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Abstract. Graph convolutional networks (GCNs) have emerged as one
of the most popular neural networks for a variety of tasks over graphs.
Despite their remarkable learning and inference ability, GCNs are still
vulnerable to adversarial attacks that imperceptibly perturb graph struc-
tures and node features to degrade the performance of GCNs, which
poses serious threats to the real-world applications. Inspired by the ob-
servations from recent studies suggesting that edge manipulations play a
key role in graph adversarial attacks, in this paper, we take those attack
behaviors into consideration and design a biased graph-sampling scheme
to drop graph connections such that random, sparse and deformed sub-
graphs are constructed for training and inference. This method yields a
significant regularization on graph learning, alleviates the sensitivity to
edge manipulations, and thus enhances the robustness of GCNs. We eval-
uate the performance of our proposed method, while the experimental
results validate its effectiveness against adversarial attacks.

Keywords: Graph convolutional networks · Adversarial attacks · Graph
sampling · Robustness.

1 Introduction

Graph structured data plays an important role in many real-world applications,
which represents natural yet complex relationships between objects in different
domains [27, 33], such as social networks, biological networks, and citation net-
works. Inspired by the great success of applying convolutional neural networks
(CNNs) to computer vision tasks [2, 7, 14, 18], many research efforts have been
devoted to a paradigm shift in graph learning that generalizes convolutions to the
graph domain to address such a challenge [13, 24, 28]. While recent works in this
direction are making progress on spatial and spectral approaches respectively,
graph convolutional networks (GCNs) have been emerging as one of the most
popular and significant graph neural networks [1, 17, 30, 32, 19]. These GCNs
take the connectivity structure of the graphs as the filter to perform neighbor-
hood information aggregation so as to extract high-level features from the nodes
and their neighborhoods [6], which have thus boosted the state-of-the-arts for a
variety of tasks (e.g., node classification, clustering, and matching) over graphs.

Despite their remarkable graph representation learning and inference abil-
ity, GCNs are still faced with the same inherent learning-security challenge of
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lacking adversarial robustness existing in other deep neural networks (DNNs)
[4, 12, 22]. Recent studies [9, 26, 27, 34, 35] have shown that GCNs remain vul-
nerable to adversarial attacks that carefully design imperceptible perturbations
to graph structures and/or node features; these attacks may taint the node
neighborhoods, and thus drastically degrade the node representations and the
corresponding performance of GCNs. This poses serious threats to real-world ap-
plications, especially for those security-critical scenarios such as traffic, financial
and healthcare systems [33]. However, compared to the regular DNNs targeting
individual objects, GCNs with “message-passing” framework have to cope with
correlated objects; therefore, the question of how to improve the robustness of
GCNs against adversarial attacks is more complicated and less studied.

Since GCNs deal with graph structured data where node representations are
learned by propagating node features through neighborhoods, their vulnerabil-
ities may naturally come from feature perturbations and edge manipulations.
However, some recent works [26, 9, 34] suggested that node feature perturba-
tions may not directly impact on the learning performance compromise, while
edge manipulations are more effective to formulate successful graph adversar-
ial attacks due to the facts that (1) graph connectivity plays a more crucial
role in graph representation learning, and (2) small perturbations over high-
dimensional feature space may not induce significant output variations for the
aggregation layers. In other words, to enhance the robustness of GCNs against
adversarial attacks, a feasible way is to alleviate the impacts of graph connections
such that the adversarial edge manipulations will be penalized. When we revisit
typical defensive methods over shallow or deep learning models where they are
either using weight evenness to restrict weight values to a very narrow range
[10], applying ensemble over random feature subspaces [3, 8], or adopting adver-
sarial training to bound the abilities of other adversarial feature perturbations
[12], we can observe that these strategies yield the regularization of different
degrees to enforce the learning models less sensitive to changes in features and
thus improve their robustness. This means that a well-formulated regularization
technique over target space can be leveraged to penalize the corresponding space
perturbations. Generally, dropout [21] is devised into GCN layers to regularize
feature learning, but it gives insufficient penalty to feature perturbations and in-
valid regularization for edge manipulations. As such, it calls for a more effective
regularization method over graph connectivity to confer a significant reduction
in GCNs’ vulnerability to adversarial attacks.

