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Abstract. Enforcing the correctness of compilers is important for the
current computing systems. Fuzzing is an efficient way to find security
vulnerabilities in software by repeatedly testing programs with enormous
modified, or fuzzed input data. However, in the context of compilers,
fuzzing is challenging because the inputs are pieces of code that are
required to be both syntactically and semantically valid to pass front-end
checks. Also, the fuzzed inputs are expected to be distinct enough to
trigger abnormal crashes, memory leaks, or failing assertions that have
not been detected before. In this paper, we formalize compiler fuzzing as a
reinforcement learning problem and propose an automatic code synthesis
framework called FuzzBoosT to empower the input code mutations in
the fuzzing process. In our learning system, we incorporate the deep Q-
learning algorithm to perform multi-step code mutations in each training
episode, and design a reward policy to assess the testing coverage infor-
mation collected at runtime. By interacting with the system, the fuzzing
agent learns to predict code mutation actions that maximizing the fuzzing
rewards. We validate the effectiveness of our proposed approach and the
preliminary evidence shows that our reinforcement fuzzing method can
outperform the fuzzing baseline on production compilers. Our results also
show that a pre-trained model can boost the fuzzing process for seed
programs with similar patterns.
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1 Introduction

Compilers are fundamental in the current computing system as they are part
of the trust base of the machine. However, they contain bugs and it is non-
trivial to verify all the vulnerabilities due to their large codebase. For example,
GCC has about 15 million lines of code [27]. Fuzzing is an effective way to
find security vulnerabilities in compilers by repeatedly testing the codes with
randomly modified, or fuzzed inputs [28]. It plays an important role in quality
assurance, software development, and vulnerability assessment over decades

* Work done while at PSU.



[8,9,19,30]. Many existing vulnerabilities are reported by fuzzing techniques [23].
Due to the unlimited search space and limited computing resources, existing
fuzzing tools explore efficient strategies in fuzzing program inputs. Especially in
the scenario of compiler testing, no one can exhaustively examine the entire input
space, or traverse all the possible execution paths of target compilers in practice.
Therefore, a variety of strategies are designed based on fuzzing heuristics to
prioritize finding interesting inputs to be fuzzed. Such fuzzing heuristics may be a
random selection, or trying to maximize a specific goal, such as code coverage [15],
execution timeouts, and crashes [35].

Coverage-guided testing is widely adopted by fuzzers [36,10,33|, which uti-
lizes code coverage information as the search heuristic to generate new inputs
from the fuzz action of a predefined list. These exhaustive bounded searches use
domain-specific heuristics and are thereby limited in applicability and scalability.
Additionally, they overlook the benefit from past experiences in historical muta-
tions and cannot automatically learn the common knowledge that is shared in
different input seeds generated during the fuzzing boosting process. Moreover,
most coverage-guided frameworks only calculate the rewards/fitness after a single
mutation is taken, which yet underestimates the power of a series of mutation
combinations. For instance, state-of-the-art mutation-based methods like Amer-
ican Fuzzing Lop (AFL) [36] add newly generated fuzzing programs after one
mutation according to defined search heuristics into the seed set for the next
round of fuzzing. However, for coverage-guided fuzzing, testing coverage does not
increase linearly. In other words, each of these mutations may not improve the
testing efficacy incrementally. They can be rejected by lexical or semantic checks
in the early stage of compilation. But a trace of mutations may trigger a giant
improvement as it may increase the possibility of generating more diverse input
programs to enhance the code coverage of compilers.

Faced with these challenges, we formalize compiler fuzzing as a reinforcement
learning problem and propose FUzzB0OOST to integrate the superiority of rein-
forcement learning to the coverage-guided fuzzing. The design of FuzzB0OOST is
inspired by the fact that fuzzing can be modeled as a learning process with a
feedback loop where the model aims to learn the mutation heuristics based on
the feedback (reward) from the runtime information for evaluating the quality of
current input [5]. Reinforcement learning describes the learning process by an
agent interacting with the environment to learn an optimal policy by trial and
error. It is usually effective for sequential decision-making problems in natural
and social sciences, and engineering [29,3]. Theoretically speaking, the problem
of compiler fuzzing can be seen as a problem of program synthesis, the goal of
which is to cover more paths, trigger more crashes or memory leaks in compilers’
execution traces while compiling new generated codes. Specifically, we model
compiler fuzzing as a multi-step decision-making process where a learning task
progresses with a feedback loop. The fuzzing agent initially generates new inputs
with little knowledge but random heuristics. The compiler iteratively runs with
the newly fuzzed input. Based on the feedback of the environment, we capture



runtime information gathered from binary instrumentation techniques to evaluate
the quality of input seeds according to heuristics we define in our learning cycle.

