systems that have complicated transition
relations. The design of CPS is one of these situations. There are some existing
work on CPS verification using model checking related techniques. Akella and
McMillin (2009) encode the physical system properties into a discrete event system
and the CPS is described using the Security Process Algebra. Then the authors
apply a model checking called CoPS to check the system’s security against all high
level potential interactions. At last, they verify a model problem of invariant

Fig. 8.4  Warning instructions at the 3D virtual model

8  Model Checking – Case Study of a Temporary Structures Monitoring System

144

pipeline flow. In this paper, we use temporal logic model checking to verify and
improve a CPS model. Compared to their method, our work is more general to
check more potential bugs in a cyber-physical system.

Clarke and Zuliani (2011) apply statistical model checking to CPS verification.
Statistical model checking combine the Monte Carlo method with temporal logic
model checking. It samples the behaviors of the system model, check their consis-
tency with the temporal logic formula, and finally calculate an approximate value
for the probability that the formula is satisfied. The authors successfully verified a
fuel control system for a gasoline engine as a CPS example. Different from this
work, we use conventional model checking rather than statistical model checking,
so our method verifies all system behaviors.

Bu et al. (2011) propose that instead of offline modeling and verification, many
CPS should be modeled and verified online. The authors focus on the system’s time
bounded behavior in short-run future, which is more describable and predictable.
They study two cases of their ongoing projects, one on the modeling and verifica-
tion of a train control system, and the other on a Medical Device Plug-and-Play
(MDPnP) application to show that fast online modeling and verification is possible.
Compared to their method, our research has different application focus. The CPS in
our research does not develop fast. Moreover, we introduce model checking during
the process of CPS design and improve the design in several iterations.

Fig. 8.5  Warning instructions at the portable devices

D. Xu et al.

145

There are also other research work (Derler et al. 2012; Karsai and Sztipanovits
2008; Bhave et al. 2011; Banerjee et al. 2012) involving modeling cyber-physical
systems. These works mentioned the possibility of applying model checking to veri-
fying CPS, but did not propose a detailed method. In our research, we describe a
concrete method to build and verify a CPS model, and provide a case study to show
the model checking procedure in a temporary structures monitoring system.

8.4  �Spin: The Model Checker

Model checking is a formal method for automatically verifying whether a system
meets a set of properties. Model checking tools, such as SMV (Clarke 2009),
NuSMV (Cimatti et al. 2000), Spin (Holzmann 1980), and Java Pathfinder (Visser
et al. 2003), have been widely applied in verification of hardware and software
systems.

Spin (Holzmann 1980) is a widely used model checker. It was originally designed
for verifying communication protocols and gradually grows into a powerful verifi-
cation tool. It is often used to check concurrent systems such as multi-thread soft-
ware or distributed systems.

Spin is often applied to verify the logic consistency of concurrent systems, which
is described using Promela (Holzmann 2004), the specification language for Spin.
People use Promela to model the communication between different processes. For
ease of understanding the TSM system model written in Spin, we briefly introduce
the core part of the Promela language and how to write the specification in Spin. We
only present the essential components that is related to the model in this chapter.
More details are included in reference books such as Holzmann (2004). In addition,
there are many textbooks about verification of systems by formal methods checking
(Huth and Ryan 2004; Manna and Pnueli 2012a; Manna and Pnueli 2012b; Roscoe
1997; Holzmann 2007). A Promela model usually includes the following parts:

	1.	 Variable declarations
	2.	 Process declarations
	3.	 Initial process

Figure 8.6 shows an overview of a typical Promela program. Line 1 and 2 declare
variables a and b and initialize them. a is an integer variable which is initialized to
0. Similarly, b is a Boolean variable that is initialized to one. Line 4–12 declares two
process called Foo and Bar. In Spin, a process is a function that can execute concur-
rently with all other processes. Line 14–17 define the initial process for launching
processes. We will explain more details about the Promela language in Sect. 8.4
when describing the model of the temporary structural monitoring system.