To address this challenge, in this paper, we propose to exploit graph sam-
pling to drop graph connections. More specifically, instead of constructing GCNs
on the complete graph that yields a high variance, we drop out part of the in-
put graph edges to form a set of random and sparse subgraphs and train the
GCNs over them. Different from the current graph sampling techniques [6, 20,
31, 11, 5], we take the behaviors of graph adversarial attacks into consideration,
and elaborate a biased graph-sampling scheme over well-defined edge sampling
probabilities with respect to nodes’ degrees and feature similarity. In this regard,
the sampled subgraphs may provide more randomness, sparseness and deforma-



Enhancing Robustness of GCNs via Dropping Graph Connections 3

tion to alleviate the reliance on the graph connections, and hence penalize the
adversarial edge manipulations. Moreover, in order to generate an additional
regularization benefit, in the inference stage, we further employ an ensemble ap-
proach to aggregate the individual predictions over the subgraphs sampled in the
same graph-sampling scheme that are rooted by the test nodes. We summarize
our main contributions as follows:

– Graph-sampling mechanisms have been recently proposed to address GCN
training over-fitting and deeper-layer computation issues, but never been
discussed in the adversarial setting. We leverage this idea and design a biased
graph sampling to regularize the graph connections, alleviate the sensitivity
to the edge manipulations and hence enhance the robustness of GCNs.

– Instead of using the full graph to infer the test data, we further utilize
bagging-like ensemble over sampled subgraphs as is done in parameter learn-
ing to approximate the final inference output and provide an additional reg-
ularization beyond that provided by model training.

– We conduct comprehensive experimental studies on a number of datasets,
which demonstrate that our proposed method can effectively improve the
GCN performance against different kinds of adversarial attacks.

The rest of the paper is organized as follows. Section 2 introduces the pre-
liminaries. Section 3 presents our proposed method. Section 4 evaluates the ef-
fectiveness of our method. Section 5 discusses related work. Section 6 concludes.

2 Preliminaries

Graph Convolutional Networks. Let G = (V, E , X) be a graph, where V
is the set of nodes {v1, · · · , vn} with |V| = n, E is the set of edges, and X =
[x1, x2, · · · , xn]T ∈ Rn×c is feature matrix; for each node v ∈ V, its feature
xv ∈ Rc is a c-dimensional row vector. Given V and E , the adjacency matrix
A can be accordingly formulated, where A ∈ Rn×n and Aij = {0, 1}, i.e., if
(vi, vj) ∈ E , then Aij = 1; otherwise, Aij = 0. Based on the adjacency matrix
A, the diagonal degree matrix D is defined as Dii =

∑n
j=1Aij . In this work,

the graph convolution network (GCN) proposed by Kipf and Welling [17] is
exploited as a base model to facilitate the analysis and understanding of our
further proposed approach; therefore, we briefly present its architecture here,
where the graph convolutional layer is defined as:

H(l) = σ
(
ÃH(l−1)W (l)

)
(1)

where H(l−1) and H(l) are the input and output for layer l (l ≥ 1), W (l) ∈
Rcl−1×cl is the learnable weight matrix for layer l, σ is the non-linear activation
function (e.g., ReLU), and Ã = D̂−

1
2 ÂD̂−

1
2 . Ã is a symmetrically normalized

adjacency matrix where Â = A + I is the adjacency matrix of the graph G
with self connections added, and D̂ is the diagonal degree matrix of Â. Given
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H(0) = X, the GCN model with l layers can be thus defined as:

Z = f(A,X) = softmax
(
Ã · · · σ

(
ÃXW (1)

)
· · ·W (l)

)
. (2)

GCNs can be applied under inductive and transductive settings. In this paper,
we focus on transductive classification where all node connections and features
are accessible during training. To train a GCN model on such a task with la-
bels C = {1, 2, · · · , cl}, the softmax function normalizes the final output matrix
Z ∈ Rn×cl , where each row represents the probability of cl labels for a node.
The cross-entropy loss L = −

∑
v∈Vtr logZv,cv can be accordingly evaluated be-

tween the output and the corresponding nodes’ true labels, while the weights are
updated using some gradient descent optimization algorithms (e.g., Adam [16]).