In this paper, we utilize seed programs from test suites of production com-
pilers (GCC [11] in our research) to evaluate FuzzBoosT. To demonstrate the
effectiveness of our framework, we also compare it with a baseline fuzzing mech-
anism used in the system AFL [36], which is a widely-used fuzzing method.
AFL applies mutation actions with a uniformly distributed strategy. From the
results, FuzzBooOST outperforms baseline random fuzzing with a higher coverage
improvement on seed programs. Additionally, to better improve the efficiency of
FuzzBoOST on the fuzzing process, we conduct the experiments on a pre-trained
model. As a result, our tool achieves a better fuzzing performance, which means
that the fuzzing process can be boosted when we reuse the existing model for
new seed programs in compiler fuzzing.

In summary, we make the following contributions:

— We integrate reinforcement learning to the compiler fuzzing problem and
design a principled reinforcement fuzzing method to automatically generate
new test seeds.

— We define reward functions to optimize the fuzzing goal and use a deep Q-
learning algorithm to automatically learn a trace of high-reward mutations for
given seeds which extensively leverage the knowledge in prior experiences. Our
method is task-agnostic that does not rely on any other fuzzing techniques.

— We implement a prototyping tool called FuzzBooST and analyze real-world
compiler fuzzing jobs. We conduct various analytical experiments and results
demonstrate its testing efficacy.

2 Overview

Mutation-based fuzzing relies on generating new program inputs by mutating
seed programs with heuristics. In the previous method [36], the designed fuzzer
performs one-step manipulation on the provided input corpus. Then the fuzzer
may select its collection of interesting fuzzed inputs after based on their perfor-
mance, which is measured by capturing new crashes in the context of black-box
fuzzing or capturing new path information in grey- or white-box fuzzing. However,
it overlooks the potential of a trace of mutations in generating interesting fuzzed
inputs, some intermediate states of which may not be good enough to attract
interest or even break the compilation process due to lexical checks in early stages.
Therefore, we re-model the problem as a multi-step decision-making problem that
gives enough attention to these intermediate states being ignored in previous
design models. Specifically, we formally model compiler fuzzing as a Markov
decision-making process as described in Fig. 1.

As shown in the figure, in this multi-step decision-making process, there is an
input mutation engine M, that performs a fuzzing action a, and subsequently
observes a new state s directly derived from the mutated program P; by exercising
the predicted action a on an original seed program P,_;. It means that the
input mutation engine predicts the program rewriting actions based on the
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Fig. 1: Compiler fuzzing process

extracted state from the seed program. After that, the engine can receive a
reward r based on performed actions and system state transitions. With the
given formalization, it is natural to use the Markov decision process (MDP) to
model this problem. Therefore, we define the corresponding T-step finite horizon
MDP as M = (s1,a1,71, S2, az, ..., s7). Here s;, a;, r; represent the state, action,
and reward at time step t = 1,...,T — 1, respectively. To achieve the trace of
the most effective rewrites for a seed program, we apply reinforcement learning
methods [34] to deploy our formalization. Followed by prior footsteps [5,16], we
use deep Q-learning algorithm [20,21] to learn the fuzzing engine.

In reinforcement learning, one episode is one complete sequence of actions
that starts with an initial state configuration and ends with a terminal state. In
the problem of compiler fuzzing, one episode can be formalized as generating a
fuzzed program by performing one pre-designed mutation on an existing seed
program (initial state), while the learning agent guides the mutation actions
that aims to maximize the total reward it receives during the episode. Compared
with those conventional mutation-based fuzz testing methods, we adopt the same
methodology that using the coverage-guided heuristics to continuously select
and generate the desired program generated from the seed set along the episode.
The main difference is that, in our design, we lazy-evaluate the quality of the
fuzzed inputs until it reaches the terminal state. To this end, our fuzzing process
contains those intermediate states that might not be syntactically valid but can
eventually contribute to high-quality fuzzed inputs.

