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Abstract—Network telescopes or “Darknets” received unso-
licited Internet-wide traffic, thus providing a unique window
into macroscopic Internet activities associated with malware
propagation, denial of service attacks, network reconnaissance,
misconfigurations and network outages. Analysis of the resulting
data can provide actionable insights to security analysts that can
be used to prevent or mitigate cyber-threats. Large network tele-
scopes, however, observe millions of nefarious scanning activities
on a daily basis which makes the transformation of the captured
information into meaningful threat intelligence challenging. To
address this challenge, we present a novel framework for chara-
cterizing the structure and temporal evolution of scanning be-
haviors observed in network telescopes. The proposed framework
includes four components. It (i) extracts a rich, high-dimensional
representation of scanning profiles composed of features distilled
from network telescope data; (ii) learns, in an unsupervised
fashion, information-preserving succinct representations of these
scanning behaviors using deep representation learning that is
amenable to clustering; (iii) performs clustering of the scanner
profiles in the resulting latent representation space on daily
Darknet data, and (iv) detects temporal changes in scanning
behavior using techniques from optimal mass transport. We
robustly evaluate the proposed system using both synthetic data
and real-world Darknet data. We demonstrate its ability to detect
real-world, high-impact cybersecurity incidents such as the onset
of the Mirai botnet in late 2016 and several interesting cluster
formations in early 2022 (e.g., heavy scanners, evolved Mirai
variants, Darknet “backscatter” activities, etc.). Comparisons
with state-of-the-art methods showcase that the integration of the
proposed features with the deep representation learning scheme
leads to better classification performance of Darknet scanners.

Index Terms—Network telescope, Internet-wide measurements,
anomaly detection, deep learning, autoencoders, clustering.

I. INTRODUCTION

Cyber-attacks present one of the most severe threats to the
safety of citizenry and the security of the nation’s critical
infrastructure (e.g., the energy grid, transportation networks,
health systems, food and water supply networks). A critical
phase in a cyber-attack is “network reconnaissance”, which
often involves “scanning” for potentially vulnerable machines
or devices on the Internet so that these vulnerabilities may
be exploited during later phases of the cyber-attack. Similarly,
malware that attempt to propagate from one compromised ma-
chine to other unsecured devices are also engaged in malicious
scanning activities. Such actions are difficult to be identified
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in an operational network because they are oftentimes low-
volume and interwoven with normal network traffic.

Early detection of these scanning behaviors can provide
germane information to network security analysts to detect
ongoing cyber threats and to more effectively mitigate them.
Network telescopes [1], [2], also known as “Darknets”, provide
a unique opportunity for characterizing and detecting Internet-
wide malicious activities. A network telescope receives and
records unsolicited traffic—known as Internet Background
Radiation (IBR)—destined to an unused but routed address
space. This “dark IP space” hosts no services or devices,
and therefore any traffic arriving to it is inherently malicious.
No regular user traffic reaches the Darknet. Thus, network
telescopes have been frequently used by the networking and
security communities to shed light into dubious malware
propagation and interminable network scanning activities [3]–
[7]. For instance, a large network telescope operated by Merit
Network [2] had been employed in late 2016 to understand the
outset and spread of the Mirai botnet [3]. Mirai is among the
first botnets that compromised millions of Internet-of-Things
(IoT) devices and was responsible for some of the largest Dis-
tributed Denial of Service (DDoS) attacks (including attacks
against critical DNS infrastructure) ever recorded [3], [8].
However, this analysis was conducted post-mortem, i.e., after
the catastrophic consequences had been realized. A systematic
way to detect changes of ongoing scanning behaviors observed
in the Darknet is yet to be developed.

Automated detection of changes in scanning behavior in
Darknets is a challenging task due to the vast amounts of
senders targeting any combination of UDP/TCP ports and/or
other protocols. In this paper, we aim to address this challenge
by proposing a framework that continuously monitors and
detects changes of scanning activities observed in the Darknet.

An important task in this context has to do with clus-
tering the different Darknet scanners, based on their traffic
profile, their port scanning patterns, etc., and then employing
these “groupings” as signatures to detect temporal changes
in the evolution of the Darknet (i.e., detect changes between
groupings of two time points, e.g., two adjacent days). This
problem can be reformulated as a problem of change detection
through unsupervised clustering. However, solving this prob-
lem presents several non-trivial challenges: (i) The number
of ports being scanned in a day can be in the order of
tens of thousands, resulting in an extremely high-dimensional
feature space. Distance calculations are known to be inher-
ently unreliable in high-dimensional settings [9], making it
challenging to apply standard clustering methods that rely on
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measuring distance between data samples to cluster them; (ii)
Linear dimensionality reduction techniques such as Principal
Component Analysis (PCA) [10] fail to cope with nonlinear
interactions between the observed variables; (iii) Detecting
shifts of the Darknet structure between two time points is a
non-trivial task because it involves hundreds of clusters with
high-dimensional features that may differ in their size and/or
their cluster structure.

Against this background, this paper explores a novel unsu-
pervised approach for detecting changes in scanning behavior
that overcomes the aforementioned challenges through the use
of (i) information-preserving, low-dimensional embeddings of
daily scanning profiles acquired via deep autoencoders, and
(ii) ideas from optimal mass transport [11] to measure changes
in scanning behavior between two time points. The proposed
framework is applied on Merit’s large network telescope [2],
and we demonstrate its potential to extract high-impact Dark-
net events in an automated manner.

The key contributions of the paper are as follows: We lever-
age the recent advances in deep neural networks and employ
powerful embedding or representation learning methods (see
Sec. V-A) to automate the construction of an information-
preserving low-dimensional latent space to represent the he-
terogeneous, complex and high-dimensional features of scan-
ning profiles (described in Sec. IV). We then apply standard
clustering methods, e.g., K-means, to the resulting latent
representation the scanning profiles (Sec. V-B). To enable the
detection of changes in the scanning behavior, we propose
the use of a Wasserstein metric from optimal mass transport
theory [11], [12] to assess the dissimilarity or “distance“ be-
tween Darknet clusters from two adjacent monitoring windows
(e.g., two adjacent days for daily comparison, see Sec. V-C).
Further, the outcome of the optimal transport plan employed
to calculate the Wasserstein distance is utilized to interpret the
“change” identified. Figure 1 illustrates an application of the
proposed approach on Merit’s Darknet during the emergence
of the Mirai botnet in September 2016 [3]. Our methodology
is able to uncover two important changes in the Darknet’s
observed behavior: one associated with changes in Mirai’s
scanning patterns on September 14th, 2016; and another
indicative of heavy DNS scans that first occurred on September
24th, 2016. We elaborate further on these results in Sec. VI
which includes the evaluation of our methodology using real
as well as synthetically-generated data, and comparisons with
related work.

II. RELATED WORK

Internet measurement studies. Darknets provide a unique
perspective into Internet-wide scanning activities and several
studies focused on network telescope data to understand mal-
ware propagation, network reconnaissance, botnets and mis-
configurations [4], [6], [7], [13]–[16]. Darknet data have been
also utilized to study DDoS attacks [17]–[19] and Darknet
backscatter [20], [21], IPv6 routing instabilities [22], long-
term cyber attacks [23], [24] and network outages [25]–[27].

