
Large-scale Third-party Library Detection in
Android Markets

Menghao Li∗, Pei Wang†, Wei Wang∗, Shuai Wang†, Dinghao Wu†, Jian Liu∗§, Rui Xue‡§, Wei Huo∗§ , Wei Zou∗§
∗Key Laboratory of Network Assessment Technology, Institute of Information Engineering, Chinese Academy of Sciences, China

†College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
‡State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China

§School of CyberSpace Security at University of Chinese Academy of Sciences, China
{limenghao,wwei,liujian6,xuerui,huowei,zouwei}@iie.ac.cn, {pxw172,szw175,dwu}@ist.psu.edu,

Abstract—With the thriving of mobile app markets, third-
party libraries are pervasively used in Android applications.
The libraries provide functionalities such as advertising, location,
and social networking services, making app development much
more productive. However, the spread of vulnerable and harmful
third-party libraries can also hurt the mobile ecosystem, leading
to various security problems. Therefore, third-party library
identification has emerged as an important problem, being the
basis of many security applications such as repackaging detection,
vulnerability identification, and malware analysis.

Previously, we proposed a novel approach to identifying third-
party Android libraries at a massive scale. Our method uses
the internal code dependencies of an app to recognize library
candidates and further classify them. With a fine-grained feature
hashing strategy, we can better handle code whose package and
method names are obfuscated than historical work. We have
developed a prototypical tool called LibD and evaluated it with
an up-to-date dataset containing 1,427,395 Android apps. Our
experiment results show that LibD outperforms existing tools in
detecting multi-package third-party libraries with the presence
of name-based obfuscation, leading to significantly improved
precision without the loss of scalability.

In this paper, we extend our early work by investigating the
possibility of employing effective and scalable library detection
to boost the performance of large-scale app analyses in the
real world. We show that the technique of LibD can be used
to accelerate whole-app Android vulnerability detection and
quickly identify variants of vulnerable third-party libraries. This
extension paper sheds light on the practical value of our previous
research.

Keywords-Android; third-party library; software mining; code
similarity detection

I. INTRODUCTION

The mobile app markets of Android have been rapidly
growing in the past decade. By July 2015, Android has
become the largest mobile application platform, measured in
the number of available apps [2]. Third-party libraries make
app development much more convenient by offering ready-
made implementations of specific functionalities, e.g., adver-
tisement, navigation, and social network services. A previous
study shows that, in some extreme cases, an Android app can
include more than 30 different third-party libraries [3].

Widely used third-party libraries leads to new software
engineering problems that hurt the security and stability of the

The first and second authors contributed equally to this work. Dinghao
Wu and Jian Liu are the corresponding authors. A preliminary version [1]
of this article appeared in Proceedings of the 39th ACM/IEEE International
Conference on Software Engineering (ICSE), Buenos Aires, Argentina, May
20–28, 2017.

apps. For example, with advanced reverse engineering tech-
niques, adversaries are able to tamper with popular advertising
libraries and direct the revenues to a station under their control,
while preserving the other functionalities of the original apps.
The adversaries can then publish the compromised and repack-
aged apps into an unofficial Android market to lure downloads.
In this way, an attacker can contaminate a large number of apps
by just tampering with a few libraries. For another example,
when a popular social network library contains a security
vulnerability, the threat from this vulnerability would spread
to many different apps and influence tons of users.

To countermeasure the emerging threats caused by vulner-
able and harmful third-party libraries, the security community
has longed for reliable techniques to accurately identify li-
braries in mobile apps at a large scale. There are currently
two approaches to recognizing third-party libraries in Android
apps. The first is based on whitelists of known libraries. A
whitelist is typically generated through manual analysis [4], [5]
and has to be constantly maintained to stay updated. Therefore,
it is hard to guarantee that such a list is comprehensive,
considering that there are currently millions of mobile apps
available and new libraries keep emerging. Therefore, the
whitelist-based method usually leads to both precision loss
and high operation cost.

The other approach is to directly extract libraries from apps
without a priori knowledge about the libraries [6]–[10]. In the
extraction process, a mobile app is first sliced into different
components which are regarded as library candidates. Then,
a similarity metric or a feature-based hashing algorithm is
designed to classify these candidates. If similar candidates
are found in many different applications, the candidates are
considered to be the same library, or variants of the same
library.

The second approach is currently the state of the art.
Although the results reported by historical research have been
very promising, there is still room for improvement due to
several common limitations of the existing methods. Our
investigation shows that most of these methods are heavily
dependent on Java package names and package structures for
detecting and classifying library candidates. However, package
names can be easily mangled by obfuscation and package
structures may vary in different versions of the same library.

We have recently proposed a new library detection and
classification technique that can effectively overcome the
aforementioned limitations and improve the accuracy of third-

1

party library detection in Android apps [1]. Different from
previous work that recognizes library candidates according to
Java package names and structures, we extract the candidates
based on the reference and inheritance relations among classes
and methods, with the assistance of auxiliary information
excavated from app metadata. In contrast of others, our
method only treats Java package names and structures as
supplementary information. After collecting these candidates,
our classification technique decides if there exist enough apps
sharing the same group of candidates. If so, that group is
considered to be large enough to represent a third-party library.
Our classification method is implemented through a novel
feature hashing strategy, such that we can avoid pair-wise
candidate comparison, which is required by many approaches
based on binary similarity measurement. This design allows
the classifier to scale to millions of Android apps. Overall,
our research provides a more general solution to the third-
party library identification problem on Android.

In this paper, we extend and enrich the library detection
research by demonstrating the practical value of our new
library detection method. We notice that many market-wide
Android application analyses can be significantly enhanced
and accelerated with an effective and scalable library detector.
We frame two scenarios where our library detector serves as
a boosting gadget for an important and heavy-weight Android
analysis task. In the first scenario, we show that vulnerability
analysis for a large number of apps can be made much less
time-consuming by caching the partial analysis results of third-
party libraries, which may be included by many apps, with
only minor losses of overall analysis accuracy. In the second
scenario, our library detection method is employed to identify
defective variants of third-party libraries at a massive scale.

We have implemented our library detection method in a tool
called LibD and evaluated it with 1,427,395 apps collected
from 45 third-party Android app markets. Compared to similar
tools like LibRadar [8] and WuKong [7], LibD not only
identifies a much larger number of third-party libraries from
the dataset but also finds them with better precision. We
additionally designed two application scenarios to showcase
how LibD can practically aid real-world Android analyses
performed on market-size datasets.

In summary, we make the following contributions in this
series of research:

• We developed a new third-party library identification
technique for the Android mobile platform. Our method
can overcome various limitations shared by the majority
of previously proposed approaches. In particular, our
method is resilient to Java package name-based obfus-
cation and diversified package structures.

• We implemented our identification technique in a tool
called LibD and tested its performance with over a
million Android apps collected from 45 different markets.
Compared to other similar tools, LibD is able to report
better results in terms of both quantity, i.e., the number
of identified third-party libraries, and quality, i.e., the
identification precision.

• We integrated LibDinto SmartDroid, a practical Android
app vulnerability detection framework. With the help of

LibD, SmartDroid becomes 5.5 times faster.
• With LibD, we were able to identify 10,801 vulnerable

variants library from over a million of Android apps,
featuring different vulnerability patterns.

• To benefit the research community, we LibD available
at https://github.com/IIE-LibD/libd.git. Other researchers
will be able to build various software engineering and
security applications based on our work.

The rest of the paper is organized as follows. We first
discuss the limitations of the previous work that motivated our
research in Section II. We then present our third-party library
detection method and its implementation in Section III. The
experiment results are presented in Section IV. We elaborate
on two case studies in Section V and Section VI, which are to
demonstrate the practical value of third-party library detection
in different scenarios. We discuss a few potential issues in
Section VIII, review related work in Section IX, and conclude
the paper in Section X.

II. MOTIVATION

In this section, we elaborate on two major limitations of
previous research, which motivated the development of our
new third-party library identification technique. According to
our investigation, the two limitations stem from similar design
decisions shared by existing techniques. The assumptions
behind these decisions, although valid in many cases, do
impose constraints that affect the generality of the techniques.

The first assumption which may be problematic is that the
instances of an Android library included by different apps
have the same package name. This assumption is the basis of
the pre-clustering algorithms used in similarity-based library
identification [9], [10]. Since these methods need to compute
the pair-wise similarity among all library candidates in the
dataset, they have to first partition the dataset and group
candidates that are likely to be in the same cluster; otherwise,
the classification will not scale. Most similarity-based identi-
fication techniques use package names to tentatively cluster
the candidates before undertaking fine-grained comparison.
However, using package names as a feature for clustering
becomes unreliable when obfuscation is in place. Package
name obfuscation is one of the most widely used obfuscation
methods for Java code. A recent study on Android libraries
showed that over half of the inspected instances are protected
by obfuscation techniques [3]. As a consequence, identification
methods utilizing package names as the primary features to
detect and classify libraries are likely incapable of handling a
considerable portion of Android apps on the shelves.

Some researchers have realized that deeply depending on
package names can make the identification method less robust.
A recently developed library detection tool called LibRadar [8]
employed an algorithm that takes package name obfuscation
into consideration. Instead of binary diffing, LibRadar classi-
fies library candidates through feature hashing. Therefore, Li-
bRadar does not need pair-wise similarity comparison between
library candidates and does not need package names for pre-
clustering. However, LibRadar recognizes library candidates
according to the directory structures of the packages. In

2

https://github.com/IIE-LibD/libd.git

open tauth connect

com

tencent

open connect tauth utils a

com

tencent

b

App 1 App 2

Different versions
of the same library

Fig. 1: Variants of the same library with different package structures

particular, LibRadar requires a library candidate to be a subtree
in the package hierarchy. This is another assumption that may
not be valid in reality, because we found that a library can be
differently packaged in its different versions, as illustrated by
a real-world example in Fig. 1.

Motivated by the reasoning above, we aim to develop a
new third-party library identification method that does not take
the two aforementioned assumptions for granted. Although
our method does not completely abandon the package-level
information, we utilize it as supplementary features in the
identification process.

III. METHOD

A. Overview

We now outline the design of the proposed approach. As
shown in Fig. 2, the overall workflow consists of four steps.
We first decompile the input app and recover the intermediate
representation (IR) of the Dalvik bytecode of the app, named
smali [11]. Information is then retrieved from the smali code
at different levels, i.e., packages, classes, and methods. We
also collect the relations among these program elements,
including inclusion, inheritance, and invocation relations. We
then leverage the retrieved information to build the instances
of potential libraries. Note that each instance has standalone
functionality and consists of one or multiple packages. The
next step is to extract the features of each instance as the
signature for testing equivalence. In this work, we propose a
feature that is sensitive to minor code mutations while resilient
to name-based obfuscations. With a predefined threshold of
occurrence, third-party libraries are identified by clustering
instances with equivalent signatures. That is, if the number of
occurrences of a feature in the dataset reaches the threshold,
we consider the corresponding code component as a library.
For efficient comparison, we encode the instance feature into
a text sequence and hashes it into a short representation using
MD5.

We implemented our technique in a prototype called LibD,
which consists of 3,529 lines of Python code. We set up the
experiment environment on OpenStack, a cloud computing
platform [12]. We implemented a scheduler with 408 lines
of code to manage machines and issue tasks on this platform.
Ten virtual machines were employed to analyze Android apps
in parallel.

B. App Decompilation

The first step of our approach is to decompile the input
Android apps. As shown in Fig. 3(a), a directory tree is

generated by decompiling an Android app. Each node on the
directory tree can include Java classes as well as subdirectories
(i.e., the edges to the successor nodes). Note that each tree
node with a set of class is a Java package [13]. In this research,
we group package nodes on the directory tree to recover third-
party library instances. There also exist some other nodes
that only contain subdirectories (e.g., com/tencent node
in Fig. 3(a)). These nodes are mostly ignored by our analysis.

Following the practice of previous work [7], [14]–[17], we
employ two widely used analysis tools, i.e., Apktool [18] and
Androguard [19], to decompile the input apps. Apktool is
used to extract the tree structures of the decompiled apps.
We recover the whole directory structures with all classes
in each directory. In addition, we use Androguard to find
relations between packages, classes, and methods. Three kinds
of relations are collected to help us infer boundaries of closely
coupled components in an app. We now introduce each relation
in detail.

• Inclusion relation. The first relation describes the parent-
child structures on a directory tree. Considering the
path that leads from com/tencent to /connect in
Fig. 3(a), such path represents an inclusion relation.

• Inheritance relation. We also record the program in-
heritance relations; inheritance relations can be directly
read from the decompiled smali code. Fig.3(b) shows the
inheritance relations between package /common and two
other packages.

• Call relation. This relation represents the inter-package
function calls. Fig.3(c) describes the call relation be-
tween packages /connect/auth, /tauth and /
open. For example, by identifying the function call be-
tween methods in Auth..$..listener.smali and
AuthActivity.smali, /tauth (i.e., callee) and /
connect/auth (i.e., caller) are considered to have the
call relation.

C. Library Instance Recovery
One of the key contributions in this paper is our systematic

approach to recovering the boundaries of third-party libraries.
We introduce a concept called homogeny package union,
which is the basic unit in app partition. We further group
homogeny package unions into different components based
on inter-union function calls. Each component is expected
to be highly cohesive while loosely coupled with the rest
of packages in the app. Such components are considered to
candidates of libraries. We now detail our technique to recover
library instances in a two-step approach.

1) Homogeny Package Union Construction: The first step is
to find highly-correlated packages regarding the inclusion and
inheritance relations (§III-B). Before discussing our algorithm,
we first define three terms as follows.

Definition 1: Homogeny package. Let Pi and Pj be two
packages of the input app, we say Pi and Pj are homogeny
packages if there are inclusion or inheritance relations between
them.

Definition 2: Homogeny graph. A homogeny graph is a
directed graph H = (V,E), where V is the set of all the app
packages, and E is the set of inclusion or inheritance relations.

