
SMART mobile agent facility

Johnny Wong *, Guy Helmer, Venkatraman Naganathan, Sriniwas Polavarapu,
Vasant Honavar, Les Miller

Computer Science Department, Iowa State University, C/O Room 205, Atanaso� Hall, Ames, IA 50011, USA

Received 8 August 1999; received in revised form 17 December 1999; accepted 8 February 2000

Abstract

With ever growing use of Internet for electronic commerce and data mining type applications there seems to be a need for new

network computing paradigms that can overcome the barriers posed by network congestion and unreliability. Mobile agent pro-

gramming is a paradigm that enables the programs to move from one host to another, do the processing locally and return results

asynchronously. In this paper, we present the design and development of a mobile agent system that will provide a platform for

developing mobile applications that are Mobile Agent Facility (MAF) speci®cation compliant. We start by exploring mobile agent

technology and establish its merits with respect to the client±server technology. Next, we introduce a concept called dynamic ag-

gregation to improve the performance of mobile agent applications. We, then focus on the design and implementation issues of our

system, Scalable, Mobile and Reliable Technology (SMART), which is based on the MAF speci®cation. Ó 2001 Elsevier Science

Inc. All rights reserved.

Keywords: Mobile agent; Mobile agent facility; CORBA; Dynamic aggregation; Client±server

1. Introduction

The growth of Internet has impacted virtually every
sector of our society. For example, corporations move
to employ the Web internally (Intranet) to create
``smart'' enterprise, government uses it to reduce costs
and provide high quality service and the public at large
now has access to a huge and rapidly growing source of
information and services of all kinds. From a society
point of view, the Web further intensi®es the pressure of
information overload and from the network point of
view, growing Web usage will upset network models and
put tremendous pressure on bandwidth requirement and
network management (University of Ottawa).

Today's networks pose a barrier to the development
of communicating applications. This barrier results
from the need for such applications to physically dis-
tribute themselves. That is, they should run not only on
the computers dedicated to clients, but also on the
computers that clients share, the servers. For example, a
communicating application that is to provide a forum
for buying and selling products necessarily has two

parts. A user-interface component in the user's personal
communicator gathers information from an individual
buyer or seller. A database component in a server re-
cords the information and uses it to bring buyers and
sellers together (White, 1996).

Most applications involving communications over a
network use traditional client±server paradigm in which
a connection is established between the client and the
server or datagrams are sent across the network. This
traditional approach becomes expensive and unreliable
when lot of messages have to be sent between the client
and the server, i.e., when the application consumes a lot
of network bandwidth. In such situations, it is more
e�cient and reliable to be able to send the client to the
server's machine and perform the job locally rather than
shouting the commands across the network. This forms
the basis for mobile agents. Mobile agents are software
agents that have the basic capability to move themselves
from host to host and continue execution from the point
they stopped on the previous host (Bradshaw, 1997).
Additionally, mobile agents can also have the capability
to perform functions on behalf of the client, think in-
telligently (using some AI algorithms), learn and remain
persistent.

Mobile software agent that enables the programs to
move to the data is a powerful new paradigm that will

The Journal of Systems and Software 56 (2001) 9±22
www.elsevier.com/locate/jss

* Corresponding author. Tel.: +1-515-294-2586; fax: +1-515-294-

0258.

E-mail address: wong@cs.iastate.edu (J. Wong).

0164-1212/01/$ - see front matter Ó 2001 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (0 0) 0 0 0 8 2 - 0

undoubtedly prove to be a viable option for e�ective
multimedia communications, information gathering and
retrieval on the Internet. The main reason for this is the
asynchronous, adaptive, and the most important of all,
bandwidth-saving nature of mobile agents. The follow-
ing section discusses this new emerging model of com-
puting and communication paradigm known as the
mobile agent infrastructure. The concept of computing
using mobile agents is also known as remote program-
ming.

1.1. Mobile agent technology

One de®nition of term `agent' means those relatively
simple, client-based software applications that can assist
users in performing regular tasks such as sorting e-mail
or downloading Web pages from the Web, etc. This
class of agents is often referred to as `personal assistant'
agents. At the other end of the scale is the concept of
sophisticated software entities possessing arti®cial in-
telligence that autonomously travel through a network
environment and make complex decisions on the user's
behalf.

Our de®nition therefore is the following: a mobile
agent is a program that acts on behalf of a user or an-
other program and is able to migrate from host to host
on a network under its own control. The agent chooses
when and to where it will migrate and may interrupt its
own execution and continue elsewhere on the network.
The agent returns results and messages in an asynchro-
nous fashion (University of Ottawa).

Mobile agents do not require network connectivity
with remote services in order to interact with them and
network connections are used for one-shot transmission
of data (the agent and possibly its state and data). Re-
sults in the form of data do not necessarily return to the
user using the same communication trajectory, if indeed
the results are to be returned at the originating site.
Alternatively, the agent may send itself to another in-
termediate node and take its partial results with it. Re-
sults are delivered back to the user whose address the
agent knows.

Today the most common way of implementing dis-
tributed applications is through the client±server para-
digm. In this model, an operation is split into two parts
across a network, with the client making requests from a
user machine to a server which services the requests on a
large, centralized system. A protocol is agreed upon and
both the client and server are programmed to implement
it. A network connection is established between them
and the protocol is carried out. However the client±
server paradigm breaks down under situations dealing
with highly distributed problems, slow and/or poor
quality network connections, and especially in the
maintenance of constantly changing applications.

In a system with a single central server and numerous
clients, there is a problem of scalability. When multiple
servers become involved, the scaling problems multiply
rapidly, as each client must manage and maintain con-
nections with multiple servers. The use of two-tier sys-
tems or proxies only moves this problem to the network.
It does not eliminate the basic problem. With client±
server technology there comes a need for good quality
network connections. First, the client needs to connect
reliably to its server because only by setting up and
maintaining the connection may it be authenticated and
be secure. Second, the client needs to be assured of a
correct response, since a server can crash anytime be-
tween processing the request and sending back the reply.
Third, it needs good bandwidth since, due to its very
nature, client/server must copy data across the network.

Finally, the protocol which a client and a server agree
upon is by its very nature specialized and static. Often,
speci®c procedures on the server are coded in the pro-
tocol and become a part of the interface. Certain classes
of data types are bound to these procedures and the
result is a special network version of an application
program interface. This interface is extensible, but only
at the high cost of re-coding the application, providing
for protocol version compatibility, software upgrade,
etc. As the applications grow and the needs increase,
client/server programming rapidly becomes an obstacle
to change (White, 1996).