As mentioned before, model checking method is to automatically verify whether
M �,s φ holds, in which  refers to the model described using Promela. We also
need to use a formal notation to present the properties ϕ. As a practical model
checker, Spin provides several properties that can be checked, such as assertions,

8  Model Checking – Case Study of a Temporary Structures Monitoring System

146

deadlock, linear temporal logic (LTL) formulas and unreachable code. In this chap-
ter, we only use assertions and LTL formulas to specify the properties. The syntax
of assertion statement is assert (<expr>). If the expression expr is evaluated to a
non-zero value, the assertion statement is passed; otherwise, Spin will terminate and
report an error. Moreover, Spin has its own syntax for LTL formulas as follows:

	1.	 [] P: Always P, which corresponds to the G ϕ predicate in LTL.
	2.	 <> P: Eventually P, which corresponds to the F ϕ in LTL.
	3.	 P U Q: P is true until Q becomes true, which corresponds to the ϕ1 U ϕ2 predi-

cate in LTL.

8.5  �Modeling the Temporary Structures Monitoring System

This section presents the model checking process and result. We use the Spin model
checker (version 6.4.3) released in December 2014. In our implementation, each
time when Spin report one property does not hold, the checking process stops and
will not continue checking the following properties. It is because that usually one
bug leads to multiple violations of the properties. The violation report for one prop-
erty is enough for the designers to fix the problem. Moreover, reporting one viola-
tion each time helps designers focus on one bug each time to save their effort
and time.

In this case study, we apply the model checking technique as follows. First, the
designers provide us with the initial version of the system design, which is called
“Design A.” Then we encode it as a Spin model, which is called “Model A”. We also
implement the properties in Spin. After that, we run the Spin model checker to

Fig. 8.6  Promela program overview

D. Xu et al.

147

check Model A. The checking result shows whether each property passes or not. For
the failed test, Spin provides a counterexample and the related backtrack informa-
tion. We return the checking result to the designers and they confirm whether the
counterexample is a real bug. If it is confirmed, the designers will fix them and
update the system design to “Design B.” After that, we also update the model to
“Model B” accordingly. Note that the properties remain the same during the whole
model checking procedure. Therefore, we ran Spin again to check the Model B. The
checking and revising procedure was repeated until the model passed the model
checking for all properties.

Table 8.1 shows the model checking result. The first column presents the models
that are built based on different versions of the CPS-based TSM system design. The
second to the fourth columns shows the model checking result on different proper-
ties. “X” means the corresponding property holds in that model and “√” means it
does not hold. “-” represents that the property is not verified in that model. We
reported the violated properties to the designers and they confirmed that they are
real bugs in the corresponding design. The following sections provide the details of
our discovery and the fix approach in each design and model.

8.5.1  �Overview

This section presents the model to describe the cyber-physical system. As shown in
Fig. 8.4, the TSM system is a scaffold monitoring system. The left part is a panel
that receives the user’s input to configure the threshold for the inclination, loading
and so on. The log frame displays the checking ongoing status. Besides, there are
“start” and “stop” buttons at the bottom. Users can click them to start or stop the
checking procedure. The right part in Fig. 8.4 shows a simulation picture of the scaf-
fold. The TSM system will highlight the component in red color when it is likely to
be dangerous; otherwise, it will show the safe component in blue. The TSM system
includes sensors placed on the scaffold, which are able to monitor the bending,
loading, and other features of a component. The checking procedure periodically
fetches data from sensors and then analyzes the data to see whether they exceed the
configured threshold.

Table 8.1  Model checking result

8  Model Checking – Case Study of a Temporary Structures Monitoring System

148

8.5.2  �Design A

In this section, we describe the initial design of the TSM system, which is called
“Design 1” in this case study. This is the first version the system designers gave to
us. The pseudo code in Fig. 8.7 shows “Design A”. In this chapter, we use pseudo
code (Fig. 8.7) to present the design and use Spin code to show the model in Spin
(Fig. 8.8). In Fig. 8.7, the function ClickStart is triggered when users click the start
button. Similarly, ClickStop is triggered when clicking the stop button. Thread T()
implements the monitoring functions in a while loop. The thread test the global vari-
able S before each round of monitoring. It ends monitoring when S equals zero.
Therefore, ClickStart and ClickStop set S to start or stop the monitoring thread T().

As shown in Fig. 8.7, there are two global array variables: pre_states and cur_
states. cur_states stores the current risk states of each component and pre_states
stores the risk states in the last round of monitoring. They are used to implement the
monitor function in line 23 and 24 in Fig. 8.7. Here we briefly describe how it
works. First, the monitoring thread T() fetch data from the sensors and store them in
a system buffer. Then T() check each component’s data with the threshold and
update the array cur_states accordingly. The monitoring thread sends an alarm when
the cur_states of one component is true and the pre_states is false, which means the
risk is happening. At the end of each round of monitoring, all states in cur_states are
copied to pre_states.