3

Method info
(Call)

Class info
(Inheritance)

Package info
(Inclusion)

Decompilation Library Instance Recovery

Candidate
database Libraries

Homogeny Package
union construction

Library instance
construction

 Library Identification

Filter with
threshold

Feature
Generation

method

method
... class ... class

ha
sh

Library
feature

hash

...

Fig. 2: The architecture of LibD

/connect /mm...

/share ...

Inclusion

...

UserInfo.smali

/avatar

BaseApi.smali

Image..$..lmp.smali

.super ../common/B
aseApi

.super ../common/BaseApi

UserInfo.smali

QQShare.smali QzoneShare.smali

/connect/auth
/tauth /open

Auth..$..listener.smali
L../connect/auth/Auth
..$..;->a(...)

AuthActivity.smali

Tencent.smali
L../tauth/Tencent;
->ask(...)

SocialApi.smali

(a) Inclusion relation (b) Inheritance relation (c) Call relation

Under package of
com/tencent/connect

Under package of
com/tencent

C
al

l

/common
com/tencent

Fig. 3: Packages in a typical app directory tree and three critical relations.

Definition 3: Homogeny package union. A homogeny
package union consists of one or several homogeny packages;
each union is a weakly connected component on the homogeny
graph. A weakly connected component is a maximal connected
subgraph of the undirected graph resulted from replacing
all the directed edges with undirected edges in the original
directed graph.

Algorithm 1 describes how we find homogeny package
unions. We construct the homogeny graph with every package
in the app and their inclusion and inheritance relations as
the graph edges (line 2 and lines 5–6). Note that before
constructing the graph, we first eliminate two kinds of special
packages (lines 3–4). The first elimination (line 3) rules out
packages at the root of a directory tree. According to our
observation, an app usually does not contain classes in the
root directory. Instead, developers typically deploy code bases
starting from the second level of a directory tree. Studies on
2,000 popular apps found that only three apps have classes
at directory roots. Further investigation shows all of these
class are used to impede reverse engineering. The second
elimination (line 4) trims off all standard Android libraries
(e.g., android/support/v4), as our main focus is on the
third-party libraries.

After the eliminations, we search for weakly connected
components in the homogeny graph (line 7–8). Such com-
ponents may contain a single or multiple nodes (packages).
As nodes in each component are connected by inclusion and
inheritance edges, each identified component is a homogeny
package union following our definition.

2) Library Instance Construction: Given the constructed
homogeny package unions, the next step is to group one or
several unions together to recover the instances of potential
third-party libraries. Our manual investigation of over 200
real-world commercial apps indicates that method invocations
are a quite informative feature. Thus, we first recognize all
the inter-union function calls and build the call graph. As a

Algorithm 1: Homogeny package union construction
Input: Android app p
Output: Homogeny package union set Hp

1 Hp ← ∅; H ← ∅,
2 H.V ← packages in the input app; /* V is the set of vertices. */
3 filter out packages in the root nodes in H;
4 filter out Android official packages in H;
5 H.E ← inclusion relation set; /* E is the set of edges. */
6 H.E ← H.E ∩ inheritance relation set;
7 for each weakly connected component g in H do
8 Hp.add(g);

9 return Hp

result, identifying library instances essentially becomes a task
to collect all the reachable nodes on the call graph from the
root nodes.

Algorithm 2 presents our approach to generate the call graph
for homogeny package unions and finding the instances of
potential libraries. We first build the call graph I, according
the inter-union calls (line 2–5). We then filter out noisy calls
(line 6–7) in terms of two criteria. Finally, for each weakly
connected component, we search for “root nodes” and collect
all the reachable components from one root node as one
instance of a potential library (line 9–12). Naturally, the root
node is defined as a node on the call graph with no incoming
edges. On the other hand, if there is no root node, we output
the connected component as one library instance (line 14).

In this research, we identify and eliminate two noisy calls
that could impede our analysis. The first one describes the
call graph edges connecting the application code and the
libraries. Such connections could incorrectly bridge two library
instances through the application code, thus overestimating the
library boundaries. We identify application code according to
the manifest files in the input apps; the application code and
evolved call edges are trimmed off on the call graph (line 6).

We also observe a special call that could lead to false
positive in this research; we name it ghost call. A ghost call

4

appears in a method, but neither the caller nor the callee
exists in the DEX code of the decompiled app. Such ghost
calls are not rare—we found 82 apps containing ghost calls
among 10,043 samples. Most of “ghost calls” are calling
functions from customized Android frameworks. For exam-
ple, there is a call invoking com.samsung.android.
SsdkInterface.getVersionCode which exists only
on Samsung phones. The decompiler failed to consider these
cases, leading to dangling function targets. To filter out such
errors, we check the appearance of both caller and callee for
each call relation, and eliminate those ghost calls (line 7).

Algorithm 2: Library instance construction
Input: Homogeny package union set Hp

Output: Library instance set Il
1 I ← ∅;
2 I.V ← Hp; /* V is the set of vertices. */
3 for any union u1 and u2 in I do
4 if there is a call relation in 〈u1, u2〉 then
5 add 〈u1, u2〉 in I.E; /* E is the set of edges. */

6 filter out application code-related calls in I;
7 filter out ghost calls in I;
8 for each weakly connected component g in I do
9 if there are root nodes in g then

10 for each root do
11 cl ← reachable components from this root;
12 Il.add(cl);

13 else
14 Il.add(g);

15 return Il

D. Feature Generation

As previously mentioned, a library instance includes one or
more homogeny package unions, while a union can consist of
multiple packages. The feature of a library instance can be
defined as the combination of package features, and further
divided into features of classes in each package. Since each
class usually consists of several methods, in this research
we employ method-level features as the basic elements to
construct the library instance-level features.

To this end, we first build the control flow graph (CFG) of
each method. The feature of every basic block on the CFG is
calculated by hashing all the opcodes inside the block. We then
concatenate the features of the basic blocks on the CFG in a
depth-first order. For a parent node with two or more children,
we sort the values of the children nodes and prioritize the node
with the smallest value.

We then construct the feature of a class with features
of all its methods. To this end, we concatenate the feature
values of all methods in a non-decreasing order. Such feature
sequences is then hashed again as the class-level features.
Finally, we build the library instance-level feature following
the same strategy—sorting all of its class-level features in a
non-decreasing order and hashing the feature sequences.

Note that one of our central design choice is to generate
mutation-sensitive and obfuscation-resilient features for each
library instance; such design choice can enable finer-grained

Android app analysis in an efficient way. We now discuss how
we satisfy such requirements.

1) Mutation Sensitive: To produce features that are sensi-
tive to library mutations, we generate hash value from opcodes
of all the instructions in the basic blocks. Since even subtle
modifications would lead to the changes of the underlying
instructions, our instruction-level hashing should be surely
updated regarding almost all the mutations.

Many (security-related) mutations, e.g., the remote control
vulnerability exposed in Baidu moplus SDK [20], would
only update a single line of code in one specific version of
the library. That means, previous system API-based library
detection algorithm is not able to distinguish such mutations.
On the other hand, by hashing the underlying instructions
within each basic block, features utilized in our research can
preserve the sensitivity in front of various real-world scenarios.

Naturally, mutations with different features are considered
as different library instances. That means, instances of one
library can be put into different groups if they have different
features. To further cluster mutations, we compare the package
names of mutations; in our current design, two mutations are
considered from the same library if they have the same name.

2) Obfuscation Resilient: Our in-depth study of obfuscated
Android apps shows that names of packages, classes, and even
methods are commonly turned into meaningless strings (e.g., /
t, /a, /b). To avoid being confused by this disturbance, LibD
is designed to only hash the underlying opcode sequences
as the features of each basic block. Note that by extracting
features from the underlying implementation, LibD is naturally
resilient towards renaming on package names. In addition,
although renaming on class and method names can change
the operands of certain control-flow instructions, the original
opcodes are preserved. For example, method call instructions
would have different operands when the callee’s name is
obfuscated. However, since we only calculate the hashing
value of the opcode sequences within basic blocks and do not
consider the operands, LibD is suitable to defeat the class
and method-level renaming obfuscations. In sum, features
extracted by LibD are obfuscation-resilient, as shown in our
experimental results.

Note that given our renaming-resilient features, obfuscated
library instances should be clustered into the same group as
their normal versions. In other words, we are able to recover
the original identity of the obfuscated libraries by investigating
instances clustered into same groups.

E. Library Identification

Given an input app, the aforementioned techniques can
generate instances of potential libraries (§III-C) as well as
features of each instance (§III-D). We apply such process to
a large amount of apps and collect all the identified instances
and their features (experimental details are disclosed in §IV).

The next step is to group instances by their signatures,
i.e., the MD5 hashes of extracted features. Instances with the
same signature are assigned to the same group. A clustering
threshold is selected to decide if a group is large enough
to represent a library. That is, a group of library instances

5

TABLE I: Numbers of apps collected for evaluation and their origins.

Market # of apps URL

mumayi 55,682 www.mumayi.com
appfun 47,090 appfun.adwo.com
520apk 13,048 www.520apk.com
lenovo 151,426 www.lenovomm.com
baidu 30,275 shouji.baidu.com
jifeng 30,661 www.gfan.com

yingyongbao 5,184 sj.qq.com
hiapk 76,066 www.hiapk.com
gezila 11,030 www.gezila.com
xiaomi 63,494 app.mi.com
yy138 5,073 www.yy138.com
liqucn 10,134 www.liqucn.com

angeeks 54,432 www.angeeks.com
3533 15,871 www.3533.com
apk91 27,190 zs.91.com
nduo 8,965 www.nduo.cn

1mobile 16,659 www.1mobile.com
sougou 27,795 zhushou.sogou.com
anzhi 401,578 www.anzhi.com
anzow 12,521 www.anzow.com
zs2345 4,538 zs.2345.com

7xz 4,871 www.7xz.com
huawei 6,804 app.hicloud.com
16app 38,003 www.16apk.com

apk3310 22,376 apk.3310.com
appchina 244,413 www.appchina.com

others 62,216 (Appendix A)

total 1,427,395

is considered to represent a third-party library only if the
number of instances in this group is greater than or equal
to the threshold. Details about how the threshold is decided
are presented in §IV-B.

We label each cluster with the topmost level package name.
If a cluster contains instances with different names, the label
is set to be the name carried by most instances. We further
merges clusters with the same label. Such merged clusters
indicate libraries with different mutations.

IV. EVALUATION

A. Dataset

To evaluate LibD, we crawled 1,427,395 Android apps
from 45 third-party markets. Although the official app market,
Google Play, hosts over a million apps [2], it conducts rigorous
reviews on submitted apps, including both static and dynamic
analysis. Presumably, many malicious or vulnerable third-party
libraries may get rejected during the review process [21],
[22]. On the other hand, third-party markets usually do not
have such review processes, and we expect to collect more
diverse library instances. As we will show with experiment
results, we successfully detected a large number of library
mutations, many of which are obfuscated, with our current
settings. In addition to well established third-party markets,
we also crawled apps from popular Android forums. Table I
lists the sources from which we collected apps and the number
of samples crawled from each source.

B. Clustering Threshold

As mentioned in §III-E, LibD needs a hyper parameter
named the clustering threshold to decide whether a group
of library instances is large enough to represent a third-party

TABLE II: Third-party libraries detected with different clustering
threshold settings.

Threshold # of libraries # of mutations

50 2,350 9,868
45 2,584 11,061
40 2,893 12,576
35 3,298 14,563
32 3,567 16,074
30 3,827 17,298
25 4,550 21,405
20 5,811 27,763
15 7,576 38,150
10 11,458 60,729

library. We investigated how different values of the clustering
threshold can affect the number of detected libraries and then
tried to set a reasonable threshold by referring to related work.

Previously, different thresholds have been used to cluster
libraries. For example, Wukong [7] set the threshold as 32
while Li et al. used 10 [9]. To search for the best option
empirically, we iterated different threshold values from 10 to
50 and recorded the number of libraries detected with each of
the thresholds. Recall from §III-E that LibD clusters library
instances with the same feature into groups, and each group is
considered to be a library mutation. If some mutations share
the same topmost level package name, they are identified as
different versions of the same library. Naturally, with a larger
clustering threshold used, the number of detected libraries and
mutations decreases.

Table II shows the detection results regarding different
threshold settings. As can be seen, even with a relatively large
value of the threshold, i.e., 50, LibD can detect a large number
of libraries (over 2,000).

Comparing LibD with previous work, we report that LibD
can detect more third-party libraries than the both whitelist and
system API-based methods [4], [7]. We will present further
discussions in §IV-D.

C. Threshold Sensitivity

Since the analysis results of LibD depend on the clustering
threshold as a hyper-parameter, we conducted a sensitivity
analysis to investigate how different threshold values can
impact the number of detected libraries and whether the
stability of threshold values is correlated to factors, e.g., the
sample size. For this purpose, we break down the numbers in
Table II and present in Fig. 4 the statistics of each individual
market included by our dataset. The decomposed results are
grouped by the size of each market.

Overall, the quantities of detected libraries are mostly stable
when the threshold is no less than 25, for all sizes of markets.
After threshold drops below 25, there is a sharp increase of
the numbers of positives for many markets. This phenomenon
occurs in most size groups, indicating that the sensitivity of
threshold values is unlikely to be dependent on the total counts
of analyzed apps, as long as the sample size is of a market
scale. Additionally, Fig. 4f compares the sum of numbers of
detected libraries found in each market with the total count
of positives found when processing all samples as a whole
dataset. As can be seen, LibD reported significantly fewer li-
braries when analyzing the entire dataset, suggesting that many

6

www.mumayi.com
appfun.adwo.com
www.520apk.com
www.lenovomm.com
shouji.baidu.com
www.gfan.com
sj.qq.com
www.hiapk.com
www.gezila.com
app.mi.com
www.yy138.com
www.liqucn.com
www.angeeks.com
www.3533.com
zs.91.com
www.nduo.cn
www.1mobile.com
zhushou.sogou.com
www.anzhi.com
www.anzow.com
zs.2345.com
www.7xz.com
app.hicloud.com
www.16apk.com
apk.3310.com
www.appchina.com

TABLE III: The number of libraries reported in the whitelist but not
found in LibD’s outputs.

