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A B S T R A C T   

Introduction: Intracerebral hemorrhage represents 15 % of all strokes and it is associated with a high risk of post- 
stroke epilepsy. However, there are no reliable methods to accurately predict those at higher risk for developing 
seizures despite their importance in planning treatments, allocating resources, and advancing post-stroke seizure 
research. Existing risk models have limitations and have not taken advantage of readily available real-world data 
and artificial intelligence. This study aims to evaluate the performance of Machine-learning-based models to 
predict post-stroke seizures at 1 year and 5 years after an intracerebral hemorrhage in unselected patients across 
multiple healthcare organizations. 
Design/methods: We identified patients with intracerebral hemorrhage (ICH) without a prior diagnosis of seizures 
from 2015 until inception (11/01/22) in the TriNetX Diamond Network, using the International Classification of 
Diseases, Tenth Revision (ICD-10) I61 (I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, and I61.9). The 
outcome of interest was any ICD-10 diagnosis of seizures (G40/G41) at 1 year and 5 years following the first 
occurrence of the diagnosis of intracerebral hemorrhage. We applied a conventional logistic regression and a 
Light Gradient Boosted Machine (LGBM) algorithm, and the performance of the model was assessed using the 
area under the receiver operating characteristics (AUROC), the area under the precision-recall curve (AUPRC), 
the F1 statistic, model accuracy, balanced-accuracy, precision, and recall, with and without seizure medication 
use in the models. 
Results: A total of 85,679 patients had an ICD-10 code of intracerebral hemorrhage and no prior diagnosis of 
seizures, constituting our study cohort. Seizures were present in 4.57 % and 6.27 % of patients within 1 and 5 
years after ICH, respectively. At 1-year, the AUROC, AUPRC, F1 statistic, accuracy, balanced-accuracy, precision, 
and recall were respectively 0.7051 (standard error: 0.0132), 0.1143 (0.0068), 0.1479 (0.0055), 0.6708 
(0.0076), 0.6491 (0.0114), 0.0839 (0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were 0.694 
(0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059), 0.6408 (0.0119), 0.1094 (0.0037) and 0.6186 
(0.0264). These numerical values indicate that the statistical models fit the data very well. 
Conclusion: Machine learning models applied to electronic health records can improve the prediction of post- 
hemorrhagic stroke epilepsy, presenting a real opportunity to incorporate risk assessments into clinical 
decision-making in post-stroke care clinical care and improve patients’ selection for post-stroke epilepsy 
research.  
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1. Introduction 

Intracerebral hemorrhage is the most devastating and least treatable 
form of stroke, affecting one in six stroke patients [1,2]. It results in 
severe disability or death in nearly 60 % of patients [2]. Long-term ef
fects of stroke are frequent. Late seizures, i.e., post-stroke epilepsy, are 
frequent complications of intracerebral hemorrhage affecting up to 11 % 
of patients after a mean follow-up of 9 months. Studies suggest an in
dependent association between late seizures and increased mortality 
and poor functional outcome [3,4]. Late seizures are also associated 
with worse cognitive outcomes and dementia [5]. Adequately managing 
seizures after intracerebral hemorrhage could potentially avoid com
plications and improve the quality of life of survivors of intracerebral 
hemorrhage. Identifying patients at risk of late seizures is an essential 
step to improve outcomes after intracerebral hemorrhage by targeting 
seizures. Independent predictors of late seizures include the involve
ment of the cortical regions, hematoma volume, intraventricular 
extension, stroke severity, younger age, and early seizures. Age, stroke 
severity [1], and atrial fibrillation [2] have also been identified as risk 
factors for seizures after stroke. Combining these individual risk factors 
into predictive models is more likely to predict the individual risk of 
developing late seizures after intracerebral hemorrhage than consid
ering each factor individually. Risk scores to predict late seizures after 
intracerebral hemorrhage have been developed, including the CAVE 
score [3], the CAVS score [4], and the LANE score [5]. They had an 
average to good performance with an area under the receiver operating 
curve/c-statistics ranging from 0.69 to 0.83. However, the scores used 
clinical and imaging variables from selected patients in specialized 
units. Real-world data are increasingly available with hundreds of 
thousands of patients’ data collected across healthcare organizations. 
These readily available data could be used for model development. As 
the data are readily available, models could be incorporated into elec
tronic health records and provide real-time individual risk for pre
defined outcomes. Large electronic health records have been seldom 
used to predict seizures after intracerebral hemorrhage. Using powerful 
computational methods is more likely to handle large volume records 
than traditional logistic regression models alone. In this study, we 
applied machine learning to predict late seizures taking advantage of 
TriNetX Diamond Network, a large network of 71 healthcare organiza
tions collecting data of nearly 106 million patients. We hypothesized 
applying machine learning to this large network, we could develop 
models to predict late seizures with good performance in an unselected 
heterogeneous population of patients with intracerebral hemorrhage. 