Graph Adversarial Attacks. The adversarial attacks over graph data and
GCNs aim to perturb graph structures and/or node features in an imperceptible
way to enforce GCNs to incorrectly classify certain nodes. Specifically, given a
graph G = (A,X), it is often possible to find a similar graph G′ = (A′, X ′) such
that for a set of nodes v ∈ V ′ ⊂ V, yv = arg maxi∈C Zv,i, y

′
v = arg maxi∈C Z

′
v,i,

and yv 6= y′v, while G and G′ are close according to specific measure metric.
Such adversarial attacks may be implemented through directly manipulating the
edges or features of the target nodes, or indirectly manipulating other nodes to
influence the target nodes’ classification results [9, 34, 35]. In this work, our goal
is to build a robust GCN model that can improve its classification performance
on the attacked G′.

3 Proposed Method

In this section, we present the detailed method of how we drop graph connections
to formulate subgraphs using biased graph sampling and how we leverage such
subgraphs to enhance GCNs’ robustness against adversarial attacks.

3.1 Regularization on Graph Connections

As observed in recent works [9, 26, 34], those effective graph adversarial attacks
tend to manipulate edges rather than features, where the edge manipulations
particularly fall into edge additions (e.g., connecting the target node to the
nodes with very different features and labels). The reason behind this could be
that GCNs with “message-passing” framework collectively aggregate feature in-
formation from the neighborhood of each node at each layer, where adding such
an edge may more essentially impact on the target node’s full feature dimen-
sions than perturbing individual feature values [26]. As such, a potential defense
against adversarial attacks over GCNs should regularize the graph connections
to prevent the model learning from over relying on some specific edges and thus
cause the adversarial attacks crafted using edge manipulations over the vanilla
GCNs less effective.
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(a) Dropout on DNNs (c) Drop out edges on GCNs  (b) Drop out nodes on GCNs  

Fig. 1. Dropout examples: (a) a standard dropout on DNNs, (b) a potential way to
drop out nodes on GCNs, and (c) another potential way to drop out edges on GCNs.

Dropout is a regularization technique widely used in different neural networks
to prevent over-fitting through dropping out units in the hidden and visible
layers, which is shown in Figure 1(a). Srivastava et al. [21] explained that dropout
may enforce each unit not to rely on a large set of units but to learn to work
with a small random set of other units such that the complex co-adaptations
would be reduced and each unit is more robust as well. Similarly, if we drop out
the graph connections (e.g., dropping out the nodes in Figure 1(b) or dropping
out the edges in Figure 1(c)) at each training time, feature propagation may not
be able to rely on the full neighborhood while driving each edge to learn to work
with a randomly chosen sample of edges and create useful features on its own.
In this respect, those manipulated edges would become less effective and the
aggregated features could be more robust against adversarial attacks. Although
this dropout is shown promising to prevent over-fitting for DNN training, later
work pointed out that it doesn’t provide sufficient regularization to confer a
significant reduction in model’s vulnerability to adversarial examples [12]. One
possible explanation for this vulnerability could be that each unit is dropped out
with the uniform probability; over the long-term training, the hidden units within
a layer may still manage to learn the mix-ability of all units to approximate the
full feature information including the perturbations. According to the empirical
analysis and observations on adversarial attacks presented in [26, 34] that (1)
nodes with higher degrees are more difficult to be manipulated than those with
lower degrees and (2) adversarial attacks more likely connect the target node
to the nodes that are dissimilar in terms of features, this implies that an edge
should be dropped out in a different probability with respect to its associated
nodes’ degrees and feature similarity. That is to say, to better regularize the
graph connections, the rationale is to reduce the possibility of those adversarial
edges being selected for constructing each training graph batch, while those
edges that connect nodes with extremely low similarity may never be selected;
in this way, the node neighborhoods will be intuitively smoothed, which makes
the aggregated features from nodes more robust against the adversarial attacks.