Mobile agents overcome all these inherent limitations
in client±server paradigm. First and foremost, the mo-
bile agent paradigm shatters the very notion of client
and server. With mobile agents, the ¯ow of control ac-
tually moves across the network, instead of using the
request/response architecture of client±server paradigm.
In e�ect, every node is a server in the agent network and
the agent (program) moves to the location where it may
®nd the services it needs to run at each point in its ex-
ecution. For example, the same agent interacts with the
user via a GUI to obtain request keys, then travels to a
database server to make its request.

The scaling of servers and connections then becomes a
straightforward capacity issue, without the complicated
exponential scaling required between multiple servers.
The relationship between users and servers is coded into
each agent instead of being pieced out across clients and
servers. The agent itself creates the system, rather than
the network or the system administrators. Server ad-
ministration becomes a matter simply of managing
systems and monitoring local load.

The problem of robust networks is greatly diminished
for several reasons. The hold time for connections is
reduced to only the time required to move the agent in
or out of the machine. Because the agent carries its own
credentials, the connection is simply a conduit, not tied
to user authentication or spoo®ng. No requests ¯ow
across the connection, the agent itself moves only once,

10 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

in e�ect carrying a greater ``payload'' for each traversal.
This allows for e�ciency and optimization at several
levels.

Last and the most important, no application-level
protocol is created by the use of agents. Therefore,
compatibility is provided for any agent-based applica-
tion. Complete upward compatibility becomes the norm
rather than a problem to be tackled, and upgrading or
recon®guring an application may be done without re-
gard to client deployment. Servers can be upgraded,
services moved, load balancing interposed, security
policy enforced, without interruptions or revisions to the
network and clients.

In general we can say that the mobile agent model
o�ers the following advantages over traditional client±
server models:
· Uses less bandwidth by ®ltering out irrelevant data

(based on the user pro®le and preferences) at the re-
mote site before the data is sent back.

· Ongoing processing does not require ongoing connec-
tivity.

· Saves computing cycles at the user's computer.
· It is more e�cient since the processing moves closer

to the data.
· More reliable since the processing does not depend

on the continuous network connection.
· Frees the user to log out or migrate since the agent's

life is independent of the user's session.
Mobile agent technology is gaining widespread use in
many data mining and Internet search applications.
Today's Mobile agent technology provides us with tools
and languages for fast and easy development of mobile
agent applications. There are already several commer-
cial mobile agent platforms available in the market to-
day. The next section discusses some of the important
commercially available mobile agent platforms and the
advantages of the mobile agent programming facilities
these platforms provide.

In this report we will also study a new feature in
mobile agents known as dynamic aggregation. In object-
oriented systems ``aggregation'' is de®ned as a-part-of
relationship in which objects representing components
of other objects are associated as an assembly (Prentice-
Hall). Aggregation can be classi®ed into two parts: static
and dynamic. Static aggregation of objects can be
achieved through, for example, inheritance (Sun Inc.,
1998). Static aggregation in object-oriented programs is
formed at the compile time and any irregularities in
inheritance or object-containment is detected during the
compiling phase. On the other hand dynamic aggrega-
tion refers to enhancing the properties of an object at
runtime in unforeseen ways. During an object's execu-
tion phase, it can form relationship with other objects of
unrelated classes to enhance its functionality.

In mobile agents the importance of dynamic aggre-
gation was realized when people started using mobile

agents in AI and data mining applications. An agent
would typically be required to carry several algorithms
and hundreds of rules with it from one host to another,
many of those algorithms not being used at all. This
would cause the agent code to bloat up and hence would
result in more network bandwidth consumption. It
would also take more CPU power to pack the agent for
transporting it across the network and to unpack the
agent after it has been received at the receiving agent
system.

The traditional mechanisms of inheritance and
polymorphism do not help to solve these problems.
Dynamic aggregation allows us to attach new code
and data to an agent at the runtime. Looking from a
mobile agent's perspective, dynamic aggregation helps
in reducing the amount of code that goes along with
the agent by allowing the agent to attach extra code
on the need basis hence reducing the network band-
width requirements and also speeding up the process
of packing the agent to transfer it from one host to
another.

1.2. Project goal

With the emergence of variety of commercial mobile
agent platforms, it was recently realized that very soon
the mobile agent applications developed on these plat-
forms will start facing interoperability problems. It will
no longer be possible to write mobile code that can talk
to another mobile code developed on some other mobile
agent platform. Because of this, ObjectSpace in con-
junction with OMG, came out with a common mobile
agent facility (know as MAF) speci®cation in early 1997
(OMG, 1997). Following problems were addressed in
the mobile agent facility speci®cation: (White, 1998)
· Interoperability.
· Mobile agents require an environment, in which they

can be created, named, authenticated, dispatched to
and received from another environment.

· Various languages like Java (Sun Inc.) AgentTCL,
Smalltalk need to be supported.

· Various commercial agent implementations need to
be supported. For example Aglets (Lange, 1996,
IBM Inc., 1997a,b), Concordia (Mitsubishi Electric),
Odyssey, Voyager (ObjectSpace Inc., 1997) etc.

· Standard services need to be supported, e.g., naming,
authentication, communication, noti®cation, trans-
fer, etc.

The goal of this project is to develop an MAF compliant
mobile agent platform (Tham, 1996) and to incorporate
features like dynamic aggregation that are still not part
of MAF speci®cation. This platform, known as Scalable
Mobile and Reliable Technology (SMART), will enable
us to write mobile agent applications and run them in
environments that are MAF compliant. The applica-
tions developed using SMART will be interoperable

J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22 11

with other MAF compliant mobile agent technology.
We will also incorporate dynamic aggregation facility in
it. Although dynamic aggregation is still not a part of
the MAF speci®cation, we have realized an early need of
this feature to make our mobile agent applications more
e�cient.

1.3. Roadmap

In Section 2 we will discuss dynamic aggregation and
its application in subject-oriented programming. In
Section 3 we will present the system design and archi-
tecture. A comparison between the SMART and a few
commercial mobile agent platforms will also be given.
Section 4 will deal with the implementation and testing
of SMART system. Section 5 concludes this report and
explores some possible areas of future work in our sys-
tem.

2. Background and related work

2.1. Dynamic aggregation

In this section, we will review the dynamic aggrega-
tion facility in detail. Voyager is the only commercial
mobile agent platform currently supporting dynamic
aggregation feature. The main idea behind incorporat-
ing dynamic aggregation in Voyager was to use already
existing Java classes that were written before the mobile
agent platforms were built. To make objects of such
classes mobile, an agent would incorporate those objects
as its attachments (known as facets) and move from one
site to another hence moving those objects with itself.
The objects (carried as the agent's facets) will retain
their internal state upon moving from one host to
another.

