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ABSTRACT

Selecting near-native conformations from the immense number of conformations generated by docking programs remains a

major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based

on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. Dock-

Rank uses interface residues predicted by partner-specific sequence homology-based protein–protein interface predictor

(PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the

performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases

that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-

native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-

specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two

state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that

use predicted interface residues obtained from several protein interface predictors that do not take into account the binding

partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the impor-

tance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to

re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate

and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/.
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INTRODUCTION

The 3D structures of complexes formed by interacting

proteins are valuable sources of information needed to

understand the structural basis of interactions and their

role in pathways that orchestrate key cellular processes.

High-throughput methods such as yeast-2-hybrid (Y2H)

assays provide a source of information about possible

pairwise interactions between proteins, but not the struc-

tures of the corresponding complexes.1 Because of the

expense and effort associated with X-ray crystallography

or NMR experiments to determine 3D structures of pro-

tein complexes, the gap between the number of possible

interactions and the number of experimentally deter-

mined structures is rapidly expanding. Hence, there is

considerable interest in computational methods for

determining the structures of complexes formed by
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proteins. This is especially important in the case of com-

plexes resulting from transient and nonobligate interac-

tions, which tend to be partner-specific2,3 and play

important roles in cellular communication and signaling

pathways.3,4 When the structures of individual proteins

are known or can be predicted with sufficiently high

accuracy, docking methods can be used to predict the 3D

conformation of complexes formed by two or more

interacting proteins, to identify and prioritize drug tar-

gets in computational drug design,5 and to potentially

validate6,7 or to provide putative structural models8,9

for interactions determined using high-throughput meth-

ods such as Y2H assays.

In general, solving the protein–protein docking prob-

lem involves three steps10–13: (1) generation of candi-

date conformations (models or decoys) by sampling the

space of possible conformations of complexes formed by

the given component proteins. The resulting large num-

ber (typically thousands to tens of thousands) of putative

conformations are ranked and filtered using some criteria

(e.g., geometric complementarity assessed using the Fast

Fourier Transform (FFT)); (2) clustering of the top

ranked conformations and often ranking the resulting

clusters by their size, that is, the number of conforma-

tions contained in the clusters; (3) refinement of docked

structures and final conformation selection.

Substantial efforts have been dedicated to the design of

scoring (ranking) functions for docking programs. Scoring

functions in the literature can be broadly classified into

four types: 1) geometric complementarity-based scoring

functions; 2) energy-based scoring functions; 3) knowledge-

based scoring functions; 4) hybrid functions that combine

the scoring functions of the first three types.14–17 Geomet-

ric complementarity-based scoring functions represent an

early generation of scoring functions used in docking pro-

grams. Vakser and coworkers18 introduced FFT to calculate

the geometric fit between a receptor and ligand. The fast

processing speed of FFT made a full conformational space

search possible. Scoring functions of this type were success-

fully applied on bound protein–protein docking but could

not perform well for unbound protein–protein docking

because of the conformational changes upon binding.11

Energy-based scoring functions are designed to approxi-

mate the binding free energy of protein–protein assem-

blies.19–21 They usually consist of weighted energy terms

for van der Waals interactions, electrostatic interactions,

and solvation energies. Knowledge-based scoring functions

can be grouped into three subtypes. (a) Knowledge-based

weighted correlations,22,23 which take into consideration

the complementarity of physicochemical properties to over-

come the limitations of scoring functions that rely on geo-

metric complementarity alone; (b) Knowledge-based

pairwise potentials24–26 derived from observed statistical

frequency of amino acid/atom contacts in databases of

solved protein structures; (c) Machine-learning-based scor-

ing methods, which can be further divided into three sub-

types: (c1) Classifiers trained (on a data set of near-native

and non-native protein conformations) to predict whether

a query docked conformation is near-native or non-

native27,28; (c2) Classifiers that are trained using data

extracted from a set of protein complexes to predict the

interface residues of proteins, which are then used to rank

docked conformations29,30; (c3) Consensus scoring meth-

ods31,32 that use a weighted combination of the scores of

multiple scoring functions to score conformations.

Despite recent advances in methods for scoring docked

conformations, including those used by the state-of-the-

art docking programs, there is considerable room for

improvement in methods for efficiently and reliably iden-

tifying near-native conformations from the large number

of candidate conformations generated by docking pro-

grams.10,33 Hence, there is a need for computationally

efficient scoring functions that can reliably distinguish the

near-native conformations from non-native ones.

Against this background, we propose DockRank, a

novel approach to scoring docked conformations. The

intuition behind DockRank is as follows: From among

the large number of docked conformations produced by

docking a protein A with protein B, a scoring function

that preferentially selects conformations that preserve the

interface between A and B in the native state of the com-

plex A: B will be able to successfully identify near-native

conformations. However, since a goal of docking is to

identify near-native conformation, the actual interface

residues of the complex A: B in its native state are

unknown, and hence cannot be used for scoring confor-

mations. However, if we can reliably predict the residues

that constitute the interface between A and B, we should

be able to use the degree of agreement between the pre-

dicted interface residues and the interface residues of

each docked conformation to score the conformations.

While a broad range of computational methods for pro-

tein–protein interface prediction have been proposed in the

literature (reviewed in Refs. 34–36), barring a few excep-

tions,37–39 the vast majority of such methods focus on

predicting the protein–protein interface residues of a query

protein, without taking into account its specific interaction

partner(s). Because most transient protein interactions tend

to be partner-specific (PS),2 and reliably predicting tran-

sient binding sites presents a challenge for nonpartner-

specific (NPS) prediction methods (i.e., interface predictors

that do not take into consideration, a protein’s binding

partner in predicting interface residues),4,40,41 DockRank

makes use of partner-specific sequence homology-based

protein–protein interface predictor (PS-HomPPI),42 a

sequence homology-based predictor of interface residues

between a given pair of potentially interacting proteins.

PS-HomPPI has been shown to reliably predict the

interface residues between a pair of interacting proteins

whenever a homo-interolog, that is, a complex structure

formed by the respective sequence homologs of the given

pair of proteins, is available.42,43 PS-HomPPI has been
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shown to be effective at predicting interface residues in

transient complexes associated with reversible, often

highly specific, interactions. Hence, PS-HomPPI offers an

especially attractive protein–protein interface prediction

method for ranking docked conformations.

Given a docking case, that is, a pair of proteins A and

B that are to be docked with each other, DockRank uses

PS-HomPPI to predict the interface residues between A

and B. It then compares the predicted interface residues

with the interface residues in each of the docked confor-

mations of A: B produced by the docking program. The

greater the similarity of the interface of a docked confor-

mation with the predicted interface from PS-HomPPI,

the higher the rank of the corresponding conformation

among all docked conformations. DockRank’s reliance

on partner-specific interface predictions is what distin-

guishes it from existing scoring functions that use pre-

dicted interfaces to rank docked conformations.29,30

In this study, we first compare the performance of

DockRank with several state-of-the-art energy-based scor-

ing functions: ZRank,20,44 IRAD19 and the energy func-

tions built-in ClusPro 2.0.15,17,45 We then evaluate the

performance of DockRank variants that use predicted

interface residues obtained from several nonpartner-

specific protein interface predictors. We also evaluate

DockRank on several targets (docking cases) of the Criti-

cal Assessment of PRedicted Interactions (CAPRI).12,33

Finally, we illustrate that DockRank complements homol-

ogy modeling methods for protein complexes such as

superimposition and multimeric threading.46–48

An online implementation of DockRank is available at

http://einstein.cs.iastate.edu/DockRank/.

MATERIALS AND METHODS

Decoy sets

In this study, for different purposes, we used two

benchmark decoy sets: ZDock3-BM3 and ClusPro2-BM3.