2. Methods 

2.1. Study design and data source 

This was a retrospective cohort analysis using data obtained from 
TriNetX Research Network, a network of 71 Healthcare organization 
electronic health records comprising data of 106 million patients 
(September 2022). 

2.2. Study population 

Our study population included adult patients (age ≥18 years) with 
intracerebral hemorrhage, identified using the International Classification 
of Diseases, tenth Revision (ICD-10) I61, from January 1, 2015, through 
August 9, 2022. We excluded all participants with a diagnosis of seizures 
before the stroke, identified using any of the ICD-10 codes G40 and G41. 
A total of 85,679 had an ICD-10 code of intracerebral hemorrhage and 
no prior diagnosis of seizures, constituting our study cohort. 

Assessment of outcome: The time at risk was 1-year and 5-year after 
the index stroke event. Seizures were identified using any of the ICD-10 
codes G40 and G41. These codes are specific for epilepsy (late seizures) 
unlike the code R56, which is a nonspecific ICD-10 code for unspecified 

convulsions [6]. 
Covariates: Demographic variables included age (continuous vari

able), sex assigned at birth (male vs. female), and race/ethnicity. Race 
and ethnicity were grouped into four categories: Non-Hispanic White 
(NHW), Non-Hispanic Black (NHB), Hispanic, and others. Clinical var
iables included the following: diagnosis or history of hypertension, 
diagnosis or history of diabetes mellitus, diagnosis or history of atrial 
fibrillation, history of smoking, history of alcohol use, and stroke 
severity (assessed using a combination of factors and variables described 
in the appendix). Anti-seizure drugs use was identified using RxNorm, a 
unified medical language system developed by the National Library of 
Medicine that provided normalized names for clinical drugs [7]. Patients 
with traumatic brain injury, benign brain neoplasms, malignant brain 
neoplasms, unspecified brain neoplasms, severe intracranial infection, 
bacterial meningitis, encephalitis, and those who had decompressive 
craniotomy were excluded. We used ICD-10 and CPT codes to identify 
these variables (see supplemental materials). 

Machine learning model methods: We applied a 5-fold nested cross- 
validation (CV) with non-overlapping training set (for training the 
model) and validation set (for hyperparameter tuning) and test set (for 
model evaluation). This approach was important for developing a 
generalizable model. First, we stratified the dataset into 5 disjoint sub
sets, or folds. Second, we iterated each fold over, serving once as the test 
set (red) while the remaining folds comprised the training set (blue). 
Third, within this training set, we conducted an inner cross-validation 
by dividing it into 5 further folds. In this crucial step for hyper
parameter optimization, each parameter combination was trained on 4 
folds (gray) and validated on the remaining fold (green), cycling through 
all 5 folds to determine the best-performing hyperparameters. Fourth, 
we used these optimal parameters to train a new model on the full 
training set of the outer loop. Fifth, we assessed the model’s predictive 
performance on the outer test set, ensuring each data point was used for 
testing just once. Finally, after completing all 5 iterations, the perfor
mance metrics across all 5 outer test sets were aggregated to produce a 
comprehensive evaluation of the model’s generalization capability 
(Fig. 1). Classification models we explored included the following: lo
gistic regression, decision tree, random forest, LightGBM, AdaBoost, 
support vector machine, k-nearest neighbors, discriminant analysis, and 
Gaussian naïve Bayes [8–14]. We used Scikit-learn to train and evaluate 
all models [15], except LightGBM, where Microsoft’s LightGBM library 
was employed[16] . We obtained the best generalized performance re
sults using the LightGBM model. In LightGBM, the hyperparameter 
optimization consisted of a grid search (within the nested cross- 
validation) over the tree depth, learning rate, and ensemble size. We 
used a cost-sensitive learning approach to account for the class balance 
between patients who developed seizures and those who did not. In the 
cost-sensitive approach, the objective/cost function was modified to 
yield a stronger penalty for incorrectly predicting the minority class, i.e., 
those who developed seizures (by an amount proportional to the 
imbalance) using LightGBM’s ’class_weight=’balanced’ option. We used 
LightGBM and a set of feature importance scores derived from trained 
LightGBM models, and Shapley values to determine the features most 
important in predicting seizures [17]. We used Shapley values and 
partial dependence plots (PDP) to investigate the relationship between 
predictors and seizures. PDPs show only the average effect of the input 
variable, hence neglecting the impact of feature interactions, which can 
be present with tree-based models such as LightGBM. 