Of particular interest in this context is the use of Darknet
data for detecting and characterizing new malware. The Mirai

botnet, for instance, is known to have started its malware
propagation activity by first scanning port TCP/23 (Telnet) for
potential victims in the Internet [3]. Over time, and as Internet-
of-Things (IoT) devices had proven to be very susceptible
in getting compromised by malware infection, its scanning
behavior changed as well. It proceeded to scan port TCP/2323,
and eventually 10 other ports [3]. Other studies have employed
Darknet data to obtain insights on the IoT ecosystem and
its vulnerabilities [28]–[30]. Hence, reliably detecting and
responding to such attacks calls for effective methods for rapid
identification of novel signatures of malware behavior.
Clustering Darknet data. Clustering offers a powerful ap-
proach to the analyses of Darknet data to identify novel attack
patterns, victims of attacks, novel network scanners, etc. [31]–
[33]. For example, Nishikaze et al. [31] encode Darknet traffic
using 27 network features associated with blocks / subnets of
the IP space and cluster the resulting data to group the subnets
according to their traffic profiles. Ban et al. [32] have shown
how clustering of Darknet data, followed by frequent pattern
mining and visualization can be used to detect novel attack pat-
terns. Iglesias and Szeby [33] have shown how to cluster IBR
data from Darknet based on a novel representation of network
traffic to identify network traffic patterns that are characteristic
of activities such as long term scanning, as well as bursty
events from targeted attacks and short term incidents. Sarabi
and Liu [34] employ deep learning for obtaining lightweight
embeddings to characterize the population of Internet hosts as
observed by scanning services such as Censys.io [35].

Methods based on embedding features into a lower-
dimensional space using ideas from natural language pro-
cessing and “word embeddings” appear in [36]–[38]. Closest
to ours are the DarkVec [36] and DANTE [37] works in
which scanning IPs and destination ports, respectively, are
employed to construct the embeddings and then perform
clustering. DANTE also utilizes the clustering outcomes for
novelty detection based on using Jaccard similarity scores
between clusters of adjacent time windows. The work in [36]
found the training times of the neural networks employed in
DANTE [37] and IP2VEC [38] to be exceedingly high (see
Table 3, [36]), even for a small Darknet like the one employed
in their study (i.e., a Darknet observing only 543,900 unique
IPs in a whole month; contrast this with the 35 million unique
source IPs present in our monthly dataset, see Table I). Thus,
these methods are impractical to be used in large network tele-
scopes. DarkVec exhibits good training performance, however,
as its authors acknowledge, it performs best when one utilizes
“proper service definitions” (i.e., defining the group of ports
that a service commonly uses, such as TCP/80 and TCP/8080
for HTTP). This information is not always readily available,
and in fact it is infeasible to have a priori knowledge for the
set of ports that a new malware, potentially exploiting “zero-
day” vulnerabilities, might use for scanning. We compare
our approach with DarkVec in Sec. VI-B. We note also that
DarkVec does not employ the results of clustering for change-
point detection, which is one of the main themes of this paper.
Reactive Darknets and honeypots. Network telescopes can
be considered as a special case of network honeypots [39].
While network telescopes are completely “passive” (i.e., never
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Fig. 1: (Left panel) Scanning traffic at Merit’s Darknet (a /10 Darknet, back then) for September 2016. Notice the expansion
of the Mirai botnet, namely the addition of TCP/2323 in the set of ports scanned. The figure considers scanners emitting at
least 50 packets per day. (Right panel) Detection of temporal changes in the Darknet using the Wasserstein distance.

responding to traffic), honeypots can be reactive and interact
with the scanners at various level of sophistication. The
network security community has been employing honeypots
for situational awareness for decades [40], oftentimes cus-
tomizing them to specific goals, e.g., to understand DDoS
amplification attacks [41], to study recent malware trends in
the IoT ecosystem [42], [43], to understand SCADA sys-
tems [44], to target special types of scanning [45], etc. How-
ever, employing a large cluster of honeypots can be expensive
since large compute and memory resources might be needed.
Further, high-interaction honeypots could be hard to maintain
and/or adapt to the changing malware landscape. Nevertheless,
while we henceforth focus our attention in passive network
telescopes, we note that our framework is applicable to data
collected from honeypots, mutatis mutandis.

III. PROBLEM FORMULATION

Network telescopes provide the unique opportunity to ob-
serve Internet-wide inconspicuous events. Our objective is to
offer cyber-security analysts a framework that gleans useful
insights in near-real-time from the vast amount of Darknet
events that are captured in large network telescopes, hence
enhancing their situational awareness regarding ongoing cyber-
threats. To achieve this, we tackle the following problems.

Problem 1: Darknet Clustering. Consider N Darknet senders
(i.e., scanners), each characterized by a high-dimensional
feature vector x ∈ RP . In this paper, we consider features
compiled on a daily basis (e.g., total number of packets a
scanner has sent within a given day, see Sec. IV). The goal is to
assign the scanners into K groups such that “similar” scanners
are classified in the same group. The notion of similarity is
based on the “loss function” employed to solve the clustering
problem and will be defined in the next sections.

Problem 2: Temporal Change-point Detection. Consider
the clustering assignment matrices M0 and M1, denoting
the clustering outcomes for day-0 and day-1, respectively.
Here, Mt ∈ {0, 1}N×K is a binary matrix that denotes the
cluster assignment for all N scanners, i.e., Mt1K = 1N for

t ∈ {0, 1}, where 1K and 1N are column vectors of ones
of dimension K and N , respectively1. The task here is to
detect significant changes between the clustering outcomes M0

and M1 that would denote that the Darknet structure changed
between day-0 and day-1. As we will see later, we will cast
this problem as the problem of comparing two multi-variate
distributions, using ideas from optimal mass transport.

Henceforth, we assume that day-0 and day-1 are adjacent
days and thus we are focusing our interest in detecting signi-
ficant temporal Darknet structure shifts amongst consecutive
daily intervals. Notably, the same approach could be utilized
to compare Darknets across “space”, namely to assess how
dissimilar two Darknets that monitor different dark IP spaces
might be. As shown in [45], there is evidence that the traffic
that a Darknet receives is affected by the monitored IP space
and the locality of the scanner. We leave these spatial Darknet
comparisons as part of our future work.

IV. DATA DESCRIPTION AND DARKNET FEATURES

A. Darknet Data Description

Table I tabulates basic descriptive statistics for the Darknet
datasets we employ in this study. Our main dataset spans
the month of September 2016 and plays a critical role in
demonstrating the benefits of the proposed approach. During
September 2016, the Mirai botnet epidemic [3] gained signi-
ficant speed, and thousands of compromised IoT devices got
infected. The Mirai growth is evident in Figure 1 (left panel),
where we see that hundreds of thousands of new victims
started getting infected on September 14th. This coincides
with a modification in Mirai’s scanning strategy that involved
the use of an additional port, namely TCP/2323, in Mirai’s
scanning campaigns. Albeit this strategy shift first occurred
on September 6th, it was not implemented widely until eight
days later. Should the change-point on September 14th got
detected on an automated manner, Mirai’s mitigation efforts

1The number of scanners N varies across different days. As shown next,
this does not affect the generality of our approach. For notational convenience,
we kept the numbers of scanners fixed in this problem description.
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TABLE I: Basic statistics for our Darknet datasets.