ZDock3-BM3 is used to compare DockRank with other

scoring functions, and ClusPro2-BM3 is used to evaluate

the extent to which DockRank can improve upon the

ranking of conformations produced by docking programs

such as ClusPro.15,17,45 ZDock3-BM3 decoy set faith-

fully reflects the initial population of conformations gen-

erated by ZDock 3.044 before the conformations are

clustered or otherwise post-processed. ClusPro2-BM3

corresponds to top 30 conformations that represent the

clusters of conformations output by ClusPro 2.0.15,17,45

We also evaluated DockRank on five CAPRI targets and

compared with 29 CAPRI scorer groups.

ZDock3-BM3

Docking Benchmark 3.0 (BM3)49 consists of a set of

nonredundant nonobligate complexes (3.25 Å or better

resolution, determined using X-ray crystallography) from

three biochemical categories: enzyme-inhibitor, antibody-

antigen, and “others”. This data set includes complexes

that are categorized into three difficulty groups for

benchmarking docking algorithms: Rigid-body (88 com-

plexes), Medium (19), and Difficult (17), based on the

conformational change upon binding. Obligate com-

plexes are filtered out manually. BM3 originally had 124

cases. 2VIS (rigid-body), 1K4C (rigid-body), 1FC2

(rigid-body), 1N8O (rigid-body) were deleted because

the bound complexes and the corresponding unbound

complexes have different number of chains. 1K74 (rigid-

body) was deleted because the sequence of chain D in

the bound complex is different from the corresponding

unbound chain 1ZGY_B. There are finally 119 docking

complexes: Rigid-body (83 complexes), Medium (19),

and Difficult (17). A set of 54,000 decoys for each case

generated using ZDock 3.0 was downloaded from http://

zlab.umassmed.edu/zdock/decoys.shtml. Despite the large

number of generated decoys, there are only 97 cases that

have at least one near-native structure (e.g., a decoy with

interface Ca atom Root Mean Square Deviation

I2RMSD � 2:5Å). Out of these 97 cases, our homology-

based protein–protein interface predictor, PS-HomPPI,42

returned interface predictions for only 67 cases. There-

fore, our final decoy set consists of decoys generated for

these 67 cases (see Supporting Information Table S1 for

the PDB50 IDs for these cases).

ClusPro2-BM3

ClusPro2-BM3 was also generated from the 119 cases

in BM3 using ClusPro 2.0 program. For each docking

case ClusPro returned 30 conformations. ClusPro2-

BM3_31 set of 31 cases was generated using the follow-

ing selection criteria: i) each case should have at least

one hit (i.e., a docked conformation with ligand Root

Mean Square Deviation L2RMSD � 10Å); ii) PS-

HomPPI interface predictions are available for the

proteins in that complex. To evaluate the capability of

DockRank to give top ranks to meaningful though incor-

rect conformations in cases for which ClusPro returns no

hits, another set of 45 cases, ClusPro2-BM3_45, was gen-

erated by relaxing the definition of a hit to include con-

formations with L2RMSD � 15Å (see Supporting

Information Table S1 and S2 for the corresponding PDB

IDs for ClusPro2-BM3_31 set and ClusPro2-BM3_45

set).

CAPRI uploader decoys

CAPRI is a community wide competition of computa-

tional protein complex modeling and scoring methods

(http://www.ebi.ac.uk/msd-srv/capri/). In the scoring

experiments of the CAPRI competition, docking groups

uploaded 100 models for each target, which are referred

to as “uploader models” and can be downloaded by the
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participating scorers to rank and submit their selected

top 10 models. Through e-mail communications with

the CAPRI organizers, we obtained the uploader models

and the corresponding CAPRI model classification files

for Targets 30 (trimer), 35 (dimer), 36 (dimer), 41

(dimer), 47 (hexamer), and 50 (trimer). We discarded

the data for Target 36 because none of the uploader

models is near-native. We also discarded models with no

chain IDs at all, because DockRank, which is based on

the predicted interfaces between chains, requires the

information of protein chain boundaries. Specifically, 60

uploader models for Target 30, 99 uploader models for

Target 41 and 299 uploader models for Target 50 have

no chain IDs at all and were discarded from this study.

We were left with a total of 1,283 uploader models for

Target 30, of which two models are acceptable models

(based on CAPRI criteria13); a total of 499 uploader

models for Target 35, of which three models are accepta-

ble models; a total of 1,100 uploader models for Target

41, of which 230, 115 and two models are acceptable,

medium, and high-quality models, respectively; a total of

1051 models for Target 47, of which 26, 307, and 278

models are acceptable, medium, and high-quality models,

respectively; and a total of 1,152 models for Target 50, of

which 84 and 21 models are acceptable and medium

quality models, respectively. Because high-quality bound

complexes were publicly available for Target 47 at the

time of the competition, docking was not needed;

instead, the prediction of interface water molecule posi-

tions was the real challenge. To evaluate the prediction of

interface water molecule positions for Target 47, we used

the CAPRI criteria f w natð Þ, which is the fraction of

actual water-mediated contacts in the target bound com-

plex that are correctly predicted in the docked model. A

pair of amino acids, each from the receptor or the

ligand, is called a water-mediated contact if both of the

amino acids have at least one heavy atom within a 3.5 Å

distance of the same water molecule. f w natð Þ is analo-

gous to an evaluation term in the protein interface pre-

diction literature [73, 74], Sensitivity (see Supporting

Information Text S3). Based on f w natð Þ, each model of

Target 47 was classified as bad (0:0 � f w natð Þ < 0:1),

fair (0:1 � f w natð Þ < 0:3), good (0:3 � f w natð Þ < 0:5),

excellent (0:5 � f w natð Þ < 0:8), and outstanding

(0:8 � f w natð Þ < 1:0).

Partner-specific sequence homology-based
protein–protein interface predictor

DockRank uses the predicted interfaces by PS-

HomPPI to rank docked models. PS-HomPPI is a

sequence homology-based method for partner-specific

protein–protein interface residue prediction.42,43 PS-

HomPPI uses the experimentally determined interfaces of

homo-interologs (homologous interacting proteins) to

infer those of a query protein pair. PS-HomPPI is

described in detail in Ref. 42, and we briefly summarize

it in Supporting Information Text S1 and Figure S1.

To avoid using the target bound complexes as tem-

plates due to the redundancy of the PDB (Protein Data

Bank),50 highly similar homo-interologs were removed.

Specifically, for query A: B and its homologous interact-

ing pair A0 : B0, we also discard the interacting protein

pair A0 : B0 if (A and A0) and (B and B0) share � 90%

sequence identity. Each case in the decoy sets has bound

and unbound proteins. Unbound proteins were used by

docking programs to generate docked models and their

sequences were used by PS-HomPPI to predict interfaces.

The bound complexes were used to evaluate the ranking

schemes of docked models. The bound complex of each

case (although most bound complexes are probably

removed in the first filter of highly similar homologs)

was also explicitly deleted from the homo-interolog list,

and was not used in later prediction.

Databases used by PS-HomPPI

Three databases are used by PS-HomPPI to make inter-
face predictions. ProtInDB51 (version Sep 27th 2012)

and S2C DB52 (version Sep 27th, 2012): Used by

PS-HomPPI to calculate the interface residues of homo-

interologs. ProtInDB is a protein–protein interface resi-

dues database (http://einstein.cs.iastate.edu/protInDb/). It

contains protein complexes with at least two interacting

chains in PDB. S2C DB is used to map the calculated

interface residues based on ProtInDB to the whole pro-

tein sequences.

BLAST nr_pdbaa_s2c: Used by BLASTP 2.2.27153 to

search for close sequence homologs. It is built based on

ProtInDB and S2C DB. Only protein chains existing in

ProtInDB are included into nr_pdbaa_s2c. We built a

nonredundant database for BLAST queries from the S2C

fasta formatted database. To generate the nonredundant

BLAST database, we grouped proteins with identical

sequences into one entry. As of Sep 27th 2012,

nr_pdbaa_s2c contains 38,478 sequences and 9,294,363

total letters.