3.2 Training through Dropping Graph Connections

A severe challenge for GCNs is that recursive feature information aggregation
from neighborhoods across layers enforces exponential growth of computations
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Fig. 2. Layer-wise graph sampling.

in training batches, and thus makes GCNs difficult to be trained efficiently. To
address such neighbor explosion, different state-of-the-art graph-sampling meth-
ods, either neighbor sampling [13, 5], layer-wise sampling [15, 6], or edge sampling
[31, 20], have been proposed to not only speed up the training process, but also
reduce the model variance. In this respect, we leverage graph sampling idea to
perform dropping graph connections. Clearly, when we sample a certain number
of edges from the input graph, those excluded will be naturally dropped out.
To make the defense more effective, we take the behaviors of adversarial attacks
into consideration and design a biased graph-sampling scheme to construct the
subgraphs at each training time with well-defined edge sampling probabilities.

Biased Graph Sampling. Given an input graph G = (A,X), our goal is to
construct a set of subgraphs as training batches, each of which extracts a certain
number of edges to formulate a new adjacency matrix. Formally, we introduce a
Boolean matrix Q ∈ {0, 1}n×n to encode whether or not an edge in G is selected,
i.e., if the edge connecting vi and vj is selected, then Qij = 1; otherwise, Qij = 0.
We also define an edge sampling probability matrix P ∈ Rn×n (Pij ∈ [0, 1]) to
specify the probability of an edge being selected. If the graph G is indirect, then
both matrices Q and P are symmetric. For each training batch, we utilize a
pseudo random function r(·) ∈ (0, 1) to activate the edge sampling probabilities
and decide which edges will be sampled, where

Qij =

{
1 r(·) ≤ Pij

0 otherwise
(3)

If we denote the resulting adjacency matrix for training time t as At, then the
subgraph can be represented as

At = Q ◦A (4)

where ◦ denotes the element-wise product. Following the processing steps in
Section 2, we always perform the symmetrical normalization on At to obtain
Ãt. Considering that the layer-wise graph sampling provides more randomness
and deformation of the input graph [20], which may yield more desirable reg-

ularization for the model training, here, we further sample subgraph A
(l)
t for

each layer l at training time t. Afterwards, training proceeds by iterative weight
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Algorithm 1: GCN training through dropping graph connections.

Input: Graph G = (A,X), epochs T , GCN layers L, training nodes Vtr.
Output: GCN model with trained weights W .

Pre-calculate edge sampling probability matrix P ;
for each training epoch t ≤ T do

Pseudorandomly sample L subgraphs A
(l)
t (l ∈ [1, L]) using Eq. (3) and (4);

Z = softmax

(
˜

A
(L)
t · · · σ

(
˜

A
(1)
t XW (1)

)
· · ·W (L)

)
;

Back propagation from cross-entropy loss L = −
∑

v∈Vtr logZv,cv ;

Update weights W ;

end

updates through Eq. (2), where each iteration includes independently sampled

subgraphs A
(l)
t with respect to the number of GCN layers. Figure 2 and Al-

gorithm 1 illustrate the training algorithm. This graph sampling scheme may
inevitably introduce bias into training batches, while we consider such a bias as
an advantage to penalize the adversarial edge manipulations.