2.1.1. Features of dynamic aggregation
In Voyager, the object to which the other objects are

attached dynamically is called a ``primary'' object and
the attached objects are known as ``facets''. Following
features are supported by Voyager's dynamic aggrega-
tion:
· A facet class need not be changed or recompiled in

order to attach it to a primary object.
· A primary class is not required to be modi®ed or

recompiled in order to have facets.
· Any number of facets can be attached to a primary

object.
· It is not possible to detach a facet once it is attached

to the primary object.
· Voyager does not support attaching a remote facet to

a primary object and vice-versa. The code of an
attachment must be available on the local host.

· In Voyager one can get hold of a remote reference
of a facet in the same way as one can get a remote
reference to a primary object.

· Nested facets are not supported in Voyager.
· Cyclic facets are also not supported in Voyager.

Probably it is considered dangerous to allow cyclic
facets.

· The regular rule in Voyager says that a facet cannot
be garbage collected until all the references to the fac-
et as well as its primary object are gone. Voyager pro-
vides an istransient() functions to override this rule.
If this method returns true, the facet object is re-
claimed immediately when there are no more refer-
ences to it. This feature is useful when the facet is
stateless and does not need to be associated with
the primary object once its work is done. The Voyag-
er Mobility facet is an example of a transient facet.
The details on Voyager's dynamic aggregation API

can be found in the Voyager 2.0 user's manual (Ob-
jectSpace Inc., 1997).

2.2. Subject oriented programming

Subject oriented programming is a new concept
closely related to dynamic aggregation. Dynamic ag-
gregation can be said to be a practical implementation
of subject oriented programming. Subject oriented
programming is a program-composition technology
that supports building object-oriented systems as com-
positions of subjects. A subject is a collection of classes
or class fragments whose hierarchy models its domain in
its own subjective way. A subject may be a complete
application in itself, or it may be an incomplete frag-
ment that must be composed with other subjects to
produce a complete application. Subject composition
combines class hierarchies to produce new subjects that
incorporate functionality from existing subjects. Sub-
ject-oriented programming thus supports building
object-oriented systems as compositions of subjects,
extending systems by composing them with new sub-
jects, and integrating systems by composing them with
one another (perhaps with ``glue'' or ``adapter'' sub-
jects) (IBM Research, 1998).

2.2.1. Practical applications
The ¯exibility of subject composition introduces novel

opportunities for developing and modularizing object-
oriented programs. Subject-oriented programming-
in-the-large involves determining how to subdivide a
system into subjects, and writing the composition rules
needed to compose them correctly. It complements ob-
ject-oriented programming, solving a number of prob-
lems that arise when object-oriented technology is used
to develop large systems or suites of inter-operating
or integrated applications. It is useful in a variety of

12 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

software development and evolution scenarios, includ-
ing (IBM Research, 1998):
· Application extension, including unplanned exten-

sion.
· Development of application suites by teams operat-

ing with varying degrees of independence.
· Development of systems with multiple features,

where code for each feature is to be kept separate.
· Development of systems in which it is advantageous

for code modularity to mirror requirements structure.
· Unplanned integration of separately written subject-

oriented applications.
In C++ programming environment, each subject is
written as a collection of C++ class de®nitions in a
namespace, each declaring and de®ning just what is
appropriate for that particular subject. Any standard
C++ code can be treated as part of a subject. We see a
close relationship between subject-oriented program-
ming and dynamic aggregation facility by realizing the
fact that an agent may want to carry only the code that
is appropriate for the actions it is going to carry out.
Any other irrelevant code (which may be relevant in
other scenarios) might have to be left out or attached to
the agent on need basis. Hence we see that dynamic
aggregation facility helps us to build an agent that is
based on its subjective needs.

3. System design and architecture

In this section we will present various design issues
involved in implementing SMART and dynamic aggre-
gation feature in it. At the end of this section we will give
a comparison between SMART and the three mobile
agent platforms discussed in the previous section.

3.1. Design goals

Following are the design goals for SMART:
· Mobility: Any programmer wanting to write a mobile

code using SMART must be able to do so easily. The
application programmer need not bother about un-
derstanding and implementing the mobility.

· Standard compliance: The system developed should
be compliant with the MAF speci®cation.

· Platform independence: Since an agent can travel from
a machine of one type to machine of another type, it
is necessary that SMART be platform independent.
This will relieve the programmer of the problems aris-
ing due to heterogeneous environments.

· Performance: The migration of an agent can be an ex-
pensive process especially if the agent is carrying huge
amount of data and code. Since nothing much can be
done to speed up Java serialization and deserializa-
tion we are incorporating dynamic aggregation to
improve the performance of SMART.

· Scalability: The number of agents roaming around in
the system should not be a constraint on the system.
The distributed nature of the underlying ORB (in this
case Visibroker (Visigenic Inc., 1997)) and Java RMI
helps in solving the scalability issues.

3.2. Smart system architecture

SMART is a four tiered architecture that is built on
top of Java virtual machine. The lowest layer is the
Region Administrator, which is built on Java virtual
machine. It manages a set of agent systems and enforces
security policies on them. The Finder module at this
level o�ers the region administrators and the layers
above it the naming service (see Fig. 1).

The next layer is the Agent System layer. This layer
acts as the world of agents allowing them to create,
migrate and destroy themselves in this world. This layer
can have multiple contexts called places where agents
execute. The layer on top of this layer is the agent
context layer, also called the Place. This layer provides
an execution environment for the execution of agents.
Mobile agents, when they migrate, travel between these
places. Using agent contexts like places, accessibility
policies to resources can be enforced. The top most layer
is the Agent Proxy layer. This layer constitutes the
mobile agent API which can be used by the applications
written in SMART.

The main objects in the MAF system are Agent
Proxy, Place, Agent System, Region Administrator and
the MAF Finder. All these modules have been imple-
mented in Java. The Agent Proxy has been designed as a
Java thread. The application mobile agent must inherit
the MobileAgent class to become mobile. The agent
proxy communicates with the place server on which the
agent resides currently. The place server is designed as
an RMI server (non-CORBA object) because of the
nature of the information exchanged between the Agent
Proxy and the place server. The place server interacts

Fig. 1. Four tiered layered architecture of SMART.

J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22 13

with the agent system, to which the agent wants to mi-
grate. The place server may also communicate with its
parent agent system for certain agent management op-
erations such as register, locate and unregister. The
agent system manages the place server, which runs un-
der it and also communicates with the region adminis-
trator, which manages the region to which the agent
system belongs. The region administrator enforces se-
curity policies on agent systems running under a par-
ticular region. The MAF Finder provides a naming
service for the above-mentioned components of the
MAF system. The Region Administrator is designed as
a CORBA (OMG, 1998) object.

