
Model Checking of Qualitative Sensitivity

Preferences to Minimize Credential Disclosure�

Zachary J. Oster, Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar

Department of Computer Science, Iowa State University, Ames, Iowa 50011, USA
{zjoster,gsanthan,sbasu,honavar}@iastate.edu

Abstract. In most client-server interactions over the Web, the server re-
quires the client to disclose certain credentials before providing the client
with the requested service (server policy). The client, on the other hand,
wants to minimize the sensitivity of the set of credentials disclosed (client
preference). We present a qualitative preference formalism based on con-
ditional importance networks (CI-nets) for representing and reasoning
with client preferences over the relative sensitivity of sets of credentials.
The semantics of CI-net preferences is described using a preference graph
over the set of credentials for which the preferences are expressed. We
develop a model checking-based approach for analyzing the preference
graph, efficiently verifying whether one set of credentials is more sen-
sitive than another (dominance testing). Further, we identify the least
(minimum) sensitive set of information that may be disclosed by the
client to get access to the desired service. We present a technique based
on iterative verification and refinement of the preference graph for com-
puting a sequence of credential sets, ensuring that a credential set with
higher sensitivity is never returned before one with lower sensitivity. We
present a prototype implementation and preliminary simulation results.

1 Introduction

In online transactions, a client often must choose from multiple servers that
provide some desired service. Typically, each server expects to verify a set of
the client’s credentials (as specified by the server’s access control policy) before
allowing access to the requested service. As the servers may hold different access
control policies, they may demand different sets of credentials from the client;
some sets of credentials may be more sensitive to the client than others, in the
sense that they compromise the client’s privacy to a greater degree.

This induces a preference on the sets of credentials that the client can disclose.
Given a set of servers providing the same service, the client will prefer a server
requiring the disclosure of a less sensitive set of credentials over a server requiring
the disclosure of a more sensitive credential set.

For all except the smallest sets of possible credentials, it is impractical for
the client to explicitly specify preferences over all possible combinations of cre-
dentials. Even if the client has only four credentials, he or she would need to
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assert preferences over 24 = 16 combinations of credentials. A more practical
approach would be to specify preferences over individual credentials, which can
then be used to reason about preferences over sets of credentials. This reduces the
decision-making burden on the client while still allowing him or her to access a
desired service from the server that requires the least sensitive set of credentials.

Existing approaches to this problem, including [4,7,14], assume that the client
has a priori knowledge of the access control policy of the server. However, in prac-
tice some servers may restrict the disclosure of their access control policies [1],
especially when the client may be able to infer sensitive information by looking
at the server’s policy. For example, a server storing medical records may wish
to release the records of a patient A suffering from a certain disease only to
specialist doctors who are qualified to treat the illness. The server may thus
require clients (in this case doctors) requesting access to patient A to present
credentials certifying that they are licensed doctors who are qualified to treat
A’s disease. However, disclosing this requirement may allow any client to infer
that A is suffering from that ailment, violating privacy laws. In such settings,
the server has to protect its policy from being fully or partially disclosed to its
clients.

Given the privacy preferences of a client that is totally or partially ignorant
of the server’s requirements, the client can access the service while minimizing
disclosure of the client’s credentials by providing increasingly sensitive creden-
tial disclosure sets (beginning from the least sensitive set) until the client finds
one that is accepted by the server. Thus there is a need for algorithms and for-
mal methods that compute a sequence of successively next-best (more sensitive)
credential disclosure sets based on the sensitivity preferences of the client.

Driving Problem. In this paper, we address two important problems in the
context of these scenarios. First, we use an intuitive formalism for representing
and reasoning with the client’s sensitivity preferences over the credentials. We
claim that it is natural for clients to specify their preferences over credentials
using an expressive preference language, namely conditional importance networks
(CI-nets) [2]. CI-nets can represent

– Monotonicity Preference: disclosing less information is preferred to disclosing
more information

– Set-Based Relative Importance Preference: disclosing one set of credentials
is always preferred to disclosing another set of credentials

– Conditional Relative Importance Preference: given the presence or absence
of certain credentials in the disclosure set, including one set of credentials in
the disclosure set is preferred to including another set of credentials

Second, we introduce a model checking-based technique for finding a sequence of
successively next-most-preferred (more sensitive) credential disclosure sets with
respect to the CI-net preferences specified by the client. This new technique
is built upon our previous work on dominance testing via model checking for
CP-nets [11], which are related to but less expressive than CI-nets.

Contributions. The contributions of our work are summarized as follows:
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1. We employ a formal preference language and semantics based on CI-nets to
represent the client’s preferences over the sensitivity of the credentials.

2. We show how model checking techniques for preferential dominance testing
(finding whether one set of credentials is preferred over another) can be
used to find the least sensitive (most preferred) set of credentials that the
client would like to disclose and that the server will accept. This is done by
repeatedly finding the next-best (next-least-sensitive) set of credentials and
seeing whether the server will accept this credential set.

3. We present an implementation and preliminary experiments to show the
practical feasibility of our approach.

Organization. The rest of the paper is organized as follows. Section 2 moti-
vates the addressed problems and the proposed solution using a simple example.
Section 3 describes the syntax and semantics of CI-nets. Section 4 presents our
approach to finding the most preferred sets of credentials according to the sensi-
tivity preferences of the client, as well as a model checking-based technique for
ordering the sets of credentials based on their relative sensitivities. Section 5 de-
scribes our implementation and summarizes the results of our initial experiments.
Section 6 discusses related techniques from the existing literature. Section 7 sum-
marizes the paper and presents some directions for future work.

