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Abstract. Support vector machines (SVM) offer a theoretically well-
founded approach to automated learning of pattern classifiers. They have
been proven to give highly accurate results in complex classification prob-
lems, for example, gene expression analysis. The SVM algorithm is also
quite intuitive with a few inputs to vary in the fitting process and several
outputs that are interesting to study. For many data mining tasks (e.g.,
cancer prediction) finding classifiers with good predictive accuracy is im-
portant, but understanding the classifier is equally important. By study-
ing the classifier outputs we may be able to produce a simpler classifier,
learn which variables are the important discriminators between classes,
and find the samples that are problematic to the classification. Visual
methods for exploratory data analysis can help us to study the outputs
and complement automated classification algorithms in data mining. We
present the use of tour-based methods to plot aspects of the SVM clas-
sifier. This approach provides insights about the cluster structure in the
data, the nature of boundaries between clusters, and problematic out-
liers. Furthermore, tours can be used to assess the variable importance.
We show how visual methods can be used as a complement to cross-
validation methods in order to find good SVM input parameters for a
particular data set.

1 Introduction

The availability of large amounts of data in many application domains (e.g.,
bioinformatics or medical informatics) offers unprecedented opportunities for
knowledge discovery in such domains. The classification community has focused
primarily on building accurate predictive models from the available data. Highly
accurate algorithms that can be used for complex classification problems have
been designed. Although the predictive accuracy is an important measure of
the quality of a classification model, for many data mining tasks understanding
the model is as important as the accuracy of the model itself. Finding the role
different variables play in classification provides an analyst with a deeper under-
standing of the domain. For example, in medical informatics applications, such
an understanding can lead to more effective screening, preventive measures and
therapies.

The SVM algorithm [39] is one of the most effective machine learning al-
gorithms for many complex binary classification problems (e.g., cancerous or
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normal cell prediction based on gene expression data [8]). In the simplest case,
SVM algorithm finds a hyperplane that maximizes the margin of separation be-
tween classes. This hyperplane is defined by a subset of examples, called support
vectors, which “mark” the boundary between classes. However, understanding
the results and extracting useful information about class structure, such as what
variables are most important for separation, is difficult. SVM is mostly used as
a black box technique.

The SVM algorithm searches for “gaps” between clusters in the data, which
is similar to how we cluster data using visual methods. Thus, SVM classifiers
are particularly attractive to explore using visual methods. In this paper, we use
dynamic visual methods, called tours [4,14,13], to explore SVM classifiers. Tours
provide mechanisms for displaying continuous sequences of low-dimensional lin-
ear projections of data in high-dimensional Euclidean spaces. They are gener-
ated by constructing an orthonormal basis that represents a linear subspace.
Tour-based methods are most appropriate for data that contain continuous real-
valued variables. They are useful for understanding patterns, both linear and
non-linear, in multi-dimensional data. However, because tours are defined as
projections (analogous to an object shadow) rather than slices, some non-linear
structures may be difficult to detect. Tours are also limited to applications where
the number of variables is less than 20 because otherwise the space is too large
to randomly explore within a reasonable amount of time. Hence, when we have
more than 20 variables, it is important to perform some dimensionality reduc-
tion prior to applying tour methods. In classification problems, tours allow us
to explore the class structure of the data, and see the way clusters are separated
(linearly or not) and the shape of the clusters.

Visualization of the data in the training stage of building a classifier can
provide guidance in choosing variables and input parameters for the SVM algo-
rithm. We plot support vectors, classification boundaries, and outliers in high-
dimensional spaces and show how such plots can be used to assess variable
importance with respect to SVM, to complement cross-validation methods for
finding good SVM input parameters and to study the stability of the SVM clas-
sifiers with respect to sampling.

Effective application of machine learning algorithms, SVM included, often
requires careful choice of variables, samples and input parameters in order to
arrive at a satisfactory solution. Hence, a human analyst is invaluable during
the training phase of building a classifier. The training stage can be laborious
and time-intensive, but once a classifier is built it can repeatedly be used on large
volumes of data. Therefore, it is valuable to take the time to explore alternative
variable, samples, parameter settings, plot the data, meticulously probe the data,
to generate accurate and comprehensible classifiers.

