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Abstract

Protein-RNA interactions are central to essential cellular processes such as protein synthesis and regulation of gene
expression and play roles in human infectious and genetic diseases. Reliable identification of protein-RNA interfaces is
critical for understanding the structural bases and functional implications of such interactions and for developing effective
approaches to rational drug design. Sequence-based computational methods offer a viable, cost-effective way to identify
putative RNA-binding residues in RNA-binding proteins. Here we report two novel approaches: (i) HomPRIP, a sequence
homology-based method for predicting RNA-binding sites in proteins; (ii) RNABindRPlus, a new method that combines
predictions from HomPRIP with those from an optimized Support Vector Machine (SVM) classifier trained on a benchmark
dataset of 198 RNA-binding proteins. Although highly reliable, HomPRIP cannot make predictions for the unaligned parts of
query proteins and its coverage is limited by the availability of close sequence homologs of the query protein with
experimentally determined RNA-binding sites. RNABindRPlus overcomes these limitations. We compared the performance
of HomPRIP and RNABindRPlus with that of several state-of-the-art predictors on two test sets, RB44 and RB111. On a subset
of proteins for which homologs with experimentally determined interfaces could be reliably identified, HomPRIP
outperformed all other methods achieving an MCC of 0.63 on RB44 and 0.83 on RB111. RNABindRPlus was able to predict
RNA-binding residues of all proteins in both test sets, achieving an MCC of 0.55 and 0.37, respectively, and outperforming all
other methods, including those that make use of structure-derived features of proteins. More importantly, RNABindRPlus
outperforms all other methods for any choice of tradeoff between precision and recall. An important advantage of both
HomPRIP and RNABindRPlus is that they rely on readily available sequence and sequence-derived features of RNA-binding
proteins. A webserver implementation of both methods is freely available at http://einstein.cs.iastate.edu/RNABindRPlus/.
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Introduction

Protein-RNA interactions play key roles in many vital cellular

processes including translation [1,2], post-transcriptional regula-

tion of gene expression [3,4], RNA splicing [5,6], and viral

replication [7,8]. Recent evidence points to the role of non-coding

RNAs (ncRNAs) in a number of human diseases [9–12] such as

Alzheimer’s [13,14] and various cancers [15–18]. Reliable

identification of protein-RNA interfaces is critical for understand-

ing the structural bases, the underlying mechanisms, and

functional implications of protein-RNA interactions. Such under-
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standing is essential for the success of efforts aimed at identifying

novel therapies for genetic and infectious diseases.

Despite extensive structural genomics efforts, the number of

solved protein-RNA structures substantially lags behind the

number of possible protein-RNA complexes [19]. Because of the

cost and effort involved in the experimental determination of

protein-RNA complex structures [20,21] and RNA-binding sites

in proteins [22,23], considerable effort has been directed at

developing reliable computational methods for predicting RNA-

binding residues in proteins.

Computational approaches to protein-RNA interface prediction

fall into two broad categories [19,24]: (i) Sequence-based methods,

which use an encoding of sequence-derived features of a target

residue and its neighboring residues in sequence (sequence

neighbors) to make predictions, and (ii) Structure-based methods,

which use an encoding of structure-derived features of a target

residue and its neighboring residues in sequence or structure to

make predictions. Sequence-based methods [25–36] have exploit-

ed features such as amino acid sequence identity, physicochemical

properties of amino acids, predicted solvent accessibility, position-

specific scoring matrices (PSSMs), and interface propensities,

among others. Structure-based methods [37–41] have used

features such as amino acid doublet propensities of surface

residues, geometry (patches or clefts) of the protein surface,

roughness, and atomic protrusion (CX) values, to make predictions

of RNA-binding residues in proteins.

Two recent comprehensive surveys of machine learning

methods for predicting interfacial residues in protein-RNA

complexes [19,24] came to a somewhat surprising conclusion that

the performance of sequence-based methods, especially those that

use PSSMs to encode protein sequences, is comparable to that of

structure-based methods, i.e., methods that take advantage of

three-dimensional structure of the target protein, when available.

MCC (Matthews Correlation Coefficient) values for the best

methods ranged from 0.38 to 0.46. The difference in performance

of the best performing methods was relatively small, and in several

cases, not statistically significant [24].

Homology-based methods have proven successful in many

bioinformatics tasks, including protein structure prediction [42],

protein function annotation [43,44], protein interaction prediction

[45], protein-protein docking [46,47] and protein-protein interface

prediction, based on either sequence homology [48] or structure

homology [49–52]. Homology-based methods have been shown to

outperform other methods whenever close sequence or structural

homologs of query proteins (used as templates) can be reliably

identified [48,49,53]. Based on their analysis of a dataset of 261

protein-RNA complexes, Spriggs and Jones [54] concluded that

RNA-binding residues are more conserved than other surface

residues in RNA-binding proteins. To the best of our knowledge,

however, there have been no studies that have examined the

extent to which RNA-binding residues are indeed conserved

among homologous proteins, or used sequence homology to

reliably predict RNA-binding residues in protein.

Against this background, we explore whether sequence homol-

ogy can be used to accurately predict RNA-binding residues in

proteins and whether the resulting sequence homology-based

approach can be combined with a state-of-the-art machine

learning method to enhance the reliability of the predicted

RNA-binding residues. Specifically, we: (i) introduce a novel

sequence homology-based approach for prediction RNA-binding

residues in proteins, HomPRIP, which accurately predicts the

RNA-binding residues in a query protein based on the known

RNA-binding residues of sequence homologs of the query protein

(whenever such homologs are available); and (ii) propose

RNABindRPlus, a novel two-stage predictor that uses logistic

regression to optimally combine the predictions from HomPRIP

and an optimized SVM classifier, SVMOpt, trained to predict

RNA-binding interface residues using only sequence derived

features of the query protein. We demonstrate that RNABindR-

Plus substantially outperforms existing sequence-based and struc-

ture-based methods. Both HomPRIP and RNABindRPlus have

been implemented in a webserver that can be used to reliably

predict RNA-binding residues in proteins, even when the structure

of the query protein is unavailable.

Results and Discussion

Rationale for Homology-Based Approach
If RNA-binding residues are conserved across homologous

proteins, we can use a simple sequence homology-based approach

to predict RNA-binding residues in a query protein: Identify close

sequence homologs of the query protein; infer the RNA-binding

residues of the query protein based on the known RNA-binding

residues of homolog(s) that are aligned with the query protein. The

greater the extent to which RNA-binding residues are conserved

across homologous protein-RNA complexes, the greater is the

reliability with which the RNA-binding residues of a query protein

can be predicted based on the known RNA-binding residues of its

sequence homologs.

Conservation Analysis of RNA-Binding Residues in
Protein-RNA Complexes

Following the approach of Xue et al. [48], we define an

interface conservation score IC(Q,H) that measures the correla-

tion between the interface (and non-interface) residues of a query

protein Q and its putative sequence homolog H when the two are

aligned (see Methods for details). The IC score measures the

degree to which RNA-binding residues of Q are conserved in (and

hence can be predicted from the known interface residues of) the

protein H . We calculated the pairwise IC scores of proteins in a

non-redundant dataset of 216 RNA-binding proteins (RBPs)

extracted from the PDB (Protein Data Bank, [55]) as of October

2010 (NR216, see Methods). Our analysis showed that RNA-

binding residues of a protein are highly conserved among its close

sequence homologs (data not shown).

Whenever a query protein has a sufficiently high IC score with

respect to its putative sequence homolog, we can predict its RNA-

binding residues based on the known RNA-binding residues of its

sequence homolog. However, examination of the precise definition

of the IC score of a protein with respect to its putative sequence

homolog (see Methods) shows that computing it requires

knowledge of the RNA-binding residues of both the query protein

and its homolog. How can we then use the IC score, IC(Q,H), of

a query protein Q with respect to a putative sequence homolog H
to determine whether we can reliably predict the unknown RNA-

binding residues of Q based on the known RNA-binding residues of

H? Fortunately, as shown below, we can estimate IC(Q,H) using

available information, e.g., the sequence alignment of Q with H.

Specifically, we construct a regression model to predict the IC
score for the query protein from its alignment with its sequence

homolog(s) with known RNA-binding residues.