2 Illustrative Example

Consider a client who is interested in obtaining some financial quote (e.g., auto
and/or home insurance,mortgage, etc.) using an online service. Suppose that there
are multiple servers that provide the required service, and each server’s access
control policy requires a combination of several credentials from the client before
granting access to the service.We consider four such credentials: the client’s name,
residential address, bank account number, and bank routing number.

The client has some qualitative preferences over the relative importance of
his credentials based on their sensitivity. The rationale behind these preferences
is that the client would like to make it impossible (or at least difficult) for a
third party to perform any financial transaction maliciously posing as the client.
Therefore, from the client’s perspective, the objective is to choose the server that
provides the desired financial service by requiring the least sensitive set of client
credentials. Consider the following qualitative preferences specified by the client:

P1. If my bank account number is disclosed to the server, I would rather give
my address than my bank’s routing number to the server. This is because
my bank account number along with the bank routing number identifies
my bank account precisely, and hence it is highly sensitive information com-
pared to my bank account number and address.

P2. If I have to disclose my address without having to disclose my name, then
I would prefer giving my bank’s routing number over my bank account
number. However, this preference does not hold when I have to disclose my
name along with my address, because the combination of my name, address,
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and bank routing number is not any less sensitive than my name, address,
and bank account number. In both cases, a malicious party needs to guess
one of the credentials – bank account number or bank routing number – to
gain access to important financial information.

P3. Because I would like to protect as many details as possible regarding my
bank account, when I don’t have to disclose my bank account number I
would provide my name and address rather than my bank’s routing number.

Based on these preferences, the client can identify successively more sensitive
sets of credentials (starting from the empty set) and verify whether a set of
credentials is sufficient to satisfy the access control policy of any server providing
the desired service. Any server that accepts this least sensitive acceptable set of
credentials may be selected to provide the service to the client.

3 Background: CI-Nets

We use conditional importance networks (CI-nets) [2] to capture and reason with
the client’s preferences over the set of credentials in terms of their sensitivity. CI-
nets allow a client to clearly and precisely specify sensitivity among credentials.

3.1 Syntax

Let V denote the set of credentials over which the client expresses his/her pref-
erences. A CI-net C is a collection of conditional importance statements of the
form S+, S− : S1 � S2, where S

+, S−, S1, and S2 are pairwise disjoint subsets of
V and where S2 �= ∅. Informally, given two sets of credentials which both include
the set S+ and exclude S−, the set that contains all of the credentials in S1 is
preferred (relatively less sensitive) to the set that contains all of the credentials
in S2.

Recall the preference P1 described in Section 2 that “if my bank account
number is disclosed to the server, I would rather give my address than my bank’s
routing number to the server”. It is expressed as the following CI-net statement:

{Bank Account Number}, {} : {Address} � {Bank Routing Number} (1)

Similarly, the preference P2 that “if I have to disclose my address without
having to disclose my name, then I would prefer giving my bank’s routing number
over my bank account number” is expressed in the language of CI-nets as:

{Address}, {Name} : {Bank Routing Number}�{Bank Account Number} (2)

3.2 Semantics

The ceteris paribus (“all else being equal”) semantics [2] provides a way to
use the statements in a CI-net to reason about preferences over various sets of
credentials. The semantics of preferences described using a CI-net C over a set of
credentials V is given in terms of a strict partial order (irreflexive and transitive)
relation � over the powerset of V such that:
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1. � is monotonic, i.e., γ ⊂ γ′ ⇒ γ � γ′

2. For each CI-net statement S+, S− : S1 � S2,
γ ⊆ [V \ (S+ ∪ S− ∪ S1 ∪ S2)] ⇒ γ ∪ S+ ∪ S1 � γ ∪ S+ ∪ S2

In the original CI-net formalism [2], a set is preferred to its subset, i.e., it is
always preferred to have more elements in a set. We reverse the direction of
monotonicity (see item 1 above) in the semantics because in our context it is
always better to disclose fewer credentials. Further, note that allowing S2 = ∅
combined with monotonicity could permit preferences where a set is preferred
to itself. In order to ensure the strict partial ordering of preferences, we do not
allow S2 = ∅ in the syntax (see Section 3.1).

Going back to the CI-net preference statement P1 in our example, by the rule
in item 1 above, the set of credentials {Name, Address, Bank Account Number}
is preferred to the set {Name, Bank Account Number, Bank Routing Number}
according to ceteris paribus semantics. Similarly, a ceteris paribus interpretation
of the preference statement P2 in our example CI-net can be used to reason that
the set of credentials {Address, Bank Routing Number} is less sensitive than
(therefore more preferred to) the set {Address, Bank Account Number}.
CI-Nets for Preferences over Credential Disclosure Sets. CI-nets are
a natural choice for modeling client preferences over sets of credentials for the
following reasons:

1. Preferences in CI-nets are monotonic. According to the semantics of CI-nets,
a set of credentials is preferred to all of its proper supersets. The client
would typically like to protect as many credentials as possible (ideally all)
from being disclosed.

2. The CI-net semantics induces a strict partial order among the subsets of cre-
dentials with respect to the CI-net preference statements of the client. Thus,
it is possible to order the subsets of credentials in a way that is consistent
with the semantics of a CI-net. Such an ordering can be used to search for
less sensitive sets of credentials that fulfill the server’s requirement ahead of
the ones that are more sensitive.

