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Predicting MHC-II binding affinity using multiple
instance regression
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Abstract— Reliably predicting the ability of antigen peptides
to bind to major histocompatibility complex class II (MHC-
II) molecules is an essential step in developing new vaccines.
Uncovering the amino acid sequence correlates of the binding
affinity of MHC-II binding peptides is important for understand-
ing pathogenesis and immune response. The task of predicting
MHC-II binding peptides is complicated by the significant
variability in their length. Most existing computational methods
for predicting MHC-II binding peptides focus on identifying a
nine amino acids core region in each binding peptide. We formu-
late the problems of qualitatively and quantitatively predicting
flexible length MHC-II peptides as multiple instance learning
and multiple instance regression problems, respectively. Based
on this formulation, we introduce MHCMIR, a novel method
for predicting MHC-II binding affinity using multiple instance
regression. We present results of experiments using several
benchmark datasets that show that MHCMIR is competitive
with the state-of-the-art methods for predicting MHC-II binding
peptides. An online web server that implements the MHCMIR
method for MHC-II binding affinity prediction is freely accessible
at http://ailab.cs.iastate.edu/mhcmir.

Index Terms— MHC-II peptide prediction, multiple instance
learning, multiple instance regression.

I. INTRODUCTION

T -CELLS, a major type of the immune system cells, play a

central role in the cell-mediated immunity [1]. Cytotoxic T-

cells attack cells that have certain foreign or abnormal molecules

on their surfaces. They have also been implicated in transplant

rejection. Helper T-cells, or CD4+ T-cells, coordinate immune

responses by communicating with other cells. Once activated, they

divide rapidly and secrete cytokines that regulate the immune

response. T-cells are also targets of HIV infection, with the

loss of CD4+ T-cells being associated with the appearance of

AIDS symptoms. Regulatory T-cells are believed to be crucial

for the maintenance of immunological tolerance. T-cells epitopes

are short linear peptides that are generated by the cleavage of

antigenic proteins. The identification of T-cell epitopes in protein

sequences is important for understanding disease pathogenesis,

for identifying potential autoantigens, and for designing vaccines

and immune-based cancer therapies. Predicting whether a given

peptide will bind to a specific major histocompatibility complex

(MHC) molecule (and its binding affinity) is an important step

in identifying potential T-cell epitopes. Consequently, predicting
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MHC binding peptides is an important and challenging task in

immunoinformatics [2], [3].
There are two classes of MHC molecules: MHC class I (MHC-

I) molecules that are characterized by short binding peptides,

usually consisting of 9 amino acid residues; and MHC class

II (MHC-II) molecules that bind to peptides of variable length.

MHC-II binding peptides typically vary from 11 to 30 amino acids

in length, although shorter and longer MHC-binding peptides are

not entirely uncommon [4]. MHC-II molecules allow variable

length peptides to bind because the binding groove of MHC-II

molecule is open at both ends. However, it has been reported that

a 9-mer core region is essential for MHC-II binding activity of

peptides [4], [5]. Because the precise location of the 9-mer core

region of the MHC-II binding peptide is unknown, predicting

MHC-II binding peptides is more challenging than predicting

MHC-I binding peptides.
The computational methods that are currently available for

predicting MHC-II peptides can be grouped into two major

categories:

• Quantitative MHC-II binding prediction methods that at-

tempt to predict the binding affinities (e.g., IC50 values);

Examples of such methods include PLS-ISC [6], MHCPred

[7], SVRMHC [8], ARB [9], and NetMHCII [10].

• Qualitative MHC-II binding prediction methods that simply

classify MHC peptides into binders and non-binders; Ex-

amples of such methods include: (i) methods that use a

position weight matrix to model ungapped multiple sequence

alignment of MHC binding peptides [10], [11], [12], [13],

[14], or rely on Hidden Markov Models (HMMs) [15],

[16]; (ii) supervised machine learning methods based on

Artificial Neural Networks (ANN) [17], [18] or Support

Vector Machines (SVMs) [19], [20], [21], [22]; and (iii)

semi-supervised machine learning methods [23], [24].

Several MHC-II binding prediction methods focus on identify-

ing a putative 9-mer MHC-II binding core region, e.g., based

on the degree of match with a 9-mer MHC-II binding motif,

typically constructed using one of the motif finding algorithms.

For example, MEME [25], Gibbs sampling [26], matrix opti-

mization techniques (MOTs) (Singh and Raghava, unpublished

data), evolutionary algorithms [27], Monte Carlo (MC) search

[28], and linear programming [29] form the basis of MHC-II

binding peptide prediction methods RankPEP [11], Gibbs [13],

HLA-DR4Pred [20], MOEA [14], NetMHCII [10], and LP [23],

respectively. The success of these MHC-II prediction methods

in identifying MHC-II peptides relies on the effectiveness of the

corresponding motif-finding methods in recognizing the motif that

characterizes the 9-mer core of MHC-II binding peptides.
An inherent limitation of MHC-II peptide prediction methods

that focus on identifying 9-mer cores is their inability to exploit

potentially useful predictive information that may be available

outside the 9-mer core region. For example, Chang et al. [30]
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have shown that incorporating peptide length as one of the inputs

improves the performance of the predictor (relative to one that

uses only the features derived from the 9-mer core) in the case

of several MHC-II alleles; Nielsen et al. [10] have demonstrated

that including peptide flanking residues among inputs improves

the performance of their SMM-align method on 11 out of 14

MHC-II allele-specific datasets.

Recently, two MHC-II binding peptide prediction methods

[21], [22] that do not rely on the pre-identification of the 9-

mer binding cores in the training data have been proposed. Both

methods use the entire sequences of MHC-II peptides (as opposed

to only the 9-mer cores) for training MHC-II binding peptide

predictors. The first method [21] maps a variable length peptide

into a fixed length feature vector obtained from sequence-derived

structural and physicochemical properties of the peptide. The

second method [22] uses a sequence kernel that defines the pair-

wise similarity of variable-length peptides as the average score

of all possible local alignments between the corresponding amino

acid sequences. Both these representations of peptides can be used

to train predictors that classify a peptide of any length as an MHC-

II binder or a non-binder (i.e., qualitative MHC-II predictors),

or predict its MHC-II binding affinity (i.e., quantitative MHC-II

predictors). However, these two approaches do not help identify

the binding core of the query peptide.