3.3. Dynamic aggregation

The idea of using mobile applications to save network
bandwidth can be further strengthened by saving the
amount of network bandwidth and CPU cycles it takes
to pack, transmit the agent's serialized code across the
network and unpack and resurrect the agent on the
other end of the network. This can be achieved by di-
rectly addressing the issues related to methods of agent
serialization. Some of the issues include compressing the
agent code before transmission, caching the agent code,
providing the agent structure information (class infor-
mation in Java) in advance, etc. We have looked into a
new concept called dynamic aggregation in which the
agent carries minimum amount of code and data with
itself by stripping itself o� of unnecessary code and
attaching the required code on need basis. Dynamic
aggregation will allow a mobile agent to attach code at
runtime and hence obviating the need to use a mobile
agent that has been programmed and compiled with
code ready for all kinds of possibilities. For example, a
car mechanic agent need not carry manuals to repair all
kinds of cars available on this planet. Instead, the me-
chanic can pick up only the required manuals or tools
depending on the make of the car he is going to repair
and the problem at hand.

Dynamic aggregation is useful not only in the mobile
agent systems but also in the construction of object-
oriented systems in the following ways (ObjectSpace
Inc., 1997):
· An object's behavior may be needed to be extended at

the runtime in unforeseen ways.
· Behavior must be added to a third-party component

whose source is not available.
· Customize an object on the user's need basis.

3.3.1. Requirements
Mobile Agent Facility (MAF) speci®cation does not

address the issue of optimizing agent transfer and hence
does not discuss the issues concerning dynamic aggre-
gation. As such, a mobile agent platform that would

support dynamic inheritance or dynamic aggregation
should have the following properties:
· An attachment class should not be required to be

modi®ed or recompiled in any way to be attached
to a primary class.

· Similarly, a primary class should not be required to
be modi®ed or recompiled in any way in order to
have any classes attached to it.

· One should be able to attach as many attachments as
possible to the primary object.

· It should be possible to detach the attachments when-
ever needed. Otherwise, the code of a mobile agent
would bloat up if it keeps on attaching new objects
to it and there is no way to detach them.

· The attachments can be instantiated on any machine
regardless of where the primary object is instantiated.

· One should be able to get a remote reference to an
attachment object in the same way as one can get a
remote reference to the primary object.

· An attachment should be able to have attachments.
· Cyclic attachments should be possible. That is, the

primary object of an attachment can be latter's at-
tachment. This may be a controversial feature, which
may lead to problems. For example, when somebody
tries to ®nd the attachments of a primary object
recursively.

· An attachment should not be garbage collected if
there are any live (possibly remote) references to
either the primary object or the attachment object
itself. The vice-versa should also be true.

SMART uses Java serialization to pack an agent for
transportation and any object that does not implement
the serializable interface cannot be serialized at runtime.
Hence the instances of a class that does not implement
serializable interface cannot be attached to the agent.
Also, not every class instance can become a primary
object and start attaching other objects to it. Only those
class instances can become primary objects whose class
extends MobileAgent class. Without extending Mobile-
Agent class, a class instance cannot get the properties to
move. This is a requirement speci®ed in MAF speci®-
cation and hence cannot be changed. On the other hand,
Voyager, which is not MAF compliant, allows any class
instances to take the role of a primary object because
Voyager supports mobility in the form of dynamic ag-
gregation. Any object can become mobile even if its class
does not extend any system class. This can be done by
attaching a facet called ``mobility'' to the object and
using the mobility API of the ``mobility'' facet.

In SMART, dynamic aggregation can be best sup-
ported by MobileAgent class because we are giving this
feature only to the mobile agents and not to instances of
any arbitrary class. The agent will have to maintain a list
of all its facets. Facets are those objects that are attached
to the mobile agent at runtime. The agent will have to
maintain the properties of all the facet objects. It is best

14 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

to implement all the dynamic aggregation APIs in the
MobileAgent class as it will make the API readily
available to the mobile agents. But it may not be pos-
sible to incorporate all the code in MobileAgent class
itself. For example, while transferring the agent from
one host to another, some of its facets may not be
transferable (due to serializability constraints) and may
have to be left out at the source site. In that case, they
will either have to be taken care of by the source place
server or the source agent system so that the agent can
maintain a remote reference to the left out facets.

Incorporating dynamic aggregation directly a�ects the
mobility of an agent in SMART in the following ways:
· Some of the agent's facet objects may not be serializ-

able. Such objects cannot be serialized and hence can-
not be transported with the agent to the next site.

· Some of the agent's facet objects may be server ob-
jects that will become meaningless if transported to
another machine. Even if they are transferable to oth-
er machines they may not be able to use the same port
number they were previously using. Syntactically it is
not feasible to determine if an object is being run as a
server.

· A facet object may have open network connections at
the time the agent (primary object) is packed and sent
to the next site. In such cases, the connections will
have to be terminated or some forwarding agent
should take care of forwarding the messages.

A simpler solution to these problems would be to ®lter
out such facets from being sent along with the agent.
The agent will then have to maintain a remote connec-
tion with its facets that were left out at the previous site.
In that case, any use of such facets by the agent will have
to use the network bandwidth and hence defeats the
whole purpose of using dynamic aggregation.

Availability of class information for deserialization of
agents and facets is also an important issue. We may
assume that the required class information is available
before hand at all the sites the agent is going to visit.
This assumption may work well when there is only one
class to be deserialized but in the case of dynamic ag-
gregation any number of objects (which may all be in-
stances of di�erent classes) can be attached as facets to
the mobile agents. All these objects will have to be se-
rialized and deserialized and resurrected as part of the
agent transfer from one site to another. In that case it
will be impractical to assume that the class information
of all the facet objects is available before hand at all the
sites. To handle this situation, SMART must have some
kind of network class loading facility incorporated into
it that will help in downloading the class information
about the agent and the facet objects. In the SMART
design, the place server is responsible for serializing the
agent and it should have access to the class information
of the agent and the facet objects. Hence it will be ap-
propriate to make the source place server responsible for

providing the class information to the destination net-
work class loader (Javaworld). The place server will be
the most appropriate place for housing the network
class loader.

3.4. Comparison

This section compares the most successful commer-
cially available agent systems with SMART. The com-
parison is based on the most desirable features
(ObjectSpace Inc., 1997).

Table 1 shows that Voyager is comparatively more
advanced than the other three systems. The dynamic
aggregation in SMART allows detaching the facets
whereas it is not possible in Voyager. In Voyager any
object can be made mobile whereas SMART has the
restriction of extending from MobileAgent class to make
an object mobile. None of the above systems, except for
SMART, has their source code publicly available.