4 Finding the Most Preferred Set of Credentials

We present a method for automatically identifying a most preferred set γ of cre-
dentials that the client has to disclose in order to satisfy the server’s requirement,
such that there exists no other credential set γ′ that (a) is preferred to (less sen-
sitive than) γ and (b) fulfills the server’s requirement. Our method consists of
the following two processes:

1.Decide: Automatically decide the preference of a set of credentials over another,
where preferences are specified using CI-nets (Section 4.1).
2. Order: Use the above decision process to automatically identify the preference
ordering of sets of credentials, starting from the most preferred sets and ending
in the least preferred ones (Section 4.4).
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a = Name

b = Address

c = Bank Routing Number

d = Bank Account Number

P1. {d}, {} : {b} � {c}
P2. {b}, {a} : {c} � {d}
P3. {}, {d} : {a, b} � {c}

Fig. 1. Induced preference graph and CI-net preference statements for the preferences
given in Section 2, with the improving flipping sequence from {Address, Bank Account
Number} to {Bank Routing Number} shown in bold.

4.1 Dominance Testing

Given two choices (of sets of credentials), deciding the preference of one choice
over the other is referred to as dominance testing. Dominance testing is known to
be PSPACE-complete [2,6]. Recently, in [11], we have demonstrated an effective
model checking [5] based approach to dominance testing for certain families of
preferences, such as TCP-nets [3]. In this paper, we follow a similar approach
for dominance testing between choices (of sets of credentials) where preferences
are represented using CI-nets. This approach relies on alternate semantics of CI-
nets given in terms of an improving flipping sequence, analogous to the worsening
flipping sequence defined in [2].

Definition 1 (Improving Flipping Sequence [2]). A sequence of credential
sets γ1, γ2, · · · γn−1, γn is an improving flipping sequence with respect to a set
of CI-net statements if and only if, for 1 ≤ i < n, either

1. (Monotonicity Flip) γi+1 ⊂ γi; or
2. (Importance Flip) there exists a conditional importance statement S+, S− :

S1 � S2 in the CI-net for which all of the following hold:

(a) γi+1 ⊇ S+, γi ⊇ S+, γi+1 ∩ S− = γi ∩ S− = ∅;
(b) γi+1 ⊇ S1, γi ⊇ S2, γi+1 ∩ S2 = γi ∩ S1 = ∅;
(c) γ = V \ (S+ ∪ S− ∪ S1 ∪ S2) ⇒ γ ∩ γi+1 = γ ∩ γi.

In the above definition, condition (1) states that disclosing a set of credentials is
always preferred to disclosing its superset. (2) states that if the set S+ of creden-
tials are disclosed and the set S− of credentials are not disclosed, then disclosing
the set S1 of credentials is preferred to disclosing the set S2 of credentials, all
other disclosures being identical (which is ensured by condition (2c)). Given a
CI-net C and two sets γ and γ′ of credentials, we say that γ is preferred to γ′,
denoted by C |= γ � γ′, if and only if there is an improving flipping sequence
with respect to C from γ′ to γ (Proposition 1, [2]).
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In our example CI-net (right side of Figure 1), we can thus say that the set
{Bank Routing Number} is preferred to the set {Address, Bank Account Number}.
This is because the set {Address, Bank Account Number} has an improving
(importance) flip to the set {Address, Bank Routing Number} (see preference P2
in Section 2 and its CI-net representation, Equation 2 in Section 3), which in
turn has an improving (monotonicity) flip to {Bank Routing Number}.

From the above definition, one can construct a graph where each node corre-
sponds to a set of credentials and each directed edge from one node to another
denotes an “improving flip”, capturing the fact that the set of credentials at the
destination node is preferred to the set of credentials at the source node. This
graph is referred to as the induced preference graph [2].

Definition 2 (Induced Preference Graph). Given a CI-net C over a set of
credentials V , the induced preference graph δ(C) = (N,E) is constructed as fol-
lows. The nodes N correspond to the powerset of V , and for a pair γ, γ′ ∈ N , the
directed edge (γ, γ′) ∈ E indicates an improving (monotonicity or importance)
flip from γ to γ′ as per the CI-net semantics (Definition 1) such that γ′ � γ.

Figure 1 presents the CI-net statements representing the preferences over cre-
dentials specified in Section 2, along with the corresponding induced preference
graph. The solid edges between sets of credentials in this graph correspond to
monotonicity flips and the dotted edges correspond to importance flips. Each
path in the graph corresponds to an improving flipping sequence.

A set γ′ of credentials dominates (i.e., is preferred to) another set γ with
respect to CI-net C if and only if the node corresponding to γ′ in δ(C) is reach-
able from γ. For example, the set {Bank Routing Number} is preferred to the set
{Address, Bank Account Number} due to the existence of the path bd → bc → c,
which is highlighted in Figure 1. The induced preference graph of a CI-net is
consistent if and only if it is cycle-free.