Against this background, the main contributions of this paper

to the current state-of-the-art in predicting MHC-II peptides are

as follows:

(i) Novel multiple instance learning (MIL) and multiple in-

stance regression (MIR) formulations of the flexible length

MHC-II binding peptide prediction problem and the MHC-

II peptide affinity prediction problem, respectively. The

multiple instance representation of flexible length peptides

encodes a peptide sequence, regardless of its length, by a

bag of 9-mer subsequences. The label associated with each

bag could be either binary label indicating whether the cor-

responding peptide is an MHC-II binder or not or could be

numeric label indicating the corresponding binding affinity

of the peptide. An attractive feature of the proposed method

(that is also shared by some of the recently developed MHC-

II binding peptide prediction methods, e.g., [23], [31]) is

that it does not require the 9-mer cores in each binding

peptide to be identified prior to training the predictor. The

9-mer binding cores are identified by the learning algorithm

based on the features of MHC-II binders and non-binders

so as to optimize the predictive performance of the learned

model.

(ii) MILESreg, an adaptation of MILES [32] for multiple

instance regression on bags of amino acid sequences.

(iii) MHCMIR, a novel method for predicting the binding affin-

ity of flexible length MHC-II peptides using MILESreg.

The performance of MHCMIR estimated using statistical

cross-validation on a benchmark dataset, covering 16 HLA

and mouse MHC-II alleles, as well as on independent

test data, shows that MHCMIR is competitive with the

state-of-the-art methods for predicting MHC-II binding

peptides on a majority of MHC-II alleles. These results

demonstrate the utility and promise of multiple instance

representation of peptides in advancing the current state-

of-the-art in MHC-II binding peptide prediction. An im-

plementation of MHCMIR as an online web server for

predicting MHC-II binding affinity is freely accessible at

http://ailab.cs.iastate.edu/mhcmir.

II. MULTIPLE INSTANCE LEARNING

The multiple instance learning (MIL) problem, first introduced

by Dietterich et al. [33] was motivated by a challenging classi-

fication task in drug discovery where the goal is to determine

whether or not a given molecule is likely to bind to a desired

protein binding site. In this task, each molecule can adopt multiple

shapes (conformations) as a consequence of rotation of some

internal bonds. A good drug candidate is one that has one or

more conformations that bind tightly to the desired binding site

on a target protein whereas a poor drug candidate is one that

has no conformations that bind tightly to the desired binding site

on the target protein. A multiple instance learning formulation of

this problem [33] involves representing each candidate molecule

by a bag of instances, with each instance in the bag representing

a unique conformation assumed by the molecule. Under the so-

called standard multiple instance learning assumption, a molecule

(i.e., the corresponding bag of conformations) is labeled positive

if and only if at least one of the conformations in the bag binds

tightly to the desired binding site on the target protein; Otherwise,

it is labeled negative. More generally, a bag is labeled positive if

it contains at least one positive instance, and negative otherwise.

During classification, the MIL classifier is given a bag of instances

to be assigned a positive or negative label based on the instances

in the bag. What makes the MIL problem challenging is the fact

that the learning algorithm has access to the contents of, and the

label assigned to, each bag; but has no knowledge of the specific

instance(s) in a positively labeled bag that are responsible for the

positive label.

In the standard (single instance) supervised classifier learn-

ing scenario, typically, each instance (input to the classifier)

is represented by an ordered tuple of attribute values in the

instance space I = D1 × D2 × . . . × Dn, where Di is the

domain of the ith attribute. The output of the classifier is a

class label drawn from a set C of mutually exclusive classes. A

training example is a labeled instance in the form 〈Xi, c(Xi)〉
where Xi ∈ I and c : I → C is unknown function that

assigns to an instance Xi its corresponding class label c(Xi).

For simplicity we consider only the binary classification problem

in which C = {−1, 1}. Given a collection of training examples,

E = {〈X1, c(X1)〉, . . . , 〈Xn, c(Xn)〉}, the goal of the (single

instance) learner is to learn a function c∗ that approximates c as

well as possible (as measured by some pre-specified performance

criterion, e.g., accuracy of classification).

The MIL problem involves training a classifier to label bags
of instances (as opposed to individual instances as is usually

the case in the standard supervised learning scenario). Let

B = {B1, B2, . . . , Bm} be a collection of bags. Let Bi ={
Xi1, Xi2, . . . , Xiki

}
denote a bag of ki instances (ki ≥ 1). The

set of MIC training examples, EMI , is a collection of ordered

pairs 〈Bi, f(Bi)〉 where f is unknown function that assigns to

each bag Bi a class label f(Bi) ∈ {−1, 1}. Under the standard

multiple instance learning assumption [33], f(Bi) = −1 iff

∀j ∈ {1 · · · ki}, c(Xij) = −1; and f(Bi) = 1 iff ∃j ∈ {1 · · · ki},
such that c(Xij) = 1. Given EMI , a collection of MI training

examples, the goal of an MIC learner is to learn as good an

approximation of the function f as possible (as measured by some
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Fig. 1. A multiple instance classifier learning problem. Unfilled shapes
represent instances from positively labeled bags; filled shapes represent
instances from negatively labeled bags. Instances extracted from the same
bag are shown using the same shape. This figure is adapted from Figure 14
in [33].

pre-specified performance measure e.g., accuracy of classification

of bags).

Dietterich et al. [33] proposed a solution to the MIL problem

under the standard MIL assumption using a hypothesis space of

axis-parallel rectangles (see Figures 1 and 2). Figure 1 (adapted

from [33]) shows a schematic diagram of the MIL problem

wherein instances are represented as points in a two dimensional

Euclidean instance space. Instances that belong to the same

bag are shown using the same shape. Unfilled shapes represent

instances that belong to the positively labeled bags; filled shapes

represent instances that belong to the negatively labeled bags.

An axis parallel rectangle is used to classify bags as follows: a

bag is assigned a positive label if at least one of its instances

is contained within the rectangle; and a negative label otherwise.

In this setting, given a set of labeled bags, the goal of the MIL

algorithm is to identify an axis parallel rectangle that includes at

least one unfilled point of each shape (i.e., at least one positively

labeled instance from each positively labeled bag) and does not

include any filled points (i.e., instances from negatively labeled

bags). Such a solution is shown in Figure 2.

Subsequently, many solutions to the MIL problem and its

variants have been investigated in the literature. Ramon and De

Raedt [34] introduced a variant of the back-propagation algorithm

for training a neural network for multiple instance classification

problem. Wang and Zucker [35] proposed variants of the k-

nearest neighbor (k-NN) algorithm. Maron and Lozano-Perez

[36] introduced the diverse density (DD) framework for solving

multiple instance classifier learning problems. The basic idea

behind the DD method is to locate a point in the feature space that

is close to at least one instance from every positive bag and as far

away as possible from instances in the negative bags. Zhang and

Goldman proposed EM-DD [37] which improves on DD by using

Expectation Maximization (EM). The difficulty of MIL comes

from the ambiguity of not knowing which of the instances in a

bag is most likely to be responsible for its positive label. EM-DD

models the mapping of instances to labels assigned to the bag

using a set of hidden variables, which are estimated using the

EM. EM-DD starts with an initial guess of the solution (obtained

Fig. 2. Solving the MIL problem using axis parallel rectangles (APR).
The solid rectangle represents the initial solution, a rectangle that covers
all instances that belong to positively labeled bags. The dashed rectangle
represents the final APR solution, a rectangle that covers at least one positive
instance from each positively labeled bag and no instances from negatively
labeled bags. This figure is adapted from Figure 15 in [33].

using original DD algorithm), and refines the guess by applying

EM. Andrews et al. [38] and Gartner et al. [39] have proposed

adaptations of support vector machines that involve changing

the objective function or the kernel function to suit the multiple

instance classification problem. Ray and Craven [40] compared

several multiple instance classifier learning algorithms as well

as their standard supervised learning counterparts. Scott et al.