Before we start the learning process, we randomly initialize a standard deep
neural network. In the first episode, State 0 is represented as a program string P
preprocessed from a seed program. To reduce the randomness and exhaustive
space of mutation, we choose a substring of the whole input program to be
our mutation target. Specifically, we extract a substring within a seed program
with the window size (length of the substring) w and offset 0. By observing this
substring, the trained deep neural network automatically predict a mutation
action to be taken in the next step. Feasible mutation actions on token-level
include insert a token, switch two or more tokens, replace a token, or change the
window position or size to enable another substring to observe and mutate. Once
an action is decided, we run the compiler with the program after performing
such a mutation and calculate the reward r of this new program with a record of



the execution trace. Subsequently, it moves to the State 1 for further mutations.
With the increased number of actions being taken, we deduct the reward by
a discounted rate vy which is a value between 0 and 1 to enforce an expected
fuzzing trace with fewer mutation actions. We iterate the mutation prediction and
evaluation until a terminal state is achieved. During the learning process, there
are four key elements in this process: state, action, environment, and reward.

2.1 State

A state S is a concrete configuration in the environment. As defined in MDP,
each process has one state and when the process proceeds, the state updates.
In the case of compiler fuzzing, the agent learns to interact with a given seed
program. We define the state as a function regarding a given input seed program
P. The interaction is performed upon the observation of selected substring within
such an input, which is viewed as a series of consecutive token symbols. Formally,
let X' denote a finite set of symbols. The set of possible program inputs [ in this
language is defined by the Kleen closure I := X*. For an input program string
P = (pl,pg, ,pn) el, let

S(P) == {(p1+i,P2+4ir -, Pm+i) | 1 >0, m+i<n} (1)

denote the set of all substrings of P. We define the states of the Markov decision
process to be I and I is a union set of S(P). Thus, we have P € I denotes an
input program and Py € S(P) C I is a substring of this input seed program. The
entire state space of a seed program is S(P), which is theoretically infinite since
permutations in this language I can increase after mutation. In other words, the
seed program can be converted to any other valid programs.

2.2 Action

Action A is the set of all possible mutation actions that the agent can perform. In
most cases, actions are deterministic and should be chosen among a pre-defined
list. In compiler fuzzing, we define the set of possible action A of the MDP to be
pre-designed rewrite rules on the extracted substrings S(P,). The rewrite rules
are designed in accord with the extracted substring and predicted type. To be
specific, we categorize rewrites from two perspectives, i.e., the extracted content
and the extraction window, so the agent can predict which type and on which
position an action should be performed on the current input.

The rewrites of extracted content are performed on the token-level which
include insertion, replacement, re-ordering, deletion and replication. These rewrit-
ing rules conform with the C language lexical requirements. For insertion, we
append new tokens after the predicted index according to production rules; that
is, if the last token is an operator, we randomly sample a token from the existing
identifiers as its next. For deletion, we delete the token located at the predicted
index. For replacement, we replace the token at the predicted index with another
token randomly sampled from sets of tokens with same characteristic; e.g., if



this token is a keyword of C, we select another keyword for replacement. Note,
the keyword and operator token set are predefined, while identifier token set is
generated by parsing the seed program. For the second type, they are designed
to make a change on the extraction windows. Atomic mutations include window
left shift and right shift, and window size up and down with one token length
either from left or right side for each. Each of these actions do not change the
input program but motivate the diversity of the extracted substring S(P,) and
covers more states in the mutation space. For both types of mutations, the time
step increases until the termination state is triggered on the current episode.
We define a terminate action to early stop the mutation episode. That is, the
mutation agent can proactively terminate a mutation episode while observing an
extracted substring.

