
A

A Conceptual Framework for Secrecy-preserving Reasoning in
Knowledge Bases

JIA TAO, Bryn Mawr College

GIORA SLUTZKI, Iowa State University

VASANT HONAVAR, Penn State University

In many applications knowledge bases (KBs) contain confidential or private information (secrets). The KB
should be able to use this secret information in its reasoning process but in answering user queries care
must be exercised so that secrets are not revealed to unauthorized users. We consider this problem under
the Open World Assumption (OWA) in a setting with multiple querying agents M1, ...,Mm that can pose
queries against the KB K and selectively share answers that they receive from K with one or more other
querying agents. We assume that for each Mi, the KB has a pre-specified set of secrets Si that need to
be protected from Mi. Communication between querying agents is modeled by a communication graph,
a directed graph with self-loops. We introduce a general framework and propose an approach to secrecy-
preserving query answering based on sound and complete proof systems. The idea is to hide the truthful
answer from a querying agent Mi by feigning ignorance without lying, i.e., to provide the answer ‘Unknown’
to a query q if it needs to be protected. Under the OWA, a querying agent cannot distinguish between the
case that q is being protected (for reasons of secrecy) and the case that it cannot be inferred from K. In the
pre-query stage we compute a set of envelopes E1, ..., Em (restricted to a finite subset of the set of formulae
that are entailed by K) so that Si ⊆ Ei and a query α posed by agent Mi can be answered truthfully
whenever α /∈ Ei and ¬α /∈ Ei. After the pre-query stage, the envelope is updated as needed. We illustrate
this approach with two simple cases: the Propositional Horn KBs and the Description Logic AL KBs.

Categories and Subject Descriptors: I.2.3 [Deduction and Theorem Proving]: Inference engines; K.6.m
[Miscellaneous]: Security; I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms: Algorithm, Security, Theory

Additional Key Words and Phrases: Multiagents, Secrecy-preserving Reasoning

1. INTRODUCTION

With an increasing reliance on networked knowledge bases in virtually all areas of
human endeavor that involve interactions among organizations, e.g., those that pro-
vide healthcare (hospitals, pharmacies, insurance providers), governmental agencies
(e.g., intelligence, law enforcement, public policy), or independent nations acting on
matters of global concern (e.g., counter-terrorism, international finance), the need to
share information often has to be balanced against the need to protect sensitive infor-
mation or secrets from unintended disclosure, e.g., due to copyright, privacy, security,
or commercial considerations.

In the area of privacy and security in information systems, early work on informa-
tion protection led to the creation of a multi-level security model for mandatory access

The first two authors were supported in part by NSF grant CNS1116050. Dr. Honavar’s work was supported
by the National Science Foundation while working at the Foundation. Any opinion, finding, and conclusions
contained in this article are those of the authors and do not necessarily reflect the views of the National
Science Foundation.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 J. Tao et al.

control (MAC) [Bell and LaPadula 1974c; 1974b]. While MAC solves the problem of
an unauthorized user tricking an authorized user into disclosing sensitive data that
a discretionary access control (DAC) model may have, it restricts the security gran-
ularity at object level. Role-Based Access Control (RBAC) [Osborn et al. 2000] is an
alternative approach to both DAC and MAC which provides authorization on opera-
tions (rather than objects). The primary focus of this work has been on access control
mechanisms that prohibit access to sensitive information. Work on logic-based autho-
rization frameworks [Osborn et al. 2000; di Vimercati et al. 2005; Jajodia et al. 2001]
focuses on policy languages that go beyond traditional access control methods to ad-
dress obligation, provision, and delegation of authorization as a basis for protecting
sensitive information in computer systems, databases and networked information sys-
tems (see [Bertino et al. 2006] for a survey). Most of the work on policy languages for
the web [Bonatti and Olmedilla 2007; Tonti et al. 2003; Bonatti et al. 2006; Weitzner
et al. 2005; Kagal et al. 2006; Kagal et al. 2004; Kagal et al. 2003; Godik and (ed.) 2002;
Kolovski et al. 2007] focuses on specifying syntax-based restrictions on access to spe-
cific resources or operations on the web. More recently, [Halpern and Weissman 2008]
have proposed a first order logic based approach to reasoning about policies. The main
focus of these models is the control of direct access to sensitive information. Baader et
al. [2009] introduced an approach to reasoning with ontologies in the presence of ac-
cess restrictions on specific axioms. They use lattice labeling of ontology axioms with
the express purpose of enabling selected sub-ontologies to be “offered as views to users
based on criteria like the user’s access rights, the trust level...”. Instead of computing
a sub-ontology of the given ontology for each user, their approach labels every axiom
in the ontology using an appropriate labeling lattice. The user’s access to an axiom is
then determined by comparing its label with the axiom label. Even though different
users may have different access rights, this approach does not address the interaction
between users.

The controlled query evaluation (CQE) framework [Sicherman et al. 1983] offers a
way to answer database queries without revealing secrets. Biskup et al. [2011; 2008;
2010; 2008; 2012] and the references therein, extensively explored the CQE framework
and focused on protecting secrets in databases (including relational and incomplete
databases). They use techniques that may rely on lying (i.e., responding to queries
with answers that are inconsistent with the knowledge base) in addition to refusing
to answer. In the multiagent case, Biskup et al.[2008; 2012] focused on providing so-
lutions to scenarios where an agent may hide confidential parts of its own belief from
other negotiating agents. In a remark at the end of Section 3.3, we comment on the
relationship between CQE and our framework.

In the computer security literature, [Goguen and Meseguer 1982], [McLean 1992],
and [Gray and Syverson 1998] have utilized a notion of non-interference to capture
the intuition that an agent at a high security level must be unable to interfere with
an agent at a lower security level. Sutherland [1986] introduced no-information-flow
relation (later renamed as nondeducibility) to capture the intuition that an agent at a
low security level is unable to deduce anything about the state of agents at a higher
security level. In a more recent paper, [Halpern and O’Neill 2008] have shown that
Sutherland’s notion of nondeducibility is closely related to Shannon’s [1949] proba-
bilistic definition of secrecy in the context of cryptography, and extended the approach
of Shannon and Sutherland to specify secrecy requirements in multi-agent systems.