[41] introduced a generalization of the multiple instance learning

model in which all of the instances in a bag are used to determine

its label. Tao et al. [42] have explored kernel functions for the

generalized multiple instance learning problem.

MIL algorithms have been used, with varying degrees of

success, on a number of practical applications including: content-

based image retrieval (CBIR) [43], [44] in which each image

is viewed as a bag of objects (image regions) and an image is

assigned a label based on the presence or absence of specific

objects; web page classification [45] in which each web page is

modeled by a bag of pages that it links to, and is labeled positive

based on the user’s interest in at least one of the pages that a

given page links to; and computer-aided diagnosis [46] in which

each medical case is modeled by a bag of medical images (e.g.,

CT scans, X-ray, MRI etc) and is labeled positively if at least one

of these medical images indicate malignant tumors and lesions.

The multiple instance regression (MIR) problem is a general-

ization of the MIL problem where each bag is labeled with a

real number (as opposed to a discrete class label). Several MIR

algorithms have been reported in the literature including [37],

[47], [48].

A. MIL formulation of the MHC-II binding peptide prediction
problem

We now proceed to introduce an MIL formulation of the

variable length MHC-II binding peptide prediction problem.

Recall that a 9-mer core region is believed to be essential

for MHC-II binding [4], [5]. We represent each variable length

MHC-II peptide sequence by a bag of all 9-mer subsequences

extracted from it. Under the standard MIL assumption, we assign

a positive label to a bag of 9-mers extracted from an MHC-II
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binding peptide; and a negative label to a bag of 9-mers extracted

from a non MHC-II binding peptide. Figure 3 shows an example

of an MHC-II binding peptide and its mapping into a bag of 9-

mer subsequences. It should be noted that labels are associated

with bags of 9-mers, and not individual 9-mers. Consequently, in

preparing the training data, we do not need to know which of the

9-mers in a bag (if any) is a binding core.

The problem of learning to predict the MHC-II binding affini-

ties of flexible length peptides can be formulated as a multiple

instance regression problem in a manner similar to that described

above for the classification setting, simply by mapping each

peptide into a bag of 9-mers and substituting the class labels

with the measured real-valued binding affinities for each peptide.

In summary, both qualitative and quantitative predictions of

the MHC-II binding activity of peptides can be obtained using

predictive models based on the multiple instance formulations of

the corresponding classification and regression problems (respec-

tively). The resulting problems can be solved using the multiple

instance learning algorithms or multiple instance regression algo-

rithms as appropriate. In this paper, we focus on the quantitative

prediction of the binding activity of MHC-II peptides using a

multiple instance regression algorithm.

III. MATERIALS AND METHODS

A. Cross-validation dataset

We used the IEDB benchmark dataset, introduced by Nielsen

et al. [10], in our experiments. The dataset consists of peptides

along with their IC50 binding affinities for 14 HLA-DR and

three H2-IA alleles (hereafter referred to as IEDB dataset for

short). Details of the IEDB benchmark dataset are summarized in

Table I. Because each peptide is labeled with its binding affinity

(IC50) value, peptides were categorized into binders and non-

binders using a binding affinity threshold of 500 nM [10]. To

avoid overly optimistic estimates of the performance of MHC-

II binding peptide prediction methods, it is important to ensure

that the peptide sequences used to evaluate the performance of

the predictor do not share a high degree of sequence overlap

(or similarity) with peptide sequences in the training set used to

train the predictor. Nielsen et al. [10] have provided a partitioning

of each IEDB allele dataset into five subsets so as to minimize

the degree of sequence overlap between any pair of subsets.

Following [14], from this data, we excluded the DRB3-0101

MHC-II allele dataset in our experiments because of its highly

skewed distribution (only 3 binders as opposed to 99 non-binders).

We used the data for the rest of the MHC-II alleles in our

5-fold cross-validation experiments. That is, for each MHC-II

allele, in each of the 5 runs of a cross-validation experiments,

4 of the 5 subsets of the allele-specific data were used for

training the predictor and the remaining subset was used as the

test set for evaluating the performance of the trained predictor.

The predictions on the 5 disjoint test sets used in the 5 cross-

validation runs were then combined to obtain a single estimate of

performance.

B. Independent validation datasets

We assessed the performance of the predictors trained using

MHCMIR method on IEDB allele datasets [10] by measuring

their performance on three independent validation datasets: i)

IDS-Wang, a dataset published by Wang et al. [49], which is a

comprehensive dataset of previously unpublished 10,017 MHC-

II binding affinities spanning 114 proteins and covering 14 HLA

alleles and two mouse MHC-II alleles (See Table V); ii) IDS-

Lin, a dataset published by Lin et al. [50], which is a set of 103

peptides extracted from four antigens and covering seven HLA

alleles (DRB1*0101, 0301, 0401, 0701, 1101, 1301, and 1501);

iii) IDS-Nielsen, a binding core identification dataset published by

Nielsen et al. [51], which is a set of 15 MHC-peptide complexes

extracted from Protein Data Bank (PDB) database [52]. For each

peptide in these structures, the 9-mer binding core was manually

identified by determining which peptide residue is pound in the

P1 pocket of the MHC-II molecule.

C. MHCMIR method

In order to explore the feasibility of predicting MHC-II binding

activity of peptides based on the proposed multiple instance

regression formulation, we developed MHCMIR, a novel method

for predicting the binding affinity of MHC-II peptides using

multiple instance regression. Given a dataset of MHC-II peptides

where each peptide is labeled with its experimentally determined

binding affinity (IC50 value), MHCMIR maps each peptide to its

corresponding bag of 9-mers and uses the data in its multiple

instance representation to train a multiple instance regression

model. The learned multiple instance regression model can be

used to predict the affinity of any query peptide by providing as

input to the model the bag of 9-mers representation of the query

peptide sequence.

In this study, we chose to adapt MILES (multiple instance

learning via embedded selection) [32], an algorithm for training

multiple instance classifiers, to work in the regression setting.