4.2 Kripke Structure Modeling of CI-Net Semantics

We use the Cadence SMV symbolic model checker [8] to verify reachability (and
therefore dominance) from one node to another in the induced preference graph.
There are three primary advantages in using Cadence SMV for testing dominance.
First, Cadence SMV is equipped with (symbolic or BDD-based) algorithms that
allow for efficient state-space exploration of large graphs. Second, Cadence SMV
can verify properties (beyond simple reachability) in expressive temporal logic
(e.g., CTL and LTL), a capability that we will use in Section 4.4 to obtain a
preference ordering over sets of credentials. Finally, the SMV input language
allows us to directly encode the CI-net preference statements. The induced pref-
erence graph is then automatically constructed by the model checker to answer
dominance (verification) queries. The model checker takes as input a Kripke
structure 〈S, S0, T, L〉, where S is the set of states, S0 ⊆ S is the set of start
states, T ⊆ S × S is the set of transition relations, and L is a labeling func-
tion mapping each state in S to a set of propositions that hold at that state.
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In our encoding, we represent each credential (say, xi) as a proposition, where
the value of the proposition is true when the credential is disclosed and false
when the credential is not disclosed. The propositions are uninitialized, which
allow the model checker to consider all possible valuations of propositions as
initial states of the Kripke structure. Given a set of CI-net statements C, the
Kripke structure KC representing the induced preference graph δ(C) contains
states that are labeled with the truth values of the set of credential propositions
xi and two types of helper Boolean variables: a set of Boolean variables hi and
a Boolean variable g.

SMV Input Language: Role of Helper Variables. In SMV, a Kripke struc-
ture is encoded using a set of variables, their possible initial valuations, and a
set of transition relations. Each transition relation describes the valuation of the
variable based on certain conditions on the current state variable-valuations. For
instance, consider a Kripke structure with two Boolean variables a and b.

init(a) := 0;

next(a) := case

a = b : !a;

1 : a;

esac;

This SMV specification states that the initial valuation of a is 0, while the
initial valuation of b can be either 0 or 1 since it is not explicitly given. The
corresponding Kripke structure has two different start states: one where a and b
are equal to 0 and another where a is equal to 0 and b is equal to 1. Furthermore,
the transition relation (described by the next operation) states that the value
of a is toggled only when the valuations of a and b are equal in the current state.
The absence of next definitions for b indicates that the valuation of b can change
non-deterministically whenever a change in state occurs in the Kripke structure.

In the encoding of δ(C) as a Kripke structure KC , attributes over which the
CI-net statements are specified are encoded as Boolean variables in KC . Each
state in KC corresponds to a node in δ(C): if x3 ∧ x4 holds (evaluates to true)
in a state in KC , that state corresponds to the node annotated with x3 and x4

in δ(C). Next, note that the existence of a given edge in δ(C) depends on the
contents of the source and destination nodes (improving flip, see Definition 1).
Direct encoding of such edges in SMV requires encoding of transitions in KC

where the next operation on each variable (describing the enabling condition of
the transitions) includes conditions that depend on the variables’ values in the
next states. Encoding such conditions in SMV may lead to circular dependencies
between next operations for two or more variables. For instance,

next(a) := case

next(b) : !a;

1 : a;

esac;

next(b) := case

next(a) : !b;

1 : b;

esac;

From the above encoding, it is not clear what valuation a and b should have in
the next state when the current state valuations of the variables are equal to 1.
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Role of hi. In order to correctly encode the edges of δ(C) as transitions in
KC , we have used one auxiliary variable hi for each proposition xi. Each hi is
encoded such that if hi is 0 (false) in the current state, then in the next state
the valuation of xi cannot change; otherwise, the valuation of xi may change in
the next state if a condition corresponding to a CI-net preference statement is
satisfied. The hi variables are all initialized to 0 and the model checker performs
updates to the his non-deterministically. For instance, the semantics of the CI-
net statement {d}, {} : {b} � {c} (preference P1 from Section 2, resulting in
edges cd → bd and acd → abd in δ(C)) can be encoded in the SMV language as

next(b) := case

h_a = 0 -- a does not change in next state

& b = 0 & h_b = 1 -- b can change in the next state

& c = 1 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 1

...

esac;

next(c) := case

h_a = 0 -- a does not change in next state

& b = 0 & h_b = 1 -- b can change in the next state

& c = 1 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 0

...

esac;

The enabling conditions are identical in both cases to ensure that the valuations
of b and c are updated under identical conditions as specified by the CI-net, i.e.,
when d = 1 in the current and next states (ensured by hd = 0 in the current
state) and when the valuation of a is unaltered in the current and next states
(ensured by ha = 0 in the current state). Further, c = 1 and hc = 1 in the current
state, which allows the value of c to change in the next state; similarly, b = 0
and hb = 1 in the current state, which allows for the toggling of b in the next
state.

In this way, the semantics of CI-nets as given in Definition 1 is directly encoded
as SMV specifications. This encoding eliminates the need to manually construct
the induced preference graph δ(C); instead, the model checker automatically
constructs and explores the Kripke model representing δ(C).

Role of g. Within the above encoding, the different valuations of each hi for
the same valuation of each xi correspond to states in KC that allow different
ways in which the valuation of that xi can be changed. Consequently, KC con-
tains multiple states where an identical set of xi’s hold true; all of these states
correspond to one node in δ(C). Transitions between these states do not change
the valuation of any xi and, therefore, do not correspond to any edge in δ(C).

The variable g is set to 1 (true) whenever a transition traversed in KC results
in a change in the valuation of at least one of the xi’s (i.e., when a transition in
KC corresponds to an edge in δ(C)). Conversely, if a transition in KC does not
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indicate a change in any of the xi variables, the variable g is set to 0 (false). Con-
sider the following SMV code, which updates g based on the CI-net statements
that encode the preferences expressed in Section 2:

next(g) := case

-- Guards corresponding to P1, where g will be set to 1 :

h_a = 0 -- a does not change in next state

& b = 0 & h_b = 1 -- b can change in the next state

& c = 1 & h_c = 1 -- c can change in the next state

& d = 1 & h_d = 0 -- d does not change in next state

: 1 -- g is set to 1 indicating that this transition

-- corresponds to a change in "b" or "c"

...