4. Implementation and testing

In this section we will discuss the implementation
details of SMART with respect to agent model and
mobility, dynamic aggregation, network class loading
and tracking the agent. Next, we will present the orga-
nization of the system code and a brief description of
classes and the API. Finally, the testing methods will be
discussed.

4.1. Implementation details

4.1.1. Agent model
A mobile agent in SMART has been modeled as a

Java thread. This enables the place servers and the agent
systems to have a better control over the agent. The
agent can be started, suspended, resumed and stopped
easily. The agent cannot run any other threads within
itself. Every time a mobile agent reaches a target, it is
started as a new thread in the target. When it is about to
depart it is suspended in the source system, serialized
and sent to the target system. Threading agents like this
might cause a lot of consistency problems since the ta-
bles maintained by the various modules are going to be
updated by various threads. SMART has to handle all
these situations e�ectively and e�ciently. For example,
more than one agent might try to enter/leave the same
target/source or more than one agent might execute in a
place server concurrently. Thus SMART has to accept,
execute and transfer agents concurrently.

4.1.2. Implementation of mobility
Mobility in SMART is implemented primarily by

Java's object serialization techniques. Using Java's ob-
ject serialization it is possible to capture the data and

J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22 15

state of the agent as a sequence of bytes. This sequence
of bytes can be transmitted over the network and can be
de-serialized to get back the original agent. This new
mobile agent is same as the old mobile agent; the only
di�erence being that they are in di�erent agent contexts
and environments.

When a mobile agent decides to migrate, it calls the
move_to method in the SMART API either directly or
indirectly. This method then hands this agent over to the
agent context or the place server where the agent is
currently executing. Note that the Proxy makes an RMI
call to the place server, because place server has been
implemented as an RMI server. The Proxy is a Java
object and it has to pass the reference of itself to the
place server. Since CORBA allows only IDL types to be
passed for remote function calls, implementing the place
server as a CORBA server will not allow the Proxy
object to be passed to the place server as the Proxy
object is not an IDL type. On the other hand, RMI al-
lows Java objects to be passed to remote functions.
Hence the place server has been implemented as an RMI
server. When the agent starts up, the default place name
is ``A1''. This can also be speci®cally overridden by
specifying this information in the agent con®guration

®le. The agent context/place then serializes the agent
object by object serialization techniques and converts it
to a sequence of bytes. It then passes this sequence of
bytes while calling receive_agent in the target agent
system. This target agent system ®nds the place server
where this agent should go to and then deserializes this
agent and hands over this agent to the destination place
server, which then starts the mobile agent as a thread.
For this reason, all the mobile agents programmed in
SMART have to implement the run() method in their
code. This is the method, which will be called every time
the agent migrates to a remote target and starts as a new
thread. The resultant agent thread, which is started in
the destination place is same as the original agent which
left the source place. Hence the agent in e�ect, has been
migrated by SMART.

4.1.3. Implementation of dynamic aggregation
As discussed in our design, only the mobile agents will

have access to the dynamic aggregation features, as our
primary reason for developing this facility is to make
transfer of agents more e�cient. The base class for all
mobile agents will incorporate all the code to support
dynamic aggregation but some of the related code will

Table 1

Comparison of SMART to commercially available agent systems

Feature Voyager Odyssey Aglets SMART

Remote messaging

Creating agents remotely Yes No No Yes

Sending Java messages remotely Yes No No Yes

Sending Java messages to mobile agents Yes. Transparent

to application agents

No No Yes but explicit

Messaging modes between agents Yes No Yes No

Life spans Five modes Explicit Explicit User controlled

Directory service

Mobile directory service Yes. Integrated. No No No

Federated directory service Yes No No No

Object mobility Yes No No Yes

Agent mobility

Moving to a program Yes Yes Yes Yes

Moving to an object Yes No No Yes

Dynamic aggregation Yes No No Yes

Itineraries No special API

needed

Special API

needed

Special API

needed

No special

API needed

Persistence

Object persistence Yes No No No

Agent persistence Yes No No No

Database integration Integrated with

ORACLE, SYBASE, etc.

No No No

Database independence Yes N/A N/A N/A

Flushing/auto-loading Yes No No No

Scalability Yes No No Yes

Multicast messaging Yes No No No

Distributed events Yes No No No

Applet connectivity Full Restricted Restricted No

Security Security Manager No special

mechanism

Security

Manager

No special

mechanism

16 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

have to be incorporated in place server. This is because
the place server is responsible for serializing the agent
and during that process it can detach those facets of the
agent that cannot be. Place server is also responsible for
maintaining remote references of the left out facets with
the agent.

Internally dynamic aggregation is implemented by a
set of hashtables and some supporting methods. The
hashtables maintain the references to the facet objects
and the supporting methods can be used by the mobile
agent to manage the facets. These methods allow an
agent to attach a facet in di�erent modes if it already has
a reference to the object (to be attached as a facet) or its
class information. It can also detach the facets, query
about facets and avoid duplicating facets.

A facet can be attached in the following modes:
· Search mode: In this mode, the class information pro-

vided by the agent is combined with the class infor-
mation of the agent itself to create and attach the
most suitable facet. For example, an agent of class
``Mechanic'' wants to repair a vehicle of type ``Car''
then the most appropriate facet to be attached will
be ``CarMechanic''.

· Sticky mode: In this mode, the agent has the option of
keeping the facet attached to itself when it moves
from one host to another. When this option is turned
o� for a facet, the agent is stripped o� of that facet
before it leaves a place server to go to another place
server.

· Remote mode: This option works only when the
sticky mode of the facet is turned o�. With this, the
agent has the option of maintaining a remote refer-
ence to the left out facets (non-sticky facets).

4.1.4. Network class loading
Network class loading is a feature by which the

place server can receive an agent even if it does not
have the class information of the agent for deserial-
ization. This is an important feature for a mobile
agent platform as it relieves the burden of pre-
installing the agent and other related class information
on all the sites the agent is going to visit. Sometimes it
may not be possible to determine the itinerary of the
agent before hand.

The code for the network class loaders is installed as
part of the place server because the place server is re-
sponsible for deserializing an agent. If the place does not
®nd the agent class information for deserialization it
invokes the network class loader to get the class infor-
mation from the place server where the agent was cre-
ated. The network class loader downloads the agent's
class information and de®nes the class. In the process of
de®ning a class from the class information, the network
class loader may come across some more classes whose
information is not available in the local classpath. In
such cases, the network class loader recursively applies

the process of downloading class information and
de®nes them.