Fig. 8.7  The initial design of the TSMS

D. Xu et al.

149

We build a model checker in Spin to simulate “Design A.” The Promela model is
shown in Figs. 8.8 and 8.11, which is called “Model A.” Figure 8.8 presents how the
global variables and the monitor process T() is modeled in Spin. Figure 8.11 shows
the model of the function ClickStart and ClickStop. The code is clearly aligned and
the variables’ name are consistent with those in “Design A.” However, the syntax of
Promela might lead to some trouble to understand the code. We briefly explain the
code as follows.

In Fig. 8.8, line 1 to line 9 define several global variables. The syntax of variable
declaration in Promela is the same as that in the C programming language. Variables
can be initialized with an initial value when being declared. Basic type variables are
initialized with 0 as the default initial value. Promela supports plenty of types such
as byte, integer, Boolean, array, record and so on. We only introduce those types that
appear in this chapter. The language menu provides a full description of the types in
Promela. Line 1–3 in Fig. 8.8 define the corresponding global variables in the
TSMS. Line 5–9 defines several global variables for checking different properties.
For instance, critical indicates that the monitoring thread enters an area that could
cause race condition problem. It is because T() and ClickStop both have the capabil-
ity to modify the content in pre_states and cur_states. num refers to the number of
thread T() at the same time. Connection simulate the network connection. Alarm
means whether the system sends an alarm.

Fig. 8.8  Global variables and T() in Model A

8  Model Checking – Case Study of a Temporary Structures Monitoring System

150

Lines 11–29 define the monitoring process T(). A process is a function that can
execute concurrently with all other processes. Since Spin is originally designed to
check communication protocols, which usually involve sending and receiving mes-
sages between two independent machines, the process concept naturally simulates
the communicating subjects. A process is defined by the proctype keyword. Each
process can have its own local variables and execution status.

The do loop from line 14–26 in Fig. 8.8 simulates the monitoring procedure. do
statement is the loop statement in Promela. Inside the loop, line 17–22 use a branch
statement to handle the different situations when the network is connected or not.
The branch statement and loop in Spin have a similar form, which is shown in
Figs. 8.9 and 8.10. For the branch statement, there are n branches in one if state-
ment. Each branch includes a guide cond_n and the following statements stmt_n_1;
stmt_n_2; … . If at least one guide is evaluated to a non-zero value, Spin will non-
deterministically choose one branch to execute. The else branch will be executed if
all other guards are zero. Moreover, as shown in Fig. 8.10, the loop statement in
Promela looks similar to the branch statement, except replacing the keyword if with
do. The difference between do statement and if is that, do statement continues the
next round of execution after running one branch. A break statement can exit a do
loop and transfers the control flow to the end of the loop.

In the do loop in Fig. 8.8, we ignore the trivial details such as fetching data from
sensors since they are not the key parts for model checking. We only use two assign-
ments to abstract the procedure of updating pre_states and cur_states. The variable
started is used to synchronize ClickStart and ClickStop, because in the TSM system
design, users are not able to click the start button or modify any inputs in the panel
when T() is already running. Therefore, started is used to simulate the operation to
enable or disable all inputs in the panel.

Figure 8.11 shows the remaining part of Model A. ClickStart sets S to 1 and then
run the monitoring thread T() and ClickStop set S to 0 and flush pre_states and

Fig. 8.9  If statement
in Promela

Fig. 8.10  Do statement
in Promela

D. Xu et al.

151

cur_states. Moreover, since flushing pre_states and cur_states in ClickStop could
cause race conditions with other threads, we also put critical update operations
around for future checking.

Figure 8.12 shows the state transition diagram of Model A. The diagram shows
that even a relatively simple model can have many states with complicated relation
between them. It is very difficult for human to enumerate and track each path in the
state transition system. Therefore, automated model checking approach is helpful to
solve this problem. In this state transition diagram, each state contains every vari-
able and its value. Due to the page limitation, we only show several example states
here rather than the description of every state. For instance, s1 is the initial state. All

Fig. 8.11  ClickStart and ClickStop in Model A

Fig. 8.12  The state transition diagram of Model A

8  Model Checking – Case Study of a Temporary Structures Monitoring System

152

variables in s1 is 0 except connection. For simplicity, we ignore those variables
whose value equals to zero. Thus s1 can be represented as {connection = 1}.
Similarly, s2 is {connection = 1, started = 1}.