Interface definition

Interface residues are defined as residues with at least

one atom that is within a distance of 5 Å from any

atoms in the interaction partner chain.

DockRank’s scoring function

Given a pair of proteins A and B that are to be docked

against each other by a docking program, we use PS-

HomPPI to predict the interface residues between A and

B. We represent predicted and docked interfaces as

binary vectors in which “1” means interface residue and

“0” noninterface residue. We then compare the binary

vectors of interface residues between A and B predicted

Interface Conservation-Based Scoring Function
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by PS-HomPPI with the interface residues in each of the

conformations of the complex A: B produced by the

docking program. The docked conformation with

the greatest interface similarity with the predicted inter-

face residues is assigned the top rank.

Many similarity measures for binary vectors have been

proposed (See Ref. 54 for a review). Among these, only

Russell-Rao, SoKal-Michener, and Rogers-Tanmoto(-a)

measures are defined in the case when both sequences

consist of all 0 elements (which is the case when there

are no interface residues between the corresponding pro-

tein chains and both PS-HomPPI and the docking model

correctly predict no interface residues). Because the num-

bers of interface and noninterface residues are highly

unbalanced, we used weighted SoKal-Michener metric to

measure the similarity between the interface and nonin-

terface residues in a protein chain A (in complex with

chain B) encoded in the form of binary sequences ~vA

and ~vB based on PS-HomPPI predictions and the docked

conformation, respectively,

S ~vA ; ~vBð Þ5 S111bS00

N

where N is the length of the binary sequence, S11 and S00

are the numbers of positions where the two sequences

match with respect to interface residues and noninterface

residues, respectively, and b is a weighting factor

(0 < b < 1) that is used to balance the number of

matching interface residues against the number of

matching noninterface residues.

The weighting factor b is defined as a PS-interface res-

idue ratio. In this study, we set b50:08, which is calcu-

lated using a set of transient interaction proteins [71]

with experimentally determined interfaces (see Support-

ing Information Text S2 for details).

Only the interface residues between the receptor and

the ligand are used to rank docked models. When the

predicted interface vector is a zero vector, it is NOT used

in ranking docked models.

For each docked conformation we calculate one score

using our scoring function. When a protein complex

consists of more than two chains, multiple interface sim-

ilarities are calculated by pairing each chain of the recep-

tor with each chain of the ligand, and they were

weighted (based on the prediction confidence zones of

PS-HomPPI) and avaraged to get a final DockRank

score. In this study, the weight of the interface similarity

is 1 if the predicted interface is from Safe Zone of PS-

HomPPI, 1 for Twilight Zone, and 0.001 for Dark Zone.

Evaluation of scoring functions

We used Root Mean Square Deviations (RMSDs) to

assess the structural difference between each conforma-

tion and the corresponding bound complex (target com-

plex). L-RMSD (Ligand-RMSD) is the backbone RMSD

between the ligand in the docked conformation and the

bound ligand after superimposing the receptor of the

docked conformation and that of bound complex. I-

RMSD (Interface RMSD) is calculated through two steps:

first, map the interface residues of the bound complex to

the docked conformation using sequence alignments;

second, superimpose the 3D structure of the bound

interface of the bound complex onto that of the mapped

interface of the docked conformation, and calculate the

backbone RMSD as I-RMSD.

We used Success Rate and Hit Rate to evaluate differ-

ent scoring functions. We define the Success Rate of a

scoring function as the percentage of the docking cases

in the data set for which at least one near-native struc-

ture (hit) is among the m top conformations according

to the scoring function. For example, a Success Rate of

25% for top m 5 1 predictions means that for 25% of

the total test docking cases, the highest ranked confor-

mation is a near-native conformation. Hit Rate is defined

as the percentage of hits that are included among the set

of m top-ranked conformations. For example, a Hit Rate

of 25% for the top m predictions means that 25% of the

total hits are found in the top m ranked predictions. Hit

Rate measures the enrichment of hits among top ranked

conformations.

Upper bound: We supply actual PS-interfaces extracted

from bound complexes to DockRank’s scoring function

to rank the conformations in order to obtain the upper

bound of DockRank’s scoring function.

RESULTS

DockRank Outperforms Energy-based Scor-
ing Functions

We compared the performance of DockRank with two

energy-based scoring functions, ZRank20,44 and IRAD,19

on a subset of 67 docking cases from ZDock3-BM3

benchmark decoy set (see Methods for details). ZRank

and IRAD are two energy-based scoring functions devel-

oped by the ZDOCK group.44 The ZRank scoring func-

tion is a linear combination of atom-based potentials,

and it has been shown to be one of top scoring functions

in CAPRI.33 IRAD is an improved version of ZRank that

augments the ZRank scoring function with residue-based

potentials.19 For each of the 67 docking cases, ZDock 3.0

generates 54,000 candidate decoys; however, in 55 of 67

cases the number of total hits (near-native conformations

with interface Root Mean Square Deviation

I2RMSD � 2:5Å19) generated by ZDock 3.0 is fewer

than 200 [Supporting Information Fig. S2(A)]. Thus,

identifying the hits from a large population of candidate

conformations presents a significant challenge.

Figure 1 compares the Success Rate of DockRank (red)

with that of ZRank (yellow) and IRAD (black) on the

L.C. Xue et al.
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ZDock3-BM3 benchmark decoy set. DockRank consis-

tently has a significantly higher Success Rate than both

IRAD and ZRank for choices of m ranging from 1 to

1000 (see Materials and Methods section for details). If

we limit our comparison to the top ranked conforma-

tions (m 5 1), DockRank has a Success Rate of 39%,

which means that for 39% of the docking cases the high-

est ranked conformation selected by DockRank is a near-

native conformation (a hit), whereas the Success Rates of

ZRank and IRAD are 9 and 15%, respectively. When we

consider the conformations ranked among the top 10

(m 5 10), DockRank achieves a Success Rate of 61%, as

compared to 21 and 33% achieved by ZRank and IRAD,

respectively. Thus, DockRank improves Success Rate by a

factor of 1.8 (61/33 when m 5 10) to 4.3 (39/9 when

m 5 1). Because the 54,000 conformations for each dock-

ing case in ZDock3-BM3 are not clustered, each docking

case is likely to have a large number of highly similar

conformations. In light of this fact, the success of Dock-

Rank in ranking near-native conformations among the

top 10 conformations is especially encouraging.

A comparison of the Hit Rates of DockRank with

those of other scoring functions, including IRAD and

ZRank, on the ZDock3-BM3 benchmark decoy set is

provided in Supporting Information Figure S3. Dock-

Rank has a higher Hit Rate than IRAD and ZRank in 53

of 67 cases.

Partner-specific interface predictions can be
used to reliably rank docked conformations

Li and Kihara55 had concluded that predicted interfa-

ces cannot be used to reliably identify near-native con-

formations, based on their study using predicted

interfaces from meta-PPISP,56 a nonpartner-specific

interface predictor, to rank docked conformations using

their scoring function. In light of the fact that most

existing protein interface predictors are nonpartner-

specific, it is of interest to examine the extent to which

partner-specific interface predictions can improve the

reliability of identifying near-native docked conforma-

tions. To answer this question, we compared the per-

formance of DockRank using predicted interface residues

from PS-HomPPI (a partner-specific predictor), with

variants of DockRank using interface residues predicted

by three state-of-the-art nonpartner-specific protein

interface residue predictors: i) NPS-HomPPI,42 a

sequence homology-based nonpartner-specific method

for predicting the interface residues, which has been

shown to outperform several structure-based and

sequence-based interface predictors when sequence

homologs of the query protein can be reliably identified;