Threshold # of neglected libraries Threshold # of neglected libraries
45, 50 16 20 4

40 13 15 1
35 8 10 0

25, 30 7

libraries are shared across different markets. This is another
indicator showing that the threshold is likely independent of
the analyzed market and may be determined with a set of
universally effective criteria.

According to the analysis above, we propose a method to
determine the threshold with the goal of minimizing false
positives. In previous work, Chen et al. [4] released a whitelist
including 72 commonly used third-party Android libraries.
We matched this list with libraries detected with different
thresholds (Table II), recording the count of missed libraries
in Table III. We found that until the threshold decreases to 10,
LibD can exhaust all libraries in the whitelist. Consequently,
our subsequent experiments used 10 as the threshold value
unless otherwise noted.

In theory, applying obfuscation to the dataset is likely to
have an impact on the determination of an optimal threshold, if
this cannot be effectively nullified by the detection technique.
Take the whitelist-based detection for example. When the
names of some library instances are turned into random
strings, they are no longer on the whitelist, shrinking the sizes
of the clusters they should have belonged to. Consequently,
some clusters may no longer be large enough to be recognized
as a library. However, simply raising the threshold does not
completely solve the problem, because it may lead to increased
false positives. In general, tuning the clustering threshold only
is not sound enough to achieve obfuscation-proof detection.

D. Comparison with Other Work

1) Comparing with LibRadar: To test the effectiveness
of LibD, we setup an in-lab examination by comparing Li-
bRadar [8] and LibD. LibRadar is the successor of the library
identification component of WuKong [7], a Android clone
detection tool. In the original publication introducing WuKong,
the authors reported that they detected more than 10,000 third-
party library variants among 105,299 applications crawled
from 5 different markets, using 32 as the clustering threshold.
With the same threshold, LibD detected 16,074 variants in our
dataset. Since the two datasets are different, the results are not
directly comparable. Therefore, we designed new experiments
to compare LibD with LibRadar, which is now accessible as an
online service. Different from LibD, which takes the opcode
sequences of basic blocks as the primary feature to build the
profile of a library candidate, LibRadar uses a more coarse-
grained feature, i.e., the frequency of different Android API
calls. Also, LibRadar only considers the package inclusion
relation when constructing library candidates, while LibD
takes into account additional relations based on code semantics
(§III-B).

To our best knowledge, there is no systematic approach to
acquiring the ground truth about the presence of third-party
libraries in Android apps, since the boundary of a library is

TABLE IV: Comparison with LibRadar. Results validated with the
ground truth (2,613 libraries).

of detected
libraries # of true positive false positive

rate (%)
false negative

rate (%)
LibRadar 670 264 60.6 89.9

LibD 1,954 1,465 25.0 43.9

essentially only known to developers. To obtain results that
are close to ground truth, manual inspection on the samples
is necessary.

For a convincing and feasible evaluation, we randomly
collected 1,000 apps from our dataset as a subset and manually
investigated the subset to get the ground truth. We identify
third-party libraries according to the following conditions.

• If the library name represents a legal domain name, then
it is considered to be a third-party library.

• If the package name is a subdomain of a legal domain
name, we will then query search engines (e.g., Google)
with the complete name and see whether the query leads
to some Android library vendor. If so, we conclude that
a new library instance is found.

Following the strategy above , we acquired 2,613 libraries
as the ground truth from the 1,000 apps. We then run LibD and
LibRadar [8] over these apps. LibRadar [8] provides an online
service to detect libraries. This enables convenient comparison
with LibD. Note that LibRadar only provides the names of the
detected libraries.

Table IV presents the performance of LibRadar and LibD.
We also validate the detected libraries according to the ground
truth. Overall, LibD identified 1,954 libraries, among which
1,456 libraries are true positives. LibRadar found 670 different
libraries in total and 264 of them are true positives. In terms of
false positive and negative rates, LibD can notably outperform
LibRadar.

2) Comparing with Li et al. [9].: To avoid confusion caused
by package and symbol name obfuscation, LibD relies on
low-level program features like type hierarchies and opcode
sequences to find and match similar app components. This may
lead to overly restrictive similarity matching, leading to more
false negatives. We therefore compare LibD with methods
based on less fine-grained features of the apps.

The research conducted by Li et al. detected 1,113 libraries
from about 1.5 million apps in Google Play [9]. Their approach
operates at the package level and relies on package names
to cluster library candidates in the first place. To counter
the package name obfuscation problem, they excluded all
packages with single character names from their detection. To
discriminate libraries that happen to posses the same name,
they refined each cluster by comparing the prototypes of
methods in a package.

The implementation of the method developed by Li et
al. is not available. The authors provided the names of the
detected libraries which are verified through manual inspec-
tion. It is unclear what results their method would produce
given our dataset. Therefore, we cannot assess the accuracy
of the method in terms of false positive and false negative
rates, meaning a comprehensive comparison like we did for
LibRadar is not feasible. We hereby present a best-effort
comparison by inspecting the difference between their results

7

(a) Markets with 0–9,999 apps (b) Markets with 10,000–19,999 apps (c) Markets with 20,000–49,999 apps

(d) Markets with 50,000–99,999 apps (e) Markets with 100,000–500,000 apps (f) Accumulative results

Fig. 4: Number of libraries reported by LibD with different thresholds

and the libraries detected from our whole dataset. Among the
1,113 library names reported by Li et al., 262 are not included
by the results of LibD. Further inspection shows that 249 of
these 262 libraries are indeed highly correlated to some of
our results in the sense that there exist LibD-detected libraries
with different but very similar package names and structures.
For example, com/comScore/exceptions and com/
comScore/stramsense are two libraries reported in their
list, which did not appear in our results. However, LibD
reported a library named com/comScore, which happens to
be the union of com/comScore/exceptions and com/
comScore/stramsense. We speculate that these 249 li-
braries were missed by LibD likely due to different heuristics
used for recognizing library boundaries.

As for the remaining 13 library names missed by LibD, we
cannot relate them to any of our results. Since no information
other than library names are known to us for in-depth analysis,
we can only roughly infer the reasons behind the differences.
Note that the library names reported by Li et al. were obtained
by analyzing apps crawled from Google Play, which is not
available in China. It is known that many Android developers
customize their products according to regions where apps are
to be published. Since there are many third-party services that
are not available in China but accessible from other regions,
libraries providing these services are naturally absent from
our dataset. For example, we noticed that several Google
Play apps include a library named com/android/psu. By
enumerating all package names existing in the dataset, we
confirmed that packages with this name are not contained by
any of our samples.

Overall, LibD can identify a reasonably large portion of
the libraries detected by the method proposed by Li et al. The
results indicate that although our method relies on fine-grained
program features like type hierarchies and opcode sequences

for similarity measurement, the matching process is unlikely
to be overly restrictive, compared to methods based on higher-
level features like package names and method prototypes.

E. Resilience to Obfuscation

One of the major advantage of LibD over previous tools
is its capability of detecting and identifying obfuscated li-
braries. To justify the claim, we evaluated LibD’s resilience
to obfuscation algorithms in two different aspects. Firstly,
we tested LibD on a set of open source apps obfuscated
by ProGuard [23], the official obfuscation toolkit of Android
development. As for the second aspect, we zoomed in the
comparison between LibD and LibRadar, which is presented
above, and particularly studied the performance of the two
tools in processing obfuscated app samples.

The open source apps were randomly sampled from F-
Droid, an Android app market that contains only free software.
With access to the source code, we can compile the apps with
obfuscation explicitly enabled by ProGuard. Our experiments
used the default obfuscation setting of ProGuard. With this
setting, all packages, classes, and class members receive new
short random names [24]. Advanced obfuscations like package
hierarchy flattening was disabled. Resilience to obfuscation
is demonstrated by observing LibD’s accuracy for obfuscated
and unobfuscated samples of the same apps. A total of 100
apps were sampled from F-Droid and manually investigated to
obtain the ground truth about the libraries included. Table V
shows the results of library detection. Due to the relatively
small sample size in this experiment, we set the clustering
threshold to 1, meaning every candidate library instance is
reported to a library.

As can be seen from the results, the number of libraries
included by F-Droid apps are notably low in contrast to apps
that we crawled from the commercial markets. On average,

8

TABLE V: Library Detection for 100 F-Droid Apps

Unobfuscated Obfuscated

of library instances 159 159
of reported library instances 152 154
of false positives 6 8
of false negatives 13 13

an F-Droid app contains only 1.6 libraries, while apps in
the original dataset contains over three libraries. Nevertheless,
LibD accurately captured this difference and reported very
small proportions of false positives and false negatives when
the apps were free of obfuscation. After obfuscation, the
number of reported false positives slightly increased, while
the number of false negatives remained the same. Overall,
the accuracy of LibD is not significantly affected by the
obfuscation from ProGuard, showing its resilience to common
Android anti-analysis techniques.

To additionally show that our tool is proficient at handling
obfuscated Android apps, we compared LibD with LibRadar,
which is also designed to be resilient to renaming-based
obfuscation to a certain extent.

We randomly sampled 100 obfuscated apps from the orig-
inal dataset (Table I) and the performance of LibD and
LibRadar regarding this subset of apps. Among these 100
apps, LibRadar found 13 obfuscated libraries, while LibD
found 14. Both LibRadar and LibD are able to cluster the
obfuscated and obfuscated versions of the same libraries into
the same clusters. The difference between the results are due
to different features used for determining library similarity,
which is not directly related to obfuscation resilience. Our
manual investigation on the outputs of LibRadar shows five
false positive. For example, LibRadar incorrectly considers
library com/avos/avospush as an obfuscation version of
the Android official library android/support/v4. Note
that the implementations of these two libraries are quite
different. On the other hand, no error is reported when we
manually correlate the obfuscated libraries detected by LibD
with their original instances. We interpret the main reason
for LibRadar’s high false positive rate is that it build library
signatures using the set of system APIs used by the code,
which is not fine-grained enough to distinguish some similar
but different libraries. Overall, the results indicate that the
LibD’s resilience to renaming-based obfuscation is at least as
strong as LibRadar.

F. Processing Time

Our system is deployed on top of OpenStack, including ten
virtual machines. All the virtual machines are configured with
a Xeon E3-1230 CPU and 2GB RAM. The operating system
is Ubuntu 14.04 LTS x64.

We report that LibD takes no more than 10 seconds to ana-
lyze an app. App decompilation (§III-B), including intermedi-
ate representation recovery and package relation construction,
takes around 6 seconds. Library instance recovery (§III-C)
takes around 2 seconds. Average clustering time of one library
instance is less than 12 milliseconds, and we report on average
it takes 100 milliseconds to cluster all the library instances in
an app.

Fig. 5: Distribution of different multi-package library instances re-
garding the number of packages.

Comparing with LibRadar, we report LibD’s average pro-
cessing time for one app is around 2 seconds longer. Naturally,
as LibD undertakes much finer-grained analysis, it can cost
more time. Overall, LibD is quite efficient and scalable.

G. Further Investigation

In the following subsections, we study three typical chal-
lenges in Android library detections, i.e., multi-package li-
braries, obfuscated libraries, and library mutations. Note that
as we confirm a library (mutation) according to the number of
instances in a cluster (§III-E), some instances—even if they
are multi-package, obfuscated or library mutations—would be
ignored if the total number of their appearances is less than the
threshold. To present a thorough study, we use all the different
instances of potential libraries, in the whole set of 1,427,395
apps, for multiple evaluations in the following subsections
(i.e., data reported in the “# of different instances” columns
in Table II).

1) Multi-Package Libraries: A third-party library may con-
tain more than one package. Benefited from our novel library
boundary identification technique, LibD discovers many multi-
package libraries. In particular, when setting the threshold as
10, we report to find 5,141 multi-package libraries (8.4% of
all the detected libraries in total).

We also use all the different library instances for evaluation,
as they can reveal potential rare changes on the third-party
libraries. Fig. 5 presents the distribution of different multi-
package library instances. The number of library instances
decreases quickly with the increase of the packages each
instance contains. Most of the multi-package instances contain
two packages; there are 63,948 two-package instances (58.8%
of all the multi-package instances). We manually analyzed 10
frequently occurred instances (e.g., /com/tencent/wap)
and the result shows that the library boundaries are reasonable.

We also find that multi-package library instances can have
different internal structures. For example, library /fly/
fish/adil has three different structures; each of which con-
tains two, three and four packages, respectively. We consider
two library instances have different structures if their internal
package names or the number of packages are different. We
also report the distribution of different multi-package instances
regarding the number of structures. As shown in Fig. 6, while
there are 51,099 instances with only one structure, 67,147
instances actually contain more than two different structures

9

Fig. 6: Distribution of different multi-package library instances re-
garding the number of structures.

TABLE VI: Five shared packages and evolved libraries.

Shared packages Evolved libraries

/cn/sharesdk/framework

/cn/sharesdk/douban
/cn/sharesdk/sina
/cn/sharesdk/wechat
/cn/sharesdk/oneshare
/cn/sharesdk/tencent
/cn/sharesdk/twitter
/cn/sharesdk/google
/cn/sharesdk/whatsapp

/com/weibo/sdk /com/weibo/net
/com/weibo/android

/cn/emagsoftware/sdk /cn/emagsoftware/android
/cn/emagsoftware/sms

/com/umeng/common

/com/umeng/update
/com/umeng/analystic
/com/umeng/newxp
/com/umeng/socilize

/com/mobi/tool
/com/mobi/controller
/com/mobi/weather
/com/mobi/assembly

(56.7% of the multi-package instances). Our experiments also
report that a library could have 214 different structures at most.