Dates Darknet Sources Packets Ports Top-3 ports
Size Port Traffic (%) Sources

[2016-09-02,
2016-09-30] /10 35M 49B 65536

23
80

2323

60.34
13.55
4.00

20.5M
963K
13.5M

2016-09-14 /10 1.8M 1.5B 65536
23

2323
80

53.30
11.39
6.83
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527K
96K

2016-09-24 /10 3.3M 1.4B 65536
23

2323
80

69.45
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3.73

1.8M
1.3M
84K
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Fig. 2: Evolution of scanning activity over time.

would have started sooner and several attacks launched by
the Mirai botnet in late September 2016 [3] could have been
avoided. Our clustering and change-point detection framework
aims to fill this gap.

The table illustrates that during the course of the month
the Darknet observed about 35 million unique source IPs
(two orders of magnitude more than the number of unique
scanners involved in related works such as DANTE [37] and
DarkVec [36]), and all possible (i.e., 65536) port destinations
were targeted. One observes that Mirai-related ports (i.e.,
TCP/23 and TCP/2323) contribute close to 65% of the total
traffic. The total number of source IPs associated with these
ports and port TCP/80 is also illustrated in Table I. Figure 2
shows the evolution of scanners for the month of September
2016. We show the cumulative number of distinct source
IPs seen in the Darknet over time both with and without
filtering. Filtering is a “data pre-processing” step, employed to
discard all scanning IPs that transmitted less than 50 packets
within a given day. Filtering low-traffic scanners is a common
technique used in Darknet analysis (e.g., applied also in [4],
[5], [36]) and aims at reducing “noise” in the data, such
as noise attributed to misconfigurations or randomly-spoofed
source addresses. Further, keeping scanners with at least 50
packets transmitted is necessary for accurate estimation of
some of the features we use to characterize the Darknet probers
(e.g., for estimating the average packet inter-arrival times).
Figure 2 demonstrates also the number of “active” scanners
over time, i.e., scanners whose activity persisted throughout
the month.

B. Darknet Features

We utilize an array of numerical and categorical features
to characterize Darknet scanners. Figure 3 shows exemplar
empirical CDFs for the numerical features used in our study.
The features shown are compiled for the filtered scanners of
September 14th, 2016 (see Table I). The CDFs illustrate the
richness and complexity of the Darknet ecosystem in terms of
traffic volume received from senders (e.g., see packets, bytes
and average inter-arrival time), scanning strategy (e.g., see
number of distinct destination ports and number of distinct
destination addresses scanned), etc. We now briefly describe
each of the features utilized in our study.

Traffic volume. A series of features characterize the volume
and frequency of scanning, namely total number of packets
transmitted within the observation window (i.e., a day), total
bytes and average inter-arrival time between sent packets.
Observe the large spectrum of values that these features
exhibit; for instance, Figure 3 shows that some scanners send
only a few packets (i.e., as low as 50 packets, our lower bound
for filtered traffic) while some emit tens of millions of packets
in the Darknet, aggressively foraging for Internet victims.

Scan strategy. Features such as number of distinct destination
ports and number of distinct destination addresses scanned
within a day, prefix density, destination strategy, IPID strategy
and IPID options reveal information about one’s scanning
strategy. For instance, we see some senders to only focus on
a small set of ports (about 90% of the scanners on September
14th targeted up to two ports) while others target all possible
ports. Prefix density is defined as the ratio of the number of
scanners within a routing prefix over the total IPs covered
by the prefix (we use CAIDA’s pf2as dataset for mapping
IPs to their routing prefix [46]), and can provide information
about coordinated scanning within a network. Destination
strategy and IPID strategy are features that show 1) whether
the scanner kept the associated fields (i.e., destination IP and
IPID) constant, 2) with fixed increments or 3) were kept ran-
dom. These could provide useful insights about the scanning
intentions and/or tools used for scanning (for instance, the
ZMap tool [47] uses a constant IPID of 54321). TCP options
is a binary feature that illustrates whether any TCP options
have been set in TCP-related scanning; the authors of [45]
associate the lack of TCP options with “irregular scanning”
(usually associated with heavy, oftentimes nefarious, scanning)
and thus we decided to track this as part of our features.

Targeted applications. We employ the features set of ports
and set of protocol request types scanned to glean information
about the services being targeted. Since there are 216 distinct
ports, we encode—using the one-hot-encoding scheme—the
set of ports scanned using the top-500 ports identified on
September 2nd, 2016. I.e., if a scanner had scanned ports
outside the top-500 set, its one-hot-encoded feature for ports
would be all zeros. Table II shows some of the protocol types
we consider (e.g., TCP-SYN request, UDP, etc.). The table
shows the top-5 combinations scanned for September 2nd,
2016; when compiling our features vector, this information
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Fig. 3: CDFs for our numerical features that characterize scanning activity. Data source: Merit’s Darknet, 2016-09-14.

TABLE II: Traffic types.

Traffic Type Fraction of Scanners (%)
TCP-SYN 91.17
TCP-SYN, UDP 4.04
UDP 2.48
ICMP Echo Request 0.61
TCP-SYN, UDP,
ICMP Dest. Unreachable 0.47

is also encoded using an one-hot-encoding scheme.

Device or scanner type. We use the set of TTL values seen
per scanner as an indicator for “irregular scan traffic” [45],
[48] and/or the device OS type [49]. For instance, IoT devices
that usually run on Linux/Unix-based OSes are seen with TTL
values within the range 40–60 (the starting TTL value for
Linux/Unix OSes is 64). On the other hand, devices with
Windows are seen scanning the Darknet with values in the
range 100–120 (starting value for Windows OSes is 128) [49].

V. METHODOLOGY

In this section we present the proposed approach that tackles
the problems introduced in Sec. III.

𝑋 ∈ ℝ$×&	

𝐶 ∈ 	ℝ)×*	
𝑀 ∈ {0,1}$×)	

Fig. 4: Autoencoder for dimensionality reduction.

A. Dimensionality Reduction via Representation Learning

A key first step in our methodology is to project the
high-dimensional input features onto a low-dimensional vector
space of embeddings that preserves the information from the
input signal and is amenable to clustering. The heterogeneity
of the input data features, their high dimensionality, and the
need to cope with potentially nonlinear interactions between
features motivated us to employ nonlinear autoencoders to
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address these challenges.
Inspired by recent advances in deep representation learn-

ing [50], [51], deep autoencoders [34], [52]–[54] receive the
input signal x ∈ RP and try to “compress” it in a lower-
dimensional space of embeddings z ∈ RQ, Q ≪ P , while
also preserving as much information as possible from the input
signal (see Figure 4).