As [Weitzner et al. 2008] have noted, “excessive reliance on secrecy and up-front
control over information has yielded policies that fail to meet social needs, as well as
technologies that stifle information flow...”. Hence, there is an urgent need for novel
approaches to flexible sharing of information. Unlike most approaches to information
protection that simply forbid the use of secret information in answering queries, e.g.,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:3

access control methods in databases [Bell and LaPadula 1974a; Jajodia 1996; Jain and
Farkas 2006], access control methods on policy languages [Bertino et al. 2006] and
those that focus on selective access to information on the web [Bonatti and Olmedilla
2007; Tonti et al. 2003; Bonatti et al. 2006; Kagal et al. 2006], Bao et al. [2007] initi-
ated a more flexible approach for information sharing under the OWA, using secrecy-
preserving query answering methodologies, albeit in the restricted setting of a hier-
archical KB with a single querying agent. More recently, [Tao et al. 2010] provided
an approach to the secrecy-preserving query answering (SPQA) problem for instance
checking in the DL EL, with a single querying agent.

In a recent paper [Bonatti and Sauro 2013], Bonatti and Sauro provided a confi-
dentiality model for ontologies. This model addresses the question of how to prevent
attacks using background knowledge, or using complete knowledge about parts of the
KB or its signature. In our approach, a knowledge base attemps to formulize the rele-
vant information of an application domain. As a result, such background information
becomes part of the knowledge contained in the knowledge base. Due to the OWA, a
querying agent being aware of having complete knowledge of parts of the KB is not
expressible. Moreover, we assume that the signature of a KB is publicly available and
queries that use symbols not in the signature are illegal.

In this paper we present a general conceptual framework for secrecy-preserving rea-
soning in a setting with multiple querying agents where the secrets that the KB is
obliged to protect can differ from one agent to another; moreover, each agent can se-
lectively share the answers it receives with only some of the other agents. We ex-
tend [Tao et al. 2010] and specify the SPQA problem as the problem of constructing a
secrecy-preserving reasoner for answering queries. Unlike most access control meth-
ods that forbid the use of secret information in answering queries, our approach an-
swers queries, freely using secrets, but then shielding the answer if it may compromise
some secrets. As a simple example, if α ∧ β (is true and) needs to be protected, for a
system to be as informative as possible, only one of the truthful answers to α and β,
say α, has to be protected not to disclose α∧β and β could be truthfully answered to the
user. Note that β is derived from the secret α ∧ β. We stress that our secrecy preserv-
ing framework is conceptual and it is not suggested that it can be usefully deployed,
as is, in practical situations. We attempt to provide a “logical core” on which all kinds
of extra features can be added (issues related to statistical analysis, preferences, may
be even cryptography). At this point, these extensions remain in the future research
categories.

Given a KB K and a set of querying agents M = {M1,M2, ...,Mm}, for eachMi, there
is a pre-specified set of secrets Si that K needs to protect from Mi. We assume that
an agent can selectively share answers that it receives (in response to queries posed
by it) from K with one or more other querying agents. Such communication between
querying agents is modeled using a communication graph, a directed graph with self-
loops (a technicality), in which a node corresponds to a querying agent and an edge
from node Mi to Mj denotes the ability of Mi to share with Mj the answers it receives
from K (but not answers shared with it by other querying agents, unless they happen
to be also received directly from K; again, a technicality). Under OWA, the answer to
a query q posed by an agent Mi against K can be “Yes” (q can be deduced from K), “No”
(¬q can be deduced from K), or “Unknown” (neither q nor ¬q can be deduced from K).
The basic idea is to hide the truthful answer from Mi, when it is necessary to do so
by feigning ignorance without lying; i.e., answering “Unknown” whenever the truthful
answer would compromise any secret that the KB K is obliged to protect from any
of the querying agents in M. Under the OWA, a querying agent cannot distinguish
between the following two scenarios: the answer to q (i) is being protected; and (ii)
cannot be inferred from K.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 J. Tao et al.

One simple solution to the SPQA problem is to maintain a history that, for each
agent, logs the sequence of queries and the corresponding answers. When a new query
q is posed by an agent Mi, the reasoner tests whether the truthful answer to q to-
gether with answers to previous queries that Mi has received directly from the KB K
or indirectly from other querying agents (its predecessors in the communication graph)
compromises a secret that K is obliged to protect against any of the querying agents
in M. If it does, Mi receives the answer “Unknown” in response to the query q. Oth-
erwise, q will be truthfully answered. A “Yes” or “No” answer can be shared by Mi

with its successors in the communication graph. Because this approach, which we call
lazy evaluation, requires checking the answer to each query posed by each querying
agent against a query history, the time it takes to answer a query degrades with in-
crease in the size of the history over time. Hence, we propose a different approach: we
precompute a secrecy envelope (or simply envelope) E = {E1, ..., Em} (restricted to an
appropriate finite subset of formulae that are entailed by the KB) such that Si ⊆ Ei
and a query α posed by agent Mi can be answered truthfully whenever α /∈ Ei and
¬α /∈ Ei. The envelope is updated as needed as new queries are answered. It is easy to
show that an envelope always exists. The challenge is to construct an envelope that is
guaranteed to protect secrets while allowing queries to be answered as informatively
as possible (feigning ignorance only when doing so is necessary to protect a secret).
This requires constructing an envelope that is as small as possible. Unfortunately, in
general, computing the smallest envelope is NP-hard (see Section 4.1). Hence, we set-
tle on computing and maintaining a tight envelope, i.e., an envelope that is minimal
in that no formula can be removed from it without risk of a secret being compromised.
When an envelope is finite, a tight envelope can be obtained by checking every formula
in the envelope to see whether removing it compromises secrecy and remove it if it does
not reveal any secret. In practice, we always build an initial finite partial envelope and
update it as needed (see Section 3.2).

