1 Temporal Logic

Computational Tree Logic (CTL) is a temporal logic. It’s formula is defined inductively as follows.

$$\phi ::= T | F | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \rightarrow \phi | AX\phi | EX\phi | A[\phi U \phi] | E[\phi U \phi] | AG\phi | EG\phi | AF\phi | EF\phi$$

See Huth and Ryan [2, Ch. 3] for more details.

2 Model Checking

A mode \mathcal{M} is defined as tuple (S, F, L), where S is a set of states, F is a transition relation over the set states S, and L is a labelling function

$$L : S \rightarrow P(A)$$

where A is a set of atomic statements or propositions.

Model checking. Given a model $\mathcal{M} = (S, F, L)$, a state $s \in S$, and a CTL formula ϕ. Model checking is the satisfaction problem

$$\mathcal{M}, s \models \phi.$$

Informally, it means the model \mathcal{M} satisfies ϕ at the state s. See Huth and Ryan [2, Ch. 3 and 6] for more details.
3 Homework 4

Exercises 3.2 Problem 1 and 2. In addition, implement and verify in SMV. Submit the answers and the SMV code.

4 Bibliography Notes and Further Reading

References