Our analysis is conducted on a particular data problem, SAGE gene expression
data [6], where the task is to classify cells into cancerous cells or normal cells
based on the gene expression levels.

The rest of the paper is organized as follows: The Methods section de-
scribes the algorithms for SVM and tours, and also the aspects that we study to
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understand and explore the SVM model; The Application section illustrates
how tour methods can be used to examine SVM classifiers, using a SAGE gene
expression data set; The Summary and Discussion section summarizes our
methods, describes their strengths and limitations, and presents some related
work.

2 Methods

2.1 Support Vector Machines

The SVM algorithm [39] is a binary classification method that takes as input
labeled data from two classes and outputs a model (a.k.a., classifier) for classi-
fying new unlabeled data into one of those two classes. SVM can generate linear
and non-linear models.

Let E = {(x1, y1), (x2, y2), · · · , (xl, yl)}, where xi ∈ Rp and yi ∈ {−1, 1} be a
set of training examples. Suppose the training data is linearly separable. Then it
is possible to find a hyperplane that partitions the p-dimensional pattern space
into two half-spaces R+ and R−. The set of such hyperplanes (the solution space)
is given by {x|x · w + b = 0}, where x is the p-dimensional data vector and w is
the normal to the separating hyperplane.

SVM selects among the hyperplanes that correctly classify the training set,
the one that minimizes ‖w‖2 (subject to the constraints yi(xi ·w+b) ≤ 1), which
is the same as the hyperplane for which the margin of separation between the two
classes, measured along a line perpendicular to the hyperplane, is maximized.

The algorithm assigns a weight αi to each input point xi. Most of these weights
are equal to zero. The points having non-zero weight are called support vectors.
The separating hyperplane is defined as a weighted sum of support vectors. Thus,
w =

∑l
i=1(αiyi)xi =

∑s
i=1(αiyi)xi, where s is the number of support vectors, yi

is the known class for example xi, and αi are the support vector coefficients that
maximize the margin of separation between the two classes. The classification
for a new unlabeled example can be obtained from fw,b(x) = sign(w · x + b) =
sign(

∑l
i=1 αiyi(x · xi) + b).

If the goal of the classification problem is to find a linear classifier for a non-
separable training set (e.g., when data is noisy and the classes overlap), a set of
slack variables, ξi, is introduced to allow for the possibility of examples violating
the constraints yi(xi · w + b) ≤ 1. In this case the margin is maximized, paying
a penalty proportional to the cost C of constraint violation, i.e., C

∑l
i=1 ξi .

The decision function is similar to the one for the linearly separable problem.
However, in this case, the set of support vectors consists of bounded support vec-
tors (if they take the maximum possible value, C) and unbounded (real) support
vectors (if their absolute value is smaller than C).

If the training examples are not linearly separable, the SVM works by mapping
the training set into a higher dimensional feature space, where the data becomes
linearly separable, using an appropriate kernel function k.

The SVM algorithm has several input parameters that can be varied (e.g.,
cost, C, tolerance in the termination criterion, ε, kernel function, k) and several
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Fig. 1. Three projections from a tour of a 5-dimensional data set (variables denoted
V5,V6,V7,V8 and V9) where the two groups are separable. The left plot shows a projection
where the groups are well-separated, and the plot at right shows a projection where they
are not separated. The magnitude of the projection coefficients indicate variable impor-
tance, the larger the coefficient - in the direction of separation - the more important the
variable. For example, the left plot shows −0.790

5.44 V5− 0.389
5.29 V6− 0.351

4.18 V7− 0.163
3.87 V8+ 0.272

6.32 V9

horizontally, and −0.393
5.44 V5 + 0.088

5.29 V6 + 0.008
4.18 V7 + 0.707

3.87 V8 + −0.582
6.32 V9 vertically.

outputs that can be studied to assess the resulting model (e.g., support vectors,
separating hyperplane, variables that are important for the separation).