ii) PrISE,57 a local structural similarity based method for

predicting protein–protein interfaces that has been

shown to outperform other structure-based nonpartner-

specific interface prediction methods; iii) meta-PPISP,56

a consensus method that takes as input the scores of

three other structure-based machine-learning predictors

cons-PPISP,58,59 PINUP,60 and Promate.29

Our results on the ZDock3-BM3 decoy set show that

DockRank (using PS-HomPPI predicted interface resi-

dues) significantly outperforms DockRank variants that

use predictions from the nonpartner-specific interface pre-

dictors NPS-HomPPI, meta-PPISP, and PrISE based on

three criteria. First, in terms of Success Rate, DockRank

successfully places at least one near-native conformation

within the top ranked conformations (m 5 1) for 39%

docking cases (i.e., a Success Rate of 39%), while Dock-

Rank variants that use predicted nonpartner-specific inter-

faces can only pick out a near-native conformation to top

rank for 1%27% of docking cases (Fig. 1). This translates

to an improvement in Success Rate by a factor of 39

(39%=1%) when m 5 1. Second, in terms of Hit Rate, the

top 1000 ranked conformations selected by DockRank

contain more hits than those selected by DockRank var-

iants that use predicted nonpartner-specific interfaces

in 43 of 67 docking cases (Supporting Information Figure

S3). Third, in terms of I-RMSD, top ranked conformations

selected by DockRank have statistically significantly lower

I-RMSDs than those selected by DockRank variants that

Figure 1
Success rates of DockRank and other scoring schemes on the ZDock3-

BM3 decoy set plotted against the top m conformations. The x-axis is
plotted on a logarithmic scale to emphasize the region of top ranks.

The Success Rate of DockRank (red, using predicted interface residues

from a partner-specific predictor, PS-HomPPI) is compared with two
energy-based scoring functions, IRAD (black) and ZRank (yellow), and

with variants of DockRank using interface residues predicted by three
state-of-the-art protein interface residue predictors: NPS-HomPPI

(pink), PrISE (green), and meta-PPISP (blue). NPS-HomPPI, PrISE,
and meta-PPISP are nonpartner-specific (NPS) interface predictors. The

success rate of DockRank’s scoring function supplied with partner-

specific actual interface residues (labeled as “PS-Act Int,” gray-dashed
line) is plotted to define the upper bound of DockRank’s scoring func-

tion. Studied here are 67 docking cases that have at least one hit (a
conformation with I2RMSD � 2:5Å) among 54,000 candidate decoys

and for which PS-HomPPI is able to return interface predictions.
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use predicted nonpartner-specific interfaces (as shown by

the boxplot of I-RMSDs and by the nonparametric Neme-

nyi Test [75] at a significance level of 0.05, see Figure 2

and Supporting Information Figure S4).

Because DockRank ranks conformations based on a

measure of similarity between the predicted interface and

the interface defined by a docked conformation, it is nat-

ural to ask how well DockRank can be expected to per-

form if it were provided with the best possible partner-

specific interface predictions. In order to estimate an

upper-limit for the performance of the DockRank’s scor-

ing function, we tested its performance using the actual

partner-specific interfaces extracted from the bound

complexes. Figure 1 shows that DockRank, when sup-

plied with the actual interface residues for a docking case

(grey), ranks at least one hit (a near-native conforma-

tion) among the top 10 conformations for 85% of the

docking cases. When supplied with interfaces predicted

by PS-HomPPI, DockRank ranks at least one hit among

the top 10 conformations for 61% of the docking cases.

Also, DockRank’s scoring function, when supplied with

actual partner-specific interface residues, is able to rank

� 50% of all hits among the top 1000 conformations in

60 of 67 docking cases (Supporting Information Fig. S3).

These results demonstrate that the scoring function used

by DockRank can reliably place near-native conforma-

tions among the top ranked conformations when it is

provided with reliable partner-specific interface residues.

Furthermore, the gap between the performance of Dock-

Rank when supplied with interface residues predicted by

PS-HomPPI (red line in Figure 1) and the performance

of DockRank when supplied with actual partner-specific

interface residues (grey dashed line) suggest that there is

considerable room for improving the performance of

DockRank by improving the reliability of partner-specific

protein–protein interface prediction.

In the following text, unless otherwise specified, we

refer to our ranking method using partner-specific inter-

face residues predicted by PS-HomPPI as DockRank.

DockRank identifies conformations with
lower RMSD at the interface than other
scoring functions

We compared the top ranked conformations identified

by different scoring functions with respect to I-RMSDs.

Figure 2 shows the distributions of I-RMSDs of top

ranked conformations (m 5 1) selected by different scor-

ing schemes. The top ranked conformations selected by

DockRank have two to four times smaller average and

median I-RMSDs than those selected by other scoring

schemes. The average I-RMSD value of top ranked con-

formations selected by DockRank is 6.6 Å, compared

with 11.7, 12.8, 12.0, 11.4, and 13.0 Å of those selected

by IRAD, ZRank, NPS-HomPPI, PrISE, and meta-PPISP,

respectively. The median I-RMSD value of top ranked

conformations selected by DockRank is 3.4 Å, compared

with 11.9, 12.3, 12.11, 11.4, and 11.7 Å for IRAD, ZRank,

NPS-HomPPI, PrISE, and meta-PPISP, respectively.

Our statistical analysis further shows that when per-

formance is measured in terms of I-RMSD of the top

ranked conformations, DockRank significantly outper-

forms other scoring schemes (see Supporting Informa-

tion Fig. S4 and Text S4).

DockRank improves upon the success rate,
average hit rate, and L-RMSD of ClusPro-
ranked conformations

Existing docking programs such as ClusPro typically use

built-in scoring functions to rank the conformations they

produce. In this context, it is natural to ask whether Dock-

Rank, when used to re-rank the docked conformations

returned by the docking program using its own built-in

scoring schemes, can improve upon the original ranking.

For this comparison, we chose ClusPro 2.0,15–17,45

because it has been reported to have superior performance

in recent CAPRI competitions.33 Briefly, ClusPro is built

on top of a FFT-based rigid docking program PIPER.16

PIPER rotates and translates the ligand with �109 posi-

tions relative to the receptor. PIPER’s scoring function,

which contains terms of shape complementarity, electro-

static, and pairwise potentials, is applied to these candidate

Figure 2
I-RMSDs of top ranked conformations selected by different docking
scoring methods on the ZDock3-BM3 decoy set. The lower (Q1), mid-

dle (Q2), and upper (Q3) quartiles of each box are 25th, 50th, and
75th percentile. Interquartile range IQR is Q3–Q1. Any data value that

lies more than 1.5 3 IQR lower than the first quartile or 1.5 3 IQR

higher than the third quartile is considered an outlier, which is labeled
with a red cross. The whiskers extend to the largest and smallest value

that is not an outlier. Averages are marked by green dots. Studied here
are 67 cases for which ZDock 3.0 is able to generate at least one hit

(I2RMSD � 2:5Å) and for which PS-HomPPI is able to return inter-
face predictions. DockRank’s scoring function supplied with actual

partner-specific interfaces (PS-Act Int) set the lower bound of I-RMSDs

of top ranked conformations that DockRank’s scoring function can
select.
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conformations, and returns the top 1000 conformations to

ClusPro’s clustering algorithm. ClusPro ranks the confor-

mations by cluster size. ClusPro also provides two scores

from PIPER: Lowest Energy and Center Energy.

We applied ClusPro to the 119 cases in Docking Bench-

mark 3.0 (See Methods for details about this dataset). In

47 of the 119 cases, ClusPro 2.0 generated at least one hit

(a conformation with L2RMSD � 10Å).1 Among these

47 cases, PS-HomPPI is able to return partner-specific

interface predictions for 31 cases. Thus, our experiment is

limited to only these 31 cases, which we refer to as

ClusPro2-BM3_31 benchmark set. In each case, ClusPro

returns about 30 ranked conformations. We re-ranked the

conformations returned by ClusPro using DockRank and

compared the resulting ranking of conformations with the

original ranking produced by ClusPro.