MILES maps each bag of instances into a meta instance con-

structed by applying an Euclidean distance based similarity mea-

sure to instances within each bag. Then, a 1-norm SVM classifier

[53] is trained on the resulting dataset of meta instances. The

competitive performance of MILES, and its low computational

cost of training are some of its main advantages relative to other

MIL algorithms [32].

Adapting the MILES algorithm for training a multiple instance

classifier into a multiple instance regression algorithm is rather

straightforward. All we need to do is to replace the 1-norm

SVM classifier by a support vector regression (SVR) model [54].

Because in our application, the bags to be labeled comprise 9-

mers over the amino-acid alphabet, we replaced the Euclidean

distance used in MILES for transforming a bag of instances into

a meta instance by a distance function that is customized for cal-

culating the distance between amino acid sequences. This distance

function is based on the BLOSUM62 amino acid substitution

matrix [55].

The pseudocode shown in Algorithm 1 summarizes MILESreg,

our proposed multiple instance regression algorithm. The function

dist(s1, s2) computes the distance between two 9-mers, s1 and

s2. Note that BLOSUM62(aa1, aa2) is the corresponding BLO-

SUM62 matrix entry for the amino acids aa1 and aa2 and s[i]

denotes the amino acid in the ith position in the sequence s.

Predicting the label of a test bag Bi is performed in two steps.

First, Bi is mapped into a meta instance using the set of training

instances C and the procedure described in lines 3 to 6 in the

pseudocode. Then, a predicted real value is assigned to the meta-

instance using the learned support vector regression model.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, XXX 2010 5

Fig. 3. An example of an MHC-II binding peptide and its corresponding multiple instance representation. Bold subsequence indicates the 9-mer binding
core. Mapping the peptide sequence into a bag does not require the identification of the 9-mer binding core because no labels are associated with the instances
of the bag.

Algorithm 1 Training MILESreg

1: Input : B = {〈B1, y1〉, . . . 〈Bm, ym〉} set of training bags

2: Let C =
{
x1, . . . , xn

}
be set of all instances extracted from

B

3: for all i such that 〈Bi, yi〉 ∈ B do
4: Let Ii be a new instance of n attributes

5: for all k such that instance xk ∈ C do
6: Set kth attribute in Ii to minj dist(xij , x

k)

7: end for
8: end for
9: Build an SVR model using meta instances I

10:

11: Function: dist

12: Parameters : s1 and s2 two 9-mer subsequences

13: for i = 1 to 9 do
14: d+ = BLOSUM62(s1[i], s2[i])

15: end for
16: if (d ≤ 0) then
17: return 1

18: else
19: return 1

d
20: end if

D. Performance evaluation

We used the area under Receiver Operating Characteristic

(ROC) curve for a predictor as a measure of its performance on a

classification task. The ROC curve is obtained by plotting the true

positive rate as a function of the false positive rate or, equivalently,

sensitivity versus (1-specificity) as the discrimination threshold

of the binary classifier is varied. Each point on the ROC curve

corresponds to the performance of the classifier at a specific

choice of the classification threshold, i.e., at a particular choice

of the tradeoff between true positive rate and false positive rate.

The area under ROC curve (AUC) is a useful summary statistic

for comparing two ROC curves. The AUC corresponds to the

probability that a randomly chosen positive example will be

ranked higher than a randomly chosen negative example by the

classifier when the numeric output (before applying the threshold)

or score assigned by the classifier to an input sample is used to

rank the input sample. The higher the score assigned to a sample,

the higher the rank. An ideal classifier will have an AUC = 1,

whereas a classifier that assigns labels at random will have an

AUC = 0.5, and any classifier with performance that is better

than random will have an AUC value that lies between 0,5 and

1. Swets [56] has suggested that the values AUC ≥ 0.9 indicates

excellent, 0.9 > AUC ≥ 0.8 good, 0.8 > AUC ≥ 0.7 marginal,

and AUC < 0.7 poor predictions.

In IEDB, IDS-Lin, and IDS-Wang datasets, peptides are labeled

with their experimentally reported binding affinities (e.g., IC50

values). However, estimating the AUC for the predictors in a

classification setting requires the binding affinities to be mapped

to a binary class label (MHC-II binder versus non-binder) for each

peptide. Different choices of the cutoff on the binding affinity

values can yield different classifications for the same peptide.

Several different cutoffs have been used in previous studies [9],

[10], [49], [50]. Recently, Wang et al. [49] have examined the

effect of different choices of the cutoff (in the range between

50 nM and 5000 nM) on the estimated performance of MHC-II

prediction methods as measured by the AUC. They concluded

that the estimated AUC is relatively independent of the specific

choice of the cutoff over this range. In our experiments, in order to

ensure fair comparison between the various methods, we labeled

the peptides as MHC-II binders versus non-binders using the same

cutoffs on binding affinity as those used by the developers of each

of the respective benchmark datasets. Specifically, we used 500

nM cutoff for IEDB and 1000 nM cutoff for IDS-Lin and IDS-

Wang datasets.

IV. RESULTS

A. Cross-validation evaluation of MHCMIR

We compared the predictive performance of MHCMIR with

that of several MHC-II binding peptide prediction methods re-

ported in the literature: Gibbs sampler [13], TEPITOPE [57],

SVRMHC [8], MHCPred [7], ARB [9], NetMCHII (also called

SMM-align) [10], and MOEA [14]. Because most reports of
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MHC-II binding activity prediction methods in the literature focus

on qualitative prediction of MHC-II binding activity, although

MHCMIR is able to produce both quantitative and qualitative

predictions of MHC-II binding activity (the latter by comparing

the predicted binding affinity value with a threshold), our compar-

isons focus on qualitative predictions of MHC-II binding activity.

Specifically, we compared the estimated area under ROC curve

(AUC) [56] for the different methods. In the case of MHCMIR,

Gibbs sampler, NetMHCII [10], and MOEA [14] the performance

estimates were obtained using 5-fold cross-validation on the

partitioning of each MHC-II allele dataset into 5 subsets, ensuring

minimal sequence overlap between the different subsets provided

by Nielsen et al. [10]. Because the codes for the SVRMHC,

MHCPred, and ARB methods are not readily available, estimates

of the performance of these methods were obtained by submitting

the data to the online web servers that implement the respective

methods (using the default parameter setting for each server). As

noted in [10], the reported performance of ARB method should

be interpreted with caution because the ARB method has been

trained on data from IEDB database [58], which, because of

the overlap between the training and test data, gives it an unfair

advantage over other methods.

Table II compares the predictive performance, in terms of AUC,

of the different MHC-II peptide prediction methods. “-” indicates

information that is unavailable either because the online server

does not provide predictions on the corresponding allele (e.g.,

SVRMHC, MHCPred, and ARB on a number of allele datasets)

or because the data was not reported in the published studies of

the predictor (e.g., detailed results of Gibbs method on the three

mouse allele datasets were not provided in [10]).