To illustrate our framework and approach, we first take a simple example with the
KB being specified by the Propositional Horn logic and queries being specified by the
facts. We show how to design rules for constructing an envelope for a Propositional
Horn Clause KB utilizing forward chaining which is sound and complete for Horn
logic w.r.t. the usual semantics of Propositional Logic (see Section 4.1). We then study
a more expressive language, the Description Logic AL, which offers atomic concept,
the top and bottom concepts, atomic negation, concept constructors conjunction, value
restriction, and unqualified existential restriction. For query answering, one would
like to have a sound and complete inference system such that given a KB K, a query α
can be deduced from K (K ⊢ α) if and only if α semantically follows from K (K � α). For
a language with full negation such as ALC, checking K � α can be reduced to checking
whether K ∪ {¬α} is satisfiable. However, due to syntactic restrictions, this cannot be
done in AL. This led us to define a more general semantics that is particularly well-
suited to deal with OWA by incorporating the “Unknown” value into the semantics.
This facilitates the proofs of the soundness and completeness theorems for our AL
tableau proof system. It turns out that our semantics is a notational variant of a more
general approach to Description Logics over lattices, see [Straccia 2006; Borgwardt
and Peñaloza 2011]. The idea is that the interpretation I of each concept name A is a
weak 3-partition1 AI = (AI

N , A
I
U , A

I
Y), where AI

N is the collection of all elements (in the
domain) which I specifies as belonging to ¬A,AI

Y is the collection of all elements (in the
domain) which I specifies as belonging to A, and AI

U consists of all the other elements.
Interestingly, this OW-semantics affords the flexibility of interpreting some concepts

1It is called a weak 3-partition because we allow a part to be empty. As usual, the union of the three parts
is the whole domain and any two parts are disjoint.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:5

(roles) classically, and others using our OW-approach. We show how an envelope can
be constructed using our AL tableau proof system and how secrecy is preserved (see
Section 4.2).

The rest of the paper is organized as follows: Section 2 introduces a general frame-
work for SPQA with multiple querying agents under OWA. In Section 2.1 we prove
some properties of envelopes. We also explain how envelopes can be used to answer
queries and consider an interesting special case of communication graphs (inverted
forests). Section 3 deals with applications where the query space is finite and shows
how the multiagent secrecy preserving system can be developed in these applications.
Section 4 illustrates applications of the framework and results of preceding sections
to solve the SPQA problem in the simple cases of Propositional Horn KBs and the
Description Logic AL. This choice is motivated by our attempt to make the exposi-
tion of the basics of our secrecy-preserving framework more transparant and easy to
understand.

2. MULTIAGENT SECRECY-PRESERVING KB - FRAMEWORK

In this section we introduce a general framework for secrecy-preserving reasoning in
a multiagent environment. We denote by L a formal language which we may also view
as a set of well-formed formulas. We will leave L unspecified but shall assume that
it is equipped with formal semantics, allowing for the notion of models, and thereby
inducing the concept of entailment, denoted by �L (or just �) and defined in the usual
fashion: for Γ ⊆ L and φ ∈ L, Γ � φ iff every model of Γ is a model of φ. Concrete
examples of such a formal language are description logics [Baader et al. 2003] and
fragments of first order logic [Hodkinson et al. 2000]. We also assume that L allows
for a deductive apparatus in the form of an inference system, denoted by ⊢L (or just ⊢)
which is sound and complete with respect to �, i.e., for Γ ⊆ L and φ ∈ L, Γ � φ iff Γ ⊢ φ2.
For Γ ⊆ L, we write Γ+ = {α | Γ ⊢L α} for the inferential closure of a set of formulas
Γ. Clearly, Γ ⊆ Γ+ for any Γ ⊆ L. We say that Γ is inferentially closed if Γ+ = Γ. Γ is
consistent if Γ+ 6= L. A formula α ∈ L is a tautology if � α. The set of all tautologies
will be denoted by T.

Definition 2.1. A knowledge base (abbreviated, KB) over L is a triple K = 〈K,Q,Ω〉
where

—K is a consistent finite subset K ⊆ L.
— Q, the query space of K, is a subset: K+ ⊆ Q ⊆ L.
— Ω, is the answer space. In most cases Ω = {Y,N,U} (for “Yes”, “No” and “Unknown”,

respectively). The “classical” answer space is Ω = {Y,N}.

K represents the information that is explicitly stored in K. This should include not
only information about specific objects that querying agents might be interested in, but
also all the knowledge that may be relevant and needed to formalize a given applica-
tion domain; moreover, any knowledge that may be required to protect secrecy should
also be made available explicitly in the knowledge base. For instance, if individuals
and their SSNs are represented in the knowledge base, then the KB must explicitly
specify that an SSN uniquely identifies a person. K+ represents all the information
(“knowledge”) that the KB K can infer. In the sequel, we shall refer to both K and K as
a knowledge base (KB). Q represents the set of all queries that can be “legally” posed
against K. We assume that the signature of a KB is publicly available and queries that
use symbols not in the signature are illegal. Moreover, we do not insist that Q = L
which allows one to account for possible restrictions to be imposed on the queries that

2We assume, of course, that all proofs in the inference system ⊢L are finite.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 J. Tao et al.

querying agents may pose. Queries and knowledge bases are sometimes expressed in
different languages. Yet, queries are answered based on the knowledge that the KB
provides and in this paper, we aim at building a fundamental approach that results in
a conceptual framework for answering queries while preserving secrecy. With this goal
in mind, and for the sake of simplicity, we restrict the queries and the KB formulas to
be expressed in the same language.

Let K = 〈K,Q,Ω〉 be a KB and let M = {M1,M2, ...,Mm} be a set of querying agents
who may pose queries to the KB. For each querying agent Mi there is a corresponding
secrecy set consisting of non-tautological statements which the KB is supposed to pro-
tect against agent Mi. The querying agents may share the answers they obtain from K
with other querying agents. The sharing is constrained by means of a communication
graph (M, E) which is a directed graph with self-loops such that an edge (Mi,Mj) ∈ E
is interpreted to mean that querying agent Mi shares with agent Mj all the non-U
answers he receives from the KB 3. The self-loops are assumed to make each node both
a successor and a predecessor of itself.