8.5.3  �Properties

So far, we have introduced the initial design and model we used to describe the TSM
system. In this section, we present the specifications used to check the model. The
TSM system is a multi-process system, so common problems such as race condition
need to be checked. Moreover, we discuss with the TSM system designers to select
a set of properties based on the following two criteria. First, they are true properties,
which means they should hold during the execution of the TSM system. Second,
they are security related. Violation of these properties will cause severe bugs hap-
pen. Generally, we check the properties as follows:

	1.	 (critical==0 && started==0 && S==0) U (S==1): The TSMS is
stopped initially until it is started at the first time. This property is used to check
whether the initial values are set correctly. S = 0 means the monitoring thread is
not stated. Therefore, this property ensures that the global variables critical and
started are initialized correctly.

	2.	 [] (critical! = 2): Critical region is the part of a thread that involves
update a global variable shared with other threads. Obviously, only one thread
can run its critical region at the same time. The variable critical is increased
when entering the critical region and decreased when exiting. Thus critical
should never equal to 2 during the run time of the system.

	3.	 [] (thread_num < = 1): By the design of the TSMS, only one monitoring
thread T() executes at the same time. Since there is no lock for the global vari-
ables such as cur_states and pre_states, running T simultaneously could cause
race condition. The variable thread_num counts the number of T() running at the
same time, so it should not be greater than 1.

	4.	 [] (connection==0 - > alarm==1): This property checks that the
TSMS should send an alarm, when the network is disconnected. Connection
equals 0 when the network is disconnected and alarm equals 1 when the system
is sending an alarm.

8.5.4  �Check Design A

As shown in Table 8.1, Model A passes in the model checking of property 1 how-
ever fails in that of property 2. Property 1 means that the global variables are cor-
rectly initialized. The violation of property 2 indicates that there are multiple threads
entering the critical region at the same time. Spin is able to print the counterexample

D. Xu et al.

153

for the violated property. Furthermore, Spin can show the state transition path on
how to reach the counterexample. Figure 8.13 shows one path to reach the race
condition that violates property 2. First, thread ClickStart is executed until line 9 in
Fig. 8.11 then invoke the monitoring thread T(). Next, T() is executed to line 21 in
Fig. 8.8. Finally, ClickStop is invoked and runs until line 23 in Fig. 8.11. Obviously,
the thread T() and ClickStop both reach the critical region to modify the content of
cur_states, which will cause the race condition. At the line 20 in Fig. 8.13, the vari-
able critical equals to 2. Therefore, this counterexample triggers the violation of
property 1: [] (critical! = 2).

We reported the counterexample and the path to the TSM system designers and
they confirmed that this is a real bug in the system design. This bug means clicking
stop button could lead to flushing the pre_states and cur_states when checking the
status of the scaffold, and thus the TSM system could miss some risky situations. In
order to fix this bug, the designers moved the flushing operation from ClickStop to
the end of T(). Therefore, only T() is able to update the pre_states and cur_states and
the race condition is eliminated. Figure 8.14 shows the updated design, which is
called “Design B” in our case study. Due to space limitations, when presenting the
updated design in each round of model checking, we only show the parts that are
different from the previous design and the comments in the code indicate the modi-
fication. For instance, as shown in Fig. 8.14, the designers only updated the function
ClickStop and T(). We follow this style to present each updated design in the rest of
this chapter.

Fig. 8.13  The path to produce the counterexample in Model A

8  Model Checking – Case Study of a Temporary Structures Monitoring System

154

8.5.5  �Check Design B

This section show the second iteration of the model checking procedure. After get-
ting the “Design B” from the designers, we revise the model to reflex the updates.
Figure 8.15 shows the updated model, called “Model B.” Due to the page limitation,
we only show the updated part of the model to show the difference between the cur-
rent and the previous model.

We run Spin on “Model B” and find it passes the first and second properties.
However, it violates the property 3, which indicates that multiple monitoring thread
T() could run simultaneously. Similarly, we get a counterexample path from Spin.
Due to the page limitation, we only describe the key point in the path rather than
present the full-length path here. Briefly speaking, the property is violated when the
user clicks the stop button and then quickly click the start button. Since in “Design
B”, clicking stop button enables all the input in the panel, users are able to click the
start button before the monitoring thread T() exit. More specifically, when quickly
clicking the start button after the stop button, the global variable S will be set to 0
and then set to 1 again. If this situation happens in one iteration of the loop in T(),
the loop will not exit so the thread T() will not terminate. However, a new T() is
started by ClickStart. Therefore, multiple monitoring thread T() are running in the
TSM system, which violates the property 3.