Figure 3 compares the Success Rates of DockRank based

on actual partner-specific interfaces (PS-Act Int, grey),

DockRank using PS-HomPPI predicted interfaces (Dock-

Rank, red) and the three ClusPro scoring schemes: ClusPro

(cluster-size based, black), Lowest Energy (yellow), and

Center Energy (magenta). DockRank’s re-ranking process

identifies at least one near-native conformation (hit) for

more docking cases than ClusPro scoring schemes (i.e.,

DockRank improves on the ClusPro scoring schemes in

terms of Success Rate). For example, applied to the pre-

filtered docked models by ClusPro, DockRank is able to

select at least one hit to top rank (m 5 1) for 52% cases

(i.e., a Success Rate of 52%), whereas the original Success

Rates of ClusPro cluster-size based scoring scheme is 32%,

ClusPro Lowest Energy based is 42%, and ClusPro Center

Energy based is 16% (Fig. 3 at m 5 1). In addition, Dock-

Rank improves the average Hit Rate of top ranked models

(m 5 1) selected by ClusPro scoring functions to 0.38 from

0.22, 0.29, and 0.15 produced by ClusPro cluster-size

based, Lowest Energy, and Center Energy scoring func-

tions, respectively (Supporting Information Fig. S5).

Our statistical analysis (see Supporting Information Fig.

S6 and Text S5 for details) shows that at a significance

level of 0.05, the mean L-RMSDs of the top ranked con-

formations identified by DockRank are significantly lower

than those selected by ClusPro Center Energy. However,

although DockRank produces top ranked conformations

with lower average L-RMSD values than those produced

by ClusPro and ClusPro Lowest Energy scoring functions,

the difference is not statistically significant. This lack of a

statistically significant difference could be due to the lim-

ited power of the nonparametric test, which is exacerbated

by the small number of cases (31) and the small number

of docked conformations (30) used in the comparisons.

It must be noted that this experiment should not be

interpreted as a direct comparison between DockRank

and ClusPro because ClusPro scoring functions have

access to �109 decoys, generated by PIPER,16 whereas

DockRank has access to only a very small set (�30 con-

formations) of these 109 conformations. Also, DockRank

in this experiment is used to re-rank these �30 confor-

mations output by ClusPro as opposed to the entire set

of 109 conformations.

DockRank identifies useful conformations
with lower ligand RMSD for further
refinement

ClusPro 2.0 generated at least one near-native confor-

mation with L2RMSD � 10Å for only a small proportion

Figure 3
Success rates of DockRank and ClusPro scoring functions on the
ClusPro2-BM3_31 decoy set plotted against the top m conformations.

The x-axis is plotted on a logarithmic scale to emphasize the region of

top ranks. ClusPro scoring functions (default cluster-size based, center
energy-based, lowest energy-based) were applied on the original docked

conformations (109 docked conformations per docking case) generated
by ClusPro’s underlying docking program, PIPER. DockRank was

applied on the docked conformations (30 of the 109 docked conforma-
tions per case) output by ClusPro scoring functions. The success rate of

DockRank’s scoring function supplied with partner-specific interface-

based ranking (gray-dashed line) is also plotted to show the upper
bound of the success rate of DockRank’s scoring function. Studied here

are 31 cases for which ClusPro 2.0 is able to return at least one hit (a
docked conformation with L2RMSD � 10Å) and for which PS-

HomPPI is able to return interface predictions. We limited m (the
number of top ranked conformations) to 9, since ClusPro returned

only nine conformations for one of the docking cases, 1PPE.

1In our experiments on the ZDock3-BM3 benchmark decoy
set, for direct comparisons with published results on the same
decoy set, we adopted the quality measures for evaluating the
docked conformations used by ZDock3-BM3 set, that is the I-
RMSDs, which were precalculated and provided by the authors of
ZDock3-BM3 along with the decoys. In our experiments on the
ClusPro decoy set that we generated using ClusPro 2.0
webserver, we used L-RMSD as the quality measure for the
docked conformations. Using L-RMSD, we measure the ability
of DockRank to select docked conformations with meaningful 3D
conformations of the ligand; using I-RMSD, we evaluate
DockRank’s ability to select docked conformations with correct
3D interface area.).
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of cases (47 out of 119). It is interesting to consider

whether DockRank can select useful, although incorrect,

conformations in cases for which ClusPro returns no hits.

The conformations output by ClusPro are the representa-

tive conformations selected from clusters of docked con-

formations that share similar 3D conformations. When no

hit (L2RMSD � 10Å) is returned by ClusPro, it is still

possible that the cluster, from which the representative

conformation is chosen, may contain hits. We examined

the docking cases with at least one docked conformation

with L2RMSD � 15Å in order to study DockRank’s abil-

ity to indirectly identify clusters that might contain actual

hits, and DockRank’s ability to identify meaningful con-

formations for further refinements.

There are 45 cases that have at least one docked con-

formation with L2RMSD � 15Å, and have interface pre-

dictions returned by PS-HomPPI. We chose to further

analyze these 45 cases, which we refer to as the

ClusPro2-BM3_45 decoy set. For each case, we calculate

the average L-RMSD of the top five conformations

selected by a scoring function.

Figure 4 shows the difference between the average of

L-RMSDs of top conformations produced by ClusPro

and DockRank scoring functions in each case. Positive

values correspond to cases where the top ranked Dock-

Rank conformations have a lower average L-RMSD than

the top ranked ClusPro conformations. In 34 of 45

(75.6%) cases, top conformations selected by DockRank

have lower L-RMSD than their ClusPro counterparts.

Futhurmore, a pairwise Wilcoxon signed rank test shows

that top five conformations selected by DockRank have

significantly lower averaged L-RMSD than those selected

by ClusPro (p-value< 0.0001).

Error analysis

Although in general, DockRank identifies top ranked

conformations with lower L-RMSD than those produced

by ClusPro, there are some exceptions, for example,

docking case 22 (PDB ID 1ML0) in Figure 4. Figure

5(A) illustrates the top ranked ClusPro and DockRank

conformations. Note that the docked ligand position in

the top DockRank conformation (blue ribbon) is out of

place relative to its correct position, that is, the position

of the experimentally determined bound ligand (in pink

surface representation). However, the interface residues

predicted by PS-HomPPI for the 1ML0 case are drawn

from the homologs in Safe Zone and hence are expected

to be reliable.42 We further note that the structure of the

receptor (red ribbon) is symmetric. This raises the possi-

bility that the ligand may bind on both sides of the sym-

metric receptor as opposed to only one side.

Examination of the biological assembly structure of

1ML0 downloaded from the PISA web server61 reveals

that the 1ML0 bound complex has two identical ligands,

which bind on each side of the receptor. The authors of

BM3 (Docking Benchmark 3.0) chose to include only

one ligand chain in the docking case in Docking Bench-

mark 3.0 and excluded the other ligand chain. DockRank

was able to select docked ligand positions on both sides

of the receptor. The ligand of the top ranked conforma-

tion selected by DockRank is located close to the bound

ligand that was omitted from Docking Benchmark 3.0.

The top five conformations selected by ClusPro and

DockRank for case 1ML0 are shown in Figure 5(B). Both

ClusPro and DockRank have successfully selected confor-

mations with ligands bound to both sides of the

receptor.

We recalculated the L-RMSD for all docked conforma-

tions for case 1ML0 by considering both of the two iden-

tical bound ligands to correspond to native ligand

positions. We found that the highest ranking DockRank

model is that with the lowest L-RMSD. However, Clu-

sPro identifies four hits (L2RMSD � 10Å) among its

top five models, whereas DockRank selects only one

(albeit, one with the lowest L-RMSD).

We also identified a second case, 1RLB, for which PS-

HomPPI returned Safe Zone interface predictions, but

DockRank assigned high ranks to conformations with

unusually large L-RMSDs. As in the case of 1ML0, it

turned out that one of the bound ligands of 1RLB was

left out from Docking Benchmark 3.0, and DockRank, in

fact, improved the rankings of docked models returned by

ClusPro (see Supporting Information Text S6 for details).