4.1.5. Tracking the agent
Voyager provides the feature of tracking the agent

by holding a remote reference to the agent after the
agent leaves a particular site. For example, if an agent
leaves site S1 and goes to site S2, Voyager provides
the API for S1 to hold a remote reference of the agent
which is now executing on S2. This essentially be-
comes equivalent to client±server paradigm. With such
features available, the programmers will be tempted to
develop mobile applications that use remote agent
references extensively and hence defeat the whole
concept of using mobile agents. A well designed mo-
bile agent application will not need remote agent
references (to save network bandwidth). In fact, a
good mobile agent application should allow the user
to log out or stop consuming the CPU once the agent
has been launched. The agent, upon its return, logs
itself with the originating agent system and is held
there until the user logs in and checks the agents
status.

We have implemented a similar agent tracking system
in SMART. The agent system where the agent origi-
nated is not allowed to hold a remote reference to the
agent once the agent is launched. After ®nishing the trip,
the agent registers itself with the originating agent sys-
tem. It is to be remembered that the agent system keeps
running even if the user logs out of the system. The user
can log in anytime later and run a program that can
acquire a reference to the parked agent by giving the
agent-key to the agent system. Agent-key is an agent
identi®er that the user gives to the agent and must be
remembered by the user.

Fig. 2 shows the functionality of various components
in SMART and how they communicate with each other.

4.2. Class description

Table 2 gives a brief description of important classes
in SMART, their super classes, the place where they ®t
in and their functionality.

4.2.1. Smart API
For creating a mobile agent application the following

API is available to the user:
· MobileAgent(): This must be called from the agent's

constructor. This initializes the agent's itinerary and
con®gures various parameters.

· void create_instance(): Creates a local or a remote
instance in a speci®ed target host.

· void move_to(): Moves the agent to the next host that
is speci®ed in its itinerary. The agent starts running
from its run() method once it is resurrected on the
destination host.

J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22 17

· void get_agent_pro®le(): Allows the agent to query
about its pro®le.

· set_authinfo(): Allows the agent to set or change its
authentication information.

4.2.2. Dynamic aggregation API
From a user's perspective the following dynamic ag-

gregation API is available as part of the MobileAgent
class:

Table 2

Description of classes in SMART

Class name Super class/interface Layer Functionality

Mobile agent Extends thread implements

serializable

Agent proxy Contains the mobile agent and dynamic

aggregation API

AgentCon®gReader Extends object Agent proxy Extracts information about the agent from its

con®guration ®le

PlaceImpl Extends uni cast remote object

implements place, serializable

Place Provides context for agent execution. Runs agent

as a thread. Contains network class loader

Place_AgentTable Extends object Place Table maintained by place to keep track of its

agents

AgentSystemImpl Implements agent system Agent system World of agents. Allows agents to be created,

moved, executed, suspended and terminated.

Holds the agent after the agent trip is over

AgentSystem_AgentTable Extends object Agent system Table maintained by the agent system to keep

track of its agents

AgentSystem_PlaceTable Extends object Agent system Table to keep track of places in the agent system

AgentSystemCon®gReader Extends object Agent system Extracts information about the agent system from

its con®guration ®le

RegionImpl Implements region Region Controls all the agent system with the same

authority

Region_AgentSystemTable Extends object Region Table maintained by the region administrator to

keep track of its agent systems

FinderImpl Implements Finder Region Provides naming service for a region

AgentRegistrationInfo Extends object Region This information is used by the Finder to keep

track of the agents in its region

AgentSystemRegistrationInfo Extends object Region This information is used by the Finder to keep

track of the agent systems in its region

PlaceRegistrationInfo Extends object Region This information is used by the Finder to keep

track of the places in its region

Fig. 2. Communication between SMART components.

18 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

� boolean addFacet(Object object, boolean sticky,
boolean keepalive): Adds an object as a facet to the
agent. If this object is already a facet then nothing will
happen and false is returned. A null object will not
make any changes to the facet list of the primary object.
Returns true if the facet is added successfully. The
sticky ¯ag will let the place server know if this facet
object has to be transported along with the agent when
the agent moves. The keepalive ¯ag works only if the
sticky ¯ag is set to false. The facet object will not move
with the agent if the sticky ¯ag is false and the keepalive
¯ag will tell if the agent wants to maintain a remote
reference to this facet. Hence forth, the sticky and the
keepalive ¯ags will hold the same meaning in the other
APIs as well.
� Object createFacet(String string, boolean search,

boolean sticky, boolean keepalive): This will create a
facet that implements the speci®ed class (string). The
rules for ®nding a suitable class depend on the search
¯ag. If the search ¯ag is false then the string is used
as the name of the class else the string is appended to
the class of the agent and that becomes the name of
the class. If such a facet exists which implements the
speci®ed class then a reference to that facet is returned
else a new facet is created and its reference is
returned.
� boolean deleteFacet(Object object): Removes the

object as a facet of the primary object. If the object does
not exist as a facet then nothing will happen and a false
is returned.
� boolean deleteFacetByClass(String string, boolean

search): Deletes the facet of the primary object that
implements the speci®ed class. The rules for ®nding the
appropriate class of the facet are the same as described
above. If no such facet is found then false is returned.
� void deleteAllFacets(): Removes all the facets of the

primary object. If no facets exist then nothing will
happen.
� void deleteAllFacetsByClass(String string, boolean

search): Removes all the facets of the primary object
that implement the speci®ed class. The rules for ®nding
such a class are the same as described above.
� Vector getFacets(): Returns a vector containing all

facets of the primary object.
� boolean isFacet(Object object): Returns true if the

object already exists as a facet to the primary object.

4.3. Testing

4.3.1. General testing
Each component in SMART was tested as and when

it was developed along with the other existing compo-
nents. The entire project has been designed and imple-
mented using object oriented techniques. After the
Place, Region, MAFAgentSystem and MAFFinder
were designed, the MAFFinder was ®rst implemented

and tested alone. Then the Region was built and tested
thoroughly. The Region was then integrated with the
MAFFinder and tested. The AgentSystem was then
implemented and tested along with the MAFFinder and
Region. Both black box and white box testing tech-
niques were used while testing the system in various
situations. Place was implemented on top of the thor-
oughly tested agent system and further testing was car-
ried out by integrating all the above modules. Some
trivial and non-trivial mobile agent applications were
built on SMART so that all the main execution paths of
the above modules would be reached. These applications
were then used to test the whole system thoroughly.
These applications involve considerable amount of
concurrency and mobility. Separate applications were
developed to test dynamic aggregation, network class
loading and agent tracking facilities in SMART. We
also ported two applications that were developed on
Voyager to SMART. The ported applications gave ex-
actly the same results as the applications running on
Voyager. The current SMART system has withstood all
the above testing and has proved to be a reasonably
robust and e�cient system ful®lling our design goals.
Two of those applications which were used for the
above-mentioned testing, will be described in the next
section in detail.

4.3.2. Examples for testing
In this section we will look at some of the testing

applications that were used to test various features of
SMART.