Definition 2.2. A secrecy structure on a KB K is a triple S = 〈M, S,G〉 where

— M = {M1, ...,Mm} is a set of querying agents who may pose queries to K,
— S = {S1, ..., Sm} is a collection of secrecy sets, one for each querying agent, where for

all 1 ≤ i ≤ m, Si ⊆ K+ \ T, and
— G = (M, E) is a communication graph.

Given a KB K = 〈K,Q,Ω〉 and a secrecy structure S = 〈M, S,G〉, let R : Q×M → Ω
be a total function. For Mi ∈ M, define Qi

B = {α ∈ Q | R(α,Mi) = B} for each B ∈

Ω = {Y,N,U} and PiB =
⋃

j:(Mj ,Mi)∈E Q
j
B for each B ∈ {Y,N}. Since Qi

B contains all

the B-answers that agent Mi obtained from K and PiB contains all the B-answers that
agent Mi obtained from its predecessors (including itself), it is clear that Qi

B ⊆ PiB for
B ∈ {Y,N}. We say that R is an L-reasoner if R is negation consistent in the sense that
Qi
N = {¬α | α ∈ Qi

Y }
4. The requirement enforces a match between the Y -queries and

the N -queries and implies that Qi
U is closed under negation: ¬Qi

U = Qi
U . Thus, given

a query q ∈ Q and a querying agent Mi ∈ M, R provides an answer R(q,Mi) ∈ Ω
back to Mi. Note that R(q,Mi) may be different from R(q,Mj) when i 6= j. The set
Qi
B contains all B-queries that agent Mi obtains from the KB and PiB contains all B-

queries that agent Mi obtains from its predecessors. Note that an agent Mi can pass to
its successors only answers to queries in Qi

Y or Qi
N , but not in Qi

U . Passing the answer
to a query in Qi

U to Mj will not disclose any secrets that the KB is required to protect
against Mj . However, if a querying agent Mi gets an “Unknown” answer of a query q
from its predecessor Mj(i 6= j) while he gets a “Yes” answer from the KB, Mi would
infer that q is protected against Mj , either because the truthful answer to q leads to
the conclusion of some secret that needs to be protected against Mj or against one of
Mj ’s sucessors that is not Mi. Choosing not to pass “Unknown” answers is “safer”.

The following definition attempts to capture and formalize the whole secrecy frame-
work as discussed above. It specifies conditions that must be satisfied by an L-reasoner
for it to be secrecy-preserving.

Definition 2.3. A multi-agent secrecy-preserving query-answering (MSQ) system is
a triple 〈K,S,R〉 where

3The case when agents are allowed to share query-answers obtained from other agents rather than just
answers obtained from the KB can be reduced to the current problem by using the transitive closure of the
communication graph.
4Note that if the language L does not have negation, then an L-reasoner is negation consistent by default.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:7

— K = 〈K,Q,Ω〉 is a KB,
— S = 〈M, S,G〉 is a secrecy structure on K, and
— R is an L-reasoner satisfying the following properties: for all 1 ≤ i ≤ m,

— [Yes Property] T ⊆ Qi
Y ⊆ K+;

— [Closure Property] (Qi
Y)

+ = Qi
Y ;

— [Secrecy Property] (PiY)
+ ∩ Si = ∅,

where K+ = {α | K ⊢ α}, (Qi
Y)

+ = {α | Qi
Y ⊢ α} and (PiY)

+ = {α | PiY ⊢ α} are
inference closures obtained by the inference system ⊢. An L-reasoner satisfying the
above properties is termed a secrecy-preserving reasoner. We say that R and ⊢ are
associated.

The Yes Property ensures that every Y -query is provable from K. The Closure Prop-
erty requires that any consequence of a set of Y -queries that a querying agent obtains
from the KB be a Y -query. Finally, the Secrecy Property ensures that any combination
of Y -answers that agent Mi obtains from its predecessors does not compromise any
secrets that need to be protected against it.

Example 2.4. Two L-reasoners R0 and R1 are defined as follows.

R0(α,Mi) =







Y if α ∈ T,

N if ¬α ∈ T,

U otherwise.

R1(α,Mi) =







Y if K ⊢ α ∧ α /∈ Si,

N if K ⊢ ¬α ∧ ¬α /∈ Si,

U if α ∈ Si
R0 is a trivial secrecy-preserving reasoner which hides all the information except

tautologies. At the other extreme, the L-reasoner R1 answers truthfully all queries
except for α ∈ Si. It may fail to satisfy the Closure and/or Secrecy Properties and
hence is not a secrecy-preserving reasoner.

Thus, a secrecy-preserving reasoner specifies a deductive apparatus, similar to the
syntactic notion of a proof system in classical logics. On the other hand, the semantic
notion of an envelope which we introduce next is essentially an entailment-blocking
mechanism5.

Definition 2.5. Let K = 〈K,Q,Ω〉 be a KB and S = 〈M, S,G〉 a secrecy structure on
K. A collection E = {E1, E2, ..., Em}, where for 1 ≤ i ≤ m, Si ⊆ Ei ⊆ K+ \ T, is called a
(secrecy) envelope for S if the following two properties are satisfied for every 1 ≤ i ≤ m:

— [E1] for every α ∈ Ei, K
+ \ Ei 2 α;

— [E2] for every α ∈ Si,
⋃

j:(Mj ,Mi)∈E(K
+ \ Ej) 2 α.

The collection E is called a weak envelope for S if it only satisfies Property E2. A (weak)
envelope E is said to be tight if it satisfies an extra minimality property:

— [TE] for every Mi ∈ M and every α ∈ Ei, there exists an edge (Mi,Mj) ∈ E and
β ∈ Sj such that

⋃

k:(Mk,Mj)∈E(K
+ \ Ek) ∪ {α} � β.