A typical nonlinear autoencoder construction is described
next. Let eθ(·) be a nonlinear encoder function parameterized
by θ that maps the input data to a representation space
of embeddings, and dµ(·) be a nonlinear decoder function
parameterized by µ that maps the data points from the repre-
sentation space to the input space, such that:

eθ(xi) = f(xi; θ) =: zi, f(·; θ) : RP → RQ

dµ(zi) = g(zi;µ) =: x̂i, g(·;µ) : RQ → RP

We employ the fully-connected multilayer perceptron
(MLP) neural network for the implementation of both mapping
functions f(·; θ) and g(·;µ). For instance, a 4-layer MLP
network realizing the encoding function f(·; θ) is defined as:

h(1) = ϕ
(
W (1)x+ b(1)

)
h(2) = ϕ

(
W (2)h(1) + b(2)

)
y = ϕ

(
W (3)h(2) + b(3)

)
=: f(x; θ),

where ϕ(·) is the activation function, applied element-wise to
all elements of its input vector. We elected the ReLU activation
function to avoid the “gradient vanishing” problem that other
nonlinear functions exhibit (e.g., the sigmoid function) [55],
[56]. In the above formulation, the parameters θ of the neural
network that need to be “learned” are the weight matrices
W (i) and the bias vectors b(i), i = 1, 2, 3. The vectors h(ℓ)

denote the output of the l-th hidden layer.
The decoder function g(·;µ) uses the same number of

hidden layers and layer sizes as the encoding function. The
ReLU activation functions are also employed in all layers
except the last one; a linear activation function is used at the
output layer so that the output vectors take values in RP .

To learn representations that preserve the information of
input data, we consider minimizing the reconstruction loss:

min
θ,µ

N∑
i=1

(ℓ(g ◦ f(xi),xi)) + λ(R(θ) +R(µ)) (1)

where the ℓ(·) : RP → R is a loss function that quantifies the
reconstruction error. For simplicity, we choose the Euclidean
distance ℓ(x,y) = ∥x− y∥22. R(·) is a regularization term
for the model parameters to help us avoid “overfitting” the
data. In this work, we adopt the squared ℓ2 norm, such that
R(θ) = ∥θ∥22. λ ≥ 0 is the regularization coefficient. All
model parameters, i.e., {θ, µ}, can be jointly learned using
standard stochastic gradient-based optimization methods, such
as Adam [57].

Autoencoder tuning. Tuning is discussed in Appendix A.
As shown there, the optimal MLP parameters are as follows:
For the encoder function, we use a 3-layer network with an
input layer equal to the dimension P of the features, a second
(hidden) layer of size 1000, and an output layer of size Q = 50

neurons. The decoding function is also a 3-layer network: the
first layer is the layer of embeddings of size Q = 50, the
second layer is a hidden one of size 1000 and finally we have
the output layer of size P . The regularization weight is chosen
to be λ = 0.001 (see Figure 10). Unless otherwise noted, these
are the MLP parameters we have employed in the evaluation
sections of the paper (see Section VI).

B. Clustering Darknet scanners

After the representation learning step is done, the “trained”
encoding function f(·; θ) is employed to yield the embeddings
of the scanners to be utilized for clustering (see Figure 4). We
perform standard K-means clustering on the low-dimensional
representation of the data. Formally, in this step, we aim to
minimize the following clustering loss:

min
C,M

N∑
i=1

ℓ(f(xi),MC) (2)

s.t. mi,j ∈ {0, 1}, M1K = 1N ,

where M = (mi,j)N×K is the clustering assignment matrix,
the entries of which are all binary. C = (ci,j)K×Q is the
matrix of clustering centers that lie in the representation space.
1K and 1N are column vectors of ones of dimension K and
N . We employ the Euclidean distance as the loss function ℓ(·).

C. Change-point Detection via Optimal Mass Transport

The clustering outcomes obtained are utilized both for
characterizing the Darknet activities within a monitoring win-
dow (e.g., a full day) and for detecting temporal changes in
the Darknet’s structure (e.g., the appearance of a new cluster
associated with previously unseen scanning activities). To
accomplish the latter, we employ techniques from the theory
of optimal transport also known as Earth mover’s distance.
We describe our change-point detection approach next, after
first introducing the necessary mathematical formulations.

Optimal Transport: Background. We base our exposition
and notation on [11]. Optimal transport serves several applica-
tions in image retrieval, image representation, image restora-
tion, etc. [11]. Its ability to “compare distributions” (e.g.,
comparing two images) fits our need to “compare clustering
outcomes” between days.

Let I0 and I1 denote probability density functions (PDFs)
defined over spaces Ω0 and Ω1, respectively. Typically, Ω0

and Ω1 are subspaces in Rd. In the Kantorovich formulation
of the optimal transport problem2 we are interested in finding
a transport plan that “transforms” I0 to I1. The plan, denoted
with function γ, can be seen as a joint probability distribution
of I0 and I1 and the quantity γ(A×B) describes how much
mass in set A ∈ Ω0 is transported to set B ∈ Ω1. In the
Kantorovich formulation, the transport plan γ must (i) meet
the constraints γ(Ω0 ×B) = I1(B) and γ(A×Ω1) = I0(A),

2There is also the Monge formulation, which does not suit our needs.
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where I0(A) =
∫
A
I0(x)dx and I1(B) =

∫
B
I1(x)dx and (ii)

minimize the following quantity:

min
γ

∫
Ω0×Ω1

c(x, y)dγ(x, y),

for some cost function c : Ω0 × Ω1 → R+ that represents the
cost of moving a unit of mass from x to y.

Application to Darknet clustering. In the Darknet clustering
setting, we consider the discrete version of the Kantorovich
formulation. The PDFs I0 and I1 can now be expressed as
I0 =

∑K
i=1 piδ(x − xi) and I1 =

∑K
j=1 qjδ(y − yj), both

defined over the same space Ω, where δ(x) is the Dirac delta
function. The optimal transport plan problem now becomes

K(I0, I1) = min
γ

∑
i

∑
j

c(xi, yj)γij (3)

s.t.
∑
j

γij = pi,
∑
i

γij = qj

γij ≥ 0, i, j = 1 . . . ,K.

Solutions to this problem can be obtained using standard
linear programming methods. Further, when the cost function
is c(x, y) = |x − y|p, p ≥ 1, the optimal solution of (3)
defines a metric on P (Ω), i.e., the set of probability densities
supported on space Ω. This metric is known as p-Wasserstein
distance and is defined as

Wp(I0, I1) =
(∑

i

∑
j

|xi − yj |pγ∗
ij

) 1
p

, (4)

where γ∗ is the optimal transport plan for (3).
Our proposed approach is to employ the 2-Wasserstein dis-

tance on the distributions I0 and I1 that capture the clustering
outcomes M0 and M1, where Mu, u = 0, 1, are the clustering
assignment matrices for two adjacent days (see Sec. III).
Let X0 and X1 denote the N × P matrices that represent
the scanner features (see Figure 4) for the two monitoring
windows. Define

Du = M⊤
u 1N (5)

Cu =
(
X⊤

u Mu

)
diag(D−1

u ), u = 0, 1.

Namely, the i-th entry of vector Du denotes the cluster size of
the i-th cluster of scanners identified for day-u, and the i-th
row of matrix Cu represents the clustering center of cluster i.
Hence, the weights and Dirac locations for the discrete distri-
butions I0 =

∑K
i=1 piδ(x − xi) and I1 =

∑K
j=1 qjδ(y − yj)

are readily available; e.g., the weight pi for cluster-i of day-0
corresponds to the size of that cluster normalized by the total
number of scanners for that day, and location xi corresponds
to the center of cluster i. Thus, one can obtain the distance
W2(I0, I1) and optimal plan γ∗ by solving the minimization
shown in (3).