2.3 Environment

The environment is the world that the agent evaluates each action. The envi-
ronment takes the current state and action as the input, and then outputs the
reward of performing such action and calculates the next state after executing
the action. In compiler fuzzing, the environment is the compiler or verifier. To
observe more detailed information about the fuzzing efficacy, we develop a tool
called FuzzBoosT based on program execution traces. In this respect, we record
dynamic traces while running the testing production compilers, i.e., GCC, on
generated programs. In compiler construction, a basic block of an execution trace
is defined as a straight-line code sequence with no branches except for the entry
and exit points, which is considered as one of the important atomic units to
measure code coverage. In our method, we capture all the unique basic blocks
B(Tp) concerning each execution trace Tp and calculate a store of all the unique
basic blocks covered by the existing test suite I’ to represent our measure of
interest. In our implementation of FuzzB0o0ST, the program execution trace is
collected by Pin [18], a widely-used dynamic binary instrumentation tool. Pin
provides infrastructures to intercept and instrument the execution trace of a
binary. During execution, Pin inserts the instrumentation code into the input
program and recompile the output with a Just-In-Time (JIT) compiler. We
develop a plug-in of Pin to log the executed instructions. Additionally, we develop
another coverage analysis tool based on the execution trace to report all the basic
blocks touched so far. It also reports whether new basic blocks are triggered by
the fuzzed program and the number of new covered blocks as well. Furthermore,
our environment also logs and reports abnormal crashes, memory leaks, or failing
assertions of compilers with the assistance of internal errors alarms from the
compiling messages.

2.4 Reward

Designing a good reward function to facilitate learning and maintaining the
optimal policy is the key goal in our framework. Rewards provide evaluative
feedback to guide an RL agent to make decisions. However, rewards can be very



State Extraction Encoding Deep Neural Network Action Environment
foo(a, p) int *p; { p[0] = a; -R ”
a = (short)a; return a;} main m

: : . s A Hidden Hidden
() { int i; foobar(i, &i); } |- La‘yem—»L;yerz—»@—»
bar(a, b) { int c; c = a % b;
a=a/ b; return a + b; }...

R
Fig. 2: Fuzz action prediction in the reinforcement learning process of compiler fuzzing
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sparse so that it is challenging for the learning problems. In the game of Go, a
reward only occurs at the end of a game. In such cases, the learning process can
converge slowly because of the sparse motivations. We solve this challenge by
giving every mutation step a reward, so the goal of agent is to maximize the
accumulated rewards until one episode terminates at step T,

R=Y vri(P), (2)

where v € (0,1) indicates a discount factor to gradually deduct the reward
in the future. r41(P) represents the reward of generated program P at step
t + 1. In fuzz testing, the possible rewarding heuristics are program coverage,
new crashes, timeout, etc. They aim at enlarging the analyzed surface in the
target programs being fuzzed and digging into the program traces accordingly
that are more suspicious. In compiler fuzzing, we adopt testing coverage as the
reward to motivate the learning towards a vulnerability search on more areas
of the compiler’s code. However, unlike conventional definitions for coverage,
which are usually line/function/branch coverage that require expensive computing
resources to calculate, we define the reward based on the ratio of unique basic
blocks covered by a certain fuzzed seed program P at step t to the entire unique
basic blocks of its mutated test suites I’ along the episode;

T(Pv I/) = B(TP)/ Z B(Tp)a (3)

pel’

where B(Tp) is the number of unique basic blocks in the execution trace of
a program P and I’ C I is the programs generated from this test suite. This
stepwise reward r is a continuous scalar value that has a range of (0, 1], where 1
is achieved when a specific execution trace covers all the basic blocks that have
been tested so far by its existing fuzzed cases. The designed reward motivates
the mutation steps towards the training goal: improving the compiler testing
coverage by selecting a critical subsequence inside a seed program and enforcing
simple mutations in a trace.

3 Designed Framework

To start a deep @-learning process for compiler fuzzing, we propose FuzzB0ooOSsT
which adopts a deep neural network with two layers connected with non-linear



activation functions. We build this end-to-end learning framework with the
environment reward calculated based on dynamic trace analysis. In this section,
we present the overall learning process for FuzzB0OST by illustrating an iteration
of fuzz action prediction in the reinforcement learning process for compiler fuzzing
as shown in Fig. 2.