Model performance was evaluated using the following metrics: area 
under the receiver operating characteristics (AUROC), the area under 
the precision-recall curve (AUPRC), the F1 statistic, model accuracy, 
balanced accuracy, precision, and recall. Model performance was 
assessed separately, including then excluding patients on anti-seizure 
drugs. 

Standard protocol approvals, registrations, and patient consent: 
This study protocol was submitted to the Pennsylvania State College of 
Medicine institutional review board and was not considered human 
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subject research. All records contained within the database were fully 
de-identified. Thus, informed consent was waived. 

Data availability: We used data from The TriNetX Research 
Network: health care organizations (de-identified claims data), 106 
million patients, which are available to researchers from participating 
centers. 

3. Results 

A total of 85,679 patients had an ICD-10 codes of intracerebral 
hemorrhage and no prior diagnosis of seizures, constituting our study 
cohort. Seizures were present in 4.57 % (3915 patients) and 6.27 % 
(5372 patients) of patients within 1 and 5 years after ICH, respectively 
(Table 1). Patients who developed seizures were younger than those 
who did not at 1 year (52.4 ± 23.2 years vs. 57.4 ± 22.3 years, p-value <
0.001) and 5 years (51.2 ± 23.6 years vs. 57.4 ± 22.3, p-value < 0.001). 
Sex distribution was similar in those who developed seizure and those 
who did not develop seizures at 1 year; however more male than female 
participants developed seizures at 5 years. Black individuals, smokers, 
and those who have a history of alcohol use were more likely to develop 
seizures than their counterparts at 1 and 5 years after ICH, while atrial 
fibrillation was more frequent among those who developed seizures than 
those who did not at 5-year post ICH (p < 0.001) only. Levetiracetam 
was the most frequently prescribed antiseizure medication both 1- and 
5-years post-ICH. Patients who develop seizures were also more likely to 
be on electroencephalogram for both post-ICH time frames of seizure 
development. 

Fig. 1. 5- fold Nested Cross Validation. A visual representation of the nested 
5-fold cross validation procedure. The outer loop partitions the data into 5 
folds, where each fold serves as a unique and non-overlapping test set (red) 
once, while the remaining data forms the training set (blue). Within each outer 
training set, an inner 5-fold cross-validation is conducted, further dividing the 
data into 5 new folds. In this inner loop, one-fold is used as the validation set 
(green) for hyperparameter tuning each iteration, and the other folds act as the 
training set (gray). 

Table 1 
Demographic and Clinical Characteristics.  