As we demonstrate in Sec. VI, one can utilize distance
W2(I0, I1) and the associated optimal plan γ∗ to (i) detect
and (ii) interpret clustering changes between consecutive mon-
itoring windows. Specifically, an alert that signifies a change
in the clustering structure can be triggered when the distance
W2(I0, I1) is “large enough”. To the best of our knowledge,

TABLE III: Linear (PCA) vs. nonlinear (MLP) autoencoder:
comparisons over 20 Monte Carlo experiments.

Nonlinear AE (MLP) Linear AE (PCA)
Q Jaccard (µ/σ) Loss (µ/σ) Jaccard (µ/σ) Loss (µ/σ)
10 0.87/0.07 0.08/0.002 0.56/0.12 0.15/0.001
20 0.88/0.07 0.08/0.001 0.82/0.09 0.14/0.001
50 0.92/0.09 0.07/0.001 0.90/0.09 0.15/0.001

there is no test statistic for the multivariate “goodness-of-fit”
problem we are interested in (unlike the univariate case [58]).
Thus, we resort to detecting anomalies via the use of historical
/ empirical values of the W2(I0, I1) metric that one can collect
(see, e.g., Figure 1). When an alert is flagged, the optimal plan
γ∗ is leveraged to shed light into the clustering change.

VI. EVALUATION

A. Evaluation Using Synthetic Data

Due to the lack of “ground truth”, evaluating unsupervised
machine learning methods, like clustering, is challenging. To
tackle this problem we generate synthetic data, i.e., artificially
generated data that mimic real data. The advantage of such
data is that we can introduce different “what-if” scenarios
to evaluate different aspects of our framework. Appendix B
describes our process for generating the synthetic datasets.

Embeddings evaluation: linear vs nonlinear autoencoders.
We first leverage the synthetically-generated datasets to com-
pare the performance of our MLP-based encoder against
other dimensionality reduction techniques such as Principal
Component Analysis (PCA). PCA is considered a “linear
autoencoder” whereas our MLP implementation is specifically
designed to be “nonlinear” in order to better capture the
complex interactions between the employed Darknet features.

Table III tabulates the results. We created 20 distinct syn-
thetic datasets using the procedure outlined in Appendix B.
Each dataset corresponds to K = 50 clusters. For each
dataset, we first execute the representation learning step. In
the representation learning step we acquire embeddings based
on PCA and the MLP autoencoder described in Sec. V-A.
Then, we perform clustering on the learned embeddings using
K-means (see Figure 4) with K = 50. We record the overall
performance in terms of the Jaccard score. Performance of the
representation learning step is captured via the reconstruction
loss. Table III reports the average (µ) and standard deviation
(σ) across the 20 Monte Carlo experiments realized. In our
experiments, we used an MLP autoencoder with an encoding
function with 3 layers: input layer, hidden layer of 1000 units
and output layer for the embeddings of size Q. For PCA,
we used Q principal components, as shown in Table III;
in all cases, the variance explained by the top-Q principal
components used exceeded 90%.

As shown, the MLP-based autoencoder outperforms the
PCA-based linear autoencoder. We attribute the performance
benefit of the MLP encoder to its ability to better capture the
nonlinearities in the supplied features.

Change-point detection: sensitivity to clustering changes.
Next, we utilize the synthetic data to understand the sensitivity
of the Wasserstein metric shown in Eq. (4) under two basic
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Fig. 5: Wasserstein distance changes significantly to reflect
changes in volume (left) and structure (right).

practical scenarios: 1) Darknet changes due to an increase in
the volume of scanning attributed to a particular cluster and
2) Darknet shifts due to structural changes (e.g., the cluster
population stays the same, but its scanning strategy changes).

Under these considerations, the sensitivity of the Wasser-
stein distance is explored in Figure 5. The left panel shows the
evolution of the W2(I0, I1) metric as the volume of a particular
cluster increases. Parameter α shown in the x-axis controls
the expansion rate. E.g., α = 0.1 signifies a 10% volume
increase. The right panel illustrates the W2(I0, I1) sensitivity
when structural changes occur; in this case, we model a
structural change with the introduction of an additional port
being scanned (i.e., a second port). In this scenario, α dignifies
the portion of scanners in the changing cluster that scan for
the additional port. As we observe, our dissimilarity metric is
sensitive enough to detect the simulated Darknet shifts.

B. Comparison with Related Work using Real-World Data

This section juxtaposes our methodology with state-of-
the-art related work, namely the DarkVec approach [36].
DarkVec’s authors allow researchers to access their code and
data [59], and we based our comparisons on the provided data.
Specifically, we utilize the last day of the 30-day dataset used
in [36] (see Table 1, [36]).

We employ the same semi-supervised approach that Dark-
Vec used for its comparisons with other methods. Since no
“ground truth” exists for clustering labels when working with
real-world Darknet data, the authors in [36] assigned labels
based on domain knowledge; e.g., known scans projects (i.e.,
Censys [35], Shodan [60], etc. [61]) and known signatures
such as the Mirai one [3]; an “unknown” label is assigned to
the rest of the senders. The complete list of the nine “ground
truth” labels utilized can be found in [36] (Table 2).

The semi-supervised approach evaluates the quality of
the learned embeddings. Intuitively, the embeddings of all
scanners belonging in the same “ground truth” class (e.g.,
Mirai) should be “near” each other according to some ap-
propriate measure. The semi-supervised approach engaged
in [36] involves the usage of a k-Nearest-Neighbor (k-NN)
classification algorithm that assigns each scanner to the class
of its k-nearest neighbors based on a majority voting rule.
Using the leave-one-out approach, each scanner is assigned a
label, and the overall classification accuracy is evaluated using
standard metrics such as precision and recall.

We construct the autoencoder-based embeddings needed
for our approach (see Sec. V-A) on the last day of
the 30-day dataset used in [36]. The DarkVec embed-
dings, which are acquired via word embeddings techniques
such as Word2Vec, are readily available (see [59], dataset
embeddings_d1_f30.csv.gz). Using this dataset, Dark-
Vec was shown to perform better than alternatives such as
IP2VEC (see Table 3, [36]) and thus we solely focus our
comparisons against DarkVec. Table IV tabulates our results.
The semi-supervised approach using our embeddings shows
an overall F1-score of 0.98 whereas DarkVec’s embeddings
lead to a classification accuracy score3 of 0.90. The higher
accuracy of our approach can be attributed to the quality of
the embeddings; we believe that the set of features we employ
leads to embeddings that more accurately reflect the (dis)-
similarities between the scanners than competing approaches.

C. Validation using Real World Darknet Data

In this section, we validate our approach using real-world
data (see Table I). First, we evaluate the complete methodology
on a month-long dataset that includes the outset of the Mirai
botnet (see Figure 1). Then, we apply our clustering approach
on a recent dataset (i.e., February 20, 2022) to showcase some
important recent Darknet activities that our system diagnoses.