Predicting the Interface Conservation Score of a Query
Protein

We used Principal Components Analysis (PCA) to explore the

relationship between six key sequence alignment statistics (see

Methods), that are indicative of the quality of the alignment of a

protein with its putative sequence homologs, and the IC score of
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the protein. Our analysis showed that a large fraction (90.6%) of

the variance of the IC score is accounted for by the first two

principal components. Figure 1 shows the projection of 6-

dimensional alignment statistics of a protein and its sequence

homolog(s) onto a 2-dimensional plane defined by the first two

principal components. The resulting 2-dimensional interface

conservation space can be partitioned into three regions based

on the IC score: (i) Dark Zone, which contains query-homolog

pairs with low IC scores (blue data points); (ii) Twilight Zone,

which contains query-homolog pairs with intermediate IC scores

(yellow, orange, and green data points); and (iii) Safe Zone, which

contains query-homolog pairs with high IC scores (red data

points).

Based on the results of the PCA analysis which shows that the

Positive Score and Identity Score (I ) are highly correlated with each

other, we chose to include only the Positive Score (P) along with

log(E), log(L) (where E is the E-value, L is the Local Alignment

Length), and FQH~
L

Ql

|
L

Hl

(where Ql and Hl are lengths of the

query protein Q and its homolog H, respectively) in the regression

model that predicts the IC score IC(Q,H):

^ICIC Q,Hð Þ~b0zb1log Eð Þzb2Pzb3FQHzb4log Lð Þ

All the parameters (Table 1) of the regression model are

significant (p-values v 0.0001) and the model has an adjusted

R2~0:61. FQH explains the largest fraction of Type II SS (Sum of

Squares) error in the predicted IC score and hence is a good proxy

for the IC score.

HomPRIP: A Sequence Homology-Based RNA-Binding
Site Predictor

Now that we have a means of predicting the IC score,

IC(Q,H), of a query protein Q with respect to its putative

sequence homolog H from the BLAST alignment scores of Q with

H , we can proceed to use the predicted IC scores to choose

homologs of the query protein to be used to infer the unknown

RNA-binding residues of the query protein. HomPRIP, our

sequence homology-based protein-RNA interface predictor oper-

ates as follows: Given a query protein Q, HomPRIP uses a BLAST

search against the proteins in the Protein-RNA Interface Database

[56], PRIDB, to identify a set of sequence homologs of Q,

Homologs(Q), with known RNA-binding residues. Each sequence

homolog Hi[Homologs(Q) is assigned a weight wi, which is the

predicted IC score, ^ICIC(Q,H). A weighted nearest neighbor

classifier is used to infer the RNA-binding residues of the query

protein based on the known interface residues of its closest

homologs (see Methods). The reliability of the predicted RNA-

binding residues in each case can be estimated based on the

predicted IC scores of the homologs used to arrive at the

prediction.

Evaluation of HomPRIP Predictions: Reliability and
Coverage

In previous work, we used RB198, a non-redundant dataset of

protein-RNA complexes [56] to assess the performance of

alternative approaches to predicting RNA-binding residues in

proteins [24]. For the purpose of comparison with previous

approaches, we used each of the proteins in the RB198 dataset as a

query protein to HomPRIP. HomPRIP searched for putative

sequence homologs of the query proteins in RB198 against the

nr_RNAprot_s2c database (see Datasets). Homologs that shared

greater than 95% sequence similarity with the query proteins were

discarded. This ensures that the query protein itself is excluded

from being one of the homologs. HomPRIP was able to find at

least one Safe, Twilight, or Dark Zone homolog for only 152 out

of the 198 proteins in the RB198 dataset. The prediction

performance of HomPRIP was evaluated using several standard

metrics (see Methods for details). As shown in Table 2, for 45% of

proteins in RB198, HomPRIP was able to find Safe Zone

homologs and, as expected, very reliably predict their RNA-

binding residues (with MCC of 0.83, Specificity of 0.87, and

Sensitivity of 0.85). For 27% of the proteins, HomPRIP could find

only Twilight Zone homologs and for 5%, only Dark Zone

homologs. When predictions are based only on Twilight Zone

homologs, the performance of HomPRIP drops to an MCC of

0.5, Specificity of 0.64, and Sensitivity of 0.49. When predictions

are based only on Dark Zone homologs, HomPRIP has an MCC
of 0.17, Specificity of 0.37, and Sensitivity of 0.12. On the 152

proteins that had at least one homolog (from any zone), HomPRIP

was able to predict RNA-binding residues with an MCC of 0.69,

Specificity of 0.79, Sensitivity of 0.69, and an F{measure of

0.73.

The prediction coverage of any sequence homology-based

method for predicting RNA-binding residues of proteins is limited

by the availability of homologs with known RNA-binding residues.

Thus, HomPRIP fails to predict RNA-binding residues of query

proteins that do not have at least one homolog with experimentally

determined RNA-binding residues. For this reason, HomPRIP

fails to return any predictions for 23% of proteins in the RB198

Figure 1. Principal Components Analysis (PCA) of interface
conservation scores and sequence alignment statistics. Data
points in the plot correspond to the projection of a 6-dimensional
vector representing the pairwise alignment of a query and homolog
sequence onto a 2-dimensional space defined by the first and second
principal components. Blue lines with red circles at their tips represent
the axes of the original 6-dimensional space for the 6 variables used in
PCA analysis: -log(E) (where E is the E-value), Identity Score (I ), Positive
Score (P), log(L) (where L is local alignment length), alignment length
fractions (L=Ql and L=Hl , where Ql and Hl are the lengths of the query
and homolog proteins, respectively). Each data point is colored
according to its computed IC score, with higher IC score (red/orange)
indicating higher interface conservation and lower IC scores (blue/
green) indicating lower interface conservation. The large gray arrow
indicates the direction of increasing degree of interface conservation,
from Dark to Twilight to Safe Zone.
doi:10.1371/journal.pone.0097725.g001
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dataset. In addition, HomPRIP cannot make predictions on parts

of a query protein sequence that are not aligned with any of its

homologs. On the other hand, predictors trained using machine

learning offer 100% coverage, although the increased coverage

may come at the expense of the reduced reliability of predictions.

To explore whether improved predictions can be obtained by

combining a sequence homology-based method with a machine

learning method, we developed RNABindRPlus, a hybrid

predictor that combines HomPRIP predictions with those from

an optimized Support Vector Machine (SVM) classifier, SVMOpt

(Figure 2).

Hybrid Method: RNABindRPlus
A recent study [24] compared the performance of Naı̈ve Bayes

(NB) and Support Vector Machine (SVM) classifiers trained to

predict RNA-binding residues of proteins, from features of a

sliding window of 25 amino acid residues centered on the target

residue, using three different sequence-based feature representa-

tions (amino acid identity, position specific scoring matrices, and

smoothed PSSMs [26]). The study concluded that an SVM

classifier, SVM-RBF, which used a radial basis function (RBF)

kernel and a PSSM profile to encode the target residue and its

sequence neighbors, outperformed all other sequence-based RNA-

binding site predictors and was competitive with predictors that

use structure-derived features. The study used the default

parameters (C~1:0 and c~0:01) for the RBF kernel. In the

current study, we used an optimized version of the SVM classifier,

which we refer to as SVMOpt. The SVM classifier utilized by

RNABindRPlus has the hyper parameters, C and c, as well as the

window size optimized (see Methods) for performance on the

RB198 dataset. The best combination of parameters was found to

be C~1:0, c~0:0625 and a window size of 21 (data not shown).

To predict whether or not a given amino acid is an RNA-binding

residue, RNABindRPlus combines the prediction scores from

HomPRIP with SVMOpt using a logistic regression classifier.

Performance of HomPRIP and RNABindRPlus
To rigorously compare the performance of HomPRIP and

RNABindRPlus with each other and with available state-of-the-art

methods (see below), we used two independent test sets:

N RB44 [19] (see Datasets), an independent benchmark test set

of 44 protein chains extracted from protein-RNA complexes

deposited in the PDB between January 2011 and April 2011.

The performance of a variety of methods for predicting RNA-

binding residues in proteins was benchmarked on this dataset

by Puton et al. [19]. Note that the datasets RB198 and RB44

share no common members.

N RB111, a more recently generated test set of 111 protein

chains extracted from protein-RNA complexes deposited in

the PDB between June 2010 to December 2010, and May

2011 to March 2014. Sequences in RB111 share less than 40%

sequence similarity with sequences in RB198 and RB44.