Note that every envelope is a weak envelope. Given an envelope E = {E1, E2, ...,
Em}, we say that Ei is an envelope for the secrecy set Si. Property E1 requires that
no information in the envelope Ei is entailed from K+ \ Ei. Property E2 ensures that
no combination of query answers obtained from an agent’s predecessors entails any
secrets to be protected against this agent. Property TE requires that none of the as-
sertions in any of the envelopes in E can be removed without compromising the over-
all secrecy (not necessarily of its own secrecy set). Specifically, answering Mi’s query

5As observed by an astute reviewer.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 J. Tao et al.

α ∈ Ei with Y (instead of U) would allow one of Mi’s successors to conclude some of its
own secrets using the information passed to it from its own predecessors.

LEMMA 2.6. If a weak envelope E = {E1, E2, ..., Em} for S is tight, then E is a tight
envelope.

PROOF. We need to show that E satisfies Property E1. Suppose that there is α ∈ Ei
s.t. K+ \ Ei � α. Since E satisfies Property TE, there exist an edge (Mi,Mj) ∈ E and
β ∈ Sj s.t.

⋃

k:(Mk,Mj)∈E(K
+\Ek)∪{α} � β. SinceK+\Ei � α, we have

⋃

k:(Mk,Mj)∈E(K
+\

Ek) � α, and so
⋃

k:(Mk,Mj)∈E(K
+ \ Ek) � β. This contradicts the fact that E satisfies

Property E2. Hence, E satisfies Property E1. It follows that E is a tight envelope for
S.

Note that secrecy envelopes (as well as tight envelopes) are not unique and, for
example, E = {K+ \ T, ...,K+ \ T} is always a secrecy envelope. The next corollary
lists two useful properties of envelopes; part (1) follows from Property E1 and part (2)
follows from Property E2.

COROLLARY 2.7. Let K = 〈K,Q,Ω〉 be a KB, S = 〈M, S,G〉 a secrecy structure on K,
and E = {E1, E2, ..., Em} a secrecy envelope for S. Then (1) for each Mi ∈ M, K+\Ei � α
implies α ∈ K+ \ Ei; (2) for each (Mj ,Mi) ∈ E , Si ⊆ Ej . In particular, Si ⊆ Ei.

For a secrecy structure S = 〈M, S,G〉 on a KB K = 〈K,Q,Ω〉, define a set of
induced single-agent secrecy structures (projections), one for each Mi ∈ M: Si =
〈{Mi}, {Si}, 〈{Mi}, {(Mi,Mi)}〉〉, 1 ≤ i ≤ m. Let E′

i be a secrecy envelope for Si (as
per Definition 2.5) and for each 1 ≤ i ≤ m, define E∗

i =
⋃

j:(Mi,Mj)∈E E
′
j . Even though

E′ = {E′
1, ..., E

′
m} need not be a weak envelope for S, we have the following result which

shows that an envelope for a secrecy structure S can be constructed from the set of its
projections, a “structure theorem” of sorts.

THEOREM 2.8. E∗ = {E∗
1 , ..., E

∗
m} is an envelope for S.

PROOF. Since for each 1 ≤ i ≤ m, E′
i is a secrecy envelope for Si, we have Si ⊆ E′

i ⊆
K+ \ T. Therefore, Si ⊆ E∗

i ⊆ K+ \ T. We need to verify that E∗ satisfies properties E1
and E2.

— [E1]: Suppose that for some i and α ∈ E∗
i , K+ \ E∗

i � α. Then α ∈ E′
j for some j with

(Mi,Mj) ∈ E . Since K+ \E∗
i ⊆ K+ \E′

j , every model of K+ \E′
j is a model of K+ \E∗

i ,

and so K+ \ E′
j � α. This contradicts the definition of E′

j .

— [E2]: Suppose that for some i and α ∈ Si, we have
⋃

j:(Mj ,Mi)∈E(K
+ \ E∗

j) � α.

This is equivalent to K+ \ (
⋂

j:(Mj ,Mi)∈E E
∗
j) � α. By the definition of E∗, we have

E′
i ⊆

⋂

j:(Mj ,Mi)∈E E
∗
j . It follows that K+ \ (

⋂

j:(Mj ,Mi)∈E E
∗
j) ⊆ K+ \ E′

i, and so every

model of K+ \ E′
i is a model of K+ \ (

⋂

j:(Mj ,Mi)∈E E
∗
j). This implies that K+ \ E′

i � α,

contradicting the definition of E′
i.

Let MSQ1 and MSQ2 be two MSQs with disjoint sets of querying agents over the
same language. If communication between agents Mi from MSQ1 and Lj from MSQ2
is needed, the two MSQs can be merged by adding the corresponding edges between
their communication graphs and locally recomputing envelopes as per Theorem 2.8.
Thus, by performing only local changes, Theorem 2.8 can be used to integrate existing
MSQs into one.

We have defined secrecy-preserving reasoners and envelopes. The former concept
is purely syntactic and can be used to construct MSQ systems. The latter, as men-
tioned previously, is an entailment-blocking device. The two notions are equivalent in

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:9

the sense that given a secrecy-preserving reasoner, there is a natural and rather obvi-
ous way to define a corresponding secrecy envelope, and vice versa. This is shown in
Theorems 2.9 and 2.10.

THEOREM 2.9. Let 〈K,S,R〉 be an MSQ system. Define a set E′ = {E′
1, E′

2, ..., E′
m}

where E′
i = K+ \ Qi

Y (1 ≤ i ≤ m). Then E′ is a secrecy envelope for S.

PROOF. Since R is a secrecy-preserving reasoner, by the Yes Property, T ⊆ Qi
Y and

so E′
i = K+ \ Qi

Y ⊆ K+ \ T; the Secrecy Property implies that Qi
Y ∩ Si = ∅ and hence

Si ⊆ E′
i. We next show that E′ satisfies Properties E1 and E2.

— [E1]: Suppose that there exist Mi ∈ M and α ∈ E′
i such that K+ \ E′

i � α. Since the
inference system ⊢ is complete w.r.t. �, we have Qi

Y = (K+ \ E′
i) ⊢ α. It follows from

the Closure Property that α ∈ Qi
Y , i.e., α ∈ K+ \ E′

i. This contradicts α ∈ E′
i.