Edge Sampling Probability. The biased graph sampling method is performed
independently on each edge, while the only determinant for an edge being se-
lected for subgraph construction is its sampling probability. Since each edge is
associated with two nodes, edge sampling probability should consider the joint
information from both nodes in terms of node degrees and features. Based on
the variance reduction analysis in [33], the feature aggregation at each training
batch can be computed as:

ζ =
∑
l

∑
i,j

ÃijX
(l−1)
j W (l−1) + ÃjiX

(l−1)
i W (l−1)

Pij
δ
(l)
ij (5)

where δ
(l)
ij = 1 if (vi, vj) ∈ E(l)t ; otherwise, δ

(l)
ij = 0. As proved in [33], we can

accordingly summarize a theorem that under independent edge sampling with
a specified budget, the optimal edge probabilities Pij to minimize the sum of

variance of feature aggregation ζ can be approximately given by Pij ∝ Ãij +Ãji.
It suggests that the edge sampling probability for (vi, vj) should be higher if two
nodes vi and vj have fewer neighbors and are more likely to be influenced by each
other. As aforementioned, in the adversarial setting, nodes with more neighbors
are more difficult to be attacked than those with fewer neighbors and thus have
higher classification accuracy in both the clean and attacked graphs [26]. We
can interpret it in the way that (1) if either one of two connected nodes vi and
vj has few neighbors, this edge is more likely to be manipulated by the attacks,
and the edge sampling probability should hence be low, while (2) if both vi
and vj have many neighbors, the edge tends to already exist in the original
input graph. Therefore, in order to gain relatively low variance as well as high
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adversarial robustness, we define our edge sampling probability with respect to
node degrees as

Pij ∝
1

Ãij + Ãji

=
deg(vi) deg(vj)

deg(vi) + deg(vj)
= P deg

ij (6)

We utilize a probability mass function for all the edges in the given graph:

P deg
ij = P deg

ij /
∑

(va,vb)∈E

P deg
ab , (vi, vj) ∈ E (7)

As for node features, considering that the attackers more likely connect the
target node to the nodes with very different features, we further calculate feature
similarity score Sij between vi and vj to restrict the edge sampling probability.
Based on different node feature spaces, the feature similarity measures may
vary. For example, Jaccard similarity can be employed to measure binary feature
space, while cosine similarity can be used for numeric feature space. Accordingly,
the edge sampling probability can be updated as

Pij ∝ P deg
ij · Sij (8)

which implies that the edges that connect nodes with more neighbors and larger
feature similarity score have higher sampling probability; if Sij = 0, then the
corresponding edges would never be selected. Wu et al. [26] indicated that even
though there may be a few legitimate edges with very low similarity score in
the clean graph, it has little impact on the predictions of the target nodes to
remove these edges. We take P as our final edge sampling probability matrix
(note that, Pii = 0, ∀vi ∈ V and Pij = 0, ∀(vi, vj) 6∈ E), which leads to better
regularization and robustness since it enables the GCNs to explore the random
and deformed graph connections and node features. As stated in Algorithm 1,
the probability matrix P can be pre-calculated, which would not significantly
increase the computational complexity for the GCN training, except for some
extra computations on adjacency matrix formulation and normalization.

3.3 Inference through Ensemble

In the previous section, a biased graph sampling method is presented for con-
structing subgraphs, which essentially drops the graph connections, and penal-
izes the adversarial edge manipulations. Based on the trained GCNs with up-
dated weights using such subgraph training batches, we can easily proceed with
inference for test data. Generally, a full neighborhood architecture is fed to the
model for testing, which is simple and straightforward [6]. However, considering
that the adversarial attacks may inevitably manipulate the edges over test data,
in this work, instead, we first sample subgraphs from the full graph for test data
as is done in GCN training, and then utilize a bagging-like ensemble to average
the predictions from all the individual outputs Z over the subgraphs including
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Algorithm 2: GCN inference through ensemble.

Input: Graph G = (A,X), epochs T , trained weights W , testing nodes Vts.
Output: Labels for testing nodes.