In this paper, we use the SVM implementation available in the R [32] package,
called e1071 [17]. The SVM implementation in e1071 is based on the LIBSVM
implementation [12]. We use this implementation because the R language allows
us to quickly calculate other diagnostic quantities and to link these numbers to
graphics packages.

2.2 Tours Methods for Visualization

Tours [4,41,42,9,16] display linear combinations (projections) of variables, x′A
where A is a p × d(< p)-dimensional projection matrix. The columns of A are
orthonormal. Often d = 2 because the display space on a computer screen is 2,
but it can be 1 or 3, or any value between 1 and p. The earliest form of the tour
presented the data in a continuous movie-like manner, but recent developments
have provided guided tours [14] and manually controlled tours [13]. Here we use a
d = 2-dimensional manually-controlled tour to recreate the separating boundary
between two groups in the data space. Figure 1 illustrates the tour approach.

We use the tour methods available in the data visualization software ggobi
[37], and the R [32] package Rggobi [38] that makes ggobi functionality accessible
from R.

2.3 SVM and Tours

Understanding the classifier in relation to a particular data requires an analyst
to examine the suitability of the method on the data, adjust the performance
of the method (e.g., by appropriate choice of parameters) and adjust the data
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(e.g., by appropriate choice of variables used for building the classifier) as nec-
essary to obtain the best results on the problem at hand. Tour methods can be
used as exploratory tools to examine the outputs of SVM classifiers.

There are several outputs that we can examine when exploring SVM results
using tours: support vectors, boundaries between classes, outliers, among others.
The support vectors specify the classifier generated by the SVM algorithm. First,
we observe their location in the data space and examine their importance (posi-
tion) relative to the other data points. We expect to see the unbounded support
vectors from each group roughly indicating the margin between the groups in
some projection. The bounded support vectors should lie inside this margin.

Second, we examine the boundaries between classes in high dimensional spaces.
To do this, we generate a rectangular grid of points around the data, by choos-
ing a number of grid points between the minimum and maximum data value of
each variable. For example, with two variables, 10 grid values on each axis will
give 102 = 100 points on a square grid, or with four variables we would have
104 = 10000 points on a 4D grid. We then compute the predicted values w · x + b
for each point x in the grid. The points that are close to the boundary will have
predicted values close to 0. For two variables the boundary is a line, for three vari-
ables the boundary is a 2D plane, for four variables the boundary is a 3D hyper-
plane, etc. When using linear kernels with SVM, we expect to see very clear linear
boundaries between the two groups. For non-linear kernels, the boundaries will be
more complex.

Third, we investigate anomalies in the data, the misclassified samples and the
outliers, to get insights about how these points differ from the rest of the data.
The anomalies should be isolated from their group in some way. We look at a
separate test set after the classifier is built from a training data set and the
projection that shows the training separation is found.

The visualization of the outputs can be explored to:

1. Assess the importance of the variables based on the best projections ob-
served;

2. Tune SVM input parameters according to the outputs observed;
3. Study the stability of the model with respect to sampling.

Assessing variable importance. Real world data sets are described by many
variables (e.g., for gene expression data there are commonly a lot more variables
than examples). A classifier may be unreliable unless the sample size is several
times as large as the number of variables [34]. Very often, a small number of the
variables suffices to separate the classes, although the subset of variables may not
be unique [27]. Variable selection is also useful before running tours, because the
smaller the space the more rapidly it can be explored. There are many methods
for variable selection [21,22,33,7,19,26,44] and the subsets of variables that they
return can be very different. Which subset is the best? We use tours to explore
and select subsets of variables than can be used to separate the data in two
classes.
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To do that, we first order the variables according to several criteria (e.g., PDA-
PP index [26], BW index [19] and SVM variable importance [22]) and form small
subsets, either by taking the best k variables according to one criterion or by
combining the best variables of two or more criteria. After running SVM on the
subsets formed with the variables selected, we examine the difference between re-
sults and select those subsets of variables that show the best separation between
classes in some projection.