In addition to the AUC, Table III compares the performance

of the different MHC-II peptide prediction methods as estimated

by the Pearson’s correlation coefficient [59] between the predicted

and actual labels. MOEA has been excluded from this comparison

because its performance has been reported using only AUC [14].

Overall, these results show that the performance of MHCMIR is

competitive with that of the state-of-the-art methods for predicting

MHC-II binding peptides. However, no single method appears to

consistently outperform all others. This observation underscores

the practical utility of consensus methods for predicting MHC-II

binding peptides [49].

B. Evaluation of MHCMIR predictive performance on validation
test sets

We used three independent validation datasets for evaluating

MHC-II peptide prediction methods. The first dataset, published

by Wang et al. [49], which we call IDS-Wang, is a comprehen-

sive data for previously unpublished MHC-II binding affinities

covering 16 human and mouse MHC-II allele-specific datasets.

The second dataset, published by Lin et al. [50], which we call

IDS-Lin, is a set of 103 peptides extracted from four antigens

and covering seven HLA alleles (DRB1*0101, 0301, 0401, 0701,

1101, 1301, and 1501). We also considered a third dataset,

published by Nielsen et al. [51], which we call IDS-Nielsen,

of 15 MHC-peptide complexes extracted from Protein Data

Bank (PDB) database [52] to assess performance of MHCMIR

in identifying the 9-mer binding cores. Here, we compare the

predictive performance of MHCMIR with that of several MHC-

II peptide prediction servers on IDS-Wang, IDS-Lin, and IDS-

Nielsen, following the procedures described in by Wang et al.

TABLE I

SUMMARY OF THE IEDB BENCHMARK DATASET [10]. BINDING PEPTIDES

WERE IDENTIFIED USING AN IC50 BINDING THRESHOLD OF 500 NM.

Dataset Binders Non-binders
DRB1-0101 920 283
DRB1-0301 65 409
DRB1-0401 209 248
DRB1-0404 74 94
DRB1-0405 88 83
DRB1-0701 125 185
DRB1-0802 58 116
DRB1-0901 47 70
DRB1-1101 95 264
DRB1-1302 101 78
DRB1-1501 188 177
DRB3-0101 3 99
DRB4-0101 74 107
DRB5-0101 112 231
H2-IAb 43 33
H2-IAd 56 286
H2-IAs 35 91

[49], Lin et al. [50] and Nielsen et al. [51], respectively.

Table V compares the AUC scores of MHCMIR with that

of several MHC-II peptide prediction servers on the validation

dataset IDS-Wang. If we compare the servers using the average

AUC across all available MHC-II allele datasets following the

procedure used by Wang et al. [49], MHCMIR, SMM-align [10]

and PROPRED [12] have the best average AUC value (0.73). If

we rank each server according to the number of datasets on which

it has the best reported performance divided by the number of

datasets available to the server, then MHCMIR and PROPRED

have the best ranks (5/14 and 4/11, respectively), followed by

SMM-align (4/15), ARB (2/15), and RANKPEP (1/14).

C. Statistical analysis of cross-validation results

In comparing two classifiers, statistical tests can be employed to

determine whether the difference in performance between the two

classifiers is significant or not. For comparing multiple classifiers

on multiple datasets, we followed a procedure that has recently

been recommended by Demšar [60] which involves comparing

the average rank of the classifiers across the different datasets.

The statistical analysis of the performance comparisons was

limited to NetMHCII, MOEA, and MHCMIR methods because

these are only the methods with reported performance (AUC) on

each of the allele datasets. First, the different classifiers are ranked

on the basis of their observed performance on each dataset (see

Table IV). Then we used the Friedman test to determine whether

the measured average ranks are significantly different from the

mean rank under the null hypothesis. We found that at 0.05 level

of significance the null hypothesis could not be rejected. Hence,

we concluded that the reported performances of the three methods

are not significantly different.

Figure 4 shows the predictive performance (in terms of AUC)

of MHCMIR on the validation dataset IDS-Lin. The results

were obtained by submitting the four antigen sequences to the

MHCMIR server using the default peptide length setting of 15. On

each submitted protein sequence, MHCMIR returns a prediction

for each 15-mer in the submitted sequence. To compare MHCMIR

predictions with experimental data in IDS-Lin, which includes

peptides ranging from 15 to 19 amino acids in length, we used

two strategies that have been used for a similar purpose in [50]:
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TABLE II

COMPARISON OF AUC VALUES FOR THE DIFFERENT MCH-II PREDICTION METHODS ON THE IEDB BENCHMARK DATASET. RESULTS FOR GIBBS,

TEPITOPE, SVRMHC, MHCPRED, ARB, AND NETMHCII ARE TAKEN FROM [10]. RESULTS OF MOEA ARE OBTAINED FROM [14]. THE RESULTS OF

THE BEST-PERFORMING METHOD ARE HIGHLIGHTED IN BOLD. “-” INDICATES PERFORMANCE ESTIMATES THAT ARE CURRENTLY UNAVAILABLE (SEE

TEXT FOR DETAILS).

Dataset Gibbs TEPITOPE SVRMHC MHCpred ARB NetMHCII MOEA MHCMIR
DRB1-0101 0.676 0.647 0.623 0.565 0.666 0.716 0.651 0.778
DRB1-0301 0.722 0.734 - - 0.799 0.765 0.778 0.761
DRB1-0401 0.759 0.754 0.739 0.606 0.737 0.758 0.725 0.760
DRB1-0404 0.743 0.829 - - 0.788 0.785 0.786 0.794
DRB1-0405 0.724 0.790 0.701 - 0.724 0.735 0.756 0.721
DRB1-0701 0.695 0.768 - 0.647 0.749 0.787 0.735 0.754
DRB1-0802 0.721 0.769 - - 0.803 0.756 0.773 0.772
DRB1-0901 0.734 - - - 0.711 0.775 0.712 0.664
DRB1-1101 0.715 0.710 - - 0.727 0.734 0.759 0.734
DRB1-1302 0.716 0.720 - - 0.917 0.818 0.820 0.852
DRB1-1501 0.672 0.726 0.730 - 0.792 0.736 0.743 0.774
DRB4-0101 0.742 - - - 0.800 0.736 0.759 0.801
DRB5-0101 0.618 0.653 0.649 - 0.677 0.664 0.660 0.675
H2-IAb - - - - 0.662 0.908 0.919 0.894
H2-IAd - - - - 0.819 0.818 0.855 0.775
H2-IAs - - - - - 0.898 0.889 0.771

TABLE III

COMPARISON OF PEARSON’S CORRELATION COEFFICIENT VALUES FOR THE DIFFERENT MCH-II PREDICTION METHODS ON THE IEDB BENCHMARK

DATASET. RESULTS FOR GIBBS, TEPITOPE, SVRMHC, MHCPRED, ARB, AND NETMHCII ARE OBTAINED FROM [10]. THE RESULTS OF THE

BEST-PERFORMING METHOD ARE HIGHLIGHTED IN BOLD. “-” INDICATES PERFORMANCE ESTIMATES THAT ARE CURRENTLY UNAVAILABLE (SEE TEXT

FOR DETAILS).