September 2016: The Mirai onset. We applied our full
methodology on data for September 2016 (starting on 2016-
09-02); i.e., for each day, we obtain the necessary embeddings,
cluster the scanners to 200 groups (see Appendix A), and then
apply the techniques of Sec. V-C to calculate the Wasserstein
metric and associated transport plan between consecutive days.

Figure 1 (right panel) shows the time-series of 2-Wasserstein
distances for September 2016. As can be seen, at a sig-
nificance level of 5%, we identify two change-points; one
for September 14th (with p-value=0.036) and another for
September 24th (with p-value=0). (On September 16th, we
have p-value=0.071.) The p-values are calculated using the set
of all Wasserstein distances estimated for the whole month4.

We next utilize the optimal transport plan γ∗ to interpret
the change-points detected. Let G = (V,E) be a weighted
directed graph with V := {Au} ∪ {Bu}, u = 1, . . . ,K,
denoting the graph’s nodes, where node Au corresponds to
cluster-u in day-0 and Bu to cluster-u in day-1, respectively.
(u, v) ∈ E if and only if γ∗

uv > 0, i.e., there is some amount
of mass transferred from cluster-u of day-0 to cluster-v of
day-1 (see Sec. V-C). The edge weights wuv, (u, v) ∈ E are
defined as wuv := γ∗

uv . The graph in Figure 6 shows the
graph extracted based on the optimal transport plan γ∗ for
the clustering outcomes of September 13 and September 14.
It can shed light into the clustering changes that occurred
between the two days. For instance, Figure 6 and Table VI

3In [36] (Table 3) an accuracy of 0.96 is reported. This is due to a
subtle error in DarkVec’s code for calculating the classification accuracy
(see [59], src/utils.py, function get_freqs, lines 207 and 214). We
fixed the error, which does not affect the main conclusions/contributions
in [36], and report the updated results here. Without the fix, our accuracy
would (incorrectly) be 1.00.

4In a real-world implementation of our system, historical Wasserstein values
can be used (e.g., values from the previous month).
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TABLE IV: Comparison with DarkVec [36].

DarkVec Embeddings Autoencoder Embeddings (Section V-A)
Precision Recall F1-score Precision Recall F1-score Support

Mirai-like 1.00 0.91 0.95 1.00 0.99 0.99 7351
Binaryedge 0.98 0.93 0.95 1.00 0.92 0.96 101
Censys 0.99 0.90 0.94 1.00 0.98 0.99 336
Engin-umich 1.00 1.00 1.00 1.00 1.00 1.00 10
Internet-census 0.99 0.99 0.99 1.00 0.89 0.94 103
Ipip 0.45 0.67 0.54 1.00 0.92 0.96 49
Sharashka 0.83 1.00 0.91 1.00 1.00 1.00 50
Shodan 1.00 0.70 0.82 1.00 0.74 0.85 23
Stretchoid 1.00 0.14 0.25 1.00 1.00 1.00 104
Accuracy 0.90 0.98

show that most mass is moved from cluster A10 (largest cluster
of September 13) to cluster B18. Examining Table VI we
observe that these Mirai-like clusters are quite similar with
regards to the features that characterize their scanners. The fact
that B18 is a much smaller Mirai cluster than A10 suggests that
there was a decreasing trend in the amount of Mirai-related
scanners that solely targeted port TCP/23. Indeed, the second
largest mass transfer was between A1 and B34, and in this case
we clearly see that cluster B34 captures the introduction of port
TCP/2323 in the set of ports scanned by Mirai (see Table VI).
Similar insights can be obtained by inspecting cluster pairs
(A25, B56), (A20, B11), (A28, B52), (A38, B96), and others
not shown here for space economy. By inspecting Figure 1
(left) one can validate that the change between the 2 days
can actually be attributed to the changing tactics of the Mirai
botnet. Note, though, that without the automated methodology
proposed here, capturing this change would require monitoring
an enormous amount of time series (e.g., the scanning traffic
to all ports) which is practically infeasible.

As shown in Figure 1, the most significant clustering change
was detected on September 23–24. Surely, in Figure 1 (left)
we see a dramatic increase in the amount of Darknet traffic
associated with UDP scanning and ICMP messages with Type
3 (Destination Unreachable). Upon closer inspection, we see
UDP with src port 53 and ICMP messages with the mes-
sage destination port 53 unreachable. The pay-
load of these messages point to the conclusion that these
are indicators of heavy nefarious DNS scanning, captured in
the Darknet as “DNS backscatter” [48]. Within the UDP and
ICMP packets we see DNS A-record queries under the domain
xy808.com, with randomly looking subdomains. This is a
common technique that scanners embrace in order to identify
open DNS resolvers while at the same time concealing their
identity. The list of compiled open DNS resolvers can then
be used in volumetric, reflection and amplification DDoS
attacks [62]. To put things in perspective, we note that some of
the largest Mirai-based DDoS attacks occurred on September
25th (against Krebs on Security) and on October 21st, 2016
(against Dyn) [3]. We thus speculate that the Mirai operators
were the ones behind these heavy DNS scanning activities.

Having confirmed that the change-point for September 23–
24 is a “true positive” malicious event, we consult the optimal
transport plan γ∗ to see how one can interpret the alert raised.
Table VII tabulates the top-6 pairs of clusters with the largest
amount of “mass” transferred. The pair (A47, B24) indicates
there was high transfer of mass to cluster B24 which is

associated with ICMP (type 3) activities. In contrast with the
other row-pairs in the table, the fact that mass gets transferred
from A47 to B24 indicates the formation of a novel cluster;
the Jaccard similarity between the set of source IPs of the 2
clusters is zero, and their scanning profile varies significantly.

Figure 7 shows the in-degrees for the graph G induced by
the optimal transport plan of September 23–24. In the three
panels shown, we pruned the edges for which γ∗

uv < τ , where
threshold τ ∈ {5 × 10−4, 0.001, 0.003}. Notice that cluster
B123 stands out as the one with the highest in-degree in all
three cases. The fact that the “optimal transport plan” includes
transferring high amounts of mass from several different
clusters (of the previous day) to cluster B123 indicates that
the latter is a novel cluster. Indeed, the members of B123 are
associated with UDP messages with src port 53, and as
illustrated in Figure 1 this activity started on September 24th.

Cluster inspection: 2022-02-20 dataset. Next, we discuss
recent activities identified in the Darknet when our clustering
approach is applied. We focus our attention on the dataset for
February 20th, 2022 (see Table I). In total, Merit’s Darknet
observed 845,000 scanners for that day; after the filtering step
a total of 223,909 senders remain. They are grouped into the
categories shown in Table V.

We found 70 Mirai-related clusters comprised of 108,912
scanners. We classify them as “Mirai-related” due to the
destination ports they target and the fact that their traffic type
(see Table II) is TCP-SYN. Note that we do not observe the
characteristic Mirai fingerprint in all of them (i.e., setting the
scanned destination address equal to the TCP initial sequence
number [3]). This implies the existence of several Mirai
variants. In fact, we see several combination of ports being
scanned, such as “23”, “23-2323”, “23-80-8080”, “5555”
and even largest sets like “23-80-2323-5555-8080-8081-8181-
8443-37215-49152-52869-60001”. The vast majority of these
clusters appear with Linux/Unix-like TTL fields, indicating
they are likely compromised IoT/embedded devices [63].