3.1 Initialization

We start with an initial input seed P € I, where the choice of P is not constrained
but can be any C program even not well-formed ones. We employ the GCC test
suite as our sampling pool and randomly selected programs to be our seed inputs.
We propose to use a neural network as the @ function to mimic the reasoning
for input mutation of compiler fuzzing. This deep neural network maps states
(embedding of an extracted substring from seed programs) to @ outputs for all
actions A. Due to the lack of heuristics at the very beginning, the neural network
is randomly initialized and reinforcely optimize the model parameters 6 from the
environment feedbacks, i.e., rewards, by maximizing the code mutation rewards
in the episode training.

3.2 State Extraction

FuzzBoOST observes a substring within a seed program to predict actions to
perform. The substring is extracted from the seed program by the customized
window and encoded as S(P). In Section 2.1, we define the states of our Markov
decision process to be I = Xx. To be more specific, it is a substring P’ at offset
0€0,...,|P| —|P'| and of window size | P’|. To make the extracted state tractable,
we define actions in Section 2.2 to shift and resize the window. By performing
window-related actions, the fuzzing agent can see the whole program by partially
observing fragments consecutively. In other words, FuzzB0OOST learns to select
the most critical piece of code to mutate incrementally during the training process.
After the sequence is extracted, we use a word embedding model to abstract the
sequence into a fixed-dimensional vector for training.

3.3 Deep Q-Network

We implement the Q-learning module based on Tensorflow [1] 1.14. The deep
neural network used for prediction is a forward neural network with two hidden
layers connected with non-linear activation functions. The two hidden layers
contain 100 and 512 hidden units respectively, and are fully connected with an
input layer with 100 units (which is the max window size for input substring)
and an output layer with 10 units (which is the size of action space). The goal
of the training is to maximize the expected reward. Since the MDP is a finite
horizon in our practical design, we adopt a discount rate v = 0.9 to address
the long-term reward. We set the learning rate o = 0.001 to achieve our best-
tuned results. We use the decayed epsilon-greedy strategy for exploration in the



reinforcement learning iteration, that is, the € value is set up to 1 at the very
beginning and decays over time until a min value, 0.01 in our configuration, is
reached. In this scenario, with the probability 1 — €, the agent selects an action
a = argmaz, Q(s¢, ar), which is the estimated optimum by the on-training neural
network. In the meanwhile, with probability e, the agent explores any other
actions with a uniformly distributed choice within the action space |A|.

3.4 Termination

A mutation episode terminates when the agent detects a terminal state. In our
design, we define three conditions that may trigger the terminal state of mutating
the seed program: (1) the agent executes the “terminate” action from the neural
network prediction; (2) the generated program reaches a maximum number
of mutation steps; or (3) the agent generates an invalid action that triggers
miscellaneous effects during the reward calculation. The first type of termination
will cut the program mutation actively by FuzzBoosT while the latter two are
passively ended with pre-defined policies. Theoretically, the mutation trace can
be generated as long as possible to achieve enough diversity. But in practice, to
excessively improve the testing efficacy, we empirically set up the mutation trace
length to be 20 actions to enforce our agent to learn within the shortest path.
To catch the found bugs/vulnerabilities, we log and report abnormal crashes,
memory leaks, or failing assertions of compilers with the assistance of internal
errors alarms from the compiling messages. Moreover, in our design, all the
programs that have achieved higher code coverage are kept to be the seeds and
waiting for another round of fuzzing, otherwise removed from the seed pool.
Therefore, the agent can still explore the entire language set even with the
restricted length of learning traces during an episode. The methodology applied
in our mechanism is the same as conventional coverage-guided fuzzing methods
but has made mutation traces longer in one round (compared with 1 step in
conventional fuzzing) and predictable by a neural network (compared with purely
random in conventional fuzzing).