DockRank performance on CAPRI
uploader models

In the scoring experiments of the CAPRI competition,

docking groups were invited to upload a set of 100 pre-

dicted models for each target (referred as “uploader

Figure 4
The difference between the averages of L-RMSDs of top models

between DockRank and ClusPro Rank on each case of the ClusPro2-

BM3_45 decoy set. Positive values correspond to cases where the top
five ranked DockRank conformations have a lower average L-RMSD

than those ranked by ClusPro.
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models”). The scorer groups ranked the uploader models

and submitted their top 10 models.11,33 We evaluated

DockRank on the uploader models for Targets 30

(trimer), 35 (dimer), 41(dimer), 47 (hexamer), and T50

(trimer), and compared the quality of the top 10 models

selected by DockRank with those selected by the CAPRI

scorer groups. 29 CAPRI scorer groups, including both

human scorers and web server scorers, evaluated at least

one of these targets. We removed the target PDB bound

complex from our set of templates. To avoid using com-

plexes that are essentially the same as the target complex

due to the redundancy of PDB, we also removed any

template A0 : B0 if the sequence homolog A0 and the

query protein chain A share � 90% sequence identity

AND B0 and B share � 90% sequence identity.

Figure 6 summarizes the performance of DockRank

and the CAPRI scorers on the five targets. Target 30 had

only two acceptable models and 0 medium/high models

out of 1343 uploader models. Neither DockRank nor any

of the scorer groups was able to identify either of the

acceptable models for Target 30. Target 35 had three

acceptable models and 0 medium/high models out of

499 uploader models, and only the Bonvin group was

able to rank an acceptable model at rank 2. For Target

Figure 5
The top conformations ranked by DockRank and ClusPro for docking case 1ML0. The red ribbon is the receptor. (A) The highest ranked models

selected by ClusPro (ligand shown as gold ribbon) and DockRank (ligand shown as blue ribbon), with the bound ligand that is included in the

BM3 dataset (pink surface representation). (B) The top five ranked models (ribbons) with two bound ligands from PISA. Figure generated using
PYMOL [70].
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Figure 6
The rankings of top 10 selected models by DockRank and the CAPRI scorers.
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41, DockRank selected one acceptable model and nine

medium quality models, while the best CAPRI scorer for

the same target, the Bonvin group, selected two acceptable

models, six medium quality models, and two high-quality

models. For Target 47, because high-quality templates are

publicly available, no docking was required, and the pre-

diction of the water-mediated interactions was the true

challenge for this target. Although DockRank does not

use any information regarding water molecules of the

template structures, it is able to select seven fair

models (0:1 � f w natð Þ < 0:3) and three good models

(0:3 � f w natð Þ < 0:5) in terms of interface water posi-

tions, which is comparable to the performance of the top

CAPRI performers for Target 47. For Target 50, DockRank

can predict interfaces for only a subset of query chains

but was able to identify one acceptable model (rank 5).

These results suggest that DockRank performed com-

petitively with other top CAPRI scorers on these five tar-

gets. To quantitatively evaluate the performance of each

scorer group, we assigned a score to each model based

on its quality (0 for incorrect models, 1 for an acceptable

model, 2 for a medium quality model, and 3 for a high-

quality model), and used the sum of the scores of the

top 10 models selected by each scorer group to assess the

scorer group’s performance on one target (see Table I).

On the five CAPRI targets tested, the Bonvin group was

the best scorer; they selected at least one acceptable or

better model for four of the five targets, and their mod-

els have the largest sum of model scores, representing the

overall highest model quality compared with those

selected by other scorers. The other groups: Zou, Dock-

Rank, the groups of Bates, Weng, and Wang (ordered

according to the sum of their model scores) were able to

select at least one acceptable or better model for three of

the five targets. The rest of scorers performed well on

fewer than three targets. Based on this comparison,

DockRank ranks #3 overall (Table I). However, no defini-

tive conclusions can be drawn regarding how the differ-

ent scoring methods perform relative to one another

until more CAPRI targets are made available.

DockRank complements homology modeling

Because DockRank uses homologous complexes to infer

interfaces and to rank docked conformations, it could be

argued that superimposing or threading component struc-

tures onto the homointerologs (templates) used by Dock-

Rank would provide a simpler method for modeling

protein complexes, thereby obviating the need for docking

and hence scoring the docked conformations using Dock-

Rank. Although our purpose in developing DockRank was

to provide reliable ranking of docked structures, not to

generate docked models, we examined the utility of Dock-

Rank in relation to homology modeling methods,46,47

such as superimposition or multimeric threading by con-

ducting the following two experiments:

Experiment 1

For all dimer cases, we generated conformations by

using TM-align62 to superimpose unbound component

structures onto the templates (homo-interologs) used by

DockRank to predict interfaces. Among 51 dimers consid-

ered, there are 19 cases (37%) for which all superimposed

models are near-native (Supporting Information Table S4,

section B), 19 cases (37%) for which at least one superim-

posed model is near-native and at least one model is

incorrect (Supporting Information Table S4, section A),

and 13 cases (25%) for which no superimposed model is

near-native (Supporting Information Table S4, section C).

For the 19 cases with at least one near-native superim-

posed model and at least one incorrect model, we used

DockRank to rank the resulting models. The results sum-

marized in Supporting Information Table S4 section A

show that DockRank reliably assigns lower ranks to

incorrect models in 18 of 19 cases. DockRank is able to

differentiate the correct, that is, near-native, models from

the incorrect, that is, non-near-native, models whereas

sequence similarity fails to distinguish between them.

Table I
The Comparison of DockRank with the 29 CAPRI Scorers

Scorer groups
Target

30
Target

35
Target

41
Target

47 water
Target

50

1 Bonvin 0 1 20 17 7
2 Zou – 0 12 16 13
3 DockRank 0 0 19 13 1
4 Bates 0 0 11 14 2
5 Weng 0 0 4 11 3
6 Wang 0 0 1 7 10
7 Korkin – – – 17 2
8 Umeyama – – – 16 –
9 Xiao – – 11 – 1
10 Camacho – – – 11 –
Alexov 0 – – – –
Bajaj – – 0 – 1
Elber – – 4 – 5
FireDock – 0 – – –
Fernandez-Recio 0 0 0 2 0
Gray – – – 0 2
Grudinin – – – 0 2
Haliloglu – – 4 5 0
Jiang 0 – – – –
Jin 0 – – – –
Kemp 0 0 – – –
Kihara – – 7 0 –
Lee – 0 – – –
Pal – – – – 1
SAMSON – – 5 – –
Sternberg 0 – – – –
Takeda-Shitaka 0 0 10 – –
Vajda 0 – – – –
Vakser – 0 – – –
Wolfson 0 – – – –

Incorrect, acceptable, medium, and high-quality models are assigned with a score

of 0, 1, 2, and 3, respectively. Dash denotes that a scorer did not submit any

model for that target. The number in each cell is the sum of the scores of the 10

models selected by a scorer group. Ranks of the top 10 scorers are shown. All

other scorers are listed alphabetically.
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Among the 13 cases in which none of the superim-

posed models is correct (suggesting that the structures of

the templates for these cases are not close enough for

homology modeling to reliably predict the structure of

the protein complexes), PS-HomPPI reliably predicts

both sides of the interface in five cases (sensitivities range

from 0.51 to 0.96, i.e., 51–96% of the actual interface

residues are correctly predicted as interface residues; Spe-

cificities range from 0.40 to 0.96, that is, 40–96% of the

predicted interface residues are actual interface residues).

The three cases are 1H1V (difficult), 2OT3 (difficult),

2CFH (medium), 1ZHI (rigid-body), and 2AJF (rigid-

body), where rigid-body, medium, and difficult denote

the (increasing) levels of difficulty of docking as meas-

ured by the extent of conformational change upon bind-

ing (according to Docking Benchmark 3.0).