-- Guards corresponding to P2, where g will be set to 1 :

...

-- Guards corresponding to P3, where g will be set to 1 :

...

1: 0 -- default case : if no variables change, then g is 0

esac;

Note that these are precisely the same conditions under which b changes to 1
(true) and c changes to 0 (false), as defined in the previous SMV code excerpt.
The code in this excerpt sets g to 1 whenever the conditions for changing the
value of b and c are satisfied. The full next(g) block contains conditions for
setting g to 1 when any monotonicity or importance flip causes one or more
variables to change; we have omitted the remaining conditions to save space.
The 1 condition at the end of the block sets g to 0 if no other condition is
met, i.e., if no variables change during the specified transition. In Section 4.4,
we show how the variable g can be used directly to compute the ordering of
preferred solutions.

Figure 2 shows how the data variables xi, the helper variables hi, and the
change variable g interact within the Kripke structure KC for a node in the
induced preference graph δ(C) containing variables a and b. The most preferred
node in δ(C) is the empty set, while the least preferred node is the set of all
elements; nodes containing a and b are intermediate nodes. Each node in δ(C) is
modeled by a set of interconnected states in KC . In Figure 2, we have expanded
and shown the set of states in KC that corresponds to one node (where a = 1
and b = 0) in δ(C). The expanded node is divided into two subsets of states:
the left subset ag represents the set of states where g = 1, while the right
subset a¬g represents the set of states where g = 0. There are four states in
both subsets, one for each possible valuation of the two Boolean variables ha

and hb. Any state in ag can be reached from some state in KC that represents
the node where a = 1 and b = 1 in δ(C). States where ha = 1 and hb = 0
move to states in KC where a = 0 and b = 0, regardless of g’s value. All other
states in ag can move to some state in a¬g by a transition in KC ; however,
since g = 0 in all states in a¬g, any transition to or between the states in
a¬g does not correspond to any edge in δ(C). Note that, as in ag, the state
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Fig. 2. Diagram of a Kripke-structure encoding of part of an induced preference graph

in a¬g where ha = 1 and hb = 0 has transitions to states where a = 0 and
b = 0. The rest of the Kripke structure KC is constructed similarly: each node
in δ(C) corresponds to a set of states in KC , where the number of states in
the set is exponential in the number of variables (credentials) in δ(C). Further
details of the SMV encoding process may be found on this paper’s website at
http://fmg.cs.iastate.edu/project-pages/credentials.html.

Theorem 1. Given a CI-net C, a Kripke structure KC constructed as described
in this subsection preserves the semantics of the induced preference graph δ(C)
of the CI-net.

Proof. Consider the induced preference graph δ(C) for CI-net C as defined in
Definition 2. Each state in KC maps onto exactly one node in δ(C). Furthermore,
given two nodes γ, γ′ ∈ δ(C) and two states s, s′ ∈ KC where s maps to γ and
s′ maps to γ′, there exists a directed edge (γ, γ′) ∈ δ(C) if and only if both (1)
there exists a transition s → s′ ∈ KC and (2) g = 1 in state s′. This transition
s → s′ models the improving flip (γ, γ′) in the induced preference graph. ��

4.3 Model Checking for Verifying Consistency and Dominance

Given a CI-net C, we use the method in Section 4.2 to specify the corresponding
Kripke model KC for input to the Cadence SMV model checker. We begin by
verifying that the induced preference graph δ(C) modeled by KC is consistent
(i.e., cycle-free). This is done by checking KC against the LTL formula F G(g =
0), which is satisfied if and only if every path from the initial state in KC

eventually reaches a point where no xi variable ever changes (i.e., g is always 0)
in any future state.1 If a cycle exists in the induced preference graph, then every
state in the cycle always has at least one outgoing transition from that state
where g = 1, indicating that a variable is changing; this violates the consistency
property.

1 Details of LTL syntax and semantics can be obtained in [10].

http://fmg.cs.iastate.edu/project-pages/credentials.html
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After the model KC is verified to be consistent, it can be used for preference
reasoning. For any two sets of credentials γ and γ′, we use the following CTL
formula to check whether γ′ is preferred to γ: X ⇒ EF(X ′), where X (resp. X ′)
is the propositional formula indicating the presence or absence of credentials in γ
(resp. γ′). This property is satisfied by any state in KC where X holds true and
where there is a path leading to a state where X ′ holds true.2 If the property is
satisfied, we conclude that γ′ is preferred to γ. An improving flipping sequence
from γ to γ′ can be obtained by querying the model checker with the negation of
the formula X ⇒ EF(X ′). The counter-example to this formula returned by the
model checker is a path in the Kripke structure that proves dominance, which
can be used to construct the improving flipping sequence. On the other hand, if
the propertyX ⇒ EF(X ′) is not satisfied, then there exists no improving flipping
sequence from γ to γ′, i.e., γ′ is not preferred to γ. In the CI-net used in our
example (see Section 2), the model checker returns true when queried with the
formula (acd ⇒ EF(bd)), which verifies that bd is preferred to or dominates acd.
When we query the model checker with the CTL formula ¬(acd ⇒ EF(bd)), it
yields a counter-example corresponding to either the path acd → cd → bd or the
path acd → abd → bd. Either path gives a proof of the dominance of bd over
acd.