Pre-calculate edge sampling probability matrix P ;
Initialize the output matrix O ∈ Rn×cl and counter array N ∈ Rn;
for each testing epoch t ≤ T do

Pseudorandomly sample a subgraph At using Eq. (3) and (4);

Z = softmax
(
Ãt · · · σ

(
ÃtXW

(1)
)
· · ·W (L)

)
;

for v ∈ Vts and v is sampled do
Ov ← Ov + Zv;
Nv ← Nv + 1;

end

end
Ov ← Ov/Nv, ∀v ∈ Vts;
return Labels for testing nodes Vts using O.

the connections to the corresponding test nodes, and hence approximate the fi-
nal inference results. With the use of ensemble, the inference may provide an
additional regularization beyond that provided by model training. The inference
algorithm is illustrated in Algorithm 2, which is similar to Algorithm 1, with
three differences: (1) the inference only applies a sampled subgraph cross all the
layers in a testing epoch for easier test node tracking; (2) the trained weights
W will not be updated anymore but directly used for forward aggregation and
prediction; and (3) all the outputs Z with sampled target test nodes are further
averaged to return the inferred labels for the corresponding test nodes.

4 Experimental Results and Analysis

In this section, we evaluate the performance of our proposed robust GCN model
on a number of datasets to defend against adversarial attacks. We perform exper-
iments on the graph-based benchmark node classification tasks with the random
splits [29] of each dataset, and compare our model with state-of-the-art baselines.

4.1 Experimental Setup

Datasets. We test our model on two citation network benchmark datasets:
Cora and Citeseer [29, 17] - in both of these datasets, nodes represent docu-
ments and edges denote citation links; node features correspond to elements of
a bag-of-words representation of a document i.e., 0/1 values indicating the ab-
sence/presence of a certain word, while each node has a class label [25]. The
dataset statistics are summarized in Table 1. For dataset random split, we ad-
just Cora and Citeseer respectively to align with our experimental data setting:
20 instances for each class are randomly sampled as training data while another
500 and 1000 instances are selected as validation and test data.
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Table 1. Statistics of the datasets used in our experiments.

Dataset Nodes Edges Classes Features

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703

Baselines and Adversarial Attacks. We compare our proposed method
(named DropCONN throughout the experiments) with some state-of-the-art
baselines, including:

– GCN [17]: this is the original GCN model introduced by Kipf and Welling,
which is described in Section 2.

– DropEdge [20]: this is a sampling-based GCN model, which drops out a
certain rate of edges of the input graph by random and shares the same
perturbed adjacency matrix across all the layers.

– GraphSAINT [31]: this is another sampling-based GCN model, which ex-
tracts a connected subgraph for each training batch with the edge sampling
rate Pij ∝ Ãij + Ãji.

– RGCN [33]: this model defends against graph adversarial attacks by adopting
Gaussian distributions as the hidden representations of nodes to absorb the
effects of adversarial changes.

To assess the robustness of our proposed method against different attack
methods, we choose three representative graph adversarial attacks as follows:

– Nettack [34]: this is a targeted attack method to enforce misclassification
on the target nodes using edge and feature perturbations, which can handle
both direct and influence attacks. We focus on direct poisoning attack here.

– Meta-gradient attack (Metattack) [35]: this is a non-targeted attack method
to reduce the overall classification performance of GCNs using meta-gradients.

– Random attack [33]: it randomly selects some non-adjacent node pairs and
add fake edges.

Parameter Setting. Experiments are under the transductive, semi-supervised
learning setting. All the GCNs are set as a two-layer structure with 16 hidden
units, which are trained using Adam [16] with 0.01 initial learning rate, 5 × 10−4

L2 regularization on the weights, and 0.5 dropout rate for the input and hidden
layers. For DropEdge, the edge sampling rate is 0.5. For GraphSAINT, we use
edge sampler. The parameter settings of Nettack, Metattack, and Random attack
are directly taken from [34], [35] and [33]: (1) Nettack performs the perturbations
ranging in {1, 2, 3, 4, 5}, (2) the edge perturbation rate for Metattack varies in
{1%, 5%, 10%, 15%, 20%}, and (3) the perturbation rate for random attack is set
as {20%, 40%, 60%, 80%, 100%}. Since the data feature space is binary, we use
Jaccard similarity for feature measure in our method. Besides, we report the
mean classification accuracy of 10 runs on the test nodes for all the experiments.
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Table 2. Classification results (accuracy %) on clean datasets.