Experiment 2

We consider proteins that have more than two chains

and for which no complete templates are available. We

identified seven such cases, for which PS-HomPPI tem-

plates can be identified for only a subset of query chains

and hence current approaches to superimposition or

threading cannot be used (see Table II and Supporting

Information Table S5).

We evaluated the interface prediction performance of

PS-HomPPI, and compared the scoring performance of

DockRank with that of IRAD, ZRank, and ClusPro on

two decoy sets of ZDock3-BM3 and ClusPro2-BM3. In

order to examine the impact of the reliability of PS-

HomPPI predictions on the performance of DockRank

in ranking conformations, we divided the cases into

three groups: (i) Group I: cases in which PS-HomPPI

can reliably predict both sides of the interface; (ii) Group

II: cases in which PS-HomPPI can reliably predict only

one side of the interface; (iii) Group III: cases in which

PS-HomPPI cannot reliably predict interacting residues

on either side of the interface (see Supporting Informa-

tion Table S5). Three of the four cases in Group I belong

to the “difficult” or “medium” categories (corresponding

to large vs. medium conformational change upon bind-

ing) of the Docking Benchmark 3.0. The reliability of

PS-HomPPI in predicting interfaces for these cases dem-

onstrates that, as expected, our sequence-based interface

predictor PS-HomPPI is robust to large conformational

changes. For all four cases, DockRank significantly

improved the ranking of docked conformations (Table

II). For example, for case 1GP2, DockRank ranked one

acceptable model as number 1, in contrast to IRAD and

ZRank, whose top ranked acceptable models are ranked

at position 85 and 133, respectively. This result shows

that when both sides of the interface are reliably pre-

dicted, even for a subset of the query chains, DockRank

is able to improve the rankings of docked conformations.

As expected, for the two cases in Group II and the one Ta
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case in Group III, DockRank cannot rank docked confor-

mations reliably. However, for six of seven multiple-

chain cases in this experiment, PS-HomPPI is able to

reliably predict the interfaces for at least one chain (Sup-

porting Information Table S5), which can be used to

provide important constraint information for docking

programs.

From the results of the experiments, we conclude that

structure superimposition can be a viable alternative for

generating all-atom models of complexes when templates

that share high global sequence similarity are available,

and DockRank can be used to reliably differentiate the

correct superimposed models from incorrect ones. In the

case of multimeric complexes, for which PS-HomPPI can

identify only partial templates for a subset of query

chains, we find that PS-HomPPI reliably predicts inter-

face residues for at least one side of the interface. When

both sides of an interface can be reliably predicted by

PS-HomPPI, DockRank can significantly improve the

rankings of docked models. When only one side of an

interface can be reliably predicted, DockRank cannot

improve the ranking of docked models, but the interfaces

predicted by PS-HomPPI can be used to constrain dock-

ing and thus potentially improve the quality of the

resulting models. The ability of our ranking method,

DockRank, and our interface predictor, PS-HomPPI, to

reliably make use of dimeric protein complex templates

in cases with more than two chains is of special interest

in light of the fact that solving 3D structures using

experimental methods is usually more difficult for large

protein complexes with multiple chains than for small

protein complexes.

DISCUSSION

Selecting near-native conformations from a large num-

ber of decoys generated by a docking program remains a

challenging problem in computational molecular dock-

ing.10 In this study, we presented DockRank—a novel

scoring method for protein–protein docking based on

predicted interfaces. The proposed scoring function relies

on a measure of similarity between interfaces of docked

models and predicted interfaces by a partner-specific

interface predictor, PS-HomPPI.

The major conclusions of this study are as follows: (1)

Comparisons of DockRank with two state-of-the-art

energy-based docking scoring functions, ZRank, and

IRAD, show that DockRank consistently outperforms

both on a decoy set of 67 docking cases for which PS-

HomPPI is able to predict the interface residues between

the receptor and the ligand and for which ZDock 3.0 is

able to generate at least one hit among 54,000 candidate

decoys per case. These results suggest the viability of

DockRank as an alternative to complex energy-based

scoring functions in cases where it is possible to obtain

reliable partner-specific interface predictions. (2) Com-

parisons of DockRank variants that use different sources

of predicted interfaces underscore the importance of

using partner-specific interface predictions to rank

docked conformations. (3) DockRank is able to improve

upon the Success Rate, average Hit Rate, and L-RMSD of

the conformations returned by ClusPro. (4) DockRank

performs competitively with the CAPRI top scorers on

the five targets we assessed. (5) DockRank complements

structural superimposition and threading methods in

important ways. In cases where sufficiently good tem-

plates can be identified for structural superimposition or

threading methods to be applicable, DockRank can be

used to reliably differentiate near-native superimposed

models from incorrect superimposed models; in cases

where homology modeling cannot be directly applied

(i.e., cases in which only a subset of chains have tem-

plates), PS-HomPPI can reliably identify at least one

side, and in some cases both sides, of the interface allow-

ing DockRank to reliably rank docked models. (6) The

results of our comparison of DockRank using actual

partner-specific interfaces as opposed to PS-HomPPI

predicted partner-specific interface residues for scoring

docked conformations suggests that there is significant

room for improving the performance of DockRank by

improving the reliability of partner-specific interface resi-

due predictions.

We hypothesize that the poor performance of Dock-

Rank variants that use interface residues predicted by

nonpartner-specific interface predictors, in comparison

with DockRank using PS-HomPPI predicted interfaces, is

at least in part explained by the fact that the docking

cases used in this study correspond to nonobligate pro-

tein complexes. Most nonobligate complexes are transient

interactions,63 which tend to be highly partner-spe-

cific.3,4,42 A perfect nonpartner-specific protein interface

predictor can reliably predict, at best, the union of all

the actual interface residues of a protein with all of its

possible binding partners. Therefore, interface residues

predicted by even the perfect nonpartner-specific inter-

face predictor on the two proteins (A and B) that make

up a docking case will include not only the actual inter-

face between receptor A and ligand B, but also residues

that play a role in interactions of A with partners other

than B, and B with partners other than A. Thus, the

interface residues predicted by nonpartner-specific pre-

dictors have a high rate of false positives when used in

partner-specific setting. And these “false positive interface

residues” may falsely give top ranks to docked conforma-

tions that have interfaces near these “false positive” inter-

faces, resulting in the corresponding deterioration in the

quality of ranked conformations. This underscores the

critical role of a reliable partner-specific interface predic-

tor in the effectiveness of DockRank, at least for docking

cases that correspond to transient interactions. The

results of our experiments with DockRank using

Interface Conservation-Based Scoring Function
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nonpartner-specific interface predictions are consistent

with the observation made by Li and Kihara55 that

nonpartner-specific interface predictions cannot reliably

rank docked conformations. However, the reliable per-

formance of DockRank using partner-specific interface

predictions indicates that predicted partner-specific inter-

faces can indeed be used to rank docked conformations

more reliably than other state-of-the-art scoring func-

tions, when interacting templates for both sides of the

query interactions are available.

To facilitate comparisons with new scoring functions

that may be developed in the future, the DockRank

scores on the decoy sets used in this study are available

to the community. Docked conformations generated

using different ClusPro energy functions, L-RMSD for

each docked conformation, ClusPro scores, and the recal-

culated L-RMSDs of models of 1ML0 and 1RLB after

including both identical bound ligand chains, are also

available at http://einstein.cs.iastate.edu/DockRank/

supplementaryData_journal.html.

Docking cases with large conformational changes upon

binding present challenges for most scoring schemes. It

is challenging both for docking programs to generate suf-

ficient numbers of near-native conformations for such

cases and for interface residue predictors to make reliable

interface predictions. Therefore, it is important to evalu-

ate the performance of scoring functions on complexes

with different conformational change levels. Complexes

in the BM3 dataset are classified into three groups based

on the degree of conformational changes upon binding.