We can also assess the importance of the variables within a subset. The sup-
port vectors from each group roughly indicate a boundary between the groups
in some projection. The variables contributing to the projection provide an indi-
cation of relative importance of the variables to the separation. The coefficients
of the projection (elements of P ) are used to examine the variable contribution.

Tuning the parameters. The performance of the classifier depends on judi-
cious choice of various parameters of the algorithm. For SVM algorithm there
are several inputs that can be varied: the cost C (e.g., C = 1), the tolerance
ε of the termination criterion (e.g., ε = 0.01), the type of kernel that is used
(e.g., linear, polynomial, radial or Gaussian), and the parameters of the kernel
(e.g., degree or coefficients of the polynomial kernel), etc. It is interesting to
explore the effect of changing the parameters on the performance of the algo-
rithm. Visual methods can complement cross-validation methods in the process
of choosing the best parameters for a particular data set. In addition, examina-
tion of the SVM results for different parameters can help understanding better
the algorithm and the resulting classifiers.

Stability of the classifier. Machine learning algorithms typically trade-off
between the classification accuracy on the training data and the generalization
accuracy on novel data. The generalization accuracy can be estimated using
a separate test set or using bootstrap and cross-validation methods. All these
methods involve sampling from the initial data set. It is useful to explore how
the sampling process affects the classifier for the particular data at hand. This
can be accomplished by studying the variation of the separation boundary, which
can provide insights about the stability of the algorithm.

3 Application

3.1 Data Description

We use SAGE (Serial Analysis of Gene Expression) [40] data to illustrate the
visual methods described in this paper. SAGE is an experimental technique that
can be used to quantify gene expression and study differences between normal
and cancerous cells [45]. SAGE produces tags (10-base sequences) that identify
genes (mRNA). The frequencies of these tags can be seen as a measure of the
gene expression levels in the sampled cells. Different from microarray technology,
SAGE does not need the sequences of the set of genes to be known. This allows for
the possibility that genes related to cancer, but whose sequences or functionality
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have not been discovered, to be identified. However, SAGE technology is very
expensive and there is not much data available.

It is believed that cancers are caused by mutations that alter the normal
pattern in gene expression [45]. Genes exhibiting the greatest differences in the
expression levels corresponding to normal or cancerous cells are most likely to
be biologically significant. One difficulty with SAGE data, when trying to iden-
tify genes that distinguish between cancerous and normal cells, is that different
samples can come from very different types of tissues (e.g., brain, breast, lung,
etc.) as well as from in vivo and in vitro samples. It is known that different types
of tissues are characterized by different expression patterns and they cluster to-
gether [28]. The same is believed to be true for in vivo and in vitro conditions.
This makes it difficult to assert that genes whose expression levels are different in
cancerous versus non-cancerous cells are indeed responsible for cancer. However,
given the scarcity of the data (not too many samples from the same tissues)
any findings along these directions are often interesting and potentially useful in
clinical applications.

Analysis of SAGE data has received a lot of attention in the last few years.
The data set used in our analysis is introduced in [6], which also provides infor-
mation about the data preprocessing. It was assembled from the complete human
SAGE samples (http://www.ncbi.nlm.nih.gov/sage) by selecting a subset of
tags corresponding to a minimal transcriptome set. Our subset contains the ex-
pression values (transcripts per cell) for 822 genes found in 74 human cells. The
study in [6] shows that genes with similar functionality cluster together when a
strong-association-rule mining algorithm is applied.

3.2 Visualizing SVM Outputs

In this section, we show how to explore the SVM outputs using tours. Suppose
that the set of important variables for the analyst is S = {V 800, V 403, V 535,
V 596}. We apply SVM algorithm on this data set. The results are shown in
Figure 2. The two classes are colored with different colors. The support vectors
(1 in one class and 3 in the other class) have larger glyphs. The left plot shows a
projection where the linear separation found by SVM can be seen. The support
vectors line up against each other defining the boundary between the two classes.
The coefficients of the projection are also shown. The separation between the
two classes is in the top left to bottom right direction, which is a combination
of most of the variables.