Characteristics Total 
(%) 
85,679 

Seizure Incidence 
following 
intracerebral 
hemorrhage after 1 
year. 
3,915 (4.57 %) 

Seizure Incidence 
following 
intracerebral 
hemorrhage after 5 
years. 
5,372 (6.27 %) 

Age 
Mean ± (SD), a 57.2 ±

22.3 
52.4 ± 23.2 51.2 ± 23.6 

Median 66.2 57.9 57.9  

Sex 
Male 48,751 

(56.9) 
2,268 (57.9) 3,133 (58.2) 

Female 36,928 
(47.5) 

1,647 (42.1) 2,239 (41.7)  

Racea 

White 52,462 
(61.2) 

2,327 (59.4) 3,179 (59.2) 

Black/African 
American 

13,644 
(15.9) 

737 (18.8) 1,038 (19.3) 

Others or Unknown 19,573 
(22.8) 

851 (21.7) 1,155 (21.5)  

Stroke Risk 
Smoking a 21,150 

(24.7) 
1,079 (27.6) 1,458 (27.1) 

Hypertension a 46,674 
(54.5) 

2,178 (55.6) 2,901 (54.0) 

Diabetes 17,308 
(27.9) 

802 (20.5) 1,037 (19.3) 

Alcohol Use a 7,954 
(4.7) 

462 (11.8) 645 (12.0) 

Atrial fibrillation a 12,105 
(14.1) 

530 (13.5) 670 (12.5) 

Hyperlipidemia 24,297 
(28.3) 

1,152 (29.4) 1,493 (27.8)  

ICH Locationa 

Hemisphere, 
subcortical 

10,929 
(12.8) 

500 (12.8) 688 (12.8) 

Hemisphere, cortical 10,207 
(11.9) 

844 (21.6) 1,066 (1.8) 

Hemisphere, 
unspecified 

2,161 
(2.5) 

147 (3.8) 190 (10.0) 

Brainstem 2,614 
(3.1) 

54 (1.4) 74 (1.4) 

Cerebellum 4,392 
(5.1) 

108 (2.8) 156 (2.9) 

Intraventricular 14,102 
(16.5) 

660 (16.9) 931 (17.3) 

Multiple, localized 874 
(1.0) 

51 (1.3) 68 (1.3) 

Unspecified 34,195 
(39.9) 

1,193 (30.5) 1,733 (32.3)  

Antiplatelet Therapy 
Aspirin 19,169 

(22.4) 
863 (22.0) 1,168 (21.7) 

Clopidogrel a 5,038 
(13.6) 

205 (5.2) 277 (5.2) 

Ticagrelor 620 
(0.7) 

24 (0.6) 30(0.6) 

Prasugrel 152 
(0.2) 

3 (0.1) 6 (0.2)  

Electroencephalograms a 

Continuous EEG 
2–12 

378 
(0.4) 

40 (1.0) 40 (0.7) 

Continuous EEG 
2–26 

662 
(0.2) 

72 (1.8) 79 (1.5) 

(continued on next page) 
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Seven metrics were deployed to assess the model performances using 
LGBM algorithm to predict the risk of seizures at 1 year and 5 years, 
including the area under the receiver operating characteristics 
(AUROC), the area under the precision-recall curve (AUPRC), the F1 
statistic, model accuracy, balanced-accuracy, precision, and recall, with 
and without seizure medication use in the models to allow an inde
pendent interpretation by the reader. These metrics were used simul
taneously to account for the importance of classifying seizures and non- 
seizure patients, and the heavily imbalance sample. At 1-year, the 
AUROC, AUPRC, F1 statistic, accuracy, balanced-accuracy, precision, 
and recall were respectively 0.7051 (standard error: 0.0132), 0.1143 
(0.0068), 0.1479 (0.0055), 0.6708 (0.0076), 0.6491 (0.0114), 0.0839 
(0.0032), and 0.6253 (0.0216). Corresponding metrics at 5 years were 
0.694 (0.009), 0.1431 (0.0039), 0.1859 (0.0064), 0.6603 (0.0059), 
0.6408 (0.0119), 0.1094 (0.0037) and 0.6186 (0.0264), respectively 
(Table 2 and Figure 2). Out of 15 important features identified for LGBM 
model, age was identified as the most important feature in seizure risk 
prediction, while DNR, altered mental status, and aphasia followed in 
terms of subsequent features of importance (Figs. 3 and 4). 