Further investigation of multi-package libraries also reports
that some packages are shared by several multi-package li-
braries. Those shared packages usually provide some common
utilities. Table VI presents 5 packages that are shared by at
least two libraries. Given the observation that the first two
segments of these package names are the same, we assume
that they should come from the same developers.

Many library names have three or even more segments (e.g.,
/com/facebook/util has three “segments”). However,
we observe that many of the first two segments of package
names are identical. We report that there are a total of 18,594
different kinds of first two segments in the outputs of LibD; we
list the top ten in Table VII. Note that if the first two segments
of two library names are identical, they are likely from the
same developers. In other words, Table VII shows that most
library developers prefer to provide a series of libraries instead
of one.

2) Obfuscated Libraries: LibD is designed to address
name-based obfuscation techniques. Obfuscators (e.g., Pro-
Guard [23]) replace the library name with several meaningless
strings while preserve the original directory structures. Our
experiment results report two kinds of renaming strategies. The
first one obfuscates the library full names; all the names in the
directory structures are replaced with meaningless strings, such
as c/a/b or u/y/e. For such obfuscation, we are unable

TABLE VII: Top ten most commonly encountered initial segments
of package names.

Directory # of libraries
/org/fmod 2,613
/twitter4j/util 2,480
/LBSAPIProtocol/a 2,217
/twitter4j/management 2,184
//com/unionpay 2,167
/twitter4j/json 1,723
/com/tencent 1,192
/roboguice/content 1,109
/com/umeng 1,308
/com/facebook 764

TABLE VIII: Distributions of the obfuscated library instances.

of obfuscated
names # of instances Percentage (%)

<5 14,931 76.41
5–10 2,238 11.45
10–50 1,736 8.88

50–100 258 1.32
100–1,000 340 1.74
>1,000 37 0.20

Total 19,540 100

to get any useful information by only analyzing the name.
The second obfuscation partially changes the library names
(e.g., the last segment of the library name /com/tencent/
t is obfuscated). Libraries with such partial obfuscation can
usually provide some information of their functionalities or
developers.

As shown in Table II, by setting the threshold as 10, LibD
can detect 11,458 different libraries in total. With our manual
effort, we report that there are about 5,000 obfuscated library
instances in our dataset, among which 1,453 are completely
renamed, while the rest (around 3,500) are partially renamed.
According to our best knowledge, there is no well-developed
automatic approach to distinguishing a (partially) renamed
library from the others. In other words, our manual verification
of library obfuscation is already the best effort.

In total, we have found that 19,540 different library in-
stances (i.e., library instances with different features) are
obfuscated. Table VIII presents six groups of obfuscated
instances; instances in each group have different number of
obfuscated names. In general, around 24.5% library instances
have equal or greater than 5 different obfuscated names. We
interpret that obfuscations are quite common in real-world
Android applications.

3) Library Mutations: In this section we study the library
mutations. In general, our experiment results report plenty of
libraries with more than 100 mutations. For example, /com/
google/gson has 421 different mutations, while /com/
baidu/android has 197 mutations.

TABLE IX: Libraries with the top ten number of mutations.

Rank Library name
of mutations

in each identified
library

of mutations
in total

1 /com/sina/sso 84 175
2 /com/ut/device 10 42
3 /com/nineold/androids/animation 79 222
4 /com/alipay/android 381 2,485
5 /m/framework/utils 55 131
6 /com/google/gson 421 2,422
7 /com/android/vending 161 2,126
8 /com/alipay/mobilesecuritysdk 173 463
9 /com/tencent/mm 288 1,552

10 /cn/sharesdk/wechat 168 495

10

Original analysis

system

Feedback

Module

Preprocessing

Module

LibD

Classification pool

Fig. 7: Acceleration workflow overview.

Table IX lists the identified third-party libraries with the
top ten number of mutations. We also report the number of
mutations when considering all the different library instances
(§IV-G). Our study shows that many mutations indeed only
modify a few lines of code. For example, each updating on
library /com/ut/device only adds a few move opcodes.
We also find some major updates among mutations of certain
libraries, i.e., library structure-level changes. For example,
some mutations of /com/google/gson contain only a few
classes, while others can even include multiple packages.

Another finding is that the number of the “ignored” muta-
tions (fourth column in Table IX) is even greater than the
confirmed library mutations. In other words, we consider
there are actually many libraries having “stealthy” mutations;
mutations that are only used by less than 10 apps in the
third-party markets we studied. We consider these mutations
potentially indicate illegal or even malicious behaviors.

V. BOOSTING VULNERABILITY ANALYSIS WITH LIBD

A. Motivation

For most existing Android app analysis tools, the input apps
are analyzed as a whole, namely the tools do not distinguish
app-specific code and third-party code. Potentially, this is a
huge waste of resources when the analysis is conducted at a
large scale, since a third-party library can be shared by many
different apps, while repeatedly analyzing the same library
does not bring any additional benefits. Moreover, the amount
of redundant analysis on the same chunk of code increases
as more apps are analyzed and more third-party libraries are
encountered. During the evaluation of LibD, we found that an
Android app on average contains three third-party libraries,
which reveals the opportunity to speed up large-scale Android
app analyses.

To demonstrate that Android app inspection can be signifi-
cantly boosted by pruning the analysis of redundant libraries,
we propose to integrate LibD into an existing Android analysis
system. For this purpose, the threshold for library detection is
adjusted to one such that all repetitive code blocks can be
identified (Section IV-B).

B. Overview

Conceptually, a cache system is added to help an Android
analyzer to memorize the analysis results about a previously
encountered code block. To this end, we add a preprocessing
module and a feedback module to the original analyzer. The
modified analysis workflow is illustrated in Fig. 7.

The preprocessing module is used to generate and store
signatures and analysis results for each code block from
the input apps. LibD serves as the major component of the
preprocessor and it dissects the input apps into different parts,

Build

FCG

Build

ACG

Suspicious Paths discovery module

FCG

Runtime Execution

Activity

Restrictor
Android Phones

Dynamic verification module

Suspicious Paths

Output Analysis

Result

(Vulnerabilities)

Fig. 8: The original SmartDroid analysis workflow.

with the signature of each part stored in the database. If
the signature hits a record in the database, the preprocessing
module will advise the analyzer to skip the analysis of the
corresponding code block and the analysis result is directly
retrieved from the database. If there is no match for the
signature in the current database, the analyzer will perform
analysis towards the code block. The result is forwarded from
the feedback module to the preprocessor and the database will
be updated with an new entry composing the newly-analyzed
basic block and the analysis result.

C. Analysis System Selection

To evaluate the acceleration scheme, we implemented it on
top of SmartDroid, a well-developed Android vulnerability
analysis system [17]. SmartDroid takes a two-step approach
to identify potentially vulnerable Android apps statically and
further verifying the detection results dynamically.

Before we describe how we boost the performance of
SmartDroid with LibD, we first briefly introduce how Smart-
Droid works. Fig. 8 shows the workflow of the original
SmartDroid system. The static analysis module of SmartDroid
is responsible for pinpointing suspicious vulnerable code paths
with user-provided data flow footprints as signatures. In this
module, SmartDroid first extracts the functions from the app
and builds the call graph. This graph is named as FCG
(Function Call Graph). Based on the FCG, SmartDroid builds
a higher level graph, ACG (Activities Call Graph), to represent
the logic connections between different activities. SmartDroid
then traverses all the traces in the ACG and compares them
with predefined vulnerable traces. Once a trace in the ACG
matches any of the predefined vulnerable traces, this trace
will be marked as vulnerable. After the traversal is finished,
SmartDroid constructs a set of potentially vulnerable paths.
These paths are later verified, by a verification module of
SmartDroid, through dynamic analysis on the Android emula-
tor to check whether they are feasible and indeed vulnerable.

While SmartDroid is capable of identifying vulnerable
apps, there are two limitations that potentially impede its
overall analysis power towards large sets of Android apps.
First, SmartDroid only provides very coarse-grained analysis
results, i.e., whether an app is vulnerable or not. In other
words, it cannot pinpoint which exact code blocks contain the
vulnerability. In addition, when analyzing a large number of
apps, SmartDroid will repeatedly analyze the same libraries in
different apps, leading to a waste of computation resources.

Based on our research, SmartDroid can be enhanced to
directly pinpoint vulnerable code blocks within a vulnerable

11

app. In this paper, a code block is defined as a library instance
or a code component consisting of one or multiple functions
that provides a complete implementation of some specific
functionality. In our improved vulnerability detection scheme,
the preprocessing module, which employs LibD to dissect the
apps, is configured with a threshold of one to cover all code
blocks in an app.

With this improved scheme, we expect that the analysis
efficiency will be boosted. Recall that our analysis has shown
that a lot of third-party libraries are integrated into the apps.
Such repeated code blocks will cause the original SmartDroid
system to repeat the vulnerability analysis towards the same
code block multiple times, and the repeated analysis would
waste considerable amount of computing resources and time.

As our library detection approach is able to rule out libraries
from apps, the new detection scheme can avoid much of the
redundant analysis. When an app is sent to SmartDroid, we
try to prune the previously analyzed libraries and only deliver
the fresh code components to the detection system.

However, this improvement over SmartDroid introduces
a new problem that potentially affects the effectiveness of
the detection process. As previously mentioned, SmartDroid
verifies static detection results through dynamic analysis. To
do that, SmartDroid will need to construct traces that can reach
the vulnerable program points. After our modification, traces
extracted by SmartDroid are confined within individual code
blocks instead of whole apps. Due to the event-driven pro-
gramming paradigm of Android apps, many execution paths
cannot be statically captured. Therefore, there is a possibility
that traces extracted from single code blocks lack certain
prefixes or suffixes1 and cannot be dynamically verified.

To estimate the impact of this problem, we randomly
sampled 1,000 apps to get the proportion of apps whose
vulnerabilities are enclosed by a single code block after an
app is dissected by LibD. The analysis was conducted in the
following steps:

• Use SmartDroid to statically analyze the 1,000 apps, tar-
geting four kinds of vulnerabilities, i.g., DoS, WebView
leak, SSL Hijacking, and FileCross. Details about these
vulnerabilities are presented in §VI-A.

• For those that SmartDroid considers vulnerable, ask
SmartDroid to further construct execution traces that can
potentially trigger the vulnerabilities.

• Use LibD to dissect the 1,000 apps into code blocks,
which are essentially library candidates.

• For each constructed execution trace, examine if it flows
from one code block to another. This step was manually
performed by four researchers familiar with SmartDroid.2

With the procedure described above, SmartDroid reported
1,390 vulnerable program points and LibD dissected the
1,000 apps into 3,330 code blocks. The manual inspection
confirmed that all execution traces constructed by SmartDroid
are contained within a single code block. Therefore, we expect

1For some vulnerabilities, e.g., the DoS vulnerabilities, the program point
that triggers the error is not where the failure manifests. In such occasions, a
vulnerability cannot be verified until the execution reaches the manifest point.

2All participants were affiliated with Chinese Academy of Sciences, three
of whom are not the authors of this manuscript.

that our acceleration scheme will not have a significant impact
on the accuracy of SmartDroid.

D. Acceleration

In order to accelerate SmartDroid, we add a preprocessing
module and a feedback module to the original SmartDroid
system. The preprocessing module is used to first dissect the
integrated apps into code blocks. After that, each block is
analyzed separately by the original part of SmartDroid and
assigned a label Lsec indicating the analysis result. A label
is either SECURE or the vulnerability type detected in this
block. An empty label value NULL indicates that the block
is not analyzed yet.

After SmartDroid finishes analyzing the code blocks and
verifying the results through dynamic analysis, the feedback
module will update the analysis results of these blocks stored
in the preprocessing module. Next time the same code block is
encountered, the preprocessing module will skip the analysis
and reuse the previously obtained results. Algorithm 3 and 4
describes the processes of these two modules, respectively.

Algorithm 3: Preprocessing Algorithm
Input: Android app data set Sapp

Output: Classification pool Scbs and bidirectional
block-to-app mapping M

1 Sapp ← Android apps data set;
2 Scbs ← ∅;
3 M ← ∅;
4 foreach app ∈ Sapp do
5 Sinst ← Funcinst(app); /* Funcinst invokes LibD

to dissect the app*/
6 foreach block ∈ Sinst do
7 if block /∈ Scbs then
8 add new relations (app, block) and

(block, app) into M ;
9 Add block into Scbs with its Lsec as NULL;

10 return (Scbs ,M)

In Algorithm 3, LibD is employed to dissect an input app
into blocks. We also build the mapping between apps and
blocks, which is a many-to-many relation, i.e, each app con-
tains more than one code block, and the code block instances,
especially the third-party libraries, can also be shared among
different apps. This mapping makes it much more convenient
to trace the apps from the instances and vice versa. We then
insert these fresh instances into our classification pool. For
each newly extracted instance, we first check if it has been
recorded already. If a block instance is never analyzed before,
we create a fresh record in the pool. The output of this
algorithm is a set of blocks Scbs and the bidirectional mapping
M .

Algorithm 4 illustrates the updating process of the classifica-
tion pool, where the analysis results from Smartdroid are used
to updated the security labels of blocks in the classification
pool. As the analyzed code accumulate, and the per-app
analysis process will speed up since repeatedly appearing code

12

Algorithm 4: Feedback Algorithm
Input: classification pool Scbs with unanalyzed blocks
Output: updated Scbs

1 foreach w ∈ Scbs do
2 if Lsec of w is NULL then
3 sec label ← Funcsmartdroid(w);
4 update Lsec of w to be sec label ;

5 return updated Scbs

blocks will not be re-analyzed and the previously generated
results will be reused.

E. Implementation

Fig. 9 presents the modified SmartDroid system. The pre-
processing and feedback modules are used to instrument the
inputs and outputs of the SmartDroid system.

According to Algorithm 3, preprocessing module uses LibD
to dissect Android apps into code blocks and inserts each of
the block into a classification pool. This pool is divided into
three areas: the secure block area, the vulnerable block area,
and the unanalyzed block area. As shown in Fig. 9, SmartDroid
is directed to only focus on the unanalyzed blocks. For this
purpose, we modified the SmartDroid system to change its
input format. In the original SmartDroid system [17], the input
is a complete Android app, after our modification the input
becomes individual code blocks.