Using only 4 variables, it is easy to generate a grid around the data. The class
of grid points can be predicted using SVM algorithm. Coloring the grid points
according to the predictions allows us to see the boundary estimated by SVM. A
good separation of the grid can be seen in the middle plot in Figure 2. Coloring
the grid points that have predicted values close to 0 allows us to focus on the
boundary between the two groups (right plot in Figure 2).

To assess the quality of the model and to find outliers, we divide the examples
into training and test sets, build the model for the training data, and find the
projection showing the separation between classes. We then plot the test data in
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Fig. 2. SVM results for a 4-dim data set. (Left) A projection where the linear sepa-
ration found by SVM can be seen. (Middle) A grid over the data colored according to
the class colors. (Right) The grid points that have predicted values close to 0, define a
nice linear boundary between the two groups.

the same projection to see how well it is separated, and to examine errors and
outliers (Figure 3).

If we use SVM with non-linear kernels, non-linear separations can also be
viewed (results presented in an expanded version of this paper [11]).

The ggobi brushing interface allows the user to shadow or show different
groups of points, making it very easy to focus on different parts of the model for
exploratory analysis. The ggobi main interface allows selecting different groups
of variables to be shown. The ggobi identity interface allows identifying points
in the plot with points in the data. See [11] for figures showing these interfaces.

The classifly R package [43] automates the process of classifier fitting and
grid generation. It does this using rggobi to allow a seamless transition between
classifier building in R and visualisation in GGobi. Classifly can display either
the complete grid, or just the boundaries of the classification regions.

Fig. 3. A subset of the data (2/3 from each class) is used for training and the rest of
the data is used for test. (Left) A projection showing the separation for the training
set. (Middle) Bounded support vectors are also shown as open circles. (Right) The test
set is shown with respect to the separating hyperplane found by the algorithm. We can
see the errors. They belong entirely to one group.
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3.3 Gene Selection

To construct reliable classifiers from SAGE data, we need to select a small set of
genes. As Liu et al. [27] have shown, variable selection for gene expression data
usually improves the accuracy of the classifier. Variable selection is also necessary
in order to make it possible to view the data using tours. As mentioned earlier
the initial set has 822 variables (genes), which makes it impossible for visual
analysis.

To select small sets of genes, first, data is standardized, so that each gene has
mean 0 and variance 1 across samples. Three different methods, BW index [19],
PDA-PP index [26] and SVM variable importance [22], are used to order the 822
variables according to their importance with respect to the criterion used by each
method. The BW index of a set of genes gives the ratio of their between-group
to within-group sums of squares. The PDA-PP index represents a projection
pursuit index corresponding to the penalized discriminant analysis [23]. The
SVM importance of the variables is determined by running SVM iteratively
several times, each time the less important variable - with the smallest w2

i -
being eliminated. The reverse order of the eliminated variables represents the
order of importance [22].

The best 40 genes based on BW index are:
V721, V113, V61, V299, V176, V406, V409, V596, V138, V488, V663, V208,

V165, V403, V736, V535, V70, V803, V112, V417, V357, V166, V761, V119,
V666, V99, V398, V769, V26, V4, V55, V277, V788, V73, V45, V800, V111,
V523, V94, V693.