Out of the 44 proteins in the RB44 dataset, HomPRIP was able

to make predictions on 28 proteins. Table 3 compares the

performance measures of different methods on these 28 proteins.

HomPRIP achieved an MCC of 0.63 as compared to RNA-

BindRPlus, which had an MCC of 0.60 and the Metapredictor

[19] and PiRaNhA [31], both of which had an MCC of 0.51.

Other sequence- and structure-based methods tested had even

lower values of MCC. This result shows that when HomPRIP can

identify homologs with known interfaces, it can outperform other

methods.

Out of the 28 proteins, HomPRIP found Safe Zone homologs

for 11 proteins, Twilight Zone homologs for 15 proteins, and Dark

Zone homologs for 2 proteins. Table 4 lists the proteins from

RB28 that have homologs in the different homology zones. Not

surprisingly, HomPRIP achieved the best results with Specificity,

Sensitivity, F{measure, and MCC of 0.88, 0.80, 0.84 and 0.77,

respectively on the 11 query proteins for which Safe Zone

homologs could be found. On this subset of 11 proteins,

HomPRIP substantially outperforms RNABindRPlus, which had

Specificity, Sensitivity, F{measure, and MCC values of 0.79,

0.67, 0.72, and 0.61, respectively (Table 5). For 15 query proteins

that had Twilight Zone homologs, HomPRIP had a higher

Specificity of 0.83 than RNABindRPlus (0.73). However,

RNABindRPlus had higher values of Sensitivity, F{measure,

and MCC (Table 5). On the subset of 2 proteins that have Dark

Zone homologs, RNABindRPlus achieved higher values of

Specificity, Sensitivity, F{measure, and MCC than HomPRIP

(0.83, 0.54, 0.65, and 0.57 versus 0.45, 0.18, 0.26, and 0.13,

respectively). Thus, although HomPRIP has higher values of

performance metrics on query proteins that have Safe Zone

homologs, RNABindRPlus has superior performance on query

proteins that have homologs in the Twilight and Dark Zones.

Table 1. The Linear Model for Interface Conservation.

Variable
Parameter
stimate Standard Error Type II SS

b0 20.532 0.042 8.70

b1 0.001 0.000 1.11

b2 0.005 0.000 12.54

b3 0.600 0.014 97.55

b4 0.089 0.007 8.60

doi:10.1371/journal.pone.0097725.t001

Table 2. Performance of HomPRIP on RB198.

Homology Zone Prediction Coverage Specificity Sensitivity F-measure MCC

Safe Zone 89/198 = 45% 0.87 0.85 0.86 0.83

Twilight Zone 54/198 = 27% 0.64 0.49 0.55 0.50

Dark Zone 9/198 = 5% 0.37 0.12 0.18 0.17

All Zones 152/198 = 77% 0.79 0.69 0.73 0.69

The performance is shown for the Safe, Twilight, and Dark Zones, separately. Prediction coverage is the fraction of queries that can be predicted by HomPRIP in a given
zone.
doi:10.1371/journal.pone.0097725.t002
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On the RB111 dataset, HomPRIP was able to make predictions

on 49 proteins (Table 6). Table 7 compares the performance

measures of different methods on these 49 proteins. Not

surprisingly, HomPRIP achieves the highest values of all

performance metrices on these 49 proteins (Specificity of 0.85,

Sensitivity of 0.85, F{measure of 0.85 and MCC of 0.83),

because it can find Safe Zone homologs for all of them. The

second best method on this subset of RB111 is RNABindRPlus,

achieving a Specificity of 0.64, Sensitivity of 0.54, F{measure of

0.59, and MCC of 0.55.

These results confirm that HomPRIP’s prediction performance

is dependent upon the degree of sequence similarity between the

query protein and its putative sequence homologs with known

RNA-binding residues. More importantly, it demonstrates that the

homology zones are good indicators of the reliability of

HomPRIP’s predictions. When Safe Zone homologs are available

for query proteins, HomPRIP has the highest predictive perfor-

mance. In contrast, the performance of RNABindRPlus is similar

across proteins from different homology zones, although it is

slightly lower than that of HomPRIP on query proteins in the Safe

Zone.

Figure 2. RNABindRPlus flowchart. Flowchart showing the different components of RNABindRPlus.
doi:10.1371/journal.pone.0097725.g002

Table 3. Evaluation of Methods on 28 proteins from the RB44 dataset.

Method Reference Specificity Sensitivity F-measure MCC

HomPRIP This paper 0.84 0.62 0.71 0.63

RNABindRPlus This paper 0.76 0.67 0.71 0.60

SVMOpt This paper 0.58 0.72 0.64 0.48

Metapredictor [19] 0.74 0.54 0.62 0.51

PiRaNhA [60] 0.66 0.65 0.65 0.51

BindN+ [35] 0.56 0.75 0.64 0.47

PPRInt [29] 0.49 0.77 0.60 0.39

PRBR [30] 0.58 0.45 0.51 0.34

RNABindR [70] 0.60 0.39 0.48 0.32

BindN [34] 0.50 0.50 0.50 0.28

NAPS [25] 0.43 0.58 0.49 0.23

KYG** [37] 0.55 0.66 0.60 0.41

OPRA** [39] 0.61 0.48 0.53 0.37

PRIP** [38] 0.47 0.71 0.56 0.33

The first 11 methods are sequence-based methods. The last 3 methods are structure-based methods (indicated by **). Methods in each category are sorted in
descending order of MCC. The highest value in each column is shown in bold font.
doi:10.1371/journal.pone.0097725.t003
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What Factors Lead to Superior Performance for
RNABindRPlus?

As noted by Walia et al. [24], predictors that use PSSMs

outperform those that use amino acid identity when evaluated

using a standardized experimental setup (same datasets, same

cross-validation procedure). Each score in a PSSM is a log-

likelihood ratio of an amino acids appearance in a specific column

of a multiple sequence alignment against a background distribu-

tion, representing the degree of conservation of the amino acid in

that specific position; the higher the score, the higher the degree of

conservation. Therefore, PSSMs capture important evolutionary

information by exploiting the large number of available protein

sequences, which are much easier to obtain than protein

structures.

RNABindRPlus combines our homology-based method, Hom-

PRIP, with SVMOpt, an optimized SVM classifier that uses a

radial basis function (RBF) kernel with the sequence PSSM

features. We believe that RNABindRPlus achieves a superior

performance because it benefits from (i) the interface conservation

information contributed by HomPRIP; (ii) residue conservation

information encoded in PSSMs; and (iii) the hidden interaction

patterns extracted by SVMOpt from the training set.

Case Study: Accurate Identification of RNA-Binding
Residues in the Human Immunorecognition Protein, RIG-I

RNA-protein interactions play key roles in the innate immune

system in mammals, which is the first line of defense against

invading viral and bacterial pathogens [57]. One class of cytosolic

RNA-binding proteins, the RIG-I-Like receptors (RLRs), function

as RNA sensors that can identify viral RNA as non-self by binding

to specific molecular motifs in viral RNAs and activating cellular

signaling pathways that stimulate host antiviral immune responses

and suppress viral replication [58]. The crystal structure of the

RIG-I C-terminal domain (CTD) bound to 59pp dsRNA has been

published [59], but was not included in the RB44 or RB198

benchmark datasets.

Figure 3 shows the predictions of HomPRIP, SVMOpt, and

RNABindRPlus on the RIG-I CTD (PDB Id: 3NCU, chain A). All

of the homologs used by HomPRIP for making the prediction

were in the Safe Zone. This example illustrates how RNABindR-

Plus combines the predictions from HomPRIP and SVMOpt to

provide better overall predictions. RNABindRPlus returns the

lowest number of false positive predictions and has the highest

MCC (0.75), compared to HomPRIP (0.73) and SVMOpt (0.39).

RNABindRPlus also has the highest Specificity of 0.81 compared

to HomPRIP (0.68) and SVMOpt (0.36) whereas HomPRIP has

the highest Sensitivity of 0.88 compared to RNABindRPlus (0.76)

and SVMOpt (0.71). For many biological applications, high

Specificity is desirable, because it allows researchers to identify a

short list of residues for targeted mutations designed to alter the

affinity or specificity of RNA-binding. As with most classifiers,

RNABindRPlus can be tuned to favor even higher specificity, at

the expense of lower sensitivity.