The next large category of Darknet scanners is one with
unusual activities that we cannot attribute to some known mal-
ware or specific actor; we deem these activities as “Unknown”.
Their basic characteristics are that they involve mostly UDP
traffic and target “high-numbered” ports such as port 62675.
Upon inspection of the TTL feature, these group of clusters
includes both Windows and Linux/Unix OSes. For many of
these clusters, the country of origin for these scanners is China.

We identified 20 clusters associated with TCP/445 scanning,
i.e., the SMB protocol. Several ransomware-focused malware
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(such as WannaCry) are known to be aiming to exploit SMB-
related vulnerabilities [64], [65]. Members of these clusters
are usually Windows machines.

Further, we detected a plethora of “heavy scanners”, some
performing scanning for benign purposes (e.g., Censys.io [35],
Shodan [60]) and others engaged in nefarious-looking activi-
ties. Four clusters comprise of almost exclusively of acknow-
ledged scanners5, i.e. IPs from research and other institu-
tions that are believed to not be hostile [61]. Four other
clusters (three from Censys and one from Normshield [66])
are also benign clusters that scan from IPs not yet included
in the “acknowledged scanners” list [61]. Some clusters in
the “Heavy Scanners” category exhibit interesting behavior;
e.g., 1) some scan with extremely high speeds (five clusters
have mean packet inter-arrival times less than 10 msecs), 2)
ten clusters probe all or (close to all) IPs that our Darknet
monitors, 3) two clusters scan almost all 216 ports, 4) one
cluster sends an enormous amount of UDP payload to 16
different ports, and 5) two clusters are engaged in heavy SIP
scanning activities.

We also identified a cluster associated with TCP/6379 (Re-
dis) scanning comprising of 437 scanners. Interestingly, Table I
shows that TCP/6379 is the most scanned port in terms of
packets on 2022-02-20. Our clustering procedure grouped this
activity within a single cluster which indicates orchestrated
and homogeneous actions (indeed, members of that cluster
scan extremely frequently, probe almost all Darknet IPs, are
Linux/Unix-based, and originate mostly from China). We
further uncovered two clusters performing TCP/3389 (RDP)
scanning, two clusters targeting UDP/5353 (i.e., DNS) and
two clusters that capture “backscatter” activities, i.e., DDoS
attacks based on spoofing [13].

Figure 8 demonstrates the average silhouette score for each
cluster of the 2022-02-20 dataset. The silhouette score [67]
takes values between −1 (worst score) and 1 (perfect score),
and indicates if a cluster is “compact” and “well separated”
from other clusters. We annotate the plot of silhouette scores
with some clusters associated with orchestrated scanning activ-
ities: the 4 clusters of “Acknowledged Scanners”, the 3 ”Cen-
sys” clusters, the cluster for Normshield, and 18 clusters from
the “Heavy Scanners” category (the left-out cluster includes
only a single scanner corresponding to NETSCOUT’s research
scanner [68]; the silhouette score for singleton clusters is
undefined). We chose clusters like these since their members
(i.e., the senders) are usually engaged in similar behavior
(e.g., sending about the same amount of packets, targeting
the same number of ports, etc.) and are thus good examples
to demonstrate our clustering performance. As expected, the
silhouette scores for the vast majority of these clusters are
quite good (≥ 0.33). However, for few clusters the silhouette
score is close to 0. While we still get meaningful insights from
these clusters (e.g., cluster 162, with score −0.01, indicates
extreme scanning activity against almost all Darknet IPs with
its members scanning an average of 5,753 unique ports), their
silhouette score is low because of intra-cluster variability in
some of their features (e.g., the TTL values). If necessary, the

5We label a cluster as “Ack Scanners” if at least 95% of its IPs are in [61].

TABLE V: Cluster Inspection (2022-02-20).

Description # of Clusters # of Senders
Mirai-related 70 108,912
Unknown 67 76,525
SMB 20 23,700
Heavy Scanners 19 2,377
ICMP scanning 5 2,619
Ack Scanners 4 795
SSH scanning 4 2,635
censys.io 3 147
TCP/3389 (RDP) 2 1,482
UDP/5353 2 3,212
Backscatter (DDoS) 2 815
TCP/6379 (Redis) 1 437
Normshield 1 253
TOTAL 200 223,909

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A1

A6

A10

A11

A16

A18

A20

A23

A25

A28

A32

A36

A38
A42

A45

A49

A59

A60

A63

A65

A74

A79

A81
A92

A99

A101

A102

A105

A106

A111

A120

A123

A124

A128

A132 A133

A135

A145

A146

A147

A149

A152

A153

A167

A169

B0

B1
B8

B10
B11

B14

B15

B16

B18

B22

B24

B25

B26

B31

B32

B34

B35

B36

B37

B41

B44

B51

B52

B54

B55

B56

B64

B71

B76

B77

B85

B89

B90

B91

B96

B106

B108

B111

B113

B120

B126

B134

B142

B153

B154

B158

B159

B170

B171

B186

B196

Fig. 6: Optimal transport plans for Sept. 13–14. Only edges
with γ∗

uv ≥ 0.01 are shown.
.

analyst can resort to hierarchical clustering and re-partition the
clusters with low scores.

Figure 9 shows t-SNE visualizations [69] for some select
clusters. We illustrate some clusters of acknowledged / heavy
scanners that exhibit high average silhouette scores. We also
depict the largest cluster for each of these categories: Mirai,
“Unknown”, SMB, ICMP scanning and UDP/5353. The t-SNE
projections are learned from the 50-dimensional embeddings
acquired from our autoencoder step. Thus, the signal is quite
compressed; nevertheless, we are still able to observe that
similar scanners are represented with similar embeddings.

VII. CONCLUSION

This paper presents a framework for (i) characterizing
network scanners captured in large network telescopes and
for (ii) detecting and interpreting temporal changes in the
telescope’s ever-evolving structure. The proposed approach
employs a nonlinear autoencoder, implemented as a multilayer
perceptron, to learn a low-dimensional representation of the
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Fig. 7: In-degree distributions of the graph induced by the optimal plan γ∗ for Sept. 23–24. The x-axis shows cluster labels
for Sept. 24th. Cluster 123, associated with the DNS scans that started on September 24th (see Figure 1), exhibits the highest
in-degree. High in-degree can be considered an indication of a “novel” cluster, i.e., a cluster not present in the previous day.

.

TABLE VI: Interpretation of clustering changes between September 13 and September 14, 2016. The table includes the pairs
of clusters with the largest amount of mass transferred between the two days. It also shows the basic profile for each cluster
in terms of its numerical features (as captured by the cluster’s center) and the top frequency for the set-valued features (TTLs,
protocol/traffic types, ports). The Jaccard column indicates the Jaccard similarity between the scanning IPs of the 2 clusters.