4. Discussion 

In this retrospective analysis of nearly 90,000 patients with intra
cerebral hemorrhage from 71 healthcare organizations, the performance 
of machine learning models to predict seizures at 1 year and 5 years was 
good. 

Several models have been developed to predict seizures after intra
cerebral hemorrhage. Arguably, the most widely used is the CAVE score, 
which combined four variables (age, hematoma volume, cortical 
involvement, and early seizures) to predict seizures at 1 year and 5 
years. The model, which was developed in Finland had a good perfor
mance in the development and validation cohort with c-statistic ranging 

Table 1 (continued ) 

Characteristics Total 
(%) 
85,679 

Seizure Incidence 
following 
intracerebral 
hemorrhage after 1 
year. 
3,915 (4.57 %) 

Seizure Incidence 
following 
intracerebral 
hemorrhage after 5 
years. 
5,372 (6.27 %) 

Large artery 
Atherosclerotic 
Disease 

6,338 
(12.5) 

316 (8.1) 427 (7.9) 

Intravenous Tissue 
plasminogen 
activator 

1,862 
(2.2) 

73 (1.9) 100 (1.9)  

Stroke severity 
Aphasia dysphagia 12,247 

(9.2) 
860 (22.0) 1,121 (20.9) 

Unspecific side 
hemiplegia 

1,926 
(1.2) 

141 (3.6) 172 (3.2) 

Non-dominant side 
hemiplegia 

6,383 
(7.4) 

393 (10.0) 512 (9.5) 

Aphasia 8,874 
(10.4) 

668 (17.1) 846 (15.7) 

Aphasia- 
Cerebrovascular 

1,236 
(1.4) 

95 (2.4) 125 (2.3) 

Dysarthria 7,152 
(8.3) 

402 (10.3) 519 (9.7) 

Speech Disturbance 5,062 
(5.9) 

301 (7.7) 386 (7.2) 

Facial weakness 9,001 
(10.5) 

501 (12.8) 654 (12.2) 

Cerebral Intracranial 
edema 

1,604 
(1.9) 

127 (7.7) 166 (3.1) 

Dominant left side 
hemiplegia 

5,779 
(6.7) 

377 (9.6) 483 (9.0) 

Altered mental status 15,139 
(17.7) 

1017 (26.0) 1,288 (24.0) 

Neurological neglect 
syndrome 

2,625 
(3.1) 

168 (4.3) 210 (3.9) 

Respiratory failure 14,672 
(17.1) 

962 (24.6) 1,193 (22.2) 

DNR 8,608 
(10.0) 

187 (4.8) 221 (4.1) 

Palliative care 
consult 

7,240 
(8.5) 

201 (5.1) 224 (4.2) 

Mechanical 
thrombectomy 

975 
(1.1) 

34 (0.9) 51 (0.9) 

CE 1 9,452 
(11.0) 

557 (14.7) 757 (14.1) 

CE 2 20,442 
(23.9) 

1,120 (28.6) 1,457 (27.1) 

CE 3 3675 
(4.3) 

207 (5.3) 278 (5.2) 

Respiratory 
ventilation 
procedure 

11,848 
(13.8) 

659 (16.8) 842 (15.7) 

Insertion of 
endotracheal tube 

6,136 
(7.2) 

359 (9.2) 459 (8.5) 

Insertion of feeding 
device 

1,052 
(1.2) 

97 (2.5) 135 (2.5) 

Intravenous 
thrombosis 

1,862 
(2.2) 

73 (0.1) 100 (1.9) 

Hemicraniectomy 38 (0.0) 0.5(0.1) 5 (0.1)  

Antiseizure drug a 

Carbamazepine 204 
(0.2) 

18 (0.5) 24 (0.4) 

Clobazam 17 (0.0) 5 (0.1) 5 (0.1) 
Clonazepam 1415 

(1.7) 
82 (2.1) 115 (2.1) 

Gabapentin 7303 
(8.5) 

367 (9.4) 499 (9.3) 

Lacosamide 418 
(0.5) 

68 (1.7) 79 (1.5) 

Lamotrigine 430 
(0.5) 

23 (0.6) 37 (0.7)  

Table 1 (continued ) 