The general workflow of our modified system is mostly
identical to that of the original system. We first transmit the
unanalyzed blocks to the static analysis module of SmartDroid.
The system will collect all the suspicious paths in the code
blocks by comparing all the paths of the ACG with the
predefined vulnerable traces. After that, these suspicious paths
are sent to the dynamic verification sub-module. This sub-
module executes each of the suspicious paths to verify if these
paths can trigger the flaws in reality. If one path is able to
make any of the known flaws happen during the verification,
this block is considered as vulnerable and its corresponding
record would be updated in the following feedback module.

F. Acceleration Evaluation

We deployed our modified detection system on the Open-
Stack Platform and leveraged 100 virtual machines to analyze
apps in parallel. In general, we evaluate our acceleration
scheme by measuring (1) the vulnerability discovery accuracy
and (2) the acceleration efficiency in terms of the processing
time.

1) Accuracy: Essentially, four kinds of widely existing
flaws, DoS, WebView leaks, SSL Hijacking and FileCross,
are studied in this step. The details of these vulnerabilities
are presented in Section VI. Considering SmartDroid as a
well-developed tool for vulnerability detection, we take the
detection result of the original system towards our app data
set as the baseline to assess the accuracy of our modified
system; we measure the false positive and false negative rate
in this step. Table X reports the comparison result. Here, we
list the vulnerable apps detected by both systems. Note that

since the same vulnerability assertion approach is deployed in
both systems, for a benign app, our modified system should
not mark it as “vulnerable”. In other words, we expect that
no false positives should be reported. Our evaluation result is
consistent with this intuition, as listed by Table X.

Comparing with the detection results of the original Smart-
Droid system, we report that most of the false negative rates
are negligible (half of them are zero), and the modified Smart-
Droid system is still well-performing in detecting vulnerable
Android apps.

To understand what factors have led to the errors, we
sampled some of the false negatives and studied them case by
case. For each vulnerability class, we randomly selected five
false negatives. For classes with less than five false negatives,
we took all available cases. As such, a total of 38 false
negatives were analyzed in depth. Through the analysis, the
main cause of false negatives is the potentially incomplete
execution traces fed to the dynamic verification module, as
discussed in §V-C. Among the 38 cases we analyzed, 33 are
due to the lack of necessary prefixes, i.e., the vulnerabilities
could not be triggered, and 5 are due to the lack of suffixes,
i.e., the failures failed to manifest.

2) Acceleration Effects: To evaluate the processing speed
increase of the modified system, the accumulative time con-
sumption as well as the number of extracted suspicious paths
are studied in this section.

The time consumption is a key criteria to measure the
efficiency of the system. In general, the original SmartDroid
system takes five minutes to analyze one app on average.
The static analysis of suspicious path extraction takes around
one minute while the dynamic verification step takes about
four minutes. While the dynamic verification step cannot
be optimized, as aforementioned, the modified system shall
effectively reduce the number of suspicious paths in each app
that need to be verified.

Since the modified system “caches” the analysis results, we
expect that the analysis speed would be constantly reduced
by the accumulation of analyzed apps. We fed the modified
system with in total 1,427,395 Android apps and measured the
processing time after analyzing certain amount of cases. The
results are presented in Table XI, which are consistent with
our expectation.

As reported in Table XI, the original and the modified
systems spend about the same amount of time in analyzing the
first 100 apps. However, the modified system becomes about
6 minutes faster when 1,000 apps have been fed. This “gap”
keeps growing as more apps are analyzed. In total, the original
system takes more than 27 days to finish all tasks. That is, the
modified system saves almost one month to analyze the data
set comparing with the original analysis system.

We also evaluated the efficiency of the modified system
by training from the 1,427,395 apps data set and perform
cross data set validation. To this end, we additionally collected
370,507 apps which are not in the original dataset used for
evaluation We then randomly selected 1,000 apps from new
dataset and run both analysis systems to record the total
analysis time. On average, the original system can process
15 apps per minute while our modified system can handle

13

mapping

Secure instances

Vulnerable instances

Unanalyzed

instances

Build

FCG

Biuld

ACG

Suspicious path discovery

sub-module

Send unanalyzed

 instances into

SmartDroid

Preprocessing Module

Classification pool

Dynamic

verification

 sub-module

Runtime Execution

Activity

restrictor
Android phones

Android

apps set

Suspicious paths

SmartDroid Analysis module

Output

Verification

result Feedback

module

Feedback and update classification pool

Fig. 9: Workflow of the modified SmartDroid system.

TABLE X: Comparing the detection results of the modified SmartDroid with those of the original.∗

Type of Vulnerabilities Vulnerable Apps
Detected by SmartDroid

Vulnerable Apps Detected
by the Modified System

False Negatives
(False Negative Rate)

DoS 254,209 254,135 74 (0.03%)
WebView leaks 3,099 3,099 0 (0.00%)
SSL Auth Flaw 44,512 44,506 6 (0.02%)
FileCross 18,490 18,490 0 (0.00%)
DoS & WebView leaks 1,522 1,522 0 (0.00%)
DoS & SSL Auth Flaw 1,692 1,635 57 (3.37%)
DoS & FileCross 2,173 2,173 0 (0.00%)
SSL Auth Flaw & WebView leaks 92 92 0 (0.00%)
SSL Auth Flaw & FileCross 50 47 3 (6.00%)
WebView & FileCross 12,858 12,753 105 (0.82%)
Dos & SSL Auth Flaw & WebView leaks 46 46 0 (0.00%)
DoS & SSL Auth Flaw & FileCross 18,218 18,218 0 (0.00%)
DoS & WebView leaks & FileCross 38,865 37,979 886 (2.28%)
SSL Auth Flaw & WebView Leaks & FileCross 2,181 2,102 79 (3.63%)
DoS & WebView Leaks& SSL Auth Flaw & FileCross 10,496 10,490 6 (0.06%)

∗The false negatives are counted assuming the results reported by the original SmartDroid are correct. No false positives were reported.

TABLE XI: Comparison of the processing time.

of
Analyzed Apps

Total Time Consumption
of the Original System

Total Time Consumption
of the Modified System

≤ 100 5 min 6 min
≤ 1,000 61 min 55 min
≤ 10,000 511 min 483 min
≤ 100,000 5,772 min 4,434 min
≤ 1,000,000 51,365 min 31,234 min
≤ 1,427,395 72,504 min 32,789 min

TABLE XII: Comparison of the analyzed suspicious paths.

Suspicious Paths
Analyzed in the
Original System

Suspicious Paths
Analyzed in the
Modified System

of Suspicious Paths in Total 44,289,364 6,317,167
of Average Suspicious

Paths in Each App 120 17

100 apps per minute, namely 5.5 times of efficiency increase.
Note that in this new experiment, we did not feedback the
analysis result to the preprocessing module.

Overall, 19,269,833 blocks were dissected from our data set
of 1,427,395 apps. Our study shows that 17,048,455 blocks
are reused during the evaluation. On average, an app contains
13 blocks and most of them (11 blocks) are shared among
different apps. Therefore, we expect that most app analysis

tasks can be accomplished by only analyzing small amount of
blocks in each app.

In addition to the processing time study, we also evaluate
the number of suspicious paths that need to be analyzed
in both systems. Table XII shows the suspicious paths that
are labeled in both systems. In total, there are 44,289,364
suspicious paths in our 1,427,395 apps data set; each app
contains 120 suspicious paths on average, but most of them
are shared among different apps. As aforementioned, most
dynamic verification in the original system repeatedly process
already-analyzed paths. On the other hand, after we optimized
the system by caching the fine-grained analysis results, the
number of suspicious paths has been reduced to 6,317,167.
For each app, there are only 17 suspicious paths for analysis
on average. As a result, our modification reduces the analysis
efforts to 14.2% by squeezing out the redundancies.

VI. IMPROVING VULNERABLE LIBRARY DETECTION

Usually, the code containing programming flaws and mak-
ing a library vulnerable is only a small part of the entire library.
For example, the vulnerable part of Baidu Moplus SDK [20]
is only a single-line code snippet. As such, the vulnerable
and benign versions may be very similar in terms of both the

14

structure and functionality, making it non-trivial to identify the
vulnerable versions.

One of the design goals of LibD is to find the sweet spot
for the sensitivity of library signatures. On the one hand,
we would like the signature to be sensitive enough to reflect
subtle changes made to the library code such that the different
versions of the same library can be effectively distinguished.
On the other hand, we also want to avoid designing overly
fine-grained signatures to keep the computation of signatures
efficient enough for large-scale analysis. In this section, we
demonstrate that LibD can be used to detect the vulnerable
variants of the same Android library among millions of apps.

A. Inspected Vulnerabilities

To evaluate if our approach is sensitive enough to iden-
tify common programming flaws in vulnerable third-party
libraries, we choose four widely-spread types of Android
vulnerabilities, including deny of services (DoS), WebView
information leaks, man-in-the-middle (MITM) SSL hijacking,
and the “FileCross” problems affecting Android browsers.

• DoS. An attacker using Deny of Service flaws can cause
a running computer or server to crash, for example, by
exploiting the overflows in memory. On the Android
platform, the type of attacks can crash the smartphone.
With a proper use of the integer underflow (e.g., CVE-
2017-14496), an adversary is able to deploy a remote
DoS attack. In the CVE database3 platform, the DoS
vulnerabilities account for 18.6% of all the uploaded
vulnerabilities. This type of flaws pervasively exists in
the different versions of the Android platform.

• WebView Information Leaks. WebView is an important
gadget in the Android Framework that is responsible for
rendering web contents. In some Android versions, the
WebView component is buggy and may cause information
leaks when programmed in certain patterns (e.g., CVE-
2014-6041). We summarized these potentially vulnerable
code patterns and try to identify them in our data set.

• SSL Hijacking. SSL hijacking has become a common
security flaw in mobile apps in recent years [25]. The
root cause of this flaw is that mobile apps fail to check
the SSL certificates of the servers they communicate
with, thus vulnerable to man-in-the-middle attacks when
the mobile devices are connected to untrusted networks.
In our evaluation, we focus on detecting inappropriate
implementations of HTTPS communications in Android
apps.

• FileCross. Android browsers support the URI scheme
of file://. FileCross refers to the vulnerabilities that
exploit the file access URL to inject malicious JavaScript
code into the file system and steal on-device data [26].

B. Detecting Vulnerable Apps

Again, we employ SmartDroid [17] as the vulnerability
detector to obtain the ground truth about whether an Android
app is vulnerable or not. As previously mentioned, SmartDroid

3http://www.cvedetails.com/product/19997/Google-
Android.html?vendor id=1224

TABLE XIII: Vulnerable Libraries

types of vulnerabilities # Vulnerable libraries
DoS 2,659
WebView leaks 2,141
SSL Auth Flaw 2,020
FileCross 311
DoS & WebView leaks 27
DoS & SSL Auth Flaw 865
DoS & FileCross 1,428
SSL Auth Flaw & WebView leaks 23
SSL Auth Flaw & FileCross 22
WebView & FileCross 867
DoS & SSL Auth Flaw & WebView leaks 12
DoS & SSL Auth Flaw & FileCross 233
DoS & WebView leaks & FileCross 42
SSL Auth Flaw & WebView Leaks & FileCross 35
DoS & WebView Leaks& SSL Auth Flaw & FileCross 116
Total 10,801

can only detect vulnerabilities at the granularity of apps but not
third-party libraries. Our modification of the original analysis
system improved the situation by narrowing the vulnerable
scope from the entire app to code blocks.

C. Evaluating Vulnerable Library Detection

The result of the modified vulnerability analysis system
shows that our third-party library detection approach is sen-
sitive to vulnerable libraries. All the vulnerable libraries are
real and may threaten massive apps at the same time.

As is shown in Section IV, we found a considerable number
of different versions of the same library, while only some
of them are indeed vulnerable. In total, we detected 10,801
vulnerable third-party libraries with a clustering threshold of
10 (see §IV-C for threshold selection). The vulnerable libraries
account for 17.7% of all libraries, indicating that third-party
libraries are not as secure as assumed by some previous
research. Threats of defective third-party libraries needs to be
thoroughly considered.

In our case study, we noticed that a library can be affected
by multiple vulnerabilities. Table XIII shows the statistics
about this phenomenon. According to our results, 34.0% of the
vulnerable libraries contains more than one vulnerability. For
these libraries, the most common vulnerability combination
is DoS and FileCross. This is an alarming fact since the two
defects can easily form a realizable attack sequence. Attackers
can first exploit FileCross to deploy and execute malicious
JavaScript code on a victim device; the malicious JavaScript
can then easily trigger the DoS attack.

D. Further Analysis

To obtain a deeper understanding on the characteristics of
detected vulnerable libraries, we further manually inspected
the top 200 most popular ones, ranked by the number of apps
affected. Table XIV and Table XV list the separated rankings
of the top 10 most popular obfuscated and unobfuscated
vulnerable libraries, respectively, showing library names, the
count of apps including them, and the types of vulnerabilities
reported. The 200 analyzed libraries cover all those listed in
Table XIV and Table XV. For each manually inspected library,
we randomly picked an instance from each corresponding
cluster.

We designed a systematic protocol to manually inspect the
library instances covered by Table XIV and Table XV. For

15

the obfuscated libraries, the two research questions to answer
are: “what are their identities?” and “what are their main
functionalities?”. We developed the answers mostly through
reverse engineering. The typical procedure for revealing the
true identity of each library instance is to dump all string
literals used by the library code and see if any of them
indicates library name. For example, many libraries produce
logs during execution and prepend their names to each log
entry. Regarding the second research question, for most ob-
fuscated libraries, it is easy to learn their functionalities from
the Internet once the library name is revealed. Rarely, for
those that lacks online information, we needed to additionally
analyze their decompiled code. For unobfuscated libraries, our
primary goal was to confirm their identities and investigate
whether they were ever published by a third-party library
developer and provided to other app vendors. If so, we would
collect all historical versions of that library published by its
developer and see if the instance in our dataset matches any
of these versions.