RNABindRPlus Outperforms Other Predictors of RNA-
binding Residues

On the RB44 dataset, we compared the performance of

RNABindRPlus with eight sequence-based methods (see Table 8

Table 4. HomPRIP Performance by Zone on RB28.

Homology Zone Proteins Specificity Sensitivity F-measure MCC

Safe Zone 2L5D_A, 2XD0_A, 2XZN_J, 3IZV_M, 3IZW_I, 3J00_G,
3J01_5, 3PIP_F, 3PIP_G, 3PIP_T, 3Q2T_A

0.88 0.80 0.84 0.77

Twilight Zone 2XXA_D, 2XZM_B, 2XZM_C, 2XZM_G, 2XZM_I, 2XZM_M,
3IZV_X, 2RRA_A, 2XZM_E, 2XZM_Q, 2XZN_L, 2XZM_8,
2XZM_S, 2XZM_U, 3IZW_R

0.83 0.55 0.66 0.58

Dark Zone 2XZM_D, 3PDM_P 0.45 0.18 0.26 0.13

All measures are highest for proteins with Safe Zone homologs and lowest for those with Dark Zone homologs.
doi:10.1371/journal.pone.0097725.t004

Table 5. HomPRIP, RNABindRPlus, and SVMOpt Performance by Zone on RB28.

Safe Zone Specificity Sensitivity F-measure MCC

HomPRIP 0.88 0.80 0.84 0.77

RNABindRPlus 0.79 0.67 0.72 0.61

SVMOpt 0.63 0.68 0.65 0.48

Twilight Zone Specificity Sensitivity F-measure MCC

HomPRIP 0.83 0.55 0.66 0.58

RNABindRPlus 0.73 0.69 0.71 0.60

SVMOpt 0.54 0.76 0.63 0.47

Dark Zone Specificity Sensitivity F-measure MCC

HomPRIP 0.45 0.18 0.26 0.13

RNABindRPlus 0.83 0.54 0.65 0.57

SVMOpt 0.68 0.64 0.66 0.52

doi:10.1371/journal.pone.0097725.t005
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for method descriptions) and three structure-based methods (see

Table 9 for method descriptions). These methods were chosen

based on a recent study [19] of the performance of readily

available sequence- and structure-based predictors of RNA-

binding sites in proteins. The Puton et al. study used webservers

implementing these methods and concluded that the top

performing sequence-based methods were a Metapredictor (which

combines predictions from PiRaNhA, BindN+, and PPRInt),

PiRaNhA [60], and BindN+ [35]. The top performing structure-

based methods were KYG [37] and DRNA [41]. In our

comparisons, we used the predictions returned by the same

webservers (data shared with us by the Bujnicki group) with one

exception. We did not compare our methods with the structure-

based version of DRNA because the DRNA webserver uses

structural homologs that may be exactly the same as the query

protein, which could give the DRNA webserver an unfair

advantage over other methods. DRNA can predict i) whether or

not a protein is RNA-binding, and ii) which amino acids are RNA-

binding. In the Puton et al. study, if a protein was predicted as

non-RNA binding by DRNA, the case was considered to be one

for which DRNA did not predict any RNA-binding residues [19].

However, in our experiments, we considered only the prediction of

the RNA-binding residues, regardless of whether or not a protein

was predicted to bind RNA. In addition, we included comparisons

with another structure-based method, PRIP [38].

On the RB111 dataset, we compared the performance of

RNABindRPlus with four sequence-based methods (BindN [34],

BindN+ [35], PPRInt [29], and RNABindR v2.0 [24]) and two

structure-based methods (KYG [37] and PRIP [38]). The

Metapredictor [19], PiRaNhA [60], and NAPS [25] servers were

all inaccessible at the time of running the experiments on RB111.

Because several methods return only binary predictions, we do

not report Area under the ROC Curve (AUC) values, but instead

compare the different methods based on Specificity, Sensitivity,

F{measure and MCC.

The performance of different methods on the RB44 dataset is

summarized in Table 10. Among all methods that return

predictions for every query protein in the dataset (i.e., excluding

HomPRIP), RNABindRPlus achieved the highest MCC value of

0.55. The next highest MCC of 0.48 was obtained by PiRaNhA

[60], and then by SVMOpt and the Metapredictor [19], both with

an MCC of 0.47. Notably, in terms of MCC, the best performing

structure-based method was KYG [37] with a value of 0.42,

considerably lower than the top sequence-based methods. The

highest Specificity was obtained by the Metapredictor (0.74)

followed by RNABindRPlus (0.72). The highest Sensitivity was

obtained by BindN+ (0.73) [35] followed by SVMOpt and PPRInt

[29] (0.72). RNABindRPlus had the highest F{measure value of

0.67. A comparison of the ROC curves (Fig. 4a) shows that the

performance of RNABindRPlus (AUC = 0.86) is superior to that

of SVMOpt and the Metapredictor (both have an AUC = 0.82).

Similarly, the Precision-Recall (PR) curves (Fig. 4b) show that

RNABindRPlus achieves a higher precision at all levels of recall

than the other two methods.

The performance of different methods on the RB111 dataset is

summarized in Table 11. RNABindRPlus achieved the highest

MCC value of 0.37, followed by SVMOpt and BindN+ [35], both

with an MCC of 0.24. The best performing structure-based

method on this dataset was KYG [37], with an MCC of 0.19,

which is considerably lower than the top sequence-based methods.

The highest Specificity was obtained by RNABindRPlus (0.47)

followed by a tie between SVMOpt and BindN+ [35] (0.25). The

highest Sensitivity was obtained by RNABindR v2.0 [24] (0.63)

Table 6. Proteins with Safe Zone Homologs in RB111.

Homology Zone Proteins

Safe Zone 2XGJ_A, 2XS2_A, 2YSY_A, 3AGV_A, 3AMT_A, 3B0U_X, 3KFU_A, 3KFU_F, 3LWR_A, 3NMR_A, 3R2C_A, 3RC8_A, 3S14_A, 3S14_B, 3T5N_A, 3V22_V,
3V2C_Y, 3ZD6_A, 4AFY_A, 4ARC_A, 4ATO_A, 4B3G_A, 4BTD_2, 4BTD_D, 4BTD_G, 4BTD_S, 4BTD_X, 4DH9_Y, 4DWA_A, 4E78_A, 4ERD_A, 4IFD_A,
4IFD_H, 4K4Z_A, 4KJ5_5, 4KJ5_G, 3NVI_A, 3OIN_A, 3R9X_B, 3RW6_A, 3ULD_A, 3VYX_A, 4AM3_A, 4B3O_A, 4BA2_A, 4F02_A, 4F1N_A, 4FXD_A,
4GV3_A

There are 49 proteins in RB111 for which HomPRIP can find homologs and return predictions.
doi:10.1371/journal.pone.0097725.t006

Table 7. Evaluation of Methods on 49 proteins from the RB111 dataset.

Method Reference Specificity Sensitivity F-measure MCC

HomPRIP This paper 0.85 0.85 0.85 0.83

RNABindRPlus This paper 0.64 0.54 0.59 0.55

SVMOpt This paper 0.27 0.51 0.35 0.28

BindN+ [35] 0.28 0.48 0.36 0.28

RNABindR v2.0 [24] 0.19 0.67 0.30 0.24

PPRInt [29] 0.21 0.56 0.31 0.23

BindN [34] 0.18 0.39 0.24 0.14

KYG** [37] 0.20 0.46 0.28 0.19

PRIP** [38] 0.19 0.49 0.27 0.19

The first 7 methods are sequence-based methods. The last 2 methods are structure-based methods (indicated by **). Methods in each category are sorted in descending
order of MCC. The highest value in each column is shown in bold font.
doi:10.1371/journal.pone.0097725.t007
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followed by PPRInt [29] (0.48). RNABindRPlus had the highest

F{measure value of 0.37. A comparison of the ROC curves

(Fig. 5a) shows that the performance of RNABindRPlus

(AUC = 0.82) is superior to that of the other methods. Similarly,

the PR curves (Fig. 5b) show that RNABindRPlus achieves a

higher precision at all levels of recall than the other five methods.

Interestingly, the performance of all methods is better on the

RB44 dataset than on the RB111 dataset. One possible

Figure 3. PDB ID: 3NCU, Chain A: RIG-I. (A) Actual interface residues, (B) Predictions made by HomPRIP, (C) Predictions made by SVMOpt, and (D)
Predictions made by RNABindRPlus.
doi:10.1371/journal.pone.0097725.g003

Table 8. Sequence-based Methods for Predicting RNA-binding sites in Proteins.