Dataset Gibbs TEPITOPE SVRMHC MHCpred ARB NetMHCII MHCMIR

DRB1-0101 0.260 0.333 0.213 0.146 0.376 0.413 0.505
DRB1-0301 0.453 0.227 - - 0.506 0.466 0.520
DRB1-0401 0.482 0.508 0.461 0.176 0.434 0.499 0.488

DRB1-0404 0.433 0.609 - - 0.529 0.481 0.476

DRB1-0405 0.428 0.542 0.409 - 0.420 0.417 0.444

DRB1-0701 0.353 0.460 - 0.309 0.410 0.531 0.432

DRB1-0802 0.375 0.472 - - 0.517 0.461 0.457

DRB1-0901 0.398 - - - 0.440 0.487 0.343

DRB1-1101 0.385 0.382 - - 0.421 0.426 0.455
DRB1-1302 0.400 0.411 - - 0.763 0.594 0.624

DRB1-1501 0.305 0.453 0.481 - 0.561 0.461 0.535

DRB4-0101 0.417 - - - 0.507 0.403 0.523
DRB5-0101 0.288 0.313 0.322 - 0.330 0.347 0.335

H2-IAb - - - - - - 0.724

H2-IAd - - - - - - 0.518

H2-IAs - - - - - - 0.465

the predicted binding affinity of the target variable length peptide

was set to (i) the maximum score over the overlapping 15-mer

peptides spanning the length of a target peptide; ii) the average

score of the overlapping 15-mer peptides spanning the length of

a target peptide. Figure 4 shows that the two strategies produces

almost identical results for all the alleles except DRB*1101 and

DRB*1501 where the first method yields slightly higher AUC

values. Because the results of Lin et al. [50] are unavailable in a

tabular form, it is not possible to directly compare the 21 servers

evaluated in [50] with MHCMIR. However, it is reasonable to

infer from Figure 1 in [50], that the performance of MHCMIR

on each allele-specific dataset is highly competitive with the best

performing servers among the 21 servers compared by Lin et al.

[50].

Finally, we assessed the performance of MHCMIR in identi-

fying the 9-mer binding cores on IDS-Nielsen, a dataset of 15

MHC-peptide complexes [51]. Each query peptide was submitted

to MHCMIR server. The MHC-II allele option was selected to

reflect the target allele (See Table VI). To predict 9-mer cores,

the peptide length was set to 9 amino acids. Therefore, MHCMIR

server returned a prediction score for each 9-mer sub-peptide. If

we consider the highest scoring 9-mer as the predicted MHC-

II binding core, then MHCMIR is found to correctly identify the

MHC-II binding cores in 9 out of the 15 MHC-II binding peptides

(as compared to NetMHCIIpan which correctly identified 14

binding cores) (See Table VI). However, if we relax the criterion

for correct identification of a binding core so as to consider a

binding core as correctly identified if it is one of the top 2 highest
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TABLE IV

AUC VALUES FOR NETMHCII, MOEA, AND MHCMIR METHODS EVALUATED ON IEDB BENCHMARK DATASETS. RESULTS OF NETMHCII AND

MOEA ARE TAKEN FROM [10] AND [14], RESPECTIVELY. FOR EACH DATASET, THE RANK OF EACH CLASSIFIER IS SHOWN IN PARENTHESES.

Dataset NetMHCII MOEA MHCMIR

DRB1-0101 0.716(2) 0.651(3) 0.778(1)

DRB1-0301 0.765(2) 0.778(1) 0.761(3)

DRB1-0401 0.758(2) 0.725(3) 0.760(1)

DRB1-0404 0.785(3) 0.786(2) 0.794(1)

DRB1-0405 0.735(2) 0.756(1) 0.721(3)

DRB1-0701 0.787(1) 0.735(3) 0.754(2)

DRB1-0802 0.756(3) 0.773(1) 0.772(2)

DRB1-0901 0.775(1) 0.712(2) 0.664(3)

DRB1-1101 0.734(2) 0.759(1) 0.734(2)

DRB1-1302 0.818(3) 0.820(2) 0.852(1)

DRB1-1501 0.736(3) 0.743(2) 0.774(1)

DRB4-0101 0.736(3) 0.759(2) 0.801(1)

DRB5-0101 0.664(2) 0.660(3) 0.675(1)

H2-IAb 0.908(2) 0.919(1) 0.894(3)

H2-IAd 0.818(2) 0.855(1) 0.775(3)

H2-IAs 0.898(1) 0.889(2) 0.771(3)

Avg 0.774(2.13) 0.770(1.88) 0.768(1.94)

Fig. 4. Performance of MHCMIR on IDS-Lin dataset [50]. Black bars for maximum 15-mer scores and white bars for average 15-mer scores.

scoring 9-mers , then MHCMIR is found to correctly identify the

binding cores of the entire set of 15 MHC-II binding peptides.

A possible explanation for this result is that MILESreg, the MIR

algorithm used to train the MHC-II binding peptide predictors in

MHCMIR, operates under the assumption that one or more 9-mer

sub-peptides of the target peptide contribute the binding affinity

of the peptide.

D. Reduced multiple instance representation of MHC-II peptides

We have defined the multiple instance representation of a

peptide p of length n as simply a bag of (n− 9 + 1) 9-mer

sub-peptides. However, there is growing evidence [4], [61] that

the residue in the first position of the 9-mer binding core has

to be hydrophobic amino acid (Y, F, W, I, V, L or M). We can

exploit this information to reduce the number of 9-mers per bag by

eliminating the 9-mers that do not contain a hydrophobic residue

at their first positions (P1). Figure 5 compares the AUC values

of MILESreg predictors on IEDB dataset when each peptide is

represented by a bag of its constituent 9-mers and by a bag of a

subset of its 9-mers that have a hydrophobic amino acid residue

in their first positions. The results show that MILESreg predictors

using the latter (reduced) multiple instance representation of

MHC-II peptides have better AUC values than their counterparts

that use the original multiple instance representations on 7 allele

datasets (DRB1*0404, 0701, 0802, 0901, 1302, DRB5*0101, and

H2-IAd) out of the 16 datasets.

E. Incorporating peptide flanking residues into MHC-II peptide
multiple instance representation

Nielsen et al. [10] has noted that amino acid composition of

peptide flanking residues (PFR) plays some role in stabilizing the

peptide:MHC-II complex. Based on this observation, Nielsen et

al. [10] showed that encoding the amino acid composition of the

PFR as additional inputs to their SMM-align predictors slightly

but consistently improves its predictive performance.