Characteristics Total 
(%) 
85,679 

Seizure Incidence 
following 
intracerebral 
hemorrhage after 1 
year. 
3,915 (4.57 %) 

Seizure Incidence 
following 
intracerebral 
hemorrhage after 5 
years. 
5,372 (6.27 %) 

Levetiracetam 20,816 
(24.3) 

1674 (42.8) 2127 (39.6) 

Oxcarbazepine 176 
(0.2) 

21 (0.5) 24 (0.4) 

Perampanel 8 (0.0) 1 (0.0) 1 (0.0) 
Phenobarbital 747 

(0.9) 
112 (2.9) 146 (2.7) 

Phenytoin 882 
(1.0) 

72 (1.8) 101 (1.9) 

Pregabalin 1135 
(1.3) 

48 (1.2) 70 (1.3) 

Primidone 169 
(0.2) 

6 (0.2) 10 (0.2) 

Topiramate 712 
(0.8) 

45 (1.1) 68 (1.3) 

Valproate 882 
(1.0) 

86 (2.2) 107 (2.0) 

Vigabatrin 2 (0.0) 1 (0.0) 1 (0.0) 
Zonisamide 73 (0.1) 10 (0.3) 15 (0.3) 

Foot Note: 
SS_CE1(Stroke Severity Clinical Encounter 1): Describes a detailed interval 
history; A detailed examination; Medical decision making of high complexity. 
SS_CE2 (Stroke Severity Clinical Encounter 2): Critical care, evaluation and 
management of the critically ill or critically injured patient; first 30–74 min. 
SS_aphasia: Stroke Severity Aphasia. 
ICH: Denotes patient with subsequent intracerebral hemorrhage ICD-10 codes. 
AS: Antiseizure drugs. 

a These characteristics are significantly associated with seizure at both one- 
year and five years after a stroke. (p-value < 0.05). 
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from 0.69 to 0.81. Various models have been developed to predict late 
seizures after intracerebral hemorrhage in different populations. For 
instance, the CAVS model was developed using granular clinical data 
from a diverse US population, and the LANE model was developed 
specifically for Chinese patients. Both models have shown good per
formance similar the CAVE model. These findings demonstrate that risk 
models can predict late seizures using clinical data from selected pop
ulation of patients with intracerebral hemorrhage. 

Our study contributes to the prediction of late seizures after intra
cerebral hemorrhage. Our model’s performance is comparable to pre
viously developed models. Our study has four originalities. First, we did 
not use granular clinical data but relied on demographic variables and 
administrative codes to identify features that could predict late seizures 
after intracerebral hemorrhage. We confirmed that young age, cortical 
location, and surrogate of stroke severity such as the present of aphasia 
and altered mental status were important independent features 
contributing to late seizure prediction after intracerebral hemorrhage. 
Our study therefore provide evidence for the first time that data 
collected during routine clinical activity and available in electronic 
health record could be leveraged to predict late seizures after intrace
rebral hemorrhage. Second, unlike previous models based on relatively 
small cohorts of patients from specialized stroke units, we took advan
tage of a large network of shared data across several organizations in the 
United States, hence representing a heterogeneous population of stroke 
patients. The implication of including a heterogeneous population of 
patients with intracerebral hemorrhage from unselected healthcare or
ganization and clinical settings across the United States is the enhanced 
generalizability of our model. Besides, the dataset was very large 
allowing for the identification of important predictors that could have 
been overlooked with smaller and selected patient populations. We were 

able to identify several important features contributing to the model, 
including some not previously reported. For example, 17.5 % of the risk 
of late seizures was explained by the presence of a do-not-resuscitate 
order; patients who had a do-not-resuscitate order were less likely to 
have seizures, suggesting that those patients could have died before 
developing seizures or that resources utilized to identified seizures such 
as electroencephalograms were sparely used when a do-not-resuscitate 
order was present. Third, we used machine learning for the purpose of 
predicting late seizures after intracerebral hemorrhage. Machine 
learning has been used in neurology to predict various outcomes 
[18–21]. With regards to seizure prediction, one study developed ma
chine learning models to predict early seizures after intracerebral 
hemorrhage. Early seizures have different underlying pathophysiologic 
mechanisms and courses than late seizures. Early seizures are thought to 
result from transient cellular biochemical dysfunctions and have a 10- 
year risk of seizure recurrence of approximately 20 % whereas late 
seizures result from gliotic scaring and persistent neuronal excitability 
changes with a 10-year recurrence of 60 % [22,23], hence meeting the 

Table 2 
Model performances for all patients.  