We find the most preferred set of credentials by verifying the CTL property
EF(g = 1) for all states in KC . This property is satisfied at a state s in KC

if and only if s can reach any state (including itself) where g evaluates to 1
(true). The property is not satisfied at states in KC that correspond to the
top-most node (containing the most preferred set of credentials) of the induced
preference graph (see, for instance, Figure 1). This is because the top-most node
in δ(C) does not contain any outgoing edges. Any one of the states in KC that
corresponds to the top-most node in δ(C) is identified by Cadence SMV as a
counterexample, proving the unsatisfiability of the property EF(g = 1). In our
running example, this query returns the state where variables a, b, c, and d are
false, which corresponds to the empty set of credentials. This reflects the fact
that not disclosing any credentials at all is the most preferred option.

4.4 Preference Ordering over Credential-Sets

Once the induced preference graph δ(C) is modeled as a Kripke structure KC ,
our next objective is to order the sets of credentials from most to least preferred.
Note that δ(C) specifies a strict partial order between sets of credentials. The
ordering we obtain is a total order consistent with this strict partial order. We
achieve this by performing model checking on the modelKC and its modifications
against CTL properties. The steps in our approach are as follows.

1. We verify all states in KC against the CTL property EF(g = 1), which
returns the most preferred set of credentials (say γi) from the top of δ(C).
Since δ(C) is a strict partial order, it may have multiple elements at the top.

2 Details of CTL syntax and semantics can be obtained in [5].
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Any state that corresponds to any one of the top elements will be returned
as a counterexample (proving the unsatisfiability of the CTL property).

2. Let γ1, γ2, . . . , γn be the sequence of sets of credentials that has been obtained
so far (as the total order consistent with the partial order presented in δ(C)).
We define the following formula

I =
n∨

i=1

∧

j

(xij) (3)

where xij is the proposition representing the presence or absence of the jth
credential in the set γi. We then query the model checker to verify whether
the modified CTL property EF(g = 1) ∨ I holds true in all states of KC .
The property is satisfied by a state s in KC if and only if (a) s can reach
some state (including itself) where g = 1 or (b) s corresponds to nodes
γ1, γ2, . . . , γn in δ(C). If the property is not satisfied by s, then s cannot
reach a state where g is set to true and s does not correspond to nodes
γ1, γ2, . . . , γn.

3. If the model checker returns false, then it identifies (as a counterexample) a
state corresponding to a set of credentials γn+1, which is at least as preferred
as one of the previously identified sets of credentials γ1, γ2, . . . , γn. In this
case, we iterate Step 2 using the new sequence γ1, γ2, . . . , γn+1. Otherwise,
the property is satisfied by all states in KC , meaning there exists no set of
credentials that is at least as preferred as one of the elements in γ1, γ2, . . . , γn.
If this occurs, we remove from the Kripke structure KC all states correspond-
ing to the credential sets γ1, γ2, . . . , γn (obtained by iterating Step 2 so far)
by adding ¬I (see Equation 3) to the Kripke structure as an invariant (the
model checker only considers the states where the invariant holds). Thus,
the reduced model corresponds to the induced preference graph where the
nodes corresponding to γ1, γ2, . . . , γn are not considered. We then iterate
starting from Step 1 until the invariant results in a model where no states
are considered by the model checker.

Note that in Step 2, the states in the model corresponding to γ1 . . . γn are not
considered as counterexamples by the model checker, as I is added as a disjunc-
tion to the property EF(g = 1). This enables us to obtain the top-most nodes
one by one in sequence without altering the model. However, when all the top-
most nodes are obtained, we remove the states corresponding to γ1 . . . γn from
the model in Step 3 (by adding the ¬I as an invariant to the current model).
This modification of the model makes it possible for us to obtain the next set
of top-most nodes in the subsequent iteration. We explain the above steps using
the example δ(C) presented in Figure 1.

Iteration 1: The Kripke structure KC encoding of δ(C) is first model-checked
with the property EF(g = 1) following Step 1 above. The result (counterexample)
obtained is the top-most element γ11 = ∅. In Step 2, model checking is performed
again with the property EF(g = 1) ∨ I, where I = (¬a∧¬b∧¬c∧¬d) corresponds
to the absence of any credentials (γ11 = ∅). The property is satisfied because all
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states except the one corresponding to γ11 = ∅ can reach a state where g = 1
(true). As per Step 3, we remove from KC the states corresponding to the node
γ11 = ∅ by adding ¬I = (a∨b∨c∨d) as an invariant to KC . As a result, we have
forced the model checker to consider only the states where the invariant holds
(the invariant does not hold at states corresponding to γ11). This can be viewed
as an updated KC , which encodes a δ(C) where the nodes ((a), (b), (d)) are at
the top (as Figure 1, but with the ∅ node and its incoming edges removed).
Iteration 2: Step 1 is performed again with the updated model, and the model
checker returns as a counterexample one of the states that corresponds to ei-
ther (a), (b), or (d). Note that such a state is identified non-deterministically by
the model checking algorithm. Suppose that the state corresponding to (a) is ob-
tained as a counterexample. So far, we have γ11 = ∅ (from the previous iteration)
followed by γ21 = (a) in our total ordering of sets of credentials. Proceeding to
Step 2, we have a new I = (a ∧ ¬b ∧ ¬c ∧ ¬d). When model checking is per-
formed again, one of the states corresponding to either (b) or (d) is obtained as
a counterexample. Suppose that a state corresponding to γ22 = (b) is returned.