Method Reference Description

BindN [34] An SVM classifier that uses hydrophobicity, side chain pKa, molecular mass and PSSMs for predicting RNA-binding
residues. It can also predict DNA-binding residues. Accessible at: http://bioinfo.ggc.org/bindn/

BindN+ [35] An updated version of BindN, that uses an SVM classifier based on PSSMs and several other descriptors of
evolutionary information. It can also predict DNA-binding residues. Accessible at: http://bioinfo.ggc.org/bindn+/

Metapredictor [19] A predictor that combines the output of PiRaNhA, PPRInt, and BindN+ to make predictions of RNA-binding residues
using a weighted mean. Accessible at: http://iimcb.genesilico.pl/meta2/. The Metapredictor is not available as of
March 2014.

NAPS [25] A modified C4.5 decision tree algorithm that uses amino acid identity, residue charge, and PSSMs to predict
residues involved in DNA- or RNA-binding. Accessible at: http://prediction.bioengr.uic.edu/. The webserver cannot
be accessed as of March 2014.

PiRaNhA [60] An SVM classifier that makes use of PSSM profiles, interface propensity, predicted solvent accessibility, and
hydrophobicity to predict protein-RNA interface residues. Accessible at: http://bioinformatics.sussex.ac.uk/
PIRANHA/. The webserver cannot be accessed as of March 2014.

PPRInt [29] An SVM classifier trained on PSSM profiles. Accessible at: http://www.imtech.res.in/raghava/pprint/

PRBR [30] An enriched random forest classifier trained on predicted secondary structure, a combination of PSSMs with
physico-chemical properties, a polarity-charge correlation, and a hydrophobicity correlation. Accessible at: http://
www.cbi.seu.edu.cn/PRBR/

RNABindR [70] A Naı̈ve Bayes classifier that uses the amino acid sequence identity to predict RNA-binding residues in proteins.
Previously accessible at: http://bindr.gdcb.iastate.edu/RNABindR/. It is no longer maintained.

RNABindR v2.0 [24] An SVM classifier that uses sequence PSSMs to predict RNA-binding residues in proteins. Accessible at: http://
einstein.cs.iastate.edu/RNABindR/.

doi:10.1371/journal.pone.0097725.t008
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explanation for this is that RB44 is composed mostly of ribosomal

protein chains (36/44), whose roles are structural rather than

enzymatic. In contrast, RB111 contains a much smaller propor-

tion of ribosomal protein chains (10/111) and many more

enzymes, including CRISPR nucleases, RNA helicases, and

RNA methylases. This suggests that training custom classifiers

on specific functional or structural classes of RNA-binding proteins

could provide improved performance.

Taken together, these results demonstrate that the hybrid

sequence-based method, RNABindRPlus, has substantially higher

MCC values than other methods evaluated here. Moreover,

RNABindRPlus outperforms all other methods at any level of

precision and recall. An unexpected result is that the top sequence-

based methods, e.g., RNABindRPlus, BindN+, and SVMOpt, all

have much higher MCC values than any of the structure-based

methods.

HomPRIP and RNABindRPlus Webservers
A webserver implementation of HomPRIP and RNABindRPlus

is freely available at http://einstein.cs.iastate.edu/

RNABindRPlus/. Users can submit a single or multiple proteins

in FASTA format or upload a file containing proteins in FASTA

format. Results returned include the RNA-binding residue

predictions from HomPRIP, SVMOpt, and RNABindRPlus, as

well as the prediction scores from each method. The server also

returns a file containing the putative homologs and corresponding

predicted IC scores for the query protein(s). Users can utilize the

IC scores to determine whether their query protein(s) have Safe,

Twilight, or Dark Zone homologs. A text file containing all

potential homologs (i.e., the corresponding protein-RNA com-

plexes with solved structures) and their sequence similarity to the

query protein is also returned to the user.

Materials and Methods

Datasets
We utilized five datasets in our experiments.

1. nr_RNAprot_s2c: We built a BLAST database using RNA-

binding proteins from PRIDB [56] (as of May 2013) with a

resolution of 3.5 Å or better. There are 210,796 residues and

907 proteins in this database. In our experiments, this dataset

was used with BLASTP-2.2.27+ [61] to search for putative

sequence homologs.

2. NR216: We constructed a maximal non-redundant dataset of

RNA-binding proteins (RBPs) using the following steps. We

retrieved 9,649 protein chains from the set of all protein-RNA

complexes in the PDB [55,62] as of October 2010. Out of this

redundant set of protein chains, we obtained 242 non-

Table 9. Structure-based Methods for Predicting RNA-binding sites in Proteins.

Method Reference Description

KYG [37] Uses a set of scores based on the RNA-binding propensity of individual and pairs of surface residues of the protein, used alone or
in combination with position-specific multiple sequence profiles. Accessible at: http://cib.cf.ocha.ac.jp/KYG/. A stand-alone
version of the method is also available.

OPRA [39] Uses patch energy scores calculated using interface propensity scores weighted by the accessible surface area of a residue to
predict RNA-binding sites. The program is available upon request from the authors.

PRIP [38] Uses an SVM classifier and a combination of PSSM profiles, solvent accessible surface area (ASA), betweenness centrality, and
retention coefficient as input features. Not accessible via the web server, but results can be obtained via correspondence with the
author.

doi:10.1371/journal.pone.0097725.t009

Table 10. Evaluation of Methods on the RB44 dataset.

Method Reference Specificity Sensitivity F-measure MCC

RNABindRPlus This paper 0.72 0.63 0.67 0.55

SVMOpt This paper 0.58 0.72 0.64 0.47

PiRaNhA [60] 0.64 0.63 0.64 0.48

Metapredictor [19] 0.74 0.49 0.59 0.47

BindN+ [35] 0.54 0.73 0.62 0.43

PPRInt [29] 0.50 0.72 0.59 0.38

RNABindR [70] 0.62 0.39 0.48 0.33

PRBR [30] 0.58 0.41 0.48 0.31

BindN [34] 0.50 0.51 0.50 0.28

NAPS [25] 0.43 0.58 0.49 0.22

KYG** [37] 0.56 0.67 0.61 0.42

OPRA** [39] 0.57 0.51 0.54 0.36

PRIP** [38] 0.46 0.68 0.55 0.31

The first 10 methods are sequence-based methods. The last 3 methods (indicated by **) are structure-based methods. Methods in each category are sorted in
descending order of MCC. The highest value in each column is shown in bold font.
doi:10.1371/journal.pone.0097725.t010
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redundant protein chains using PISCES [63] with the following

criteria: (i) sequence identity ƒ30%; (ii) resolution of 3.5 Å or

better; (iii) sequence length §40 amino acids; (iv) non-X-ray

entries were excluded; (v) CA-only entries were excluded.

Further, we removed chains with interfaces containing fewer

than 5 residues. An amino acid residue is considered an

interface residue if it contains at least one heavy atom within

5 Å of any atom in the bound RNA. This definition of interface

residues is used throughout this paper. The final dataset

contained 216 non-redundant RBP chains with 8,420 interface

residues and 48,129 non-interface residues (those residues that

do not appear in the 3D structure of a complex are not

counted, since we cannot determine if they are interface or

not). We used NR216 for analyzing interface conservation in

RNA-binding proteins.

3. RB198: RB199 [56] is a dataset that contains 199 non-

redundant RNA-binding protein chains. It was created by

using the PISCES server [63] to generate a set of proteins with

v30% sequence identity and a resolution of 3.5 Å or better

from all protein-RNA complexes in the PDB as of May 2010.

To be included in the dataset, proteins must include §40
amino acids and §3 RNA-binding amino acids and the RNA

in the complex must be §5 nucleotides long. RB198 is

identical to RB199 except that one chain (2RFK_C) was

omitted because it does not contain any interface residues

based on the definition provided above. To maintain

consistency with previous studies, both RB198 and RB199

include another chain (3EX7_A) which has no interface

residues and one chain with only 2 interface residues

(2J01_4). In this dataset, we consider residues that are not

solved in the structure as non-interface residues. We used this

dataset for cross-validation experiments and for training the

final machine learning classifiers.