The best 40 genes based on PDA-PP index are:
V721, V357, V50, V594, V559, V119, V575, V663, V523, V298, V578, V372,

V817, V6, V97, V74, V299, V287, V810, V190, V655, V768, V710, V667, V390,
V331, V513, V58, V661, V581, V60, V713, V509, V463, V644, V654, V799, V759,
V797, V751

The best 40 genes based on SVM variable importance are:
V390, V389, V4, V596, V54, V409, V741, V398, V725, V736, V581, V263,

V817, V701, V655, V165, V357, V157, V545, V692, V488, V70, V714, V638,
V594, V195, V713, V7, V148, V150, V138, V616, V269, V721, V603, V208,
V517, V94, V289, V424

In general, SVM takes more time to run than methods such as BW index.
Therefore, we also considered the possibility of first ordering all the 822 genes
according BW index and subsequently ordering the best 40 genes found by BW
index according to the SVM variable importance. The result is shown below:

V800, V403, V535, V596, V357, V398, V113, V73, V119, V488, V99, V138,
V736, V26, V803, V112, V693, V165, V406, V788, V277, V45, V666, V176,
V721, V663, V417, V769, V208, V111, V523, V761, V55, V166, V94, V299,
V409, V70, V61, V4

The set of genes selected by each method is quite different from the others.
However, there are two genes that are on the lists of all three methods: V721
and V357. Surprisingly many more genes are common for the BW and SVM



Visual Methods for Examining SVM Classifiers 145

gene selection methods: V596, V409, V4, V721, V138, V488, V208, V165, V736,
V70, V357, V398, V94.

Given the difference in subsets of important genes, the question is: which one is
the best? Not very surprisingly, different subsets of genes give comparable results
in terms of classification accuracy, which makes the choice difficult. However, this
is where visual methods can help. We use tours to explore different sets of genes
and visualize the results of SVM algorithm on those particular subsets. This
gives us an idea about how different sets of genes behave with respect to SVM
algorithm.

First, to determine how many genes are needed to accurately separate the
two classes, we select subsets of the 40 genes and study the variation of the
error with the number of genes, using cross-validation. The initial data set is
randomly divided into a training set (2/3 of all data) and a test set (1/3 of all
data), then SVM is run on the training set, and the resulting model is used to
classify both the training set and the test set. The errors are recorded together
with the number of unbounded (real) and bounded support vectors for each run.
This is repeated 100 time and the average over the measured values is calculated.
Then a new variable is added and the process is repeated.

Plots for the variation in average accuracy for the training and test sets (i.e.,
fraction of the misclassified examples relative to the number of training and test
examples, respectively), as well as for the fraction of unbounded support vectors
and bounded support vectors (relative to the number of training examples) with
the number of variables, are shown in Figure 4. The variables used are the best
20 SVM variables selected from the set of the best 40 BW variables. The average
training error decreases with the number of variables and it gets very close to
0 when 20 variables are used. In the test error the average decreases and then
starts to rise around 12 variables. There is a dip at 4 variables in both training
and test error, and a plateau at 7 variables in the test error. The observed num-
ber of unbounded and bounded support vectors shows that there is a negative
correlation between the two: as the number of unbounded support vector in-
creases, the number of bounded support vectors decreases. This corresponds to
our intuition: as the number of dimensions increases, more unbounded support
vectors are needed to separate the data.

As the tours are easier to observe when less variables are used, we chose to
look at sets of 4 variables. Although the errors for 4 variables are slightly higher
than the errors obtained using more variables, the analysis should give a good
picture of class separations in the data.

We tried various combinations of subsets of 4 variables formed from the
lists of most important variables. Some of these subsets gave very poor accu-
racy, some gave reasonable good accuracy. Table 1 shows a summary of the
results obtained for three subsets of variables that give good accuracy: S1 =
{V 800, V 403, V 535, V 596} (first 4 most important SVM genes from the best 40
BW genes), S2 = {V 390, V 389, V 4, V 596} (first 4 most important SVM genes
from all 822 genes) and S3 = {V 800, V 721, V 357, V 596} (a combination of the
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Fig. 4. (Top) The variation of the average (over 100 runs) training and test errors
(i.e., fraction of the misclassified examples relative to the number of training or test
examples, respectively) with the number of variables. (Bottom) The variation of the
average (over 100 runs) fraction of real and bounded support vectors (relative to the
number of training examples) with the number of variables.

2 important SVM genes from best 40 BW genes and 2 important genes for all
three methods).