We proceed to perform Step 2 again with I = (a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (¬a ∧
b ∧ ¬c ∧ ¬d). The model checker returns a counterexample state corresponding
to the node γ23 = (d). Proceeding further, Step 2 is again performed using
I = (a∧¬b∧¬c∧¬d) ∨ (¬a∧b∧¬c∧¬d) ∨ (¬a∧¬b∧¬c∧d). At this point, the
model checker fails to find any counterexamples for the property EF(g = 1) ∨ I.
In Step 3, we remove all the states corresponding to the nodes (a), (b), and (d) by
adding to KC the invariant ¬I = (¬a∨b∨c∨d) ∧ (a∨¬b∨c∨d) ∧ (a∨b∨c∨¬d)
to the model (in conjunction with the invariant (a∨ b∨c∨d) used to remove the
node ∅ in iteration 1), and we start a new iteration from Step 1. So far, we have
obtained an ordering of sets of credentials γ11 = ∅, γ21 = (a), γ22 = (b), γ23 = (d).

The iterative process (starting from Step 1) is illustrated in Table 1. The
iteration is continued until including an invariant in KC results in an empty
model (i.e., a model with no states). The number of such iterations is equal to
the height of the partial order in δ(C). In the example (Figure 1), it is equal to
9. Each such iteration obtains a sequence of sets of credentials that are equally
preferred (or indistinguishable as per the given preferences). For instance, in
iteration 3, we obtain the equally preferred sets (ab) and (ad). Such elements are
obtained by iterating Step 2 multiple times. The maximum number of iterations
starting at Step 2 is equal to the width of the partial order in δ(C). In the
example (Figure 1), it is equal to 3.

The main advantage of using this method is that a total ordering of sets of
credentials is obtained without performing all possible pairwise comparisons. In-
stead, systematic updates to the model corresponding to the induced preference
graph and repeated model checking using a CTL property are used to automat-
ically and effectively find the total order over the sets of credentials.

Finding Preferred Sets of Credentials with Sensitivity Thresholds. We
have presented a technique for using sensitivity preferences to generate a se-
quence or ordering of sets of credentials such that less (or equally) sensitive sets
of credentials are obtained prior to more sensitive sets of credentials based on



Model Checking of Qualitative Sensitivity Preferences 219

Table 1. Steps in finding the ordering of sets of credentials for example in Section 2

# Iteration Query Result Action

1. Iteration 1 EF(g = 1) [ ] I = (āb̄c̄d̄)

2. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

3. Iteration 2 EF(g = 1) [a] I = (ab̄c̄d̄)

4. EF(g = 1) ∨ I [b] I = (ab̄c̄d̄) ∨ (ābc̄d̄)

5. EF(g = 1) ∨ I [d] I = (ab̄c̄d̄) ∨ (ābc̄d̄) ∨ (āb̄c̄d)

6. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

7. Iteration 3 EF(g = 1) [ab] I = (abc̄d̄)

8. EF(g = 1) ∨ I [ad] I = (abc̄d̄) ∨ (ab̄c̄d)

9. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

10. Iteration 4 EF(g = 1) [c] I = (āb̄cd̄)

11. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

12. Iteration 5 EF(g = 1) [ac] I = (ab̄cd̄)

13. EF(g = 1) ∨ I [bc] I = (ab̄cd̄) ∨ (ābcd̄)

14. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

15. Iteration 6 EF(g = 1) [abc] I = (abcd̄)

16. EF(g = 1) ∨ I [bd] I = (abcd̄) ∨ (ābc̄d)

17. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

18. Iteration 7 EF(g = 1) [abd] I = (abc̄d)

19. EF(g = 1) ∨ I [cd] I = (abc̄d) ∨ (āb̄cd)

20. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

21. Iteration 8 EF(g = 1) [acd] I = (ab̄cd)

22. EF(g = 1) ∨ I [bcd] I = (ab̄cd) ∨ (ābcd)

23. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

24. Iteration 9 EF(g = 1) [abcd] I = (abcd)

25. EF(g = 1) ∨ I − Revise model by adding ¬I as invariant

26. EF(g = 1) − No more states to explore. Terminate.

the preferences of the client. As we have shown, such an ordering can be used to
select a server from many that provide similar services. However, this ordering
by itself does not allow clients to prevent highly sensitive sets of credentials from
being disclosed. In many settings, clients may want to add additional constraints
to prevent such unacceptable disclosures. One way to express these constraints
is to specify, in addition to the preferences, one or more “threshold” sets of cre-
dentials which indicate the maximum sensitivity of information that the client
would like to disclose. In other words, the client will consider disclosing sets of
credentials in order of their sensitivity, as long as they are not more sensitive
than the threshold(s). Our model-based technique can seamlessly incorporate
such thresholds by extending the property to EF(g = true)∨EX EF(

∨
i ti), where

tis denote the credential sets describing the thresholds.
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5 Implementation and Experiments

5.1 Overview of Framework

We have implemented our approach to finding the most preferred set of creden-
tials with respect to the client’s sensitivity preferences in a Java-based framework.
Our framework consists of two primary modules:

1. A pre-processor module that uses two sub-modules to produce input to the
model checker, namely:
(a) Parser: Reads CI-net statements specified in a text input file.
(b) Translator: Automatically translates CI-net statements to generate the

SMV input model.
2. A reasoning driver module that coordinates preference reasoning. Its two

sub-modules invoke the Cadence SMV model checker [8] to do different tasks:
(a) Consistency Checker: Checks the consistency of CI-nets, returning true

if and only if the CI-net is consistent.
(b) Rank Order Generator: Takes the model generated by the pre-processor,

generates appropriate temporal properties, and invokes the Cadence SMV
model checker [8]. After the first run of the model checker, it reads the
output of the model checker, appropriately updates the property or re-
fines the model (by including invariants), and repeatedly invokes the
model checker until all ordered results are obtained.