4 Experiments

In our research, we propose a reinforcement learning framework FuzzBooOsT that
incrementally trains a deep neural network to predict mutation actions on a given
seed program to improve the compiler testing coverage effectively. We evaluate
the performance of FUzzB0OOST on a seed input set gathered from the GCC test
suites. We randomly sample 20 C programs in the test suite as our benchmark
dataset, more specifically, from the gcc.c-torture repository. The window size is
set to be 50 to extract the substring inputs. We run FuzzBoosT for four weeks
to test its fuzzing efficacy and compare with the baseline random fuzzing method
used in a popular tool (AFL) [36]. We also conduct an empirical analysis on
starting the compiler fuzzing with a pre-trained model to investigate if it can
boost our process. All measurements are performed on i7-7700T 2.90Ghz with
12GB of RAM.
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Fig. 3: Number of unique basic blocks covered by generated test suites

4.1 Fuzzing Efficacy

In our design, to improve the efficiency in this end-to-end learning process, we
use an approximation of the code coverage improvement to describe the coverage
information, which is the accumulated number of unique basic blocks being
executed with the generated new test cases. In order to show that FuzzBoosT
learning algorithm learns to perform high-reward actions given a seed input
observation, we compare the improved testing efficacy against a baseline with
random action selection policy. The choice of the baseline method is uniformly
distributed among the action space A and we terminate the actions with the
same methodologies as our method described in Section 3.4. Random mutation
is widely used in software fuzzing tools [36] which is proven to be effective while
a good heuristic, such as coverage-guided, is designed.

Comparison: We perform the experiments with our method FuzzBoosT
and baseline method Random-based mutation strategy to fuzz each of the pro-
grams from the sampling pool. We respectively generate 1,000 new tests from seed

10



Table 1: Coverage improvements with different window size
Window Size 50 60 70 80 90 100
Coverage Improvement (%) 37.14 36.11 30.29 28.95 28.07 27.94

programs for both strategies and record the accumulated number of unique basic
blocks along the execution trace. On average, our proposed method FuzzBoosT
achieves higher testing coverage by 37.14% than the Random-based mutation
method in terms of the number of the accumulated unique basic blocks on the
seed programs. We randomly select four seed programs and illustrate the cov-
erage improvement of comparisons between baseline method and FuzzBoost
in Fig. 3. The results in each sub-figure represent the number of unique basic
blocks that different amount of test programs trigger in the compiler. We can
see that FuzzB0ooST gradually increases the code coverage as the model being
trained to mutate programs more effectively. Our method obviously outperforms
the baseline for all cases, among which the most and least improvements, 79.17%
(case 1, seedl.c) and 12.24% (case 2, seed2.c) respectively, are achieved. We also
observe that FuzzBo0OST improves the code coverage with a faster speed than the
baseline. We believe this is because our method can learn to fuzz more efficiently
and generate interesting test suites with fewer mutation actions.

Window Size: Since the size of each seed program varies, and, arguably,
the limited window size may restrict the diversity of mutation trace and thus
put a constraint on exploring the entire seed program. As a result, the seed
program cannot be thoroughly observed or mutated accordingly after one episode
of fuzzing. In this part, we analyze the impact of the current framework with
different window sizes on model effectiveness. We increase the initial window
size w = |P’| from 50 to 100 and measure the average coverage improvement to
compare against the baseline strategy on seedl.c as the seeds in sample pool are
generally short. Table 1 shows the experimental results. We can see the coverage
improvement decreases while increasing the window size of the initially extracted
substring. That is, smaller substrings are better to start with and to mutate
the program than larger ones in our method. Our interpretation is that small
windows narrow down the mutation space and thus reduce the action randomness,
which may increase the possibility of learning a high-quality mutation trace for
the model, especially when the model is highly under-trained in the beginning
stage. It also indicates that our model is trained to learn better moves of small
windows and accordingly select better action to improve coverage. Also, it is
worth noting that the ultimate goal for fuzz testing is not the exploration of
entire programs, but making control-flow changes within limited observations to
boost the fuzzing process.

End State: We set up the compiler fuzzing as an end-to-end reinforcement
learning framework. Unlike the problem of Go, the end state of FuzzBooOST is
not deterministic in all cases. In our design, we hard-code a limit on the length
of mutation traces from the computation cost point of view, but theoretically,
the traces can be endless to gain enough randomness and achieve the higher

11
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Fig. 4: Mutation length during training

reward. In the process of optimization, we provide the learning agent an action
to actively terminate the episode which varies across the learning stage. Thus, to
analyze how the end state evolves, we record the distribution of mutation trace
lengths under different training stages. Fig. 4 presents the average trace length
distributions along the learning process over all training seeds. From the result,
we can see that, as the training goes on, mutation trace lengths are increasing
gradually. In this respect, the reward expectation of learned mutation actions are
positive in a form that reinforces the model to dig more mutation opportunities
in one episode to maximize the fuzzing reward.