Because the variation in the errors is not significant for the three sets of
variables shown in Table 1, we looked at the results of an SVM run with each of
these sets of variables (all data was used as training data). The projections where
the separation found by SVM can be seen are shown in Figure 5. Although we get
similar accuracy for all three sets S1,S2,S3, there is some difference in the results.
The set S1 has the smallest error, but S2 has a larger margin between the real
support vectors, suggesting that S2 may be a better choice. By examining the
coefficients of the projection that shows the best separation for S2, we observe
that all variables contribute comparably to this projection, therefore we can not
conclude that some are more important than others.

3.4 Varying SVM Input Parameters

In another set of experiments we study the dependence of the margin found by
the SVM algorithm on the parameter C. We ran SVM with all the data corre-
sponding to the set S3 = {800, V 721, V 357, V 596} and for each run we found a
projection clearly showing the separation. Figure 6 shows the best projections
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Table 1. Result summaries for three subsets of 4 variables: S1 =
{V 800, V 403, V 535, V 596}, S2 = {V 390, V 389, V 4, V 596} and S3 =
{V 800, V 721, V 357, V 596}. The values are averaged over 100 runs.

Subset Tr Err Std Tr Ts Err Std Ts RSV Std RSVl BSV Std BSV
S1 0.134 0.032 0.178 0.070 0.084 0.019 0.426 0.051
S2 0.160 0.040 0.195 0.073 0.106 0.019 0.446 0.060
S3 0.166 0.032 0.217 0.063 0.092 0.016 0.426 0.049

Fig. 5. Visualization of SVM results using three different subsets of the data,
corresponding to three different sets of 4 variables. (Left) Gene subset S1 =
{V 800, V 403, V 535, V 596}. (Middle) Gene subset S2 = {V 390, V 389, V 4, V 596}.
(Right) Gene subset S3 = {800, V 721, V 357, V 596}. Note that the subset S2 presents
the largest separation margin, suggesting that S2 may be a better choice than S1
and S3.

when C = 1, C = 0.7, C = 0.5 and C = 0.1. Recall that C can be seen as the
cost of making errors. Thus, the higher the C bound the less errors are allowed,
corresponding to a smaller margin. As C decreases, more errors are allowed, cor-
responding to a larger margin. This can be seen in the plots, as you look from
left (C = 1) to right (C = 0.1), the margin around the separating hyperplane
increases. Which is the better solution?

Table 2 shows the variation of the training error (the proportion of misclassi-
fied examples relative to the number of training examples) with the parameter
C. The values corresponding to the plots shown in Figure 6 are highlighted. It
can be seen that the smallest error is obtained for C = 1, which corresponds
to the plot with the smallest margin (or equivalently, the plot with the smallest
number of bounded support vectors). However, based on the visual examination,
we may choose to use the value C = 0.1, as it results in a larger margin and
possibly in better generalization error.

3.5 Model Stability

With regard to the dependence of the separation on sampling, the separating
hyperplane should not vary much from one training sample to another (we
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Table 2. The dependence of the training error on the parameter C. The highlighted
values correspond to the plots shown in Figure 6.

C 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Error 0.162 0.148 0.148 0.175 0.189 0.189 0.175 0.202 0.202 0.229

Fig. 6. Variation of the margin with the cost C. Plots corresponding to values C=1,
C=0.7, C=0.5, C=0.1 are shown. As C decreases the margin increases.

might expect more variability if the data is not separable). To explore this
conjecture, we ran the SVM algorithm on all examples using the variables
S3 = {V 800, V 721, V 357, V 596} and identified the bounded support vectors.
Then, we removed the bounded support vectors (33 examples), obtaining a lin-
early separable set (containing the remaining 41). We ran SVM on samples of this
set (about 9/10 points were selected for each run), found the projection showing
the linear separation and kept this projection fixed for the other runs of SVM.
We examined how the separation boundary between the two data sets changes.
The results are shown in Figure 7. There is some variation in the separating
hyperplane from sample to sample. In some samples the separating hyperplane
rotated substantially from that of the first sample, as seen by the thick band of
grid points.