Dataset GCN DropEdge GraphSAINT RGCN DropCONN

Cora 81.5 82.8 81.1 82.8 80.5

Citeseer 70.3 72.3 71.0 71.2 69.8

4.2 Robustness Evaluation against Adversarial Attacks

Performance without Attack. We first compare our proposed method (i.e.,
DropCONN) with the original GCN and other variant models on the clean
datasets to assess the classification performance when the datasets are not at-
tacked. The experimental results are illustrated in Table 2. From the results,
we can see that DropCONN slightly underperforms the baseline models on both
datesets. The reason behind this is that the graph sampling using our formulated
edge sampling probability may inevitably enforce some very sparse subgraph gen-
erations and some edge information loss for those that connect nodes with low
feature similarity score as well, while averaging the testing output may further
smooth the classification accuracy. Compared to the original GCN, DropCONN
degrades the accuracy from 81.5% to 80.5% on Cora and from 70.3% to 69.8%
on Citeseer; the performance degradation introduced by our model is not signif-
icant. Considering that DropCONN is designed to be resilient against different
graph adversarial attacks, which will be thoroughly evaluated later, this compa-
rable performance on clean data shows that our proposed robust solution can be
applied in a realistic setting with or without adversarial attacks since we cannot
really tell if perturbations happen or not in real-world graphs.

Robustness against Adversarial Attacks. In this section, we conduct ex-
periments to evaluate the effectiveness of our defense strategy against three
adversarial attacks (i.e., nettack, metattack, and random attack) to see (1) if
the regularization on graph connections through biased graph sampling and en-
semble inference contributes to robust graph learning and (2) if DropCONN can
outperform other graph-sampling and defensive GCN models. More specifically,
for non-targeted attacks (i.e., metattack and random attack), we perturb a cer-
tain rate of edges to reduce the overall classification of the model where this
perturbation rate varies from 0% to 20% for metattack and from 0% to 100%
for random attack. Note that, metattack is performed using meta-gradient ap-
proach with self-training [35]. For targeted attack, we set the target nodes as all
nodes in the test data and perform nettack to generate different numbers of per-
turbations (ranging from 1 to 5) for the target nodes. After either non-targeted
attacks or targeted attack, we train different GCN models on the modified graph
and evaluate the classification accuracy on the test nodes.

We report the comparative evaluation results against three attacks in Fig-
ure 3(a)-Figure 3(f) respectively. From Figure 3(a) and Figure 3(b), we can ob-
serve that direct nettack attack on the target nodes is a strong attack method,
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Fig. 3. Classification results (accuracy) under nettack, metattack, and random attack.

where five adversarial perturbations over either graph structure or node fea-
tures have already drastically degraded the testing accuracy by around 40% on
Cora and 30% on Citeseer for most of GCN models; clearly, the original GCN
suffers from the biggest drop from 81.5% to 40.8% on Cora and from 70.3% to
41.1% on Citeseer. Despite its apparent attack effect, different GCN variants still
show some different defensive potentials against nettack, in which our proposed
method DropCONN successfully outperforms other state-of-the-art baselines on
both datasets, especially when more perturbations are injected to the graph.
Compared to GCN, DropCONN improves the accuracy by a margin of 1.9% to
6.9% and 2.7% to 7.2% respectively, while compared to the best performances
from DropEdge, GraphSAINT and RGCN, DropCONN still surpasses them by
0.9% to 4.4% and 0.5% to 2.9% on the corresponding datasets. This is because
that DropCONN follows the behaviors and impact of adversarial attacks on
node connections and features to design the biased graph sampling and yields a
higher regularization on graph connections than other graph sampling methods
like DropEdge and GraphSAINT to better penalize the adversarial edge manip-
ulations and thus achieves higher performance against the adversarial attacks.
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Fig. 4. Evaluations on importance of feature similarity and ensemble.