We studied the performance of our underlying interface

predictor, PS-HomPPI, with respect to different confor-

mational change levels to indirectly study the perform-

ance of DockRank in ranking docked models of cases

with different conformational changes. For each interface

prediction, PS-HomPPI provides an interface prediction

confidence zone (Safe/Twilight/Dark Zone) based on the

degree of sequence similarity of the homo-interologs

used for interface inferences. Because the effects of con-

formational changes and the prediction confidence zones

on the performance of PS-HomPPI may be confounded,

we summarized the interface prediction performance of

PS-HomPPI into nine subgroups with respect to three

levels of conformational changes and three prediction

confidence zones (Table III). The results in Table III

show that the performance of PS-HomPPI is insensitive

to conformational changes upon binding and it is clearly

correlated with the prediction confidence zones: the

higher confidence, the more reliable the interface predic-

tions. Because both the interface prediction of PS-

HomPPI and the calculation of DockRank scores are

insensitive to the conformational changes, we can expect

that the ranking of conformations produced by Dock-

Rank is relatively insensitive to conformational changes

upon binding.

This allows us to investigate the performance of Dock-

Rank as a function of prediction confidence, independent

of the extent of conformational change upon binding.

We studied the Success Rates and Hit Rates of DockRank

on cases with only Safe, Twilight, and Dark Zone inter-

face predictions (See Fig. 7).2 As expected, DockRank

performs best with Safe Zone interface predictions.

Although the performance of DockRank degrades in the

Twilight Zone, it still outperforms other scoring func-

tions in terms of the Success Rate. In Dark Zone (2

docking cases), DockRank is able to rank a hit at the

Table III
Interface Residue Prediction Performance of PS-HomPPI on the BM3 Dataset with Three Different Prediction Confidence Zones on Three Levels

of Conformational Changes upon Binding

Confidence zones
Conformational

change upon binding
Number of predictions

(out of 372) CC F1 Specificity Sensitivity

Safe Rigid 138 0.63 0.64 0.71 0.65
Medium 22 0.59 0.59 0.72 0.59
Difficulty 26 0.56 0.55 0.74 0.55

Twilight Rigid 34 0.46 0.52 0.55 0.59
Medium 4 0.38 0.4 0.43 0.38
Difficulty 4 0.54 0.6 0.58 0.63

Dark Rigid 4 0.12 0.19 0.19 0.38
Medium 0 – – – –
Difficulty 0 – – – –

Average 232/372 5 62% 0.58 0.59 0.67 0.61

Only the interfaces between the receptors and ligands are predicted and used by DockRank in ranking docked models. During the evaluation, we consider each

partner-specific-predicted receptor–ligand interface as one prediction. For example, for a complex AB:C with two receptor chains A and B and one ligand chain C, we

consider four predictions: AjA:B, AjA:C, BjB:A, CjC:A, where AjA:B means the interface of A that interacts with its binding partner B. Sometimes, part of a protein

may not have interface predictions from PS-HomPPI because of the lack of aligned residues from putative sequence homologs. These residues are not considered in the

evaluation here, because they are not used by DockRank in ranking docked models. Correlation coefficient (CC), F1, specificity, and sensitivity are performance meas-

urements of interface predictions (see Supporting Information Text S3 for definitions). The higher their values, the more reliable the predictions.

2When a docking case has more than two protein chains
(hence more than one pair of query proteins), the multiple
pairwise interface predictions may have different confidence
values. When a case has different confidence zones, it is not
further analyzed here.
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rank of 100 out of 54,000 models for one case, but fails

to find any hits for the other case among the top 1000

conformations.

Different weights can be assigned to predicted interfa-

ces with different prediction confidences when calculat-

ing the scores for each docked conformation. In this

study, we used weights 1, 1, and 0.001 for the Safe, Twi-

light, and Dark Zone interface predictions, respectively.

Our web server allows users to set different weights for

interface predictions from PS-HomPPI when ranking

docked models: higher weight for Safe Zone predicted

interfaces and lower weight for Dark Zone predicted

interfaces.

Although superimposition or threading provides a

simpler method for modeling protein complexes, they

have several important limitations. To the best of our

knowledge: (i) superimposition and threading methods

cannot adjust the relative orientation of proteins to gen-

erate more accurate interface structures, which can be

important in many practical applications; (ii) threading

can generate only partial models aligned with the tem-

plates provided and the resulting models usually contain

only C-alpha atoms, necessitating the use of other pro-

grams to add side chains and fill in unaligned portions

of the structures; and (iii) in the case of large proteins

with more than two chains or domains, it could be diffi-

cult to find complete templates or even partial templates

that can be assembled into a complete template. Even in

cases where it is possible to do so, the process relies

heavily on the relative orientation of the shared template

proteins with other proteins and on the structural simi-

larity between the shared template proteins; inaccuracies

in these steps can cumulatively decrease the accuracy of

the resulting models. Our results show that DockRank

complements structural superimposition and threading

approaches in important ways. DockRank’s ability to

make use of partial templates could be useful in light of

the fact that experimentally solving the structure of mul-

tiple-chain/domain protein complexes is harder than

solving that of proteins with fewer chains/domains.

The applicability of DockRank is limited by the avail-

ability of partner-specific interface predictions used by

DockRank. At present, PS-HomPPI, the sequence

homology-based partner-specific interface predictor42

used by DockRank, can reliably predict interface residues

only in settings where reliable homo-interologs of a

docking case are available. For example, PS-HomPPI

returns interface predictions for 85 out 119 cases com-

prising Docking Benchmark 3.0 (which translates to a

coverage of 71%, data not shown). The limited coverage

of PS-HomPPI limits the applicability of DockRank to

the subset of docking cases for which homo-interologs

are available. The coverage of PS-HomPPI, and hence

that of DockRank, can be expected to increase as more

and more complexes are deposited in PDB. Expanding

the applicability of DockRank to a much broader range

of docking cases than currently possible calls for the

development of alternatives to PS-HomPPI. To identity

templates, PS-HomPPI currently uses the sequence-

sequence alignment method BLASTP, which has relatively

low sensitivity in detecting remote homologs. This limits

the ability of PS-HomPPI to predict interfaces for cases

that have templates with conserved interfaces but low

sequence similarity. Work in progress is aimed at explor-

ing alternatives to BLASTP, for example, profile–profile

alignments, to detect remote sequence homologs, and

thereby enable PS-HomPPI to identify more templates

with high local sequence similarity and conserved

Figure 7
The interface prediction of PS-HomPPI on the ZDock3-BM3 decoy set in different interface prediction confidence zones. A docking case with

more than one receptor-ligand chain pair may have predicted interfaces from different confidence zones. Only cases with predictions in a single

confidence zone and with at least one hit are studied here. Fifty-eight cases have only Safe Zone interface predictions, out of which ZDock 3.0 is
able to generate at least one hit for 48 cases. Fourteen cases have only Twilight Zone interface predictions, out of which 10 cases have at least one

hit. Two cases have only Dark Zone interface predictions, of which two cases have at least one hit.
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interface residues. In addition, we are also developing

machine-learning approaches to partner-specific interface

prediction that do not rely on homo-interologs, as well

as hybrid methods that combine the complementary

strengths of homology-based partner-specific methods,

such as PS-HomPPI, and partner-specific machine-learn-

ing predictors trained using sequence and structural fea-

tures of component proteins to be docked against each

other. Because the performance of DockRank in ranking

conformations is limited ultimately by the reliability of

available partner-specific interface information, any

advances in methods for reliable partner-specific interface

prediction or for that matter, high-throughput interface

identification methods, can be leveraged to obtain corre-

sponding improvements in the performance of

DockRank.

Because of the high computational cost of exploring

the large conformational space of complexes formed by

several protein chains, there has been increasing interest

in utilizing knowledge of the actual or predicted interface

residues between a pair of proteins to constrain the

exploration of docked configurations to those that are

consistent with the predicted interfaces (thus improving

the computational efficiency of docking and the accuracy

of docking33,64–69). This raises the possibility of using

PS-HomPPI predicted interfaces as a source of con-

straints to limit or bias the conformational space

sampled by docking algorithms.
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