One way of incorporating PFR into our multiple instance

representation of MHC-II peptides is to simply represent each

peptide as a bag of 10, 11, or 12 -mers extracted from it. However,

this representation does not necessarily reflect the widely held

belief that the binding cores of MHC-II binding peptides are 9
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TABLE V

COMPARISON OF AUC VALUES FOR DIFFERENT MHC-II PEPTIDE PREDICTION METHODS ON IDS-WANG DATASET [49]. THE RESULTS OF THE

BEST-PERFORMING METHOD ARE HIGHLIGHTED IN BOLD. “-” INDICATES PERFORMANCE ESTIMATES THAT ARE CURRENTLY UNAVAILABLE (SEE TEXT

FOR DETAILS).

Allele peptides ARB MHC2PRED MHCPRED PROPRED RANKPEP SMM-align SVRMHC SYFPEITHI MHCMIR

DRB1*0101 3882 0.76 0.67 0.62 0.74 0.70 0.77 0.69 0.71 0.81
DRB1*0301 502 0.66 0.53 - 0.65 0.67 0.69 - 0.65 0.64

DRB1*0401 512 0.67 0.52 0.60 0.69 0.63 0.68 0.66 0.65 0.73
DRB1*0404 449 0.72 0.64 - 0.79 0.66 0.75 - - 0.73

DRB1*0405 457 0.67 0.51 - 0.75 0.62 0.69 0.62 - 0.73

DRB1*0701 505 0.69 - 0.63 0.78 0.58 0.78 - 0.68 0.83

DRB1*0802 245 0.74 0.70 - 0.77 - 0.75 - - 0.74

DRB1*0901 412 0.62 0.48 - - 0.61 0.66 - - 0.62

DRB1*1101 520 0.73 0.60 - 0.80 0.70 0.81 - 0.73 0.81
DRB1*1302 289 0.79 0.54 - 0.58 0.52 0.69 - - 0.72

DRB1*1501 520 0.70 0.63 - 0.72 0.62 0.74 0.64 0.67 0.73

DRB3*0101 420 0.59 - - - - 0.68 - - -

DRB4*0101 245 0.74 0.61 - - 0.65 0.71 - - 0.76
DRB5*0101 520 0.70 0.59 - 0.79 0.73 0.75 0.63 - 0.71

IAB 500 0.80 0.56 0.51 - 0.74 0.75 - - 0.69

IED 39 - - 0.53 - 0.83 - - - -

Mean 0.71 0.58 0.58 0.73 0.66 0.73 0.65 0.68 0.73

Min 0.59 0.48 0.51 0.58 0.52 0.66 0.62 0.65 0.62

Max 0.80 0.70 0.63 0.80 0.83 0.81 0.69 0.73 0.83

TABLE VI

IDENTIFICATION OF MHC-II PEPTIDES BINDING CORES IN A DATASET OF 15 HLA-DRB1 RESTRICTED PEPTIDES. COLUMNS IN THE TABLE INDICATE

THE HLA ALLELE, PROTEIN DATA BANK (PDB) IDENTIFIER, LENTH OF THE PEPTIDE, PEPTIDE SEQUENCE, THE BINDING CORE AS DETERMINED FROM

THE PROTEIN STRUCTURE, AND THE BINDING CORES AS PREDICTED BY NETMHCIIPAN AND MHCMIR METHODS. ERRONEOUS PREDICTED CORES ARE

UNDERLINED.

Allele PDB ID length peptide core NetMHCIIpan MHCMIR

DRB1*0101 2FSE 14 AGFKGEQGPKGEPG FKGEQGPKG FKGEQGPKG FKGEQGPKG

DRB1*0101 1KLG 15 GELIGILNAAKVPAD IGILNAAKV IGILNAAKV IGILNAAKV

DRB1*0101 1SJE 16 PEVIPMFSALSEGATP VIPMFSALS VIPMFSALS VIPMFSALS

DRB1*0101 1FYT 13 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL

DRB1*0101 1AQD 15 VGSDWRFLRGYHQYA WRFLRGYHQ WRFLRGYHQ FLRGYHQYA

DRB1*0101 1PYW 11 XFVKQNAAALX FVKQNAAAL FVKQNAAAL FVKQNAAAL

DRB1*0101 1T5X 15 AAYSDQATPLLLSPR YSDQATPLL YSDQATPLL YSDQATPLL

DRB1*0301 1A6A 15 PVSKMRMATPLLMQA MRMATPLLM MRMATPLLM VSKMRMATP

DRB1*0401 2SEB 12 AYMRADAAAGGA MRADAAAGG YMRADAAAG YMRADAAAG

DRB1*0401 1J8H 13 PKYVKQNTLKLAT YVKQNTLKL YVKQNTLKL YVKQNTLKL

DRB1*1501 1BX2 15 ENPVVHFFKNIVTPR VHFFKNIVT VHFFKNIVT VHFFKNIVT

DRB1*1501 1YMM 23 ENPVVHFFKNIVTPRGGSGGGGG VHFFKNIVT VHFFKNIVT VHFFKNIVT

DRB5*0101 1H15 14 GGVYHFVKKHVHES YHFVKKHVH YHFVKKHVH FVKKHVHES

DRB5*0101 1FV1 20 NPVVHFFKNIVTPRTPPPSQ FKNIVTPRT FKNIVTPRT FFKNIVTPR

DRB5*0101 1ZGL 15 VHFFKNIVTPRTPGG FKNIVTPRT FKNIVTPRT FFKNIVTPR

amino acids long [4], [5]. However, from a machine learning

perspective, whether incorporating the PFR data into the classifier

input does indeed improve the accuracy of MHC-II binding

peptide predictors is an empirical question. As such, this question

can be answered by comparing the performance of classifiers that

incorporate PFR data as input to the predictors with those that do

not.

Table VII compares the AUC values of MILESreg on the IEDB

dataset when each peptide is represented as a bag of 9-mers (i.e.,

not incorporating PFR) as opposed to when each peptide is repre-

sented using 10, 11, and 12 -mers (i.e., incorporating PFR). Our

results show that, in the case of MILESreg, incorporating PFR

does not yield improvements over of the baseline performance of

the original bag of 9-mers representation. There are two possible

explanations for the discrepancy between our results and those of

Nielsen et al. [10] with respect to the benefits of incorporating

PFR into the representation of MHC-II peptides: (i) MILESreg

assumes that one or more of the 9-mers extracted from a peptide

contribute to its binding affinity whereas SMM-align [10] assumes

a single 9-mer determines the MHC-II binding affinity of the

peptide; (ii) SMM-align uses an encoding of PFR in terms of

their amino acid composition whereas in our experiments we used

an encoding of PFR in the form of bags of 10, 11, and 12-mer

sequences. It would therefore be interesting to experiment with

several alternative MIL algorithms using different encodings of

PFR.