4. RB44: This is a non-redundant benchmark dataset compiled

by Puton et al. [19] containing RNA-protein complexes

deposited in the PDB [55,62] between January 1st and April

28th 2011. It is composed of 44 protein chains that share

v40% sequence identity. We used this dataset as an

independent test set. None of the protein chains in RB44

share any global similarity with RB198 at a sequence similarity

threshold of 40%.

5. RB111: This is a dataset compiled as of March 2014 that

contains 111 non-redundant RNA-binding protein chains. It

was created using the PISCES server [63] to generate a set of

proteins with v30% sequence identity and a resolution of

3.5 Å or better from all protein-RNA complexes deposited in

the PDB between June 2010 and December 2010, and between

May 2011 to March 2014. The dataset excludes any non-X-ray

entries as well as CA-only entries. All protein chains in this

dataset include §40 amino acids and §3 RNA-binding amino

acids. We used this dataset as a newer, independent test set.

None of the protein chains in RB111 share any global

similarity with RB198 or RB44 at a sequence similarity

threshold of 40% (tool used for this: CD-HIT [64,65]).

Sequence Conservation Analysis
We analyzed interface residues in structural homologs of each

protein in a non-redundant dataset of 216 RNA-binding proteins,

NR216. We extracted homologs for each of the 216 proteins from

the nr_RNAprot_s2c database using BLASTP with an E-value

ƒ10. The structures and interface residues for proteins in NR216

and their homologs from nr_RNAprot_s2c were experimentally

determined. From the resulting set of homologs, sequences that are

likely to be copies of the query sequence and hence likely to

introduce an undesirable bias in the estimation of sequence

conservation were eliminated to obtain a dataset of 8,970 query/

homolog pairs. For each query-homolog pair, (Q,H), we

calculated the interface conservation score, IC(Q,H), which is a

measure of the degree of conservation of interface residues

between the query protein, Q and its homolog(s), H . The higher

the IC score, the more conserved are the interface residues

between homologs and the query protein.

We studied the functional relationship of the IC score with six

alignment statistics, four of which are returned by BLAST [64]

and two of which are derived from BLAST statistics: (i) Positive score

(P), (ii) Identity score (I ), (iii) E-value (E), (iv) Local Alignment Length (L),

(v)
L

Ql

and (vi)
L

Hl

(where Ql and Hl are lengths of the query

protein Q and its homolog H , respectively). The last two measures

tell us the extent of sequence homology between a query sequence,

Q and its homolog, H. The E-value is the expected number of

random hits when a query sequence is searched against a database

of a particular size. The smaller the E-value, the greater the

chance that a hit is a biologically relevant homolog. Identity score

measures the sequence identity shared by two amino acid

sequences. BLASTP also returns a Positive score for a specific

position, which calculates the observed substitutions that preserve

the physicochemical properties of the original residue. A

substitution of one residue type for another is labeled positive

when the corresponding entry in the scoring matrix has a positive

score. We represented each query-homolog alignment pair as a

data point in a six-dimensional space defined by the six alignment

statistics.

We used Principal Components Analysis (PCA), a dimension-

ality reduction technique, to visualize the relationship between the

six sequence alignment statistics and the IC score. We also

constructed a regression model to quantitatively describe interface

conservation as a function of sequence alignment statistics.

HomPRIP: A Sequence Homology-Based RNA-Binding
Site Predictor

Given a query protein sequence, Q, HomPRIP searches the

nr_RNAprot_s2c database to identify homologous sequences that

correspond to the protein components of experimentally deter-

mined protein-RNA complexes. The query protein itself is not

utilized as one of the homologs. If at least one Safe Zone homolog

is found, HomPRIP uses it to predict the interface residues of the

query protein, Q. Otherwise, the search is repeated for homologs

in the Twilight and Dark zones. HomPRIP reports the homology

zones (Safe, Twilight, or Dark, see Table 12) accordingly, and uses

the zone as an indicator of prediction confidence. Homologs that

share w95% sequence identity with the query protein are

discarded. This ensures conservative performance estimates for

the method. If HomPRIP cannot find homologs in any of the three

zones, it does not return any predictions for the query protein.

HomPRIP assigns a prediction score to each residue of the

query protein sequence based on the label of the residue in the

Figure 4. Comparison of SVMOpt, RNABindRPlus, and the Metapredictor on the RB44 dataset using (A) ROC curves and (B) PR curves with a
5 Å distance cut-off for interface residues.
doi:10.1371/journal.pone.0097725.g004
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corresponding position in its homolog(s) (after pairwise sequence

alignment). Specifically, the prediction score (PS) for the jth

residue of the query protein is calculated as:

PSj~

Pk
i~1 wiSijPk

i~1 wi

, j~1,2,:::,L

where L is the length of the query protein, Q and k is the number

of close homologs. Sij is the vote of a homolog Hi

(Hi[Homologs(Q)) for the jth position of the alignment and is

equal to 1 if the corresponding residue in the homolog is an

interface residue and 0 otherwise. wi is ^ICIC(Q,H), the IC score

predicted by the regression model for the ith homolog of Q. The

prediction score, PSj , is converted into a binary prediction (1

represents an interface residue and 0 represents a non-interface

residue) as follows:

Predictionj~
1 if PSj§0:5

0 otherwise

�

SVMOpt: Support Vector Machine Classifier
From the Walia et al. [24] study, we picked the best performing

feature, PSSMs, and the best classifier, SVM-RBF (SVM with the

RBF kernel), and optimized the cost parameter C and the RBF

kernel parameter, c, as well as the window sizes. We tuned these

parameters using a three-dimensional grid search over the range

C~2{5,:::,215 and c~2{15,:::,23 and window sizes ranging from

15 to 27. For finding the optimal values for C, c, and the window

size, we divided RB198 into training, validation, and test sets by

splitting it into 6 parts. 165 chains were used for training and

validation sets, and 33 chains were used as the held-out test set.

Specifically, the optimization process was as follows: (i) Pick values

for C, gamma, and the window size, (ii) Train the model using the

training set, (iii) Evaluate the performance of the model on the

validation set, (iv) Repeat steps (i)–(iii) using different training

parameters, (v) Select the best model (parameter values) and train

it using all the data from the training and validation sets, and (vi)

Assess the final model using the held-out test set. Sequence-based

5-fold cross-validation was used in the optimization experiments,

so steps (ii) and (iii) were repeated for each fold. We call the

optimized classifier SVMOpt. The PSSMs were constructed by

running PSI-BLAST [61] against the NCBI nr database for three

iterations with an E-value cutoff of 0.001 for inclusion in the next

iteration.

Hybrid Method: RNABindRPlus
The prediction scores from HomPRIP and SVMOpt were

combined using a second stage logistic regression model. The

Weka implementation of logistic regression [66] was used with the

default ridge parameter of 1:0E{8. The input to the logistic

regression model is a 2D vector representing the prediction scores

from HomPRIP and SVMOpt. In cases where HomPRIP failed to

return predictions (i.e., no homologs for query proteins are found

or the target residue is not aligned with any residues in the

homolog(s)), a missing input value (represented as ‘?’) is fed to the

logistic regression model. We refer to this hybrid model as

RNABindRPlus.

Performance Evaluation
We used several different measures of classifier performance.

On the RB198 dataset, performance measures were obtained by

carrying out sequence-based 5-fold cross-validation. Sequence-

based 5-fold cross-validation randomly divides protein chains in

RB198 into 5 sets and alternatively uses 4 sets as the training set

and 1 set as the test set. The average performance on the 5 test sets

is used as the final evaluation of the classifier. Sequence-based

cross-validation has been shown to be more rigorous than window-

based cross-validation [67], because it ensures disjoint training and

test sets at the sequence level instead of at the residue level. The

predicted label for each residue is compared to the actual label and

the residue is classified as a true positive (TP), false positive (FP),

true negative (TN), or false negative (FN). We report the

performance measures as defined in Baldi et al. [68].

Figure 5. Comparison of SVMOpt, RNABindRPlus, RNABindR v2.0, BindN, BindN+ and PPRInt on the RB111 dataset using (A) ROC curves
and (B) PR curves with a 5 Å distance cut-off for interface residues.
doi:10.1371/journal.pone.0097725.g005

Table 11. Evaluation of Methods on the RB111 dataset.