4.2 Boosting with pre-training

Our trained fuzzing tool learns to constantly accumulate the prior experience
by training on the seed programs. This naturally lead us to the question for
the sake of resource cost: given an agent which is pre-trained on seed programs
Phiroin = p; ~ P, can it improve testing efficiency than learning from scratch?
To answer that, we use the same experimental setting as the experiments in
4.1 and reuse the seed programs from the initial 20 seed programs and craft
another 9 a-equivalent programs for each seed respectively. We call a program P’
is a-equivalent to program P when we only perform bound variable renaming on
P. We randomly pick 80% of them to serve as Pj,q;, to learn an agent and the
rest 20% are used for Pj.,;. After pre-training on Pj,q;,, we save the model and
use it on Pjes; to continue the trial-and-error reinforcement compiler fuzzing.
The fuzzing results under such a pre-trained model are shown in Fig. 3 and
compared with the performance of FuzzBooOST learned with an initially arbitrary
model. The coverage improvement for the case of pre-trained model increases
drastically towards the highest coverage against the one trained from scratch
despite the small improvements in one of the seed programs (case 4). In addition,
as the training goes on, the pre-trained model can find useful action in mutation
space more quickly and generate fuzzed programs with high testing coverage.

12



1 foo (a, p) 1 foo (a, p)
2 int *p; 2 int *p;
3 {pl0] =a; 3 { p[0] = foobar(a,p);
4 a = (short) a; 4 p = (short) a;
5 return a; 5 return a;
6 6
7 main () { 7 main () {
8 int i; 8 int i;
9 9 for (int a=8; a>0; a—) {
10 foobar (i, &i); 10 foobar (i, &i);
11 11
12 12 foobar(i, &i);
13} 13}
14 foobar (a, b) { 14 foobar (a, b) {
15 int c; 15 int c;
16 c=a%b; 16 ¢ =a%b;
17 a=a/Db; 17 a=c/b;
18 return a + b; 18 return a + b;
19 } 19 }
Listing 1.1: Original Listing 1.2: Mutated

4.3 Mutation Example

In this part, to demonstrate how effective FuzzB0O0OST can achieve in program
mutations for compiler fuzzing, we showcase the topmost utilized mutations
in the following example. We present an original seed (on the left) and its
corresponding new generations after mutations (on the right). We discuss each of
these abstracted edits involved in the trace of atomic mutations. These edits help
explain what is learned by the model during the reinforcement learning process.
It should be noted that these mutations are not accomplished within one episode,
while we just use this one example to illustrate what the most used mutations
are and how they look like.

Exzample: By observing the results, we find: (1) the top most chosen mutation
is insertion. Usually, the fuzzing engine tries to insert statements with keywords
that do not exist in the original seed file. As shown in line 9 to line 11 in the
mutated file, the fuzzing engine tries to insert a for statement into the seed file.
By inserting these non-existing tokens, the compiler should execute the lexical
analysis in a way that has not been used before; (2) the second chosen mutation is
replication that the fuzzing engine tries to replicate statements locally as shown
in line 12 in the mutated file. The replication will trigger the compiler to optimize
code which will improve the testing coverage; (3) the third chosen mutation is
replacement that can replace a variable (a) with a function call (foobar (a, p))
as in line 3 or replace a variable (a) with another existing variable (p). The
replacement either makes the statement more complex to parse, causes exception
handlings such as typecast, or changes the control-flow of the seed file, all of which

13



will make the compilation different from the original paths, thereby increasing
the testing coverage.