Two authors participated in the manually analysis. In order
to avoid biases caused by different personal reverse engineer-
ing experiences, the two authors were asked to start with a
small subset of 20 libraries and cross-validate results from
each other. All conflicts about the results the were resolved
with face-to-face discussions before the two participants pro-
ceeded to inspect the whole dataset. During the discussion,
we found that for most sampled libraries, the functionality
can be made clear through online information once their
identities were confirmed. The conflicts were mostly caused
by the carelessness of one of the manual analysis participants.
Therefore, we did not design a similarity measure for deciding
the functionality but totally relied on qualitative methods.
More details about the manual analysis process can be found
in Appendix B.

Through the manual analysis, we have summarized two
interesting empirical findings. The first one is that the renamed
libraries are not always constructed by random characters.
Instead, some of the modifications are manually done. We
found two cases of this phenomenon. The first case is a
pair of libraries named /com/wendyapp/wps and /com/
lovepop/flystart. If solely judging from their names,
we consider that they are instances of different libraries that
likely provide different functionalities. But after inspecting
the decompiled code, we found that their code structures are
almost identical. Even the positions and frequencies of the
used APIs are the same. So we conclude that at least one
of the names of the two libraries was obfuscated. In order
to pick out the original library name, we check both their
names with DNS. It turns out that the original name of this
library is /com/lovepop/flystart. This is an ads library
used for recommending magical pop-up greeting cards for
weddings. Based on this knowledge, the other name (/com/
wendyapp/wps) is highly likely to be an obfuscated one and
we do not find any results on this name as an web domain.
Indeed, this name does not look like the other obfuscated
library names with random sequence of characters. The second
case is the pair of /com/charry/android and /com/
flurry/android. Note that this pair is among the top 10

most popular obfuscated libraries (Table XIV). This indicates
that although manually renamed libraries are rare, they could
have a considerable impact in the app markets.

The second empirical finding is that the renaming-based
obfuscations are mostly applied to finance-related libraries,
such as ads libraries. In particular, we found that 7 of the 10
libraries in Table XIV can be related to Google’s advertising
library, suggesting that Google’s library might be the prototype
of a large number of obfuscated ads libraries in the markets
we analyzed and the vulnerabilities in Google’s library were
inherited by those obfuscated ones.

Typically, an ads library will credit the developer when an
ad is successfully presented by the hosting app and clicked by
a user. For example, the Google ads library will issue Google
money once the ads in the insert app are pressed on the screen.
But not all the obfuscated Google ads libraries, especially the
manually obfuscated libraries, give money to Google as the
original library is designed to. Once the modification of a
library has changed the destination of the financial flow from
Google to another third-party account, this modified library
would steal money that was supposed to be sent to Google.
This modified library should be regarded as malicious. We
manually analyze these libraries in the table and confirm that
Library /com/nainaidu/ads is malicious. As for the other
modified or obfuscated libraries, we did not find clear clues
indicating that they are depositing funds to other account, but
they are still suspicious. In our deduction, the adversary should
have found some DoS or WebView related vulnerabilities in
some specific versions of the Google ads library and modified
both the names and corresponding code inside to make sure
that these modified versions would not be covered when
Google update its ads library.

Table XV shows the ten most commonly unobfuscated
libraries. All these libraries are developed by large Internet
enterprises. According to our result, they are pervasively
spread in apps provided by third-party software markets in
China. Once a vulnerability is exploited in any instance of
these libraries, it is likely that the impact will be quickly
radiated to a massive number of apps. It may be surprising
that these libraries are not reported to be obfuscated by LibD,
which means there are no other libraries that share the same
signature with them. With the above analysis results, we
can conclude that these libraries are not tampered with by
malicious parties. Therefore, the vulnerabilities discovered in
Table XV are surely introduced by the original developers of
these libraries.

In Section III-D1, we introduced the RPC vulnerability
residing in the library of Baidu moplus SDK [20], which is
also set as target of the modified SmartDroid system. After
analyzing all the libraries and apps, we found that 2,012
different apps in our dataset are tainted by 15 different versions
of the library containing this flaw.

VII. LIMITATIONS OF LIBD

Compared with previously work, LibD has advanced the
state of the art in several aspects. Yet, the technique has
limitations and some of them can be potentially addressed.

16

TABLE XIV: Obfuscated Vulnerable Libraries

Rank #Vul-Library # Number of
affected apps Vulnerabilities(Count)

1

/org/gg/music/
......

/com/google/ydd/ 58,976 DoS, WebView

Total Num: 20

2
/com/tencent/a/
/com/tencent/b/ 24,012 DoS, WebView
Total Num: 2

3
/com/gg/sda/

......
/cof/gootle/adz/

17,706 DoS, WebView

Total Num: 14

4
/com/baidu/location/

/com/a/a/ 17,679 DoS, WebView
Total Num: 2

5

/com/sdf/ads/
......

/com/google/ads 16,323 DoS, WebView

Total Num: 17

6

/com/nainaidu/ads
......

/com/go2/ads/ 13,300 DoS, WebView

Total Num: 12

7

/com/xxgg/abs/
/com/google/ads/

......
/com/tgxsw/ads/

9,524 DoS, WebView

Total Num: 8

8

/com/google/ads/
......

/cn/google/ads/ 9,447 DoS, WebView

Total Num: 10

9

/com/charry/android/
......

/com/flurry/android/ 4,471 DoS, WebView,
SSL Auth Flaw,

FileCrossTotal Num: 2

10

/com/cccccc/android/
/com/millennia
lmedia/android/ 4,310 DoS, WebView

Total Num: 2

TABLE XV: Unobfuscated Vulnerable Libraries

Rank Library Name # Number of
affected apps Vulnerabilities

1 /com/tencent/mm 43,731 DoS, WebView
2 /com/tencent/mm 33,491 Dos, WebView
3 /com/tencent/mm 30,100 DoS, WebView
4 /m/framework/network 27,854 SSL Auth
5 /com/tencent/connect 20,433 DoS, FileCross
6 /com/baidu/location/ 17,973 DoS, WebView
7 /com/tencent/weibo/ 1,750 DoS, FileCross
8 /com/amazon/inapp/ 17,001 DoS, WebView
9 /com/tencent/qqconnect/ 15,057 DoS, WebView

10 /com/tencent/mm/ 13,798 DoS, WebView

A number of these limitations originate from the fundamental
technical challenges in Android app analysis, which we call
the general limitations because they are shared by a large
number of Android app analysis techniques. The others are
more related to the current design and implementation of
LibD, thus called specialist limitations.

A. General Limitations

1) Packers: During our evaluation, we noticed that some
samples cannot be correctly unpacked or decompiled. This
prevents further analysis of LibD since we need the opcodes
to compute the signatures. Investigations showed that these
apps had been processed by the so-called Android “packers”.

Generally speaking, packers are tools that can transform APK
files into malformed shapes while preserving the functionality
of the apps. Packers are similar to code obfuscators in many
aspects, but a packer is not limited to work on program code.
According to the recent literature [27], there are various ways
for a packer to render an APK file unanalyzable, including
injecting false metadata into APK manifests, intentionally
setting the encryption flag in the APK header without actually
encrypting the file, tampering with the magic numbers of the
DEX files, and inserting corrupted DEX objects into the APK
files.

Many tools have been developed to nullify the mischievous
effects brought by packers [27]–[29]. With some engineering
effort, these tools can be integrated into LibD as preprocessors
to handle packed samples. Indeed, this can increase the pro-
cessing time of LibD; however, based on our observation, only
a small portion of the apps in our dataset are indeed packed. It
is possible that the ratio of packed apps is higher in malware
samples, but detecting third-party libraries in malware is not
yet a prevalent application.

2) Native Code: Many Android developers, including li-
brary developers, choose to publish part of their products
in the form of native ARM machine code instead of DEX
bytecode. The native code part of the app interacts with the
rest of components through the Java Native Interface (JNI).
There are several benefits of developing Android apps in native
code. In the early age of Android, performance is possibly
the primary motivation, since native code is typically more
efficient than managed DEX bytecode. In recent Android
versions, however, the performance problem has become much
less of a concern due to the significantly improved Android
runtime environment and app compilation model. Starting in
Android 7.0, a hybrid combination of ahead-of-time, just-in-
time, and profile-guided compilation strategies are employed
to improve the performance of code written in Java and Kotlin.
This makes publishing apps in native code for execution
speed not as attractive as before. Nevertheless, it is still a
common practice among mobile app vendors since many of
them develop apps for different platforms and C/C++ is the
currently the only portable choice available to all mainstream
mobile OSes. Security can be yet another advantage of native
code, since it is considered to be more difficult to reverse
engineer than bytecode.

Conceptually, the key steps in our method is also applicable
to native code, while the technical details make analyzing
native code a problem vastly different from what we have
tackled in this paper. It is known that slicing machine code
into functions and constructing the control flow graphs is
extremely challenging [30]–[32]. Also, there are no or little
package structures or inheritance information in native code,
making our signature generation less rigorous. Most impor-
tantly, it is unclear whether the hash of opcode sequences is
a suitable feature at the native code level, since the number
of machine instructions can be much larger and the hash may
be too sensitive to perturbations caused by compilers. We are
currently unaware of a solution that is directly applicable to
our problem.

17

B. Specialist Limitations

1) Package-Based Detection: Similar to most existing li-
brary methods, LibD considers packages as the minimal units
of a library. In case a package of a library is cloned into the
main package of application, LibD will not be able to distin-
guish the library code from the application’s own code inside
that package. As such, LibD still need improvements if it is
to be employed to analyze apps in adversarial settings, where
the package structures of libraries are no longer authentic.

One way to address this problem is to refine the granu-
larity of our current app dissection algorithm. For example,
we can identify library candidates as a group of classes
instead of packages. Indeed, an adversary can counterattack
this improved method by further reorganizing the classes
structures [33], but that will significantly increase their cost
of operation. On the hand, performing large-scale library
detection at the class level will be much more costly than the
current package-based scheme. Intensive research and novel
methods are required to make the idea practical.

2) Advanced Obfuscation: Obfuscation has been widely
adopted in Android development. While LibD is able to
counter common obfuscation algorithms like package and
symbol renaming, there exist more advanced obfuscations
that LibD cannot handle. Indeed, the signature we build for
Android apps captures some of the semantic features of the
code, yet it is mostly syntactic. If the obfuscation alters code
syntactic structures intensively, it is likely that the performance
of LibD will decline.

ProGuard [23], the official obfuscation toolkit provided
by the Android SDK, is considered one of the most popu-
lar obfuscators. As mentioned in §IV-G2, ProGuard mostly
provided renaming-related obfuscations. Typical objects that
are renamed include package, class, and even methods. By
applying ProGuard to the compiled DEX code, sensible names
of the programming elements in the app are turned into ran-
domly generated meaningless strings. As previously discussed
(§III-D2), by hashing the underlying opcodes, LibD is resilient
to the renaming obfuscations. Our evaluation also presents
promising results in detecting obfuscated third-party libraries
(§IV-G2). However, the latest version of ProGuard (published
after the majority of our research was accomplished) started
to provide unprecedented obfuscation techniques, e.g., package
structure flattening4. We speculate that LibD is not capable of
handling the new obfuscation at this point.

We also noticed that some third-party obfuscation tools
can perform even more advanced obfuscation techniques, e.g.,
code encryption, control flow flattening, and code virtualiza-
tion [34]–[36]. Handling these obfuscations is far beyond the
capability of syntax-based similarity detection, namely they
can very likely impede LibD. One way to accurately analyze
deeply obfuscation apps is to employ dedicated deobfuscation
techniques. Nevertheless, deobfuscation is still an open prob-
lem and has been actively researched [37], [38]. We do not
discuss the details of this line of work in this paper.

3) Functionality-Oriented Analysis: We have presented two
applications for which LibD is adequate. However, some

4https://www.guardsquare.com/en/proguard

analyses put more emphasis on tracing the functionality of
the libraries. In such cases, our method may be too sensitive
to divergences between different implementations of the same
program functionality, leading to clustering results that do not
meet client demands well.

Although this is indeed a limitation of our method, we
consider it inevitable since there is unlikely a “silver bullet”
effective against all scenarios with respect to the library
detection problem. One potential method to improve the
current design is to make the sensitivity of the signature
configurable through user-provided parameters and let clients
set the appropriate settings based on their needs.

VIII. OTHER DISCUSSIONS

A. Setting Thresholds

As explained earlier (§III-E), LibD identifies libraries ac-
cording to a predefined threshold, and we set the threshold by
validating a broad set of candidates regarding an existing work
(§IV-B). Although our experiments report promising results
given the threshold as 10, conceptually, a “module” shared by
only two Android apps can be considered as a library. In other
words, determining a foolproof threshold regarding real-world
Android applications may need further investigation and study.

The current implementation of LibD can be easily con-
figured with different thresholds. Besides, we consider a
rigorous training step regarding the ground truth should also
be applicable in our research. On the other hand, since there
is no systematic approach to acquiring the ground truth, our
current ground truth set constructed by manual efforts may
not be sufficient for training (§IV-D1). In sum, we leave it as
further work to extend the size of our ground truth set and
launch a rigorous training procedure to decide the threshold.

B. Semantics-Based Similarity Analysis.

LibD detects instances of potential libraries (§III-C2); in-
stances with identical features are clustered into one group
(i.e., a third-party library). Conceptually, we are indeed search-
ing for the hidden “similarity” among different code compo-
nents (e.g., Java packages).

Note that features extracted by LibD (e.g., opcode se-
quences) are essentially from the program syntax. Syntactic
features are straightforward representations of the target pro-
grams, and they have been widely used by many existing
work for program similarity comparison and code clone detec-
tion [39]–[41]. Our experimental result has also demonstrated
efficient and precise detection of Android third-party libraries
(§IV-D1) using syntactic features.