Method Reference Specificity Sensitivity F-measure MCC

RNABindRPlus This paper 0.47 0.37 0.42 0.37

SVMOpt This paper 0.25 0.44 0.32 0.24

BindN+ [35] 0.25 0.43 0.31 0.24

RNABindR v2.0 [24] 0.18 0.63 0.28 0.22

PPRInt [29] 0.18 0.48 0.26 0.18

BindN [34] 0.16 0.39 0.23 0.14

KYG** [37] 0.19 0.47 0.27 0.19

PRIP** [38] 0.17 0.45 0.24 0.15

The first 6 methods are sequence-based methods. The last 2 methods (indicated by **) are structure-based methods. Methods in each category are sorted in descending
order of MCC. The highest value in each column is shown in bold font.
doi:10.1371/journal.pone.0097725.t011
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Overall performance measures are calculated as follows:

Specificity~
TP

TPzFP
~Precisionð Þ

Sensitivity~
TP

TPzFN
~Recallð Þ

F{measure~
2|Precision|Recall

PrecisionzRecall

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFNð Þ| TPzFPð Þ| TNzFPð Þ| TNzFNð Þ
p

The measures describe different aspects of classifier perfor-

mance. Sensitivity is the probability of correctly predicting the

interface residues of a given protein. Specificity is the probability

that a predicted interface residue in any given protein is in fact an

interface residue. F{measure is the harmonic mean of precision

and recall, where the best score is 1 and the worst score is 0. The

Matthews correlation coefficient (MCC) measures how predictions

correlate with true interface and non-interfaces. All machine

learning methods have an inherent trade-off between specificity

and sensitivity that is controlled through the classification

threshold. Predictors that make no positive predictions trivially

achieve a Specificity of 1. However, such methods are not useful,

because they do not return any true positive predictions.

A Receiver Operating Characteristic (ROC) curve is useful for

comparing classifiers across all classification thresholds. Where

possible, we show the ROC curve and report Area under the ROC

curve (AUC). The ROC curve plots the proportion of correctly

classified positive examples, True Positive Rate (TPR), as a function

of the proportion of incorrectly classified negative examples, False

Positive Rate (FPR), for different classification thresholds. When

comparing the performance of two classifiers, for the same FPR,

the one with a higher TPR performs better. The ROCR package

[69] in R was used to generate all ROC curves and Precision-Recall

(PR) curves. When data are unbalanced (fewer interface residues

than non-interface residues) PR curves give a more informative

picture of an algorithm’s performance than ROC curves. In PR
curves, we plot precision as a function of recall, with respect to

different prediction score cutoffs. We also report the AUC value,

which is the probability that a classifier gives a higher score to a

positive instance than to a negative instance. An AUC of 0.5

indicates a random discrimination between the positive and

negative class while an AUC of 1.0 indicates perfect discrimina-

tion.

Conclusions

We have shown that HomPRIP, a sequence homology-based

method, can reliably predict RNA-binding residues when close

sequence homologs of the query protein, with known RNA-

binding residues, can be found. A sequence-based machine

learning classifier, SVMOpt, returns reliable predictions for any

query protein, regardless of whether structures of protein-RNA

complexes containing homologous protein sequences are available.

When Safe Zone homologs for a query protein can be found,

HomPRIP is the method of choice. For other query proteins,

RNABindRPlus, which combines HomPRIP with SVMOpt, has

superior performance because it exploits the strengths of both

methods. RNABindRPlus outperforms several state-of-the-art

methods, both sequence-based and structure-based, for predicting

RNA-binding sites in proteins. An important advantage of

RNABindRPlus is that it is a purely sequence-based approach.

A webserver implementation is freely available at http://einstein.

cs.iastate.edu/RNABindRPlus/.

Acknowledgments

We thank members of the Dobbs and Honavar groups for useful

discussions and Carla Mann for assistance in generating the RB111

dataset. The authors sincerely thank Janusz M. Bujnicki and members of

his group, Lukasz Kozlowski and Tomas Puton, for sharing their

experimental data with us. The authors also thank Stefan Maetschke for

running PRIP on our datasets and sending us the results.

Author Contributions

Conceived and designed the experiments: RRW VH DD. Performed the

experiments: RRW LCX KW. Analyzed the data: RRW LCX YE-M.

Wrote the paper: RRW DD VH. Implemented the webserver: RRW.

References

1. Galicia-Vazquez G, Lindqvist L, Wang X, Harvey I, Liu J, et al. (2009) High-

throughput assays probing protein-RNA interactions of eukaryotic translation

initiation factors. Analytical Biochemistry 384: 180–188.

2. Standart N, Jackson R (1994) Regulation of translation by specific protein/
mRNA interactions. Biochimie 76: 867–879.

3. Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR (2004)
Genome-Wide analysis of mRNA stability using transcription inhibitors and

microarrays reveals posttranscriptional control of ribosome biogenesis factors.

Molecular and Cellular Biology 24: 5534–5547.

4. Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, et al. (2007) SMAUG is

a major regulator of maternal mRNA destabilization in drosophila and its
translation is activated by the PAN GU kinase. Developmental Cell 12: 143–

155.

5. Blencowe BJ (2006) Alternative splicing: New insights from global analyses. Cell

126: 37–47.

6. Muers M (2008) RNA splicing: Counting, coordinating and controlling the

alternatives. Nature Reviews Genetics 9: 894–895.

7. Denison MR (2008) Seeking membranes: Positive-Strand RNA virus replication
complexes. PLoS Biology 6: e270.

8. Nagy PD, Pogany J (2011) The dependence of viral RNA replication on co-

opted host factors. Nature Reviews Microbiology 10: 137–149.

9. Esteller M (2011) Non-coding RNAs in human disease. Nature Reviews

Genetics 12: 861–874.

10. Khalil AM, Rinn JL (2011) RNA-protein interactions in human health and
disease. Seminars in Cell and Developmental Biology 22: 359–365.

11. Tsai M, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new

links in cancer progression. Cancer Research 71: 3–7.

12. Van Roosbroeck K, Pollet J, Calin GA (2013) miRNAs and long noncoding
RNAs as biomarkers in human diseases. Expert Review of Molecular

Diagnostics 13: 183–204.

13. Schonrock N, Gtz J (2012) Decoding the non-coding RNAs in Alzheimers
disease. Cellular and Molecular Life Sciences 69: 3543–3559.

14. Tan L, Yu JT, Hu N, Tan L (2013) Non-coding RNAs in Alzheimer’s Disease.

Molecular Neurobiology 47: 382–393.

Table 12. Boundaries of Safe, Twilight, and Dark Zones used
by HomPRIP.

Homology Zones IC score Cutoff

Safe Zone 0.70

Twilight Zone 0.20

Dark Zone 0.15

doi:10.1371/journal.pone.0097725.t012

RNABindRPlus: Predicting RNA-Binding Sites in Proteins

PLOS ONE | www.plosone.org 14 May 2014 | Volume 9 | Issue 5 | e97725

http://einstein.cs.iastate.edu/RNABindRPlus/
http://einstein.cs.iastate.edu/RNABindRPlus/


15. Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer?

Human Molecular Genetics 19: R152–R161.

16. Mitra SA, Mitra AP, Triche TJ (2012) A central role for long Non-coding RNA
in cancer. Frontiers in Genetics 3.

17. Cheetham SW, Gruhl F, Mattick JS, Dinger ME (2013) Long noncoding RNAs

and the genetics of cancer. British Journal of Cancer 108: 2419–2425.

18. Kechavarzi B, Janga S (2014) Dissecting the expression landscape of RNA-

binding proteins in human cancers. Genome Biology 15: R14.

19. Puton T, Kozlowski L, Tuszynska I, Rother K, Bujnicki JM (2012)
Computational methods for prediction of protein-RNA interactions. Journal

of Structural Biology 179: 261–268.

20. Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes.
Methods 34: 408–414.

21. Wu H, Finger LD, Feigon J (2005) Structure determination of protein/RNA

complexes by NMR. Methods in Enzymology 394: 525–545.

22. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for

detecting proteinnucleic acid interactions. Nature Protocols 2: 1849–1861.

23. Ule J, Jensen K, Mele A, Darnell RB (2005) CLIP: a method for identifying
protein-RNA interaction sites in living cells. Methods 37: 376–386.

24. Walia R, Caragea C, Lewis B, Towfic F, Terribilini M, et al. (2012) Protein-

RNA interface residue prediction using machine learning: an assessment of the
state of the art. BMC Bioinformatics 13: 89.