Day Label Mass Jaccard Size Packets Avg. IA (ms) Bytes # DstPorts # DstAddr TTL Freq. Traffic Freq. Ports Freq.
13 10 21247 1513 24586 0 1.1 854 50 19628 TCP-SYN 21213 23 19674
14 18 0.022 0.18 15174 1313 29594 0 1.5 904 50 13300 TCP-SYN 15137 23 8345
13 1 12145 1821 29673 0 1.1 1058 53 11906 TCP-SYN 12139 23 11391
14 34 0.020 0.17 13410 1145 29472 0 1.6 815 53 12834 TCP-SYN 13408 23-2323 6911
13 25 10236 1669 27095 0 1.2 960 49 9762 TCP-SYN 10235 23 9438
14 56 0.019 0.18 12862 1412 27172 0 1.3 975 49 11186 TCP-SYN 12861 23 9113
13 20 12906 2259 29468 0 1.7 1107 47 12193 TCP-SYN 12891 23 11982
14 11 0.017 0.18 11744 1343 33147 0 2 824 47 11233 TCP-SYN 11730 23 7291
13 28 9244 2058 28640 0 1.8 1148 45 8944 TCP-SYN 9235 23 8759
14 52 0.017 0.12 11312 1179 30244 0 2.1 850 45 10842 TCP-SYN 11303 23-2323 6055
13 38 9851 2369 27181 0 1.8 1277 46 9705 TCP-SYN 9730 23 9465
14 96 0.015 0.15 11001 1391 35617 0 2.2 920 46 8559 TCP-SYN 10800 23 7936
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Fig. 8: Average silhouette score for all clusters (2022-02-20).

input space that is amenable to clustering. The resulted clus-
tering outcomes are then utilized to detect Darknet shifts using
a metric that arises from optimal mass transport theory. The
techniques proposed are robustly evaluated, including using
real Darknet data from Merit’s Network Telescope.
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APPENDIX A
HYPER-PARAMETER TUNING

The “architecture” of the MLP network (i.e., the dimension
Q of the latent space and the number and size of inner
layers) and other hyper-parameters (such as the regularization
coefficient λ) are tuned using a “grid search” procedure.
Figure 10 illustrates the calibrated parameters along with the
training times required for each hyper-parameter combination.
The loss shown in Figure 10 (left panel) represents the average
reconstruction loss across all training features based on the
relative mean square error (RMSE), defined as

RMSE(x) =

∑
k(x̂k − xk)

2∑
k x

2
k

.

The training times in Figure 10 (right) correspond to training
a sample of 50,000 scanners from September 2nd, 2016. We
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TABLE VII: Interpretation of clustering changes between September 23 and September 24, 2016. Notice the rows in gray
scale that indicate the formation of a new large cluster (cluster 24), associated with a DDoS attack.

Day Label Mass Jaccard Size Packets Avg. IA (ms) Bytes # DstPorts # DstAddr TTL Freq. Traffic Freq. Ports Freq.
23 13 22294 2890 29704 0 2 1282 45 22096 TCP-SYN 22208 23-2323 22099
24 63 0.025 0.14 37923 1196 53657 10 2 792 45 36858 TCP-SYN 37520 23-2323 37322
23 9 20659 1404 52025 89 2 1011 47 20038 TCP-SYN 20539 23-2323 20430
24 60 0.023 0.16 31479 914 61293 19 2 781 47 25513 TCP-SYN 31195 23-2323 29094
23 28 24152 851 52845 0 2 686 47 23893 TCP-SYN 24141 23-2323 19273
24 25 0.022 0.12 24422 648 58031 0 2 537 47 25423 TCP-SYN 29387 23-2323 21269
23 81 31276 1681 43937 32 2 1036 46 31086 TCP-SYN 31094 23-2323 31028
24 1 0.021 0.18 32827 1228 53974 21 2 881 46 32637 TCP-SYN 32536 23-2323 32437
23 11 23792 759 42032 0 2 663 53 23241 TCP-SYN 23787 23-2323 21545
24 29 0.021 0.11 28586 509 51834 0 2 444 53 28152 TCP-SYN 28583 23-2323 26336
23 47 19833 1477 56862 5 2 1090 48 17331 TCP-SYN 19702 23-2323 19592
24 24 0.017 0.00 23594 145 434328 5971 2 145 48 22803 ICMP (type 3) 23146 0 23204

Ack Scanners (194)
Ack Scanners (37)
censys (69)
censys (103)
censys (136)
Heavy Scanners (12)
Heavy Scanners (15)
Normshield (83)
Ack Scanners (22)
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Heavy Scanners (92)

UDP/5353 (106)
ICMP (113)
Mirai (27)
SMB (190)
Unknown (126)

Fig. 9: t-SNE visualizations for various clusters.
.

trained the MLP network on a Tesla P100 NVIDIA GPU with
16GB of memory. We show results for 50 epochs of training
and a batch size of 2000. As we observe, the best architecture
with regards to loss is one using 3 layers for the encoding
function; an input layer for the features, a hidden layer of size
1000 and a third layer for the embeddings output of size Q =
50. This architecture balances well computational efficiency
with autoencoder accuracy and has been used throughout our
experiments.

The “elbow method” [70] was used to select a judicious
value for K, a critical parameter for K-means clustering. Fig-
ure 11 shows the Jaccard and Silhouette measures as a function
of size K. Two different datasets (see Table I) are utilized to
calculate the Jaccard score, which is based on around a dozen
“semi-ground-truth” scanner labels we assigned to some of
the Darknet senders. For instance, the Mirai signature [3] was
used to label some scanners as “Mirai”, scanners targeting
port TCP/445 were labeled as “SMB”, etc. By inspecting these

plots, we decided to set K = 200 in all of our experiments.

APPENDIX B
SYNTHETIC DATA GENERATION

We have opted to use a generative model based on Bayesian
networks to generate synthetic data that capture the causal
relationships between the numerical features we employ in our
study (i.e., the ones in Sec. IV-B under the “Traffic volume”
and “Scan strategy” categories, except the destination strat-
egy, IPID strategy and IPID options). To learn the Bayesian
network we employ the hill-climbing algorithm implemented
in R’s bnlearn package [71]. We use features from a typical
day of our Darknet to learn the structure of the network, which
is represented as a directed acyclic graph (DAG). The nodes in
the DAG represent the features and the edges between pairs of
nodes represent the causal relationship between these nodes.

Let X1, . . . , Xn denote the nodes of the Bayes network.
Their joint distribution can be expressed as P(x1, . . . , xn) =∏n

i=1 P(xi|parents(Xi)), where parents(Xi) denote the par-
ents of node Xi that appear in the DAG. It can be shown that
for every variable in the network Xi, we can have

P(Xi|Xi−1, . . . , X1) = P(Xi|parents(Xi)).

This relationship can be satisfied if the nodes in the Bayes
net are numbered in a topological order [72]. Given this
specification of the joint distribution, we then proceed with
a Monte Carlo randomized sampling algorithm to obtain data
points for our synthetic dataset (see [72], Sec. 13.4).

In the Monte Carlo approach, we treat all variables
X1, . . . , Xn as Gaussian random variables with a joint dis-
tribution N (µ,Σ), and hence we employ the conditional
distribution relationships for multivariate Gaussian random
variables. The parameters µ and Σ are estimated from the
same real Darknet dataset we use to learn the Bayes net.

Once the numerical features are generated with the Monte
Carlo approach, we add the feature “set of ports scanned”
so that each synthetically generated data point combines both
numerical and categorical features. We create K distinct
clusters by appropriately spacing the values of the root nodes
in the Bayes network.
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