5.2 Experimental Setup

For our experiments, we generated random CI-nets with between 5 and 20 vari-
ables (denoting the disclosure of credentials) and either 5 or 10 CI-net statements.
We tested the consistency of each sample CI-net generated according to these
combinations of variables and statements; consistency is necessary to ensure that
the induced preference graph does not contain any loops. We collected 20 consis-
tent samples for each combination of variables and statements being considered,
then applied the algorithm described in Section 4 to find the top 25 (next-)most
preferred sets of credentials for each randomly generated sample. Our experi-
ments were performed and results were recorded on a Dell Latitude E5420 with
an Intel Core i5-2410M 2.30 GHz dual-core CPU and 4 GB of RAM, running a
64-bit Windows 7 operating system.

To examine the practical feasibility of our approach, we collected time and
memory usage data from the Cadence SMV model checker for each sample
tested in the experiment. We observed that consistency checking was much more
resource-intensive than identifying next-most-preferred credential sets, especially
with 16 or more variables; however, with 15 or fewer variables, consistency check-
ing generally used less than one second and 7 MB of memory (for 5 statements)
or a few seconds and 15 MB of memory (for 10 statements). To identify each
next-most-preferred set of credentials given up to 18 variables and 5 statements
(or up to 16 variables and 10 statements), the model checker generally used less
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than 300 ms of time and less than 7 MB of memory; however, resource usage can
increase significantly once these bounds are passed. The amounts of resources
required to identify the next-most-preferred set in each case remain relatively
stable regardless of whether the overall most-preferred credential set or the 25th-
most-preferred set is being obtained. These results show that our approach is
feasible for use in practical applications.

Data from our experiments and a prototype version of our tool are available
at http://fmg.cs.iastate.edu/project-pages/credentials.html.

6 Related Work

In the past, cost-based approaches [4] for minimizing credential disclosure have
been proposed. These approaches assign higher cost to more sensitive credentials
of the client; the objective is to minimize the cost associated with disclosing a
set of credentials while satisfying the server’s requirements. Similarly, the point-
based approach in [14] assigns points to each credential based on the trustworthi-
ness of the client, and the client values its credentials with a private score. The
approaches in [4] and [14] use quantitative valuations to model preferences; in
our view, qualitative valuations are better for representing the naturally qualita-
tive preferences in this setting. Kärger et al. developed an expressive logic-based
preference formalism [7] for specifying qualitative privacy preferences over the
user’s credentials, which can be used to minimize the sensitivity of the disclosed
credentials. In contrast to all of these approaches, which require the client to
have a priori knowledge of the server’s access control policy, our method is able
to minimize disclosure of the client’s credentials even when all or part of the
access control policy is unavailable to the client.

A similar problem arises in online trust negotiation [12,13,15], where a client
iteratively negotiates with a server in order to determine the least sensitive set of
credentials that is acceptable to the server. Our approach can be applied within
such automatic trust negotiation frameworks, even when negotiating with servers
that have partially or fully protected access control policies.

Our earlier work in [11] introduced a new technique for using model checking
to compute dominance between two outcomes when preferences are expressed in
CP-nets. This paper builds on the ideas in [11] to solve two different problems
using model checking: in addition to computing dominance when preferences
are expressed in CI-nets, we also compute the sequence of next-most-preferred
outcomes. Our work in [9] addresses a related problem in the domain of goal-
oriented requirements engineering, while this paper focuses on the details of
the modeling strategy and the method of computing next-most-preferred sets in
order to minimize the sensitivity of credentials disclosed by a client to the server.

7 Summary and Discussion

In this paper, we introduced a new approach based on the CI-net [2] formal-
ism for representing and reasoning with a client’s sensitivity preferences over

http://fmg.cs.iastate.edu/project-pages/credentials.html
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credentials. We have developed a model checking-based technique for finding
a sequence of successively next-preferred (more sensitive) credential disclosure
sets with respect to CI-net preferences specified by the client. Our approach
involves encoding the semantics of a CI-net as a model in the input language
of the Cadence SMV model checker, then querying the model checker with tem-
poral logic formulas to check the consistency of the CI-net preferences and to
obtain the top-k ranked sets of credentials such that less sensitive credentials
are returned before more sensitive ones. We have presented an implementation
and performed experiments that show the practical feasibility of our approach
for computing consistency and finding the top 25 sets of credentials when given
CI-nets of varying sizes.

Our approach can be used in client-server negotiation settings such as choosing
the most preferred server to provide a service (such that least-sensitive creden-
tials are disclosed), as well as in online trust negotiation where clients incremen-
tally disclose sensitive credentials while negotiating with servers that have par-
tially or fully protected access control policies. We are now seeking “real-world”
industrial applications where we can compare the performance of our approach
against existing solutions to these problems. Our future plans also involve de-
veloping techniques that take into account server preferences for obtaining some
client credentials over others along with the client’s sensitivity preferences.
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