V. SUMMARY AND DISCUSSION

Recently, several comparative studies [49], [50] suggest that

the performance of MHC-II peptide prediction method is far
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Fig. 5. AUC values of MILESreg predictors on IEDB dataset when each peptide is represented as a bag of all 9-mers (black bars) and as a bag of only
9-mers with hydrophobic amino acid at P1 position (white bars), respectively.

TABLE VII

COMPARISON OF AUC VALUES OF MILESREG PREDICTORS EVALUATED USING 5-FOLD CROSS-VALIDATION ON IEDB DATASET USING BAGS OF 9, 10,

11, AND 12 -MERS, RESPECTIVELY. THE RANK OF EACH CLASSIFIER IS SHOWN IN PARENTHESES.

Allele 9-mer 10-mer 11-mer 12-mer

DRB1*0101 0.780(1.0) 0.776(4.0) 0.778(2.5) 0.778(2.5)

DRB1*0301 0.772(1.0) 0.763(2.0) 0.758(3.0) 0.741(4.0)

DRB1*0401 0.774(1.0) 0.765(2.0) 0.754(3.0) 0.731(4.0)

DRB1*0404 0.806(1.0) 0.792(2.0) 0.786(3.0) 0.749(4.0)

DRB1*0405 0.715(1.0) 0.710(2.0) 0.709(3.0) 0.652(4.0)

DRB1*0701 0.744(4.0) 0.761(2.0) 0.766(1.0) 0.748(3.0)

DRB1*0802 0.779(2.0) 0.787(1.0) 0.774(4.0) 0.775(3.0)

DRB1*0901 0.713(3.0) 0.756(1.0) 0.714(2.0) 0.687(4.0)

DRB1*1101 0.758(1.5) 0.753(3.5) 0.753(3.5) 0.758(1.5)

DRB1*1302 0.850(1.0) 0.827(2.0) 0.806(4.0) 0.807(3.0)

DRB1*1501 0.781(1.0) 0.780(2.0) 0.761(4.0) 0.763(3.0)

DRB4*0101 0.821(1.0) 0.798(2.0) 0.778(4.0) 0.786(3.0)

DRB5*0101 0.708(3.0) 0.727(1.0) 0.705(4.0) 0.722(2.0)

H2-IAb 0.924(1.0) 0.900(2.0) 0.846(3.0) 0.817(4.0)

H2-IAd 0.791(3.0) 0.797(1.5) 0.797(1.5) 0.775(4.0)

H2-IAs 0.843(2.0) 0.850(1.0) 0.839(3.0) 0.819(4.0)

Avg. ranks 0.785(1.72) 0.784(1.94) 0.77(3.03) 0.757(3.31)

from optimal and there is significant room for improvement in

the performance of the state-of-the-art MHC-II binding peptide

predictors. There are two primary directions to explore in terms

of improving the performance of MHC-II binding peptide pre-

dictors: (i) compiling more representative experimentally well-

characterized datasets for training and evaluating the performance

of the predictors and (ii) exploring alternative data representations

and machine learning methods. The primary focus of this study

was on exploring the utility of a multiple instance representation

of peptides for predicting MHC-II binding peptides. Specifically,

we have introduced a novel formulation of the problem of learning

to predict variable length MHC-II binding peptides as an instance

of a multiple instance learning problem. The proposed method

shares an attractive feature of some of the recently developed

MHC-II binding peptide prediction methods [23], [31] in that it

does not require that the 9-mer cores in each binding peptide be

identified prior to training the predictor. The 9-mer binding cores

are identified by the learning algorithm based on the features of

MHC-II binders and non-binders so as to optimize the predictive

performance of the learned model.

We have introduced MHCMIR, a multiple instance regression

based method for predicting the binding affinity of variable length

MHC-II peptides. MHCMIR utilizes MILESreg, our adaptation of

MILES algorithm [32] for training multiple instance classifiers,

for performing multiple instance regression where the input to

the predictor is a bag of peptides. The results of our experiments

using statistical cross-validation on benchmark datasets as well

as additional independent test sets have shown that the proposed

method although it does not substantially outperform the state-

of-the-art methods, is quite competitive with the best performing

methods that are currently available for predicting MHC-II bind-

ing peptides. These results demonstrate the utility and promise

of multiple instance representation of peptides in advancing the

current state-of-the art in MHC-II binding peptide prediction. We
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have made our implementation of MHCMIR freely available to

the scientific community in the form of an online web server for

predicting the binding affinity of MHC-II peptides. The server

can be accessed at http://ailab.cs.iastate.edu/mhcmir.

The multiple instance representation of MHC-II peptides com-

bined with a MIL or MIR method provides a general 2-component

framework for developing a broad class of MHC-II prediction

methods: (i) We can adapt the multiple instance representation

of MHC-II peptide to incorporate different assumptions (e.g., the

utility of PFR in predicting MHC-II binding peptides); (ii) We

can choose any of the MIL and MIR algorithms available for

training predictors using the multiple instance representation of

peptides.

Current literature offers three broad classes of approaches to

MIL or MIR learning based on different assumptions regarding

the relation between the label assigned to a bag and the labels of

the instances contained in that bag.

• Witness-based MIL or MIR methods [33], [36], [37], [38],

[47], [62] which search for a single representative instance

(witness) within each bag. Existing MHC-II prediction meth-

ods that search for a single 9-mer within each peptide [8],

[9], [10], [11], [13], [19], [14] are essentially instances of

the witness-based MIL or MIR methods.

• Generalized MIL or MIR methods that operate under the

assumption that all instances within a bag contribute the

bag label [39], [40], [63]. Two recently proposed SVM-

based MHC-II binding peptide prediction methods [21] and

[22] which train SVM classifiers using the entire peptide

sequence can be seen as variants of the generalized MIC

learning methods. These two SVM-based qualitative MHC-II

binding peptide prediction methods can be easily adapted to

yield quantitative MHC-II predictions by replacing the SVM

classifiers with support vector regression (SVR) models.

• Generalized MIL and MIR methods which operate under the

assumption that only a subset of the instances within a bag

contribute the bag label [32], [64]. The iterative approach for

predicting MHC-II peptides [23] can be seen as an exemplar

of this class of MIL and MIR methods.

In summary, our results have demonstrated the utility of mul-

tiple instance representation of peptides in both qualitative (i.e.,

MHC-II binder versus non-binder) as well as quantitative (i.e.,

binding affinity) prediction of MHC-II peptides. Our formulation

of flexible length qualitative and quantitative MHC-II binding

peptide prediction as multiple instance learning and multiple

instance regression problems respectively has opened up the

possibility of adapting a broad range of multiple instance methods

for classification and regression in this setting.
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