— [E2]: Suppose that there exists α ∈ Si such that
⋃

j:(Mj ,Mi)∈E(K
+ \E′

j) � α. It follows

from the definition of E′
i that

⋃

j:(Mj ,Mi)∈E Q
j
Y � α. Since the inference system ⊢ is

complete w.r.t. �, we have
⋃

j:(Mj ,Mi)∈E Q
j
Y ⊢ α, i.e., PiY ⊢ α. This contradicts the

Secrecy Property.

The following theorem gives the opposite direction: given a KB and an envelope
E, a corresponding secrecy-preserving reasoner can be defined and the answer to a
query α can be obtained by checking whether α can be deduced from the KB and its
membership status w.r.t. E.

THEOREM 2.10. Let K = 〈K,Q,Ω〉 be a KB, S = 〈M, S,G〉 a secrecy structure on K
and E = {E1, E2, ..., Em} a secrecy envelope for S. Define a function R:Q×M → Ω, by

R(α,Mi) =







Y if α ∈ K+ \ Ei,

N if ¬α ∈ K+ \ Ei,

U otherwise.

Then R is a secrecy-preserving reasoner.

PROOF. By the definition of R, Qi
N = {¬α | α ∈ K+ \ Ei} = ¬Qi

Y , and so R is
negation consistent. We need to show that R satisfies the three properties.

— Yes Property: We need to show that T ⊆ Qi
Y ⊆ K+. By definition of R, Qi

Y = {α | α ∈
K+ \ Ei} = K+ \ Ei ⊆ K+. Since ⊢ is complete w.r.t. �, T ⊆ K+. It follows from the
definition of Ei that Ei ∩ T = ∅ and so T ⊆ K+ \ Ei = Qi

Y .
— Closure Property: It suffices to show that (Qi

Y)
+ ⊆ Qi

Y . By definition of R, Qi
Y =

K+ \Ei. Suppose that Qi
Y ⊢ α and α /∈ Qi

Y = K+ \Ei. By the soundness of ⊢, Qi
Y � α

and α ∈ Ei, contradicting Property E1.
— Secrecy Property: Suppose that (PiY)

+ ∩ Si 6= ∅. Let α ∈ Si s.t. PiY ⊢ α. Then
⋃

j:(Mj ,Mi)∈E(K
+\Ej) ⊢ α and by the soundness of ⊢, we obtain

⋃

j:(Mj ,Mi)∈E(K
+\Ej) �

α. This contradicts our assumption that E is an envelope.

2.1. Properties of Envelopes

In this section, we prove some general properties of envelopes. When tractability con-
ditions are satisfied, see Section 3, algorithms may be designed to construct envelopes
utilizing these properties. Given a KB K and a secrecy structure S, as indicated in
Theorem 2.8 (and the paragraph before it), the basic task is to construct an envelope
for a single secrecy set. Our idea is to find a set of proof-disrupting assertions (of se-
crets) and put these in an envelope. In Section 4, we utilize the normal inference rules

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 J. Tao et al.

(that are native to the underlying language) and look for such disrupting formulas by
inverting the inference rules. Next we formalize these ideas.

For a given KB K = 〈K,Q,Ω〉 and a formula α ∈ K+, we say that a finite set Γ ⊆ K+

is α-minimal if Γ � α and for every β ∈ Γ, Γ \ {β} 2 α. Let Fα = {Γ | Γ is α-minimal}. If
α needs to be protected, then at least one element in each Γ ∈ Fα has to be protected
so that α cannot be entailed. Note that when α ∈ T, Fα = {∅}, and so α cannot be
protected anyway. Denote by φΓ an arbitrary but fixed element of a given set Γ.

Remark. The finite sets Γ ∈ Fα and formulas φΓ are defined here in a non-constructive
way. In fact, we are only interested in φΓ in so far as it is used to disrupt the proofs
for α since these φΓ will be members of an envelope. In Section 4, we illustrate that,
given a KB represented in a specific language, it is possible to compute φΓ. The fol-
lowing theorem indicates a general way for obtaining an envelope for a given secrecy
structure.

THEOREM 2.11. Given a secrecy structure S = 〈M, S,G〉 where S = {S1, S2, ..., Sm},

for each 1 ≤ i ≤ m, define a sequence of sets where E0
i = Si and Ek+1

i = {φΓ | Γ ∈ Fα
for some α ∈ Eki }. Let Ei =

⋃∞
k=0E

k
i and E∗

i =
⋃

j:(Mi,Mj)∈E Ej . Then E∗ = {E∗
1 , ..., E

∗
m}

is an envelope for S.

PROOF. For the given secrecy structure S, define a set of induced single-agent se-
crecy structures, one for each Mi ∈ M: Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi,Mi)}〉〉, 1 ≤ i ≤ m.
By Theorem 2.8, it suffices to show that for each 1 ≤ i ≤ m, Ei is an envelope for Si.
Suppose that for some α ∈ Ei, K

+ \ Ei � α. Then there is a finite set Γ ⊆ K+ \ Ei
such that Γ � α and Γ is α-minimal. Hence, Γ ∈ Fα. According to the definition of Ei,
there exists k such that α ∈ Eki . It follows that φΓ ∈ Γ ∩ Ek+1

i and so Γ ∩ Ei 6= ∅. This
contradicts the fact that Γ ⊆ K+ \ Ei. Therefore, Ei is an envelope for Si.

In principle, once an envelope is available, queries can be answered according to The-
orem 2.10 without compromising secrecy, which is the basic goal of solving the SPQA
problem. Since we want our reasoner to be as informative as possible, and because
deciding a minimum envelope may be NP-hard (see Section 4.1), we aim at computing
tight envelopes. In general, given a finite envelope, we could obtain a tight envelope by
checking every formula in the envelope to see whether removing it compromises any
secrets: keeping it if it does and removing it if it doesn’t. When an envelope is infinite,
we may not obtain a tight envelope by removing assertions from it one by one.