25. Carson MB, Langlois R, Lu H (2010) NAPS: a residue-level nucleic acid-binding

prediction server. Nucleic Acids Res 38: W431–W435.

26. Cheng C, Su E, Hwang J, Sung T, Hsu W (2008) Predicting RNA-binding sites

of proteins using support vector machines and evolutionary information. BMC

Bioinformatics 9: S6.

27. Jeong E, Chung I, Miyano S (2004) A neural network method for identification

of RNA-interacting residues in protein. Genome Informatics International

Conference on Genome Informatics 15: 105–116.

28. Jeong E, Miyano S (2006) A weighted profile based method for Protein-RNA

interacting residue prediction. In: Hutchison D, Kanade T, Kittler J, Kleinberg

JM, Mattern F, et al, editors, Transactions on Computational Systems Biology
IV, Berlin, Heidelberg: Springer Berlin Heidelberg, volume 3939. pp. 123–139.

29. Kumar M, Gromiha MM, Raghava GPS (2008) Prediction of RNA binding sites

in a protein using SVM and PSSM profile. Proteins 71: 189–194.

30. Ma X, Guo J, Wu J, Liu H, Yu J, et al. (2011) Prediction of RNA-binding

residues in proteins from primary sequence using an enriched random forest
model with a novel hybrid feature. Proteins 79: 1230–1239.

31. Spriggs RV, Murakami Y, Nakamura H, Jones S (2009) Protein function

annotation from sequence: prediction of residues interacting with RNA.
Bioinformatics 25: 1492–1497.

32. Terribilini M, Lee J, Yan C, Jernigan RL, Honavar V, et al. (2006) Prediction of

RNA binding sites in proteins from amino acid sequence. RNA 12: 1450–1462.

33. Wang C, Fang Y, Xiao J, Li M (2011) Identification of RNA-binding sites in
proteins by integrating various sequence information. Amino Acids 40: 239–248.

34. Wang L, Brown SJ (2006) BindN: a web-based tool for efficient prediction of

DNA and RNA binding sites in amino acid sequences. Nucleic Acids Research
34: W243–248.

35. Wang L, Huang C, Yang M, Yang JY (2010) BindN+ for accurate prediction of
DNA and RNAbinding residues from protein sequence features. BMC Systems

Biology 4: S3.

36. Wang L, Brown S (2006) Prediction of RNA-Binding residues in protein
sequences using support vector machines. In: Engineering in Medicine and

Biology Society, 2006. EMBS ’06. 28th Annual International Conference of the

IEEE. pp. 5830–5833. doi:10.1109/IEMBS.2006.260025.

37. Kim OTP, Yura K, Go N (2006) Amino acid residue doublet propensity in the

Protein-RNA interface and its application to RNA interface prediction. Nucleic

Acids Research 34: 6450–6460.

38. Maetschke SR, Yuan Z (2009) Exploiting structural and topological information

to improve prediction of RNA-protein binding sites. BMC Bioinformatics 10:

341.

39. Perez-Cano L, Fernandez-Recio J (2010) Optimal protein-RNA area, OPRA: a

propensity-based method to identify RNA-binding sites on proteins. Proteins 78:
25–35.

40. Towfic F, Caragea C, Gemperline DC, Dobbs D, Honavar V (2010) Struct-NB:

predicting protein- RNA binding sites using structural features. International
Journal of Data Mining and Bioinformatics 4: 21–43.

41. Zhao H, Yang Y, Zhou Y (2010) Structure-Based prediction of RNA-Binding

domains and RNABinding sites and application to structural genomics targets.
Nucleic Acids Research 39: 3017–3025.

42. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, et al. (2000)

Comparative protein structure modeling of genes and genomes. Annual Review
of Biophysics and Biomolecular Structure 29: 291–325.

43. Andrade MA (1999) Position-specific annotation of protein function based on

multiple homologs. In: Lengauer T, Schneider R, Bork P, Brutlag DL, Glasgow
JI, et al, editors, ISMB. AAAI, pp. 28–33.

44. Zehetner G (2003) OntoBlast function: From sequence similarities directly to

potential functional annotations by ontology terms. Nucleic Acids Research 31:
3799–3803.

45. Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, et al. (2001) Identification of
potential interaction networks using sequence-based searches for conserved

protein-protein interactions or "interologs". Genome Research 11: 2120–2126.

46. Mukherjee S, Zhang Y (2011) Protein-protein complex structure predictions by
multimeric threading and template recombination. Structure 19: 955–966.

47. Xue LC, Jordan RA, Yasser EM, Dobbs D, Honavar V (2014) DockRank:
Ranking docked conformations using partner-specific sequence homology-based

protein interface prediction. Proteins: Structure, Function, and Bioinformatics
82: 250–267.

48. Xue LC, Dobbs D, Honavar V (2011) HomPPI: a class of sequence homology

based protein-protein interface prediction methods. BMC Bioinformatics 12:
244.

49. Jordan RA, EL-Manzalawy Y, Dobbs D, Honavar V (2012) Predicting protein-
protein interface residues using local surface structural similarity. BMC

Bioinformatics 13: 41.

50. Konc J, Janezic D (2010) ProBiS algorithm for detection of structurally similar
protein binding sites by local structural alignment. Bioinformatics 26: 1160–

1168.
51. Zhang QC, Deng L, Fisher M, Guan J, Honig B, et al. (2011) PredUs: a web

server for predicting protein interfaces using structural neighbors. Nucleic Acids
Research 39: W283–W287.

52. Zhang QC, Petrey D, Norel R, Honig BH (2010) Protein interface conservation

across structure space. Proceedings of the National Academy of Sciences USA
107: 10896–10901.

53. Kauffman C, Karypis G (2009) LIBRUS: combined machine learning and
homology information for sequence-based ligand-binding residue prediction.

Bioinformatics 25: 3099–3107.

54. Spriggs RV, Jones S (2009) RNA-binding residues in sequence space:
Conservation and interaction patterns. Computational Biology and Chemistry

33: 397–403.
55. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

Protein Data Bank. Nucleic Acids Research 28: 235–242.
56. Lewis BA, Walia RR, Terribilini M, Ferguson J, Zheng C, et al. (2010) PRIDB:

a Protein-RNA interface database. Nucleic Acids Research 39: D277–D282.

57. Iwasaki A (2012) A virological view of innate immune recognition. Annual
Review of Microbiology 66: 177–196.

58. Leung DW, Basler CF, Amarasinghe GK (2012) Molecular mechanisms of viral
inhibitors of RIGI-like receptors. Trends in Microbiology 20: 139–146.

59. Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, et al. (2010) Structural

and functional insights into 59-ppp RNA pattern recognition by the innate
immune receptor RIG-I. Nature Structural and Molecular Biology 17: 781–787.

60. Murakami Y, Spriggs RV, Nakamura H, Jones S (2010) PiRaNhA: a server for
the computational prediction of RNA-Binding residues in protein sequences.

Nucleic Acids Research 38: W412–W416.
61. Altschul SF, Madden TL, Scheffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Research 25: 3389–3402.
62. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, et al. (2002) The

Protein Data Bank. Acta Crystallographica Section D 58: 899–907.
63. Wang G, Dunbrack J, Roland L (2003) PISCES: a protein sequence culling

server. Bioinformatics 19: 1589–1591.

64. Li W, Godzik A (2006) CD-Hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.

65. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the
next-generation sequencing data. Bioinformatics 28: 3150–3152.

66. le Cessie S, van Houwelingen J (1992) Ridge estimators in logistic regression.

Applied Statistics 41: 191–201.
67. Caragea C, Sinapov J, Honavar V, Dobbs D (2007) Assessing the performance

of macromolecular sequence classifiers. In: Proceedings of the 7th IEEE
International Conference on Bioinformatics and Bioengineering. IEEE, pp.

320–326.
68. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H (2000) Assessing the

accuracy of prediction algorithms for classification: An overview. Bioinformatics

16: 412–424.
69. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing

classifier performance in R. Bioinformatics 21: 3940–3941.
70. Terribilini M, Sander JD, Lee J, Zaback P, Jernigan RL, et al. (2007)

RNABindR: a server for analyzing and predicting RNA-binding sites in proteins.

Nucleic Acids Research 35: W578–W584.

RNABindRPlus: Predicting RNA-Binding Sites in Proteins

PLOS ONE | www.plosone.org 15 May 2014 | Volume 9 | Issue 5 | e97725