Metric (standard error) LGBM Update 
All features at 1 year 

LGBM Update 
All features at 5 years 

AUROC 0.7051 (0.0132) 0.694 (0.009) 
AUPRC 0.1143 (0.0068) 0.1431 (0.0039) 
F1 0.1479 (0.0055) 0.1859 (0.0064) 
Accuracy 0.6708 (0.0076) 0.6603 (0.0059) 
Balance-Acc 0.6491 (0.0114) 0.6408 (0.0119) 
Precision 0.0839 (0.0032) 0.1094 (0.0037) 
Recall 0.6253 (0.0216) 0.6186 (0.0264)  

Fig. 2. Visual Model Performance.  

Fig. 3. Top 15 important features for LGBM model. Foot Note: SS_CE1 
(Stroke Severity Clinical Encounter 1): Describes a detailed interval history; A 
detailed examination; Medical decision making of high complexity. SS_CE2 
(Stroke Severity Clinical Encounter 2): Critical care, evaluation and manage
ment of the critically ill or critically injured patient; first 30–74 min. SS_a
phasia: Stroke Severity Aphasia. ICH: Denotes patient with subsequent 
intracerebral hemorrhage ICD-10 codes. AS: Antiseizure drugs. 
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new ILAE definition of epilepsy [24]. We are not aware of any previous 
use of machine learning models to predict late seizures after intracere
bral hemorrhage. Ultimately, because the variables used in our model 
were readily available in electronic data across several institutions, the 
model has the potential to be incorporated into electronic health records 
and provide an instantaneous individual patient’s risk of developing late 
seizures without interfering with patients’ care, which could facilitate 
discussions between providers and patients/caregivers regarding their 
risk of late seizures. It is also possible that the identification of patients 
for potential inclusion in clinical trials based on their risk of late seizures 
could be facilitated. 

5. Limitations 

We used administrative ICD-10 diagnoses and procedures; therefore, 
we could not verify the accuracy of reporting these diagnoses in TriNetX. 
Despite relying on administrative ICD-10 code diagnoses and proced
ures, the performance of our model, i.e. AUC was similar to studies that 
did not rely on these codes. Although stroke severity was not assessed 
using standard severity scales such as the National Institute of Health 
Stroke Scale or Glasgow Coma Scale, all proxies of stroke severity used 

in the current analysis were associated with an increased risk of seizures, 
suggesting the validity of our approach. We did not have access to 
granular data such as brain imaging and electroencephalogram 
recording, which could have yielded additional predictors and improved 
the model’s performance. Finally, machine learning models to predict 
late seizures in this study were not validated in external cohorts, i.e., 
non-US cohorts; however, we believe that such an external validation 
would not be necessary for two reasons: first, patients were recruited 
from 71 healthcare organizations across the US and included unselected 
patients, suggesting generalizability of our results. Second, we mitigated 
the need to externally validate the models by applying a 5-fold nested 
cross-validation (CV) with non-overlapping training set (for training the 
model) and validation set (for hyperparameter tuning) and test set (for 
model evaluation), which is important in generalizing machine learning 
models. 

Despite these limitations, the use of large datasets from unselected 
patients across multiple healthcare organizations and the 5-fold nested 
cross-validation suggest that our model is generalizable to US patients 
with intracerebral hemorrhage. Our model could be easily integrated 
into electronic health records with little disruption of clinical flow in 
very busy hospital settings. 

Fig. 4. Partial Dependent Plot for the five most important features.  
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6. Conclusion 

Electronic health records can be leveraged to predict late seizures 
after intracerebral hemorrhage, using machine learning. This could 
enhance clinical decision-making and prospective planning. 
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