Given two (weak) envelopes E = {E1, ..., Em} and E′ = {E′
1, ..., E

′
m} for S, we say that

E′ is a (weak) sub-envelope of E, denoted by E′ ⊆ E, if for each 1 ≤ i ≤ m, E′
i ⊆ Ei. A

(weak) sub-envelope E′ of E is proper if there exists 1 ≤ i ≤ m such that E′
i ⊂ Ei. We

next show that every envelope contains a tight sub-envelope.

LEMMA 2.12. Consider a KB K and a secrecy structure S on K. For every weak
envelope E = {E1, ..., Em} for S, if E does not contain a proper weak sub-envelope, then
E is a tight envelope for S.

PROOF. Since E does not contain a proper weak sub-envelope, for any Mi ∈ M and
α ∈ Ei, there is an edge (Mi,Mj) ∈ E and β ∈ Sj s.t.

⋃

k 6=i:(Mk,Mj)∈E(K
+ \ Ek) ∪ (K+ \

(Ei \ {α})) � β, i.e.,
⋃

k:(Mk,Mj)∈E(K
+ \ Ek) ∪ {α} � β. Therefore, E satisfies Property

TE. By Lemma 2.6, E is a tight envelope for S.

Given a KB K and a secrecy structure S on K, for every weak envelope E for S, either
it has a sub-envelope E′, or it does not. In the latter case, E is a tight envelope for S by
Lemma 2.12. Given a weak envelope E for S, let E = E0 ⊇ E1 ⊇ · · · ⊇ En ⊇ · · · be a
descending chain of weak envelopes for S where Ek = {Ek1 , ..., E

k
m}, k ≥ 0.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:11

CLAIM 1. E∞ = {
⋂∞
k=0E

k
1 , ...,

⋂∞
k=0E

k
m} is a weak envelope for S.

PROOF. Suppose that E∞ is not a weak envelope for S. Then for some Mi ∈ M
and some α ∈ Si,

⋃

j:(Mj ,Mi)∈E(K
+ \

⋂∞
k=0E

k
j) � α. This means that there is a finite

subset Φ ⊆
⋃

j:(Mj ,Mi)∈E(K
+ \

⋂∞
k=0E

k
j) such that Φ � α. Since Φ is finite, for some

(large enough) n, Φ ⊆
⋃

j:(Mj ,Mi)∈E(K
+ \Enj), implying

⋃

j:(Mj ,Mi)∈E(K
+ \Enj) � α. This

contradicts the assumption that En is a weak envelope for S.

A weak envelope E is minimal if it does not contain a proper weak sub-envelope. Let
E be a weak envelope for S and CE be the collection of all weak sub-envelopes of E. Since
the binary relation ⊆ between weak envelopes of a given E is a partial order on CE, by
Claim 1 and (the dual of) Zorn’s Lemma, CE contains a minimal weak sub-envelope E′.
By Lemma 2.12, E′ is a tight envelope for S. Since every envelope is a weak envelope,
this implies that every envelope has a tight sub-envelope (for the same secrecy set S).

Depending on the native inference system ⊢ for the language, and/or properties of
the communication graph, with some appropriate (probably rather strict) tractability
assumptions, a strategy could be designed to guide the computation so that the result-
ing envelope is tight.

In the remainder of this section, we assume that a tight envelope for a single-agent
secrecy structure is available (or easily computable). We show that when the commu-
nication graph is an inverted forest (with self-loops), a tight envelope for a multi-agent
secrecy structure can be constructed in a single bottom-up sweep.

Definition 2.13. Given a formula α and a set D of formulas, for each Γ ∈ Fα, let
ΓD = Γ if Γ ∩D = ∅ and ΓD = Γ ∩D otherwise. Define Fα,D = {ΓD | Γ ∈ Fα}. For each
ΓD ∈ Fα,D, let φΓD be an arbitrary but fixed element in ΓD. Given a secrecy structure
S = 〈M = {M1, ..., Mm}, {S1, ..., Sm}, (M, E)〉 and a set D, define Hi[D] = {φΓD | ΓD ∈
Fα,D for some α ∈ Si}.

First note that since {α} ∈ Fα, Si ⊆ Hi[D]. We claim that Hi[D] is a weak envelope
for the induced single-agent secrecy structure Si. If not, then there is α ∈ Si s.t. K+ \
Hi[D] � α, and hence there is a finite subset Γ ⊆ K+ \ Hi[D] s.t. Γ is α-minimal. By
Definition 2.13, φΓD ∈ Γ ∩ Hi[D], implying Γ ∩ Hi[D] 6= ∅. This is contrary to Γ ⊆
K+ \ Hi[D].

Let K be a KB and S = 〈M, {S1, ..., Sm}, G = (M, E)〉 be a secrecy structure on K
where G is an inverted forest with self-loops, i.e., G is a DAG such that each node has at
most one successor beside itself. A node that has no successor is called a leaf. For every
node Mi in G, let Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi,Mi)}〉〉 be the induced single-agent
secrecy structure. For every leaf node Mi, let Ei be a tight envelope for Si. For every
non-leaf node Mi, in a bottom-up fashion according to G, define a weak envelope Hi[Ej]
for Si as per Definition 2.13 where (Mi,Mj) ∈ E and Ej is a tight envelope for Sj . By
the discussion following Claim 1, Hi[Ej] contains a tight sub-envelope for Si which we
denote by Ei. Let E∗

m = {E∗
1 , ..., E

∗
m} where E∗

i = Ei ∪ Ej where (Mi,Mj) ∈ E and i 6= j.
Before we show that E∗

m is a tight envelope for S, we first prove an auxiliary lemma
which takes a communication graph to be an edge with two self-loops, i.e., S = 〈M =
{M1,M2}, {S1, S2}, 〈M, E〉〉 where E = {(M1,M1), (M2,M2), (M1,M2)}.

LEMMA 2.14. E∗
2 = {E∗

1 , E
∗
2} is a tight envelope for S.

PROOF. By Theorem 2.8, E∗
2 is an envelope for S. It suffices to show that E∗

2 satisfies
Property TE.