Again, we reported the model checking results to the TSM system designers
and they confirmed that this is a real bug. Multiple monitoring thread running
simultaneously will cause the TSMS to send repeated tedious alarms. Moreover,
in our counter example, there are only two T() running at the same time. In fact,
this bug could cause much more T() running simultaneously, which could lead to
a system crash. The designers carefully fixed the bug. They disabled all inputs in
the panel until the monitoring thread T() exits. The fixed version is “Design C.”
Figure 8.16 shows the updated part in “Design C.” The changed parts are ClickStop
and T().

Fig. 8.14  The updated
part in Design B

D. Xu et al.

155

8.5.6  �Check Design C

We repeated the model checking procedure on “Design C”. First, we revised the
“Model B” according to the update in “Design C”. The new model is “Model C”.
After that, we ran Spin to model check it. This time the first three properties passed
but the last property failed. Similar to the previous sections, we obtained the output
of Spin and reported it to the designers. Since the whole procedure is similar to the
previous rounds of model checking, we skip the description of the steps and only
describe the bug we found. The bug detected in the third round of model checking
was the lack of network connection checking. When the network is disconnected,
the TSM system runs as usual without sending any alarms. However, since the

Fig. 8.15  The updated part in Model B

8  Model Checking – Case Study of a Temporary Structures Monitoring System

156

scaffold status is transmitted via the network, the TSM system could not check the
status without the network. This bug could let users think the TSM system is run-
ning normally when the network is down, while the TSM system is actually not able
to find any risk.

We reported the bug to the designers and they added network connection check-
ing to the loop in T(). The updated version is “Design D” see Fig. 8.17.

8.5.7  �Final Design

So far, we ran three rounds of model checking and improved the TSM system design
iteratively. As before, we continued to update the model and model check the new
model again. Finally, Model D passed all the properties checking. Therefore, as
shown in Fig. 8.18, “Design D” is the final version during the model checking aided
design procedure.

Fig. 8.17  The updated part in Design D

Fig. 8.16  The updated part in Design C

D. Xu et al.

157

8.6  �Discussion

Generally speaking, we identified three bugs by iteratively model checking the TSM
system as follows:

	1.	 Multiple threads modify the same array without any lock.
	2.	 Multiple monitoring threads are invoked simultaneously, which will cause racing

problems.
	3.	 The TSM system does not send any alarm when the network is down.

Since Spin is able to provide the counterexamples to trigger those bugs, the design-
ers and we can easily reproduce them. Note that it significantly reduces program-
mers’ workload, because usually reproducing a bug is the most difficult and
time-consuming step when debugging a program. In our case study, the model
checking tool prints the program path to reach each bug. We verified the path and
then sent them to the TSM system designers. They found those paths were very
helpful when trying to reproduce the bugs. The designers fixed each bug and patched
the source code as follows:

Fig. 8.18  The final design of TSM system

8  Model Checking – Case Study of a Temporary Structures Monitoring System

158

	1.	 Rewrite the ClickStop thread to avoid writing to the same buffer
simultaneously.

	2.	 Disable all inputs in the panel until the monitoring thread exits to avoid creating
multiple monitoring threads.

	3.	 Add a function to check network connection.

In this work, we acquired important experiences about model checking a cyber-
physical system. First, we realized that critical bugs do exist in cyber-physical
systems, even in those that look as simple as the temporary structures monitoring
system in our case study. We really did not expect to detect three defects in such
a simple system. The reason is that usually a simple system consists of a large
number of states and paths, especially when the system involves concurrent exe-
cution. It is quite difficult for the designers to enumerate and track every path to
see whether it will lead to a security problem. Model checking is exactly the
approach to solving this problem. Modern model checkers such as Spin are able
to enumerate, search and verify whether the model meets a set of properties in a
very short time.

The second experience is the importance of the iterative model checking proce-
dure. After each round of model checking, we returned the results to the designers,
and they fixed it. We then updated our model accordingly and checked the new ver-
sion again. The iterative model checking prevented the potential bugs introduced by
the patch of the previous version. The repeated “checking-fixing” procedure gradu-
ally improved the design of the system.