Testing dynamic aggregation: We developed a car
mechanic application in which the agent is a car me-
chanic and it would move from one host to another
repairing cars. Since there are numerous types of cars
available, it would be very ine�cient for the agent to
carry all manuals and tools to repair all possible types
of cars available on this planet. Instead, the agent uses
dynamic aggregation feature to attach required manu-
als and tools depending on the type of the car it is
going to repair. Upon reaching a site where the agent
has to repair a car, the agent determines the type of the
car and loads appropriate facets. In our example, we
also dealt with the situation when the local host does
not have class information of the facet the agent wants
to attach. In that case, the facet class information is
obtained from the originating place server using net-
work class loaders. Once the work is done, the agent
detaches the facets to reduce its size and launches itself
to the next site.

Testing network class loading and agent tracking: In
this application we created a scenario in which one of
the agent systems which the agent is going to visit
does not have any class information about the agent.
When the agent reaches such an agent system, an
exception is raised during the deserialization of the

J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22 19

agent. Then the agent system uses the network class
loader to get the class information from the originat-
ing place server. In this application we also tested the
agent tracking system.

Porting Voyager applications to SMART: In this
testing procedure, we ported two applications developed
on Voyager to SMART. The purpose of this test was to
see if SMART is lacking in any major requirements,
which a programmer would need for developing mobile
agent applications. We also wanted to compare the re-
sults obtained from the ported applications with those
obtained from the applications running on Voyager.
The results of this testing were as expected. We could
port the applications without many di�culties. Note
that the applications running on Voyager did not use
any advanced features of Voyager such as object per-
sistence, multicast messaging, mobile directory services
and agent security.

5. Conclusion

5.1. Summary

Mobile agent programming is a new and fast devel-
oping paradigm for distributed programming. This
paradigm has a lot of potential for building new and
fascinating distributed intelligent applications in the
®elds of electronic commerce, data mining and other
intelligent application areas. In most of these cases, it
can out-perform the traditional client±server approach.
Recent studies have shown a need for compliance be-
tween agents developed on various platforms and in
heterogeneous environments. For this purpose a large
consortium of research organizations and companies
has developed a speci®cation known as Mobile Agent
Facility (MAF). Currently, the MAF speci®cation is at
its infancy and still a lot of re®nements needed to make
it a better and complete industrial standard. We believed
that ``learning by doing'' is the best way to experiment
with this new programming paradigm. Hence we de-
signed and implemented this new MAF compliant
workbench prototype, which focuses on mobility, stan-
dard compliance, e�ciency and scalability. We named
this system as Scalable, Mobile and Reliable Technology
(SMART).

During the course of development of SMART, we
have come across the need for several necessary and
important features that are not de®ned in MAF speci-
®cation. These features include dynamic aggregation
and network class loading. We have implemented and
incorporated these features in SMART without e�ecting
its MAF compliance. We have also focused on making
SMART an e�cient and scalable system.

SMART has turned out to a very good working
model of MAF speci®cation and it provides an excel-

lent platform for developing fairly complicated mobile
agent applications. Since we have access to the source
code, any future changes can be readily made and new
ideas can be implemented and integrated with SMART
easily. This is not possible with commercially available
mobile agent platforms like Voyager and Aglets
Workbench since their source code is not freely
available.

5.2. Future work

The mobile agent technology, by all means, is still at
its infancy. Many di�cult issues that have to be re-
solved before the mobile agent applications become
commercially viable. Most important among these are
knowledge representation and network security. Some
work has been done in both these domains. Knowl-
edge Query and Manipulation Language (KQML) is
both a message format and message handling protocol
designed to support runtime knowledge sharing be-
tween agents. Only with the use of KQML can mobile
agent systems reach the complexity level that will be
demanded by commercial applications (Kinitry and
Zimmerman, 1997). The open group is continuing to
re®ne its speci®cations on security for multi-hop
agents, which travel across multiple security domains.
Security issues for such a situation are very complex
and the open group will hopefully be able to come up
with a new set of speci®cations for such situations.
Other security areas that need further work are en-
suring security for the agent and the information it is
carrying.

Following are some of the ®elds in which SMART
needs some work to be done. Although these ®elds are
yet to be addressed in its entirety in the MAF speci®-
cation, we can work ahead and look at developing these
®elds in SMART.
· Object persistence and database support: Object persis-

tence will give unlimited lifetime to an agent which
could be a very useful feature. To implement this,
SMART would need a basic object store manager if
not a full-¯edged database support.

· Transaction service: Recently ObjectSpace has includ-
ed transaction services as part of Voyager. The im-
portance of a transaction service cannot be
undermined in mobile agents especially those de-
ployed in electronic commerce. Currently, SMART
does not have any support for transaction manage-
ment.

· Security: Security is the single most important issue in
mobile agent systems. It is also the most complicated
and puzzling issue to solve. Currently, SMART does
not have any security policies. It trusts all agents and
agent systems equally. MAF is continuing to re®ne its
speci®cations on security and will hopefully come up
with complete speci®cations in the near future.

20 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

SMART should implement these speci®cations, if it
has to be commercialized.

· Fault tolerance: In distributed systems, as opposed to
centralized systems, the point of failure can lie with
any of the numerous components spread out on the
network. A single failure anywhere in the system
can cause the agent to vanish in thin air or lose vital
information. Currently, SMART uses Java based ex-
ception handling system to deal with failures. This is
not su�cient to provide good fault tolerance. We
need to integrate better-distributed fault tolerance
algorithms in SMART.

· Underlying ORB: We can change the underlying
CORBA ORB with the ORB that is available with
Java 1.2 to make SMART an all Java product.

References

Bradshaw, J.M. (Ed.), 1997. Software Agents. The MIT press,

Cambridgre, MA.

IBM Inc., 1997a. Fiji ± running aglets on web pages. http://

www.trl.ibm.co.jp/aglets/infrastructure/®ji/®ji. html.

IBM Inc., 1997b. Aglets ± components. http://www.trl.ibm.co.jp/

aglets/infrastructure/.

IBM Research, 1998. Subject oriented programming. http://www.

research.ibm.com/sop/sophome.htm.

Javaworld. The basics of Java class loaders. http://www.java-

world.com/javaworld/jw-10-1996/jw-10-indepth. html.

Kiniry, J., Zimmerman, D., 1997. A hands on look at Java mobile

agents, July±August 1997. Internet Computing Journal ± IEEE.

Lange, D.B., 1996. Aglets documentation. http://www.trl.ibm.co.jp/

aglets/documentation.html.

Mitsubishi Electric. Mobile agent computing using concordia. http://

www.meitca.com/HSL/Projects/Concordia/MobileAgentsWhitePa-

per.html.