5 Discussion

It is critical to compare with related works, but we find it difficult to perform
apple-to-apple comparisons. For instance, generation-based fuzzing tools, such as
DeepSmith [7] and Learn&Fuzz [12], craft new programs from scratch other than
mutating seed programs while our tool is built on mutation-based fuzzing that
rely on seed programs to achieve the whole-program validity. Moreover, some
previous methods [7,12] generate a bunch of new programs which usually get
rejected at an early stage in compilation and therefore leads to a inefficient and
shallow testing procedure. AFL [36] can generate new fuzzed inputs in a very fast
way as it only conducts one-step random mutation on seed programs each time.
However, it does not suit for compiler fuzzing because its mutation mechanism
deals with random changes on inputs without considering their structure context.
Compiler requires highly-structured and syntax-aware inputs, so we only compare
our tool with its mutation heuristic in the paper. For NEUZZ [26], it is grey-
box fuzzing that relies on the coverage analysis on target applications. But for
compiler testing, the computation cost for code edge coverage is very high, and
that is why we use # BasicBlocks tested as an approximation.

In this work, we do not claim our tool is better than others. Instead, we
reveal our insight of leveraging the superiority of reinforcement learning for
compiler fuzzing to efficiently solve a multi-step mutation-based fuzzing problem.
In our mechanism, we lazy-evaluate the mutation results and consider those
intermediate states in the mutation traces to explore code coverage in a deeper
way. Our designed rewriting rules in mutation actions incorporate the structure
context of programs, thus our fuzzed inputs can better conform with the syntax
requirements of programming languages. What’s more, the mutations can realize
the comprehensive search in the large space to iteratively guiding the tool for
the final fuzzing goals. Our experimental results and analysis comprehensively
demonstrate the effectiveness of our compiler fuzzing tool.

6 Related Work

Our study is related to deep reinforcement learning and mutation-based fuzzing.

Deep Reinforcement Learning: Despite the popularity in solving the game
of Go, reinforcement learning is also widely adopted as a powerful technique
for program synthesis [2,5,13,22,26,17,16]. Bunel et al. [6] perform reinforcement
learning on top of a supervised model with an objective that explicitly maximizes
the likelihood of generating semantically correct programs. Bottinger et al. [5] use
a deep Q-learning network to learn a grammar description for inputs to perform
generation-based fuzzing. Researchers also propose Neurally Directed Program
Search (NDPS) [31], for solving the challenging non-smooth optimization problem
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of finding a programmatic policy with maximal reward. Existing projects that
adopt deep reinforcement learning for program synthesis focus on semantic goals
toward synthesis tasks. Our target is to generate source programs that are well-
formed but contain different syntactic features, which are similar to the work
from Bottinger et al. [5] that aims at PDF parser fuzzing. But differently, in
our design, we consider the improvement of testing coverage of compilers as the
reward for reinforcement learning.

Mutation-based Fuzzing: Mutation-based fuzzing contains two important
decisions: 1)where to mutate, and 2)what new value to use for the mutation
[24]. Generally mutation-based fuzzers are not aware of the expected input
format or specifications, and they cannot select mutations very wisely [25]. It
generates new inputs by blindly modifying the provided seeds. A well-known
fuzzer that is mutation-based is AFL [36] which randomly mutates seed inputs
and incrementally add new seeds into the set with respect to defined heuristics.
Several boosting techniques are proposed to improve the efficiency of mutation-
based fuzzing. AFLFast [4] boosts up original AFL fuzzer by focusing on low-
frequency paths that allow the fuzzer to explore more paths with limited time.
Skyfire [32] applies grammar in existing seed inputs for fuzzing programs that
take highly-structured inputs. Kargen and Shahmehri [14] perform mutations on
the machine code instead of on a well-formed input to produce high-coverage
inputs. DeepFuzz [17] utilizes an RNN-based model to generate new well-formed
C programs for compiler fuzzing based on existing testsuites. In this paper, our
method boosts the mutation process by using a deep neural network to predict
the mutation without any training data.

7 Conclusion

In this paper, we propose FuzzB0OST, a deep reinforcement learning framework
to fuzz off-the-shelf compilers by generating new programs with coverage-guided
dynamics. Our proposed end-to-end learning framework learns to select a trace
of best mutation actions in each round towards high code coverage and performs
automatically without any human supervision. It improves the testing coverage
on a seed set from the GCC test suites and outperforms the baseline fuzzing agent
with a random selection strategy. Moreover, we demonstrate that a pre-trained
agent in our framework can generalize the strategy to new seed instances to
expedite the fuzzing process, which is much faster than starting from scratch.
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