To see how much the coefficients of the variables actually change between
samples we start with the projection showing the separation for the first run, we
keep this projection fixed and plot results of the second run, then slightly rotate
this second view until the best projection is found for the second run. This is
shown in Figure 8. The coefficients change only a tad, with those of variable 6
changing the most.

4 Summary and Discussion

4.1 Summary

We have presented visual methods that can be used in association with SVM
to study many aspects of the model fitting and solution. The reason for using
these methods is to gain a better understanding of the model and to better
characterize the fit.
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Fig. 7. We examine the variation of the separating hyperplane when sub-sampling the
data. We find the projection that shows the linear separation for the first data set
and we keep this projection fixed for the subsequent views. There is some variation
in the separating hyperplane from sample to sample. In some samples the separating
hyperplane rotated substantially from that of the first sample, as seen by the thick
band of grid points.
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Fig. 8. Two different runs of the SVM with slightly different training data sets (9/10
points of the whole data set are selected at each run). The projection is kept fixed in
the (Left) and (Middle) plots. A small rotation of the data shows the clear separation
found by the second run of the SVM.

We have shown how tour methods can be used to visualize and examine the
position of the support vectors found by SVM relative to the other data points
and anomalies in the data. They can also be used to explore boundaries between
classes in high dimensional spaces. This can be done by generating a rectangular
grid around the data and computing the predicted values for each point in the
grid. The values close to the boundary will have predicted values close to zero.
The main hindrance to drawing the boundary is that the grid of points increases
in size exponentially with the number of variables. Hence, alternative ways for
showing the boundary are of interest.

We have also shown how we can use visual methods in association with vari-
able selection methods to find sets of variables that are important with respect
to the separation found by the SVM algorithm. Finally, we have shown how
visual methods can be used to get insights about the stability of the model
found by the algorithm and to tune the parameters of the algorithm. Therefore,
these methods can be used as a complement to cross-validation methods in the
training phase of the algorithm.

We have illustrated the proposed methods on a publicly available SAGE gene
expression data set. The implementation of these methods will be made available
to the research community as an R package.

4.2 Discussion

The importance of the visual methods in the area of knowledge discovery and
data mining (KDD) is reflected by the amount of work that has combined visu-
alization and classification methods during the last few years [35,20,1,25]. Visual
methods for understanding results of several classes of classifiers have been pro-
posed, e.g., decision tree classifiers [2,29], Bayesian classifiers [5], neural networks
[36], temporal data mining [3], etc. However, there has been relatively little work
on visualizing the results of SVM algorithm in high dimensional spaces, with a
few notable exceptions [29,31,10,15].
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Poulet [29,31] has proposed approaches to visualizing the results of SVM.
Here, the quality of the separation is examined by computing the data distribu-
tion according to the distance to the separating hyperplane and displaying this
distribution as a histogram. The histogram can be further linked to other visual
methods such as 2-dimensional scatter plots and parallel coordinates [24] in or-
der to perform exploratory data analysis, e.g., graphical SVM parameter tuning
or dimensionality and data reduction. These methods have been implemented
in a graphical data-mining environment [30]. Similar to our methods, Poulet’s
approaches have been applied to visualize the results of SVM algorithm applied
to bio-medical data [18].

Our previous work [10] has demonstrated the synergistic use of SVM classifiers
and visual methods in exploring the location of the support vectors in the data
space, the SVM predicted values in relation to the explanatory variables, and
the weight vectors, w, in relation to the importance of the explanatory variables
to the classification. We have also explored the use of SVM as a preprocessor for
tour methods, both in terms of reducing the number of variables to enter into
the tour, and in terms of reducing the number of instances to the set of support
vectors (which is much smaller than the data set). Also in previous work [15],
we have shown that using visual tools it is possible not only to visualize class
structure in high-dimensional space, but also to use this information to tailor
better classifiers for a particular problem.
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