ObjectSpace Inc., 1997. Voyager project homepage. http://www.

objectspace.com/voyager/.

OMG, 1997. The mobile agent facility speci®cation ± draft 7. http://

www.genmagic.com/agent/MAF.

OMG, 1998. CORBA for beginners. http://www.omg.org/news/

begin.htm.

Prentice-Hall. Object oriented software design and construction. http://

www.prenhall. com/divisions/esm/app/kafura/secure/chapter4/

html/4.7_dynamic.html.

Sun Inc., 1998. Distributed object computing. http://www.sun.com/

sunworldonline/swol-04-1996/swol-04-oobook. html.

Sun Inc. The Java package index. http://java.sun.com/products/jdk/

1.1/docs/api/packages.html.

Tham, C., 1996. Mobile agent facility conformance proposal, Decem-

ber. http://www.agent.org/pub/satp/papers/mafConformance.html.

University of Ottawa. Intelligent mobile agents research page. http://

deneb.genie.uottawa.ca/.

Visigenic Inc., 1997. VisiBroker for Java and C++. http://www.

visigenic.com/prod/vbrok/vb30DS.html.

White, J., 1996. Mobile agent whitepaper. http://www.genmagic.com/

agents/Whitepaper/whitepaper.html.

White, T., 1998. Lecture on mobile agent facility, February. http://www.

sce.carleton. ca/netmanage/mctoolkit/mctoolkit/lecture/tsld041.htm.

Johnny Wong is a full Professor of the Computer Science Department,
Iowa State University at Ames, Iowa, USA. His research interests
include Operating Systems, Distributed Systems, Telecommunication

Networks, Broadband-Integrated Services Digital Networks, Concur-
rency Control and Recovery, Multimedia and Hypermedia Systems,
Intelligent Multi-Agents Systems, Intrusion Detection. He has been an
investigator fo research contracts with Telecom Australia from 1983 to
1986, studying the performance of network protocols of the ISDN.
During this period, he has contributed to the study and evaluation of
the communication architecture and protocols of ISDN. From 1989 to
1990, he was the Principal Investigator for a research contract with
Microwave Systems Corporation at Des Moines, Iowa. This involved
the study of Coordinated Multimedia Communication in ISDN. In
summers 1991 and 1992, Dr. Wong was supported by IBM corpora-
tion in Rochester. While at IBM, he worked on the Distributed
Computing Environment (DCE) for the Application Systems. This
involved the integration of communication protocols and distributed
database concepts. Dr. Wong is also involved in the Coordinated
Multimedia System (COMS) in Courseware Matrix Software Project,
funded by NSF Synthesis Coalition Project to enhance engineering
education. From 1993 to 1996, he is working on a research project on a
knowledge-based system for energy conservation education using
multimedia communication technology, funded by the Iowa Energy
Center. From 1995 to 1996, he was supported by the Ames Laboratory
of the Department of Energy (DOE), working in Middleware for
Multidatabases system. Currently, he is working on Intelligent Multi-
Agents for Instrusion Detection and Countermeasures funded the
Department of Defense (DoD), Database Generating and X-Ray
Displaying on the World Wide Web Applications funded by Mayo
Foundation and CISE Educational Innovation: Integrated Security
Curricular Modules funded by the National Science Foundation
(NSF).

Guy Helmer is a Ph.D. candidate in Computer Science at Iowa State
University, researching security in operating systems and networks.
Guy received his B.S. degree from the South Dakota School of
Mines and Technology in 1989 and his M.S. degree from ISU in
1998. Guy served for several years as a system programmer and
network engineer for Dakota State University. During that time he
designed and maintained local and wide area networks, administered
UNIX, Netware, and Windows NT servers, and consulted with state
government agencies and other universities on networking and
security issues.

Venky Naganathan received his B.E. degree in Computer Science
and Engineering in May 1996 from Anna University, India, and the
M.S. degree in Computer Science in August 1998 from Iowa State
University. Currently, he is working as a software engineer at
Hewlett-Packard. His reserach interests include distributed application
architecture, object-oriented modeling, Internet protocols/systems
architecture.

Sriniwas Polavarapu received Bachelor of Technology degree in
Computer Science and Engineering in June 1996 from Jawaharlal
Nehru Technological University, Hyderabad, India and M.S. degree
in Computer Science in August 1999 from Iowa State University.
He has also done Masters studies in Computer Science at the Indian
Institute of Technology, Kanpur, India. Currently, he is working as
a member of technical sta� at the AT&T Labs., San Jose, Cali-
fornia. His research interests include scalable client±server technol-
ogy, mobile agent systems and distributed and object-oriented
databases.

Vasant Honavar received his B.E. in Electronics Engineering from
Bangalore University, India, and M.S. in Electrical and Computer
Engineering from Drexel University, and an M. S. and a Ph.D. in
Computer Science from the Univeristy of Wisconsin, Madison. He
founded and directs the Arti®cial Intelligence Research Laboratory
(www.cs.iastate.edu/�honavar/aigroup.html) in the Department of
Computer Science at Iowa State University (ISU) where he is currently
an associate professor. Honavar is also a member of the Lawrence E.
Baker Center for Bioinformatics and Biological Statistics, the Virtual
Reality Application Center, and the faculty of Bioinformatics and
Computational Biology at ISU. His research and teaching interests
include Arti®cial Intelligence, Machine Learning, Bioinformatics and
Computational Biology, Grammatical Inference, Intelligent Agents
and Multi-agent systems, Distributed Intelligent Information Net-
works, Intrusion Detection, Neural and Evolutionary Computing,
Data Mining, Knowledge Discovery and Visualization, Knowledge-
based Systems, and Applied Arti®cial Intelligence. He has published
over 90 research articles in refereed journals, conferences and books,
and has co-edited three books. He is a co-editor-in-chief of the Journal
of Cognitive Systems Research published by Elsevier. His research has
been partially funded by grants from the National Science Foundation,
the National Security Agency, the Defense Advanced Research Pro-
jects Agency (DARPA), the US Department of Energy, the John
Deere Foundation, the Carver Foundation, Pioneer Hi- Bred Inc., and

J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22 21

IBM. Prof. Honavar is a member of ACM, AAAI, IEEE, and the New
York Academy of Sciences.

Les Miller is a professor and chair of Computer Science at Iowa State
University. His research interests include databases, data warehouses,

integration of heterogeneous distributed data sources, and mobile
agents. He was the editor of ISMM's International Journal of Mi-
crocomputer Applications from 1989 to 1999. He has also served as the
vice-president of the International Society for Computers and their
Applications (ISCA).

22 J. Wong et al. / The Journal of Systems and Software 56 (2001) 9±22