8.7  �Conclusions

Cyber-Physical Systems (CPS) have been widely used in different domains recently.
The safety and robustness of CPS are becoming more and more important, attract-
ing the attention of researchers. In this chapter, we presented a model checking
method to verify and improve the design of CPS. In particularly, we used a tempo-
rary structures monitoring system (TSM system) as a case study. First, we worked
with the designers to abstract the state transition system and properties. Second, we
built a model to encode the TSM system and specification. After that, we ran the
model checker to check whether the properties hold in the model. We reported the
model checking results to the designers and they revised the original design accord-
ingly. The model checking and revising procedure repeated until all properties held.
During several rounds of model checking, the designers worked with us gradually
to improve the CPS design. Our case study shows that model checking approach can
help improve the design of CPS and reduce human labor.

D. Xu et al.

159

References

Akella, R., & McMillin, B. M. (2009). Model-checking BNDC properties in cyber-physical sys-
tems. 33rd Annual IEEE International Computer Software and Applications Conference, 1,
660–663.

Banerjee, A., Venkatasubramanian, K. K., Mukherjee, T., & Gupta, S. K. S. (2012). Ensuring
safety, security, and sustainability of mission-critical cyber-physical systems. Proceedings of
the IEEE, 100(1), 283–299.

Bhave, A., Krogh, B. H., Garlan, D., & Schmerl, B. (2011). View consistency in architectures for
cyberphysical systems. In 2011 IEEE/ACM second international conference on cyber-physical
systems (pp. 151–160).

Bu, L., Wang, Q., Chen, X., Wang, L., Zhang, T., Zhao, J., & Li, X. (2011). Toward online hybrid
systems model checking of cyber-physical systems’ time-bounded short-run behavior. SIGBED
Review, 8(2), 7–10.

Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M. (2000). NuSMV: A new symbolic model
checker. International Journal on Software Tools for Technology Transfer, 2(4), 410–425.

Clarke, E.M. (2009): Model checking at CMU. http://www.cs.cmu.edu/~modelcheck/index.html.
Clarke, E. M., & Zuliani, P. (2011). Statistical model checking for cyber-physical systems. In

Automated technology for verification and analysis (pp. 1–12).
Derler, P., Lee, E. A., & Vincentelli, A. S. (2012). Modeling cyber-physical systems. Proceedings

of the IEEE, 100(1), 13–28.
Holzmann, G.J. (1980). Spin: Formal verification. http://spinroot.com/spin/whatispin.html.
Holzmann, G. J. (2004). The SPIN model checker: Primer and reference manual (Vol. 1003).

Boston: Addison- Wesley Reading.
Holzmann, G. J. (2007). Design and validation of computer protocols. Upper Saddle River:

Prentice Hall.
Huth, M., & Ryan, M. (2004). Logic in computer science: Modelling and reasoning about systems.

Cambridge, MA: Cambridge University Press.
Karsai, G., & Sztipanovits, J. (2008). Model-integrated development of cyber-physical systems. In

IFIP international workshop on software technologies for embedded and ubiquitous systems
(pp. 46–54).

Manna, Z., & Pnueli, A. (2012a). The temporal logic of reactive and concurrent systems:
Specification. Springer Science & Business Media.

Manna, Z., & Pnueli, A. (2012b). Temporal verification of reactive systems: Safety. Springer
Science & Business Media.

Roscoe, A. W. (1997). The theory and practice of concurrency. Upper Saddle River: Prentice Hall.
Visser, W., Havelund, K., Brat, G., Park, S., & Lerda, F. (2003). Model checking programs.

Automated Software Engineering, 10(2), 203–232.
Yuan, X., Anumba, C. J., & Parfitt, M. K. (2016). Cyber-physical systems for temporary structure

monitoring. Automation in Construction, 66, 1–14.

8  Model Checking – Case Study of a Temporary Structures Monitoring System

http://www.cs.cmu.edu/~modelcheck/index.html
http://spinroot.com/spin/whatispin.html

	Chapter 8: Model Checking – Case Study of a Temporary Structures Monitoring System
	8.1 Introduction
	8.2 Temporary Structures Monitoring System
	8.2.1 System Design
	8.2.2 System Operation of CPS-Based Temporary Structural Monitoring

	8.3 Model Checking CPS
	8.4 Spin: The Model Checker
	8.5 Modeling the Temporary Structures Monitoring System
	8.5.1 Overview
	8.5.2 Design A
	8.5.3 Properties
	8.5.4 Check Design A
	8.5.5 Check Design B
	8.5.6 Check Design C
	8.5.7 Final Design

	8.6 Discussion
	8.7 Conclusions
	References