On the other hand, we have also observed some program
semantics-based similarity analysis work [42]–[54]. Ideally,
similarity analysis work in this category retrieves features by
modeling the functionality of the program, and it can usually
reveal the underlying similarities of code snippets in a more
accurate way. However, some of the existing semantics-based
similarity work may not scale well [48], [49], [52]. Given
the high scalability as a requirement for Android third-party
library detection, we consider it may not be feasible to directly
adopt previous techniques in our context. We leave it as future

18

work to integrate more scalable semantics-based methods into
our research.

IX. RELATED WORK

A. Third-Party Library Identification

Early work on third-party mobile library identification
mostly focuses on advertising libraries. Book et al. [55] and
Grace et al. [56] use the whitelist-based method for detecting
advertising libraries. After collecting the names of well-known
advertising libraries, they examine the existence of such li-
braries in a mobile app by package name matching. Later
techniques like AdDetect [57] and PEDAL [5] start to em-
ploy machine learning methods to provide more accurate and
comprehensive results, but they still target advertising libraries
only. AdRob [58] analyzes the network traffic generated by the
advertising services in Android apps to identify which libraries
are bundled, with both static and dynamic analysis.

Identification techniques specialized for advertising libraries
are not suitable for many security analysis on mobile apps.
Recent research has proposed more general methods that do
not rely on a priori knowledge about what types of libraries are
to be identified. WuKong [7] is an Android app clone detector
which filters out third-party libraries before computing app
similarity. WuKong adopts the assumption that a library con-
sists of only one package. For each package, WuKong assigns
the set of invoked Android API functions as its signature.
Given a large set of apps, WuKong clusters all packages by
this signature and reports clusters that are large enough to be
recognized as a third-party libraries. LibRadar [8] is an online
service that implements the identification method of WuKong,
with a better-performing package clustering algorithm.

To distinguish app-specific classes from third-party-library
classes, Vásquez et al. [59], [60] extracted the package name
(i.e., main package) from AndroidManifest.xml for an
app. Then, they considered all the classes inside the main
package and its sub-packages as app-specific classes; classes
outside the main package were considered as classes from
third-party libraries. An empirical study conducted by Li et
al. [9] investigated the usage patterns of third-party Android
libraries. Another study by Chen et al. [10] tried to find
potentially harmful libraries in iOS as well as Android apps.
Both studies need to identify Android third-party libraries first,
but they adopt an approach different from the one employed
by WuKong. Instead of matching packages by signature, the
two studies cluster library candidates by computing a distance
metric between each pair of them. The distance is based
on binary similarity and computed through binary diffing
algorithms. With the distances computed, candidates close to
each other are clustered and considered to belong to the same
library. Since binary diffing is usually very costly, both studies
have to perform pre-clustering based on package names to
narrow the scope of pair-wise library candidate comparison,
which could be impeded by obfuscation.

B. Code Clone Detection

The problem of library detection is closely related to the
more generalized clone detection problem. Many techniques

have been proposed to find pairs of code fragments that share
the same provenance. Different from library detection, general
code detection typically searches for similarity matches at a
pre-defined level of code structures, e.g., functions, files, and
whole programs. In contrast, library detection needs to identify
the boundary of similarity comparison without much prior
knowledge.

Code clone detection techniques work on various syntactic
and semantic features of programs. The similarity can be
computed based on tokens [40], [61]–[64], parsing trees [41],
[65], [66], and dependence graphs [4], [67], [68]. In addition
to traditional structure levels, recent methods have started
working on more semantics-related abstractions. For example,
McMillan et al. [69] proposed to model software functionality
with the patterns of standard library API invocations. In their
method, Java APIs are grouped by their affiliations with classes
and packages and assigned different weights based on their
likelihood of occurrence in code repositories. Additionally,
APIs correlated to each other in terms of functionality (i.e.,
compression and IO) are particularly considered as subgroups.
These factors are coalesced to form a similarity measure
called Latent Semantic Indexing (LSI). Compared to our
method, LSI is more semantics-centric, thus more suitable
for identifying applications that implement similar function-
ality but not necessarily with the same provenance. Another
recently proposed clone detection method takes one more
step further and inspects code semantics similarity at an even
finer granularity. Luo et al. [48] used symbolic execution to
abstract code semantics with logic formulas. The semantics
equivalence of different code segments is then proved by as-
serting the equivalence of the resulting formulas. This method
is very resilient to various software obfuscation algorithms.
However, since the method is designed for pairwise similarity
comparison, the cost of applying to millions of applications
all together is unlikely to be affordable.

It is known that different clone detection methods engi-
neered different features and similarity measures to capture
software relevance, while each feature has its own strengths
and weaknesses. For improved generality of code detection,
researchers have considered combining multiple features and
measures together to build more rigorous portraits for code
segments. For example Davies et al. [70] developed the
Software Bertillonage framework which utilized count-based
(e.g., number of API calls), set-based (e.g., the set of classes
in a package and the set of methods in a class), and sequence-
based (e.g., sequence of method definition in a class) features
simultaneously. Although the multi-dimensional features can
boost the performance of clone detection in many cases, the
method is not very resilient to obfuscations and thus does
not work well in adversarial settings. Simple obfuscations like
global symbol and package renaming could thwart Bertillon-
age.

Latest progress in code clone detection [71] employs deep
learning techniques, which shifts the part of the burden of
feature engineering from detector designers to automated
probabilistic learners, i.e., recurrent neural networks.

19

C. Applications

Third-party library identification has been used to imple-
ment many security applications targeting the Android ecosys-
tem, one of which is Android app clone and repackaging
detection [4], [7], [16], [72]–[75]. In this application, third-
party libraries are considered noises, so they need to be
detected and filtered out before app plagiarism is checked.

Another important application of library identification is
mobile vulnerability analysis. Paturi et al. [76] and Stevens et
al. [77] extracted advertising libraries from popular Android
apps and studied the privacy leakage problems residing in
these libraries. Jin et al. [78] discovered that some third-party
libraries providing HTML5 support for mobile developers
can be easily exploited by code injection attacks. SMV-
HUNTER [25] analyzed the man-in-the-middle SSL/TSL vul-
nerabilities in Android apps and third-party libraries. Li et
al. [79] found a vulnerability in a specific version of the
Google cloud messaging library that leads to private data
leakage. Since these vulnerabilities are sometimes closely
coupled with specific libraries, identifying those libraries can
be very helpful to searching for certain kinds of security
threats. LibD can in general assist with these applications.

X. CONCLUSION

In this paper, we present a novel technique for identifying
third-party libraries in Android apps. Our method overcomes
some long existing limitations in previous work that affect
library identification accuracy. We have implemented our
method in a tool called LibD. From a dataset of 1,427,395 An-
droid apps recently collected from 45 markets, LibD identified
60,729 different third-party libraries with a manually validated
accuracy rate that clearly surpasses similar tools. In particular,
our tool possesses certain degrees of obfuscation resilience.
Our experimental results show that LibD can find 19,540
libraries whose package names are obfuscated. We exploit
LibD on SmartDroid, a real vulnerability detection system to
detect the vulnerable library versions. The evaluation result
shows that LibD can find 10,801 vulnerable library instances
and accelerate the analysis speed by 5.5 times.

ACKNOWLEDGMENTS

This research was supported in part by the National Natu-
ral Science Foundation of China (No. 61572481, 61402471,
61472414 and 61602470), the Program of Beijing Municipal
Science & Technology Commission (No. Y6C0021116), the
US National Science Foundation (Grant No. CCF-1320605),
and Office of Naval Research (Grant No. N00014-13-1-0175,
N00014-16-1-2265, and N00014-16-1-2912).

REFERENCES

[1] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “LibD: Scalable and precise third-party library detection
in Android markets,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 335–346. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.38

[2] “Number of apps available in leading app stores as of July 2015,”
http://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/.

[3] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Proceedings of the 2014 Symposium On Usable Privacy and Security,
ser. SOUPS ’14, 2014, pp. 199–212.

[4] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing, ser. ICSE ’14, 2014, pp. 175–186.

[5] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’15, 2015, pp. 89–103.

[6] J. Crussell, C. Gibler, and H. Chen, “Scalable semantics-based detection
of similar Android applications,” in Proc. of Esorics, 2013.

[7] H. Wang, Y. Guo, Z. Ma, and X. Chen, “WuKong: A scalable and accu-
rate two-phase approach to Android app clone detection,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
ser. ISSTA ’15, 2015, pp. 71–82.

[8] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: fast and accurate
detection of third-party libraries in Android apps,” in Proceedings of the
38th International Conference on Software Engineering (Demo Track),
ser. ICSE ’16 Companion Volume, 2016, pp. 653–656.

[9] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation into
the use of common libraries in Android apps,” in Proceedings of the
23rd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, ser. SANER ’16, 2016.

[10] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma,
A. Wang, Y. Zhang, and W. Zhou, “Following devils footprints: Cross-
platform analysis of potentially harmful libraries on Android and iOS,”
in Proceedings of the 37th IEEE Symposium on Security and Privacy,
ser. S&P ’16, 2016.

[11] “smali: smali and baksmali,” https://github.com/JesusFreke/smali.
[12] “Openstack,” https://www.openstack.org/.
[13] “The Java tutorial: What is a package?” https://docs.oracle.com/javase/

tutorial/java/concepts/package.html.
[14] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable

detection of “piggybacked” mobile applications,” in Proceedings of the
3rd ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’13, 2013, pp. 185–196.

[15] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on Android markets,” in Proceedings of the 17th
European Symposium on Research in Computer Security, ser. ESORICS
’12, 2012, pp. 37–54.

[16] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid: To-
wards obfuscation-resilient mobile application repackaging detection,”
in Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless and Mobile Networks, ser. WiSec ’14, 2014, pp. 25–36.

[17] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
Android applications,” in Proceedings of the 2nd ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12, 2012, pp. 93–104.

[18] “Apktool,” http://ibotpeaches.github.io/Apktool/, 2016.
[19] L. Adesnos, “Androguard,” 2016, accessed: 2016-03-21. [Online].

Available: https://github.com/androguard/androguard
[20] Trendmicro, “Setting the record straight on Moplus SDK and

the Wormhole vulnerability,” http://blog.trendmicro.com/trendlabs-
security-intelligence/setting-the-record-straight-on-moplus-sdk-and-
the-wormhole-vulnerability/.

[21] Google, “Android security white paper,” https://static.googleusercontent.
com/media/enterprise.google.com/en//android/files/android-for-work-
security-white-paper.pdf.

[22] Android, “How we keep harmful apps out of Google Play and keep
your Android device safe,” https://static.googleusercontent.com/media/
source.android.com/en//security/reports/Android WhitePaper Final
02092016.pdf.

[23] “ProGuard,” https://www.guardsquare.com/proguard.
[24] “ProGuard manual — usage,” https://www.guardsquare.com/en/

products/proguard/manual/usage#obfuscationoptions.
[25] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “SMV-

HUNTER: Large scale, automated detection of SSL/TLS man-in-the-
middle vulnerabilities in Android apps,” in In Proceedings of the 21st
Annual Network and Distributed System Security Symposium, ser. NDSS
’14, 2014.

[26] D. Wu and R. K. C. Chang, “Analyzing android browser apps for file:
// vulnerabilities,” CoRR, vol. abs/1404.4553, 2014. [Online]. Available:
http://arxiv.org/abs/1404.4553

20

https://doi.org/10.1109/ICSE.2017.38
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://github.com/JesusFreke/smali
https://www.openstack.org/
https://docs.oracle.com/javase/tutorial/java/concepts/package.html
https://docs.oracle.com/javase/tutorial/java/concepts/package.html
http://ibotpeaches.github.io/Apktool/
https://github.com/androguard/androguard
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/
https://static.googleusercontent.com/media/enterprise.google.com/en//android/files/android-for-work-security-white-paper.pdf
https://static.googleusercontent.com/media/enterprise.google.com/en//android/files/android-for-work-security-white-paper.pdf
https://static.googleusercontent.com/media/enterprise.google.com/en//android/files/android-for-work-security-white-paper.pdf
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Android_WhitePaper_Final_02092016.pdf
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Android_WhitePaper_Final_02092016.pdf
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Android_WhitePaper_Final_02092016.pdf
https://www.guardsquare.com/proguard
https://www.guardsquare.com/en/products/proguard/manual/usage#obfuscationoptions
https://www.guardsquare.com/en/products/proguard/manual/usage#obfuscationoptions
http://arxiv.org/abs/1404.4553

[27] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu, “AppSpear:
Bytecode decrypting and DEX reassembling for packed Android mal-
ware,” in Proceedings of the 18th International Symposium on Research
in Attacks, Intrusions, and Defenses - Volume 9404, ser. RAID ’15, 2015,
pp. 359–381.

[28] Y. Zhang, X. Luo, and H. Yin, “DexHunter: toward extracting hidden
code from packed Android applications,” in Proceedings of the 25th
European Symposium on Research in Computer Security, ser. ESORICS
’15. Springer, 2015, pp. 293–311.

[29] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking of
Android apps,” in Proceedings of the 39th International Conference on
Software Engineering, ser. ICSE ’17, 2017, pp. 358–369.

[30] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to recognize functions in binary code,” in Proceedings of the
23rd USENIX Security Symposium, ser. USENIX Security ’14, 2014,
pp. 845–860.

[31] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in Proceedings of the 24th USENIX
Security Symposium, ser. USENIX Security ’15, 2015, pp. 611–626.

[32] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learning for
function recognition in binary code,” in Proceedings of the 2017 IEEE
International Conference on Software Maintenance and Evolution, ser.
ICSME ’17, 2017, pp. 388–398.

[33] C. Foket, B. D. Sutter, and K. D. Bosschere, “Pushing java type
obfuscation to the limit,” IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 6, pp. 553–567, Nov 2014.