The same observations can be learned from Figure 3(c)-(d) and Figure 3(e)-
(f). Though metattack shows less destructiveness than nettack, it still manages
to enforce the GCN models to decay rapidly as the perturbation rate increases,
which is stronger than random attack. The experimental results illustrate that
DropCONN outperforms all the compared methods under metattack and random
attack by a significant margin of performance improvements, which demonstrates
its better robustness. Resting on these experimental results and observations, we
conclude that DropCONN does not utilize any information of the attack methods
and can hence be used in practice to improve the overall robustness of the GCN
model against different adversarial attacks.

4.3 Ablation Study

In this section, we conduct ablation studies to further investigate how different
components affect the robustness of our proposed method DropCONN. While
designing the biased graph sampling scheme, we claim that both node degrees
and feature similarity need to be considered for edge sampling probability formu-
lation to adhere to adversarial perturbation behaviors and thus better penalize
the edge manipulations. Based on the trained GCN model, we further introduce
ensemble to average the outputs over the subgraphs rooted by test nodes to pro-
vide an additional regularization. To verify their contributions, we analyze the
effect of the proposed method from two aspects: (1) DropCONN-F: since graph
sampling methods generally consider the node degrees [6, 31, 13] but ignore the
feature similarity, we remove the feature similarity measure from edge sampling
probability; and (2) DropCONN-E: we omit ensemble and directly feed the full
graph architecture for inference. We validate DropCONN-F and DropCONN-E
on both datasets and their performances against nettack are reported in Fig-
ure 4. As we can see, feature similarity plays a crucial role in graph sampling
to limit negative effects from perturbed edges, while its absence enforces a per-
formance drop by 2.7% of accuracy on Cora and 2.2% on Citeseer on average.
DropCONN-E performs closely to DropCONN when the perturbation is small,
but the gap between them widens as the perturbation number increases, which
implies that ensemble yields an additional advantage for inference. These ob-
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servations reaffirm the effectiveness of our design to enhance the robustness of
GCNs against adversarial attacks.

5 Related Work

In recent years, graph neural networks (GNNs) on graph structured data have
shown outstanding results in various applications [13, 24, 28]. Kipf and Welling [17]
further introduced the GCNs via limiting the spectral filters to first-order neigh-
bors for each node. Many GCN variants have been then proposed to leverage
the graph structure to capture different properties [1, 30, 32, 19]. However, all of
these GCN models lack adversarial robustness. To show the vulnerabilities of
GCNs, different graph adversarial attack methods were proposed [9, 26, 27, 34,
35] to perturb graph structure and node features to enforce classification errors.
Accordingly, a few attempts have been made to improve the robustness of GCNs
against adversarial attacks [26, 27, 33, 23]. For example, Zhu et al. [33] proposed
RGCN by adopting Gaussian distributions as the hidden representations of nodes
to absorb the effects of adversarial changes; Wu et al. [26] removed the edges
from graphs that connects the nodes with low feature similarity score; Tang et
al. [23] utilized transfer learning over clean graphs to penalize the perturbations.
Differently, in this paper, we leverage graph sampling idea [6, 20, 31, 11, 5] and
design a biased graph sampling scheme to drop graph connections, which yields
a strong regularization on the model and thus improves the robustness of GCNs.

6 Conclusion

In this paper, we propose to use graph sampling idea to formulate a secure learn-
ing solution that enhances the robustness of GCNs against adversarial attacks.
By considering the properties of adversarial perturbations, we elaborate a bi-
ased graph sampling method over well-defined edge sampling probabilities with
respect to nodes’ degrees and feature similarity to drop graph connections and
construct random, sparse and deformed subgraphs for training, which yields a
significant penalty on edge manipulations. Based on the trained GCNs, we fur-
ther use ensemble to average the outputs over sampled subgraphs rooted by test
data to approximate the final inference results, which provides an additional
regularization. We evaluate the performance of our proposed method on Cora
and Citeseer datasets, while the experimental results validate its effectiveness
against adversarial attacks.
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