[34] “Dexguard,” https://www.guardsquare.com/dexguard.
[35] “Dash-O,” https://www.preemptive.com/products/dasho/overview.
[36] “Dexprotector,” https://dexprotector.com/.
[37] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse

engineering obfuscated code,” in Proccedings of the 12th Working
Conference on Reverse Engineering, ser. WCRE ’05, 2005.

[38] D. Low, “Java control flow obfuscation,” Ph.D. dissertation, The Uni-
versity of Auckland, 1998.

[39] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[40] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for finding
copy-paste and related bugs in operating system code,” in Proceedings
of the 6th Conference on Symposium on Opearting Systems Design and
Implementation, ser. OSDI’04, 2004.

[41] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in Proceedings of the
29th International Conference on Software Engineering, ser. ICSE ’07,
2007, pp. 96–105.

[42] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the 8th International Symposium on
Static Analysis, ser. SAS ’01, 2001, pp. 40–56.

[43] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism
detection,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 756–765.

[44] Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, “Program
characterization using runtime values and its application to software
plagiarism detection,” IEEE Transactions on Software Engineering,
vol. 41, no. 9, pp. 925–943, 2015.

[45] F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu, “A first step towards
algorithm plagiarism detection,” in Proceedings of the 21st International
Symposium on Software Testing and Analysis, ser. ISSTA ’12, Jul. 2012.

[46] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based software
plagiarism detection,” in Proceedings of the 25th IEEE International
Symposium on Software Reliability Engineering, ser. ISSRE ’14, Nov.
2014, pp. 66–77.

[47] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with application
to software plagiarism detection,” IEEE Transactions on Reliability,
vol. 65, no. 4, pp. 1647–1664, Dec 2016.

[48] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software plagiarism detection,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’14, 2014, pp. 389–400.

[49] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
2015 IEEE Symposium on Security and Privacy, ser. S&P ’15, 2015,
pp. 709–724.

[50] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing
with application to malware lineage inference,” in Proceedings of the
30th IFIP SEC 2015 International Information Security and Privacy
Conference, ser. IFIP SEC 2015. Springer, May 2015.

[51] Z. Tian, T. Liu, Q. Zheng, F. Tong, D. Wu, S. Zhu, and K. Chen,
“Software plagiarism detection: A survey,” Journal of Cyber Security,
vol. 1, no. 3, pp. 52–76, 2016.

[52] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, 2017.

[53] J. Ming, D. Xu, and D. Wu, “MalwareHunt: Semantics-based malware
diffing speedup by normalized basic block memoization,” Journal of
Computer Virology and Hacking Techniques, vol. 13, no. 3, pp. 167–
178, Aug 2017. [Online]. Available: https://doi.org/10.1007/s11416-
016-0279-x

[54] J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-
based semantic binary diffing via system call sliced segment
equivalence checking,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, 2017,
pp. 253–270. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/ming

[55] T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal analysis of
Android ad library permissions,” CoRR, vol. abs/1303.0857, 2013.

[56] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the 5th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, ser. WiSec ’12, 2012, pp. 101–112.

[57] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated detection
of Android ad libraries using semantic analysis,” in Proceedings of
the 9th IEEE International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, ser. ISSNIP ’14, 2014.

[58] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi,
“Adrob: examining the landscape and impact of Android application
plagiarism,” in Proceedings of the 11th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’13, 2013,
pp. 431–444.

[59] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Revisiting Android reuse studies in the context of code obfusca-
tion and library usages,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 242–251.

[60] M. Linares-Vásquez, A. Holtzhauer, and D. Poshyvanyk, “On auto-
matically detecting similar Android apps,” in Program Comprehension
(ICPC), 2016 IEEE 24th International Conference on. IEEE, 2016, pp.
1–10.

[61] B. S. Baker, “A theory of parameterized pattern matching: Algorithms
and applications,” in Proceedings of the 25th Annual ACM Symposium
on Theory of Computing, ser. STOC ’93, 1993, pp. 71–80.

[62] ——, “On finding duplication and near-duplication in large software
systems,” in Proceedings of the 2nd Working Conference on Reverse
Engineering, ser. WCRE ’95, 1995.

[63] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
Jul 2002.

[64] A. Aiken, “MOSS: A system for detecting software plagiarism,” http:
//theory.stanford.edu/œaiken/moss/, 2013.

[65] W. Yang, “Identifying syntactic differences between two programs,”
Softw. Pract. Exper., vol. 21, no. 7, pp. 739–755, Jun. 1991.

[66] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings of the 16th
International Conference on Software Maintenance, ser. ICSM ’98,
1998, pp. 368–377.

[67] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of software
plagiarism by program dependence graph analysis,” in Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’06, 2006, pp. 872–881.

[68] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proceedings of the 30th International Conference on Software Engi-
neering, ser. ICSE ’08. ACM, 2008, pp. 321–330.

[69] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 34th International Confer-
ence on Software Engineering, ser. ICSE ’12, 2012, pp. 364–374.

[70] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software
bertillonage: Determining the provenance of software development arti-
facts,” Empirical Software Engineering, vol. 18, no. 6, pp. 1195–1237,
2013.

21

https://www.guardsquare.com/dexguard
https://www.preemptive.com/products/dasho/overview
https://dexprotector.com/
https://doi.org/10.1007/s11416-016-0279-x
https://doi.org/10.1007/s11416-016-0279-x
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
http://theory.stanford.edu/˜aiken/moss/
http://theory.stanford.edu/˜aiken/moss/

[71] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 87–98.

[72] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of
semantically similar Android applications,” in Proceedings of the 18th
European Symposium on Research in Computer Security, ser. ESORICS
’13, 2013, pp. 182–199.

[73] ——, “Attack of the clones: Detecting cloned applications on Android
markets,” in European Symposium on Research in Computer Security,
2012, pp. 37–54.

[74] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for evaluating
mobile app repackaging detection algorithms,” in Proceedings of the 6th
International Conference on Trust and Trustworthy Computing, M. Huth,
N. Asokan, S. Čapkun, I. Flechais, and L. Coles-Kemp, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 169–186.

[75] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among Android applications,”
in Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2012, pp. 62–81.

[76] A. Paturi, P. G. Kelley, and S. Mazumdar, “Introducing privacy threats
from ad libraries to Android users through privacy granules,” in Pro-
ceedings of NDSS Workshop on Usable Security (USEC’15). Internet
Society, 2015.

[77] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in Android ad libraries,” in Workshop on Mobile
Security Technologies (MoST), 2012, p. 10.

[78] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on HTML5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14, 2014, pp. 66–77.

[79] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and X. Han,
“Mayhem in the push clouds: Understanding and mitigating security
hazards in mobile push-messaging services,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14, 2014, pp. 978–989.

Menghao Li received his MSc in Software Engi-
neering from University of Science and Technology
of China and his PhD in Information Security from
University of Chinese Academy of Sciences. He is
currently an assistant processor with the Key Labo-
ratory of Network Assessment Technology, Institute
of Information Engineering, Chinese Academy of
Sciences. His main research interests are software
analysis, security assessment and vulnerability de-
tection.

Pei Wang received his BSc in Computer Science
and Technology from Peking University, his MASc
in Electrical and Computer Engineering from Uni-
versity of Waterloo, and his Ph.D. in Information
Sciences and Technology from The Pennsylvania
State University. Pei works on a broad range of re-
search topics including computer security, software
engineering, and programming language. He will
join Baidu X-Lab as a Senior Security Researcher
as of September, 2018.

Wei Wang is an engineer in the Key Laboratory of
Network Assessment Technology, Institute of Infor-
mation Engineering, Chinese Academy of Sciences,
China. His research interests include software secu-
rity, software analysis, mobile app security, and pro-
gramming languages. He received his MSc degree
in Communications and Information Systems from
Beijing Jiaotong University in 2007. Before joining
Institute of information engineering, he worked in
the Institute Of Computer Science & Technology of
Peking University.

Shuai Wang is a Postdoctoral Scholar at ETH
Zurich. He received his Ph.D. in Computer Secu-
rity from Penn State University, and B.S. in Elec-
tronic and Information Science and Technology from
Peking University. Shuai Wang is broadly interested
in computer security and specializes in software
security, binary code analysis, and low-level security
techniques. Shuai Wang will join the Computer
Science and Engineering Department at the Hong
Kong University of Science and Technology as an
Assistant Professor in 2019.

Dinghao Wu is the PNC Technologies Career De-
velopment Associate Professor in the College of
Information Sciences and Technology at the Penn-
sylvania State University. He is currently Visiting
Professor at EPFL. His research is in software sys-
tems, including software security, software protec-
tion, software analysis and verification, software en-
gineering, and programming languages. His research
has been funded by National Science Foundation
(NSF), Office of Naval Research (ONR), and De-
partment of Energy (DOE). He received his Ph.D.

degree in Computer Science from Princeton University in 2005. He was a
research engineer at Microsoft in the Center for Software Excellence and
later the Windows Azure Division from 2005–2009. He received the NSF
CAREER Award, George J. McMurtry Junior Faculty Excellence in Teaching
and Learning Award, and College Junior Faculty Excellence in Research
Award.

Jian Liu received the B.S. and M.S. degrees in 1997
and 2000 respectively from Yunnan University, and
the Ph.D. degree from Institute of Software, Chinese
Academy of Sciences in 2005, all in computer
science. He is now an associate research profes-
sor at Institute of Information Engineering, Chinese
Academy of Sciences. He held a visiting professor
position in the School of Information Technology
and Electrical Engineering, University of Queens-
land, Australia, in 2010. His current research inter-
ests include system and software security, mobile

security, web security, program analysis, testing and model checking. He is a
member of IEEE.

Rui Xue Rui Xue is a research professor with the
State Key Laboratory of Information Security, Insti-
tute of Information Enginerring, CAS. He received
his MSc and PhD in Mathematics both from Bei-
jing Normal University. His main research interests
is information security, especially in Cryptography.
For more information and details, please visit http:
//people.ucas.edu.cn/∼xuerui/.

Wei Huo received the PhD degree from Institute
of Computing Technology, Chinese Academy of
Sciences, in 2010. He is currently an associate
professor in Institute of Information Technology,
Chinese Academy of Sciences. His research interests
include program analysis and software security. He
is now working on building a large collaborated
software security analysis platform.

22

http://people.ucas.edu.cn/~xuerui/
http://people.ucas.edu.cn/~xuerui/

Wei Zou received his BSc in Software from Nanjing
University, PRC, his MSc in Software from the In-
stitute of Computing Technology, Chinese Academy
of Sciences(CAS). He was with Peking University
(as professor). He is currently a professor with
the University of CAS and with the Institute of
Information Engineering, CAS. His main research
interest is software security.

APPENDIX

A. Apps Collected from Minor Third-Party Markets

Table XVI lists the detailed breakdown of the origins of the
remaining 62,216 apps in Table I.

Market # of apps URL

zhuole 12930 Sjapk.com
appsapk 2848 appsapk.com

padh 2461 padh.net
a67 3520 a67.com

eoemarket 4178 www.eoemarket.com
Neteaseapp 1935 m.163.com
anzhuo.com 3196 www.anzhuo.com

anuran 395 soft.anruan.com
xiazaiba 1384 www.xiazaiba.com

2265 561 www.2265.com
Feifan 5270 android.crsky.com

Mozhuo 3764 apping.cc
mm10086 3056 mm.10086.cn

d.cn 11536 android.d.cn
android155 2271 android.155.cn

xunzai 454 www.xunzai.com
mz6 1385 www.mz6.net

zhuannet 107 zhuannet.com
PChome 965 download.pchome.net/android

TABLE XVI: Origins of apps collected from minor third-party
markets

B. Manual Library Analysis Details

When manually analyzing the top 200 vulnerable libraries
detected by the accelerated SmartDroid, we employed qual-
itative methods to answer the research questions about the
identities and functionalities of the inspected libraries. By
qualitative methods, we meant that the participants made deci-
sions based on unstructured information, along with their own
programming experience and understanding. No quantitative
measures were designed to guide the analysis.

The method for determining a library’s functionality can be
summarized as follows.

1) The participants first try to infer library identities and
functionalities through package names. Note that some
obfuscated libraries only obfuscate their class and method
names but not package names, which allows us to still
make the inference. For example, it is straightforward
to infer that /com/baidu/location/ is a location
library from the Chinese Internet giant Baidu.

2) Similarly, if a library obfuscates its package names but
not method names, we may be able to infer its identity
and functionality.

3) If the first two steps failed, we harvest “interesting”
string literals in the code of a library and use them
as keywords for Google search. There are no standard

criteria for deciding what strings are “interesting.” Typical
targets include hard-coded string literals for logging and
debugging, as mentioned in the previous paragraph. In
most cases we can get a hit in the search engine, e.g., a
website introducing the package writer and its products,
from which we can learn the information we need for
that library.

4) Rarely, we cannot retrieve useful information from the
search engine. In such cases, the participants have to
look at the decompiled code of the library. Typically,
the functionality was inferred by looking at the Android
Framework APIs called in the code.

During the cross validation process, there was one single
conflict between the two participants out of 20 cases. The
reason is that one of the participants drew the conclusion too
eagerly by just looking at the package names. The library in
this case is /org/gg/music. The participant concluded that
the library is an unobfuscated music library developed by a
party named “gg” without searching the Internet for its detailed
information. The second participant, however, further analyzed
the dumped string literals after failing to identify this library.
The strings suggested that this library is a mutation of /
com/google/ads. After the discussion, the first participant
refined his analysis method to avoid similar mistakes in the
subsequent analysis.

23

Sjapk.com
appsapk.com
padh.net
a67.com
www.eoemarket.com
m.163.com
www.anzhuo.com
soft.anruan.com
www.xiazaiba.com
www.2265.com
android.crsky.com
apping.cc
mm.10086.cn
android.d.cn
android.155.cn
www.xunzai.com
www.mz6.net
zhuannet.com
download.pchome.net/android