For M2: We have to show that for each α ∈ E∗
2 = E2, there is β ∈ S2 s.t. (K+ \ E2) ∪

{α} � β. This is true because E2 is a tight envelope for S2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 J. Tao et al.

For M1: (i) Consider α ∈ E∗
1 ∩ E2 = E2. Since E2 is a tight envelope for S2, there is

β ∈ S2 s.t. (K+ \ E2) ∪ {α} � β. Then (
⋃

k:(Mk,M2)∈E(K
+ \ E∗

k)) ∪ {α} = (K+ \ (E∗
1 ∩

E∗
2)) ∪ {α} = (K+ \ E2) ∪ {α} � β. (ii) Consider α ∈ E∗

1 \ E2 = E1 \ E2. Since E1 is
a tight envelope for S1, there is β ∈ S1 s.t. (K+ \ E1) ∪ {α} � β and K+ \ E1 2 β.
Since α ∈ E1 ⊆ H1[E2], by Definition 2.13, there is a finite set Γ ⊆ (K+ \ E1) ∪ {α}
such that α = φΓE2

, Γ � β and ΓE2
∈ Fβ,E2

. If Γ ∩ E2 6= ∅, then α = φΓE2
∈ E2 by

the construction of H1[E2] according to Definition 2.13, contradicting the assumption
that α ∈ E1 \E2. Therefore Γ ∩E2 = ∅ and hence ((K+ \E1) \E2) ∪ {α} � β. Moreover,
⋃

k:(Mk,M1)∈E(K
+\E∗

k) = K+\E∗
1 = (K+\E1)\E2. So, the Property TE holds for M1.

Now we consider the general case.

THEOREM 2.15. E∗
m = {E∗

1 , ..., E
∗
m} is a tight envelope for S.

PROOF. By Theorem 2.8, it suffices to show that E∗
m satisfies Property TE. Suppose,

by contradiction, that there are Mi ∈ M and α ∈ E∗
i s.t. for every (Mi,Mj) ∈ E and

every β ∈ Sj ,
⋃

k:(Mk,Mj)∈E(K
+\E∗

k)∪{α} 2 β. Consider (Mi,Mj) ∈ E where i 6= j (when

i = j the argument is easy). There are two cases: (1) E∗
i \Ej 6= ∅. By the proof of Lemma

2.14 (M1 case (ii)), for every α′ ∈ E∗
i \Ej , there is γ ∈ Si s.t. (K+ \E∗

i)∪ {α′} � γ. Since
⋂

k:(Mk,Mj)∈E E
∗
k ⊆ E∗

i , (K+\
⋂

k:(Mk,Mj)∈E E
∗
k)∪{α

′} � γ. (2) E∗
i \Ej = ∅, i.e., E∗

i = Ej . By

Lemma 2.14, {E∗
i , Ej} is a tight envelope for the induced two-agent secrecy structure:

Sij = 〈{Mi,Mj}, {Si, Sj}, 〈{Mi,Mj}, {(Mi,Mi), (Mj ,Mj), (Mi,Mj)}〉. Hence, for every
α′ ∈ E∗

i , there is γ ∈ Si ∪Sj s.t. (K+ \E∗
i)∪{α′} � γ or (K+ \E∗

i)∪ (K+ \Ej)∪{α′} � γ,
i.e. (K+ \ E∗

i) ∪ {α′} � γ. Hence,
⋃

k:(Mk,Mj)∈E(K
+ \ E∗

k) ∪ {α′} � γ. Both cases (1) and

(2) yield a contradiction and so Property TE holds.

Note that in both Lemma 2.14 and Theorem 2.15, for any node Mi, the computation
of its envelope Ei is governed by the envelope Ej where (Mi,Mj) ∈ E so that as much
information as possible in Ej is reused for Ei.

When the communication graph is not an inverted forest, a single bottom-up sweep
may not be sufficient to construct a tight envelope, even if the communication graph is
a DAG. Here is an example.6

Example 2.16. Let α and β be propositional variables and let K = 〈K,S,R〉 be a
propositional KB where: K = {α ∧ β, α, β}, S = 〈M, S,G〉, M = {M1,M2,M3,M4},
S = {S1, S2, S3, S4}, S1 = S2 = S3 = S4 = {α ∧ β}. Suppose that the following choices
are made:

(1) E3 = {α ∧ β, α} – tight for S3. E∗
3 = E3.

(2) E4 = {α ∧ β, α} – tight for S4. E∗
4 = E4.

(3) E2 = {α ∧ β, α} – tight for S2.
(4) E∗

2 = {α ∧ β, α, β}.
(5) E1 = {α ∧ β, β} – tight for S1.
(6) E∗

1 = {α ∧ β, α, β}.

M
2

M
1

M
4
 M

3

Note that {E∗
2 , E

∗
3 , E

∗
4} is a tight envelope for the subgraph induced by the nodes

{M2, M3, M4}. However, the Property TE is not satisfied for M1 because β ∈ E∗
1 is

redundant: since {α ∧ β, α} *
⋃

k:(Mk,Mi)∈E(K
+ \ E∗

k) where i ∈ {1, 2, 3}, we have

(1) For M1’s successor M2,
⋃

k:(Mk,M2)∈E(K
+ \E∗

k) ∪ {β} 2 α ∧ β ∈ S2.

6When constructing and writing down particular envelopes in examples, we will list only a (maximal) subset
of mutually inequivalent formulas. For instance, if α ∧ β is in a set, then β ∧ α is not. In fact, we will call
these subsets envelope as well.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:13

(2) For M1’s successor M3,
⋃

k:(Mk,M3)∈E(K
+ \ E∗

k) ∪ {β} 2 α ∧ β ∈ S3.

(3) For M1 itself,
⋃

k:(Mk,M1)∈E(K
+ \ E∗

k) ∪ {β} 2 α ∧ β ∈ S1.

Hence, E∗ = {E∗
1 , E∗

2 , E∗
3 , E∗

4} is not a tight envelope for S.

3. MSQ SYSTEMS IN PRACTICE

Let K = 〈K,Q,Ω〉 be a KB and S = 〈M, S,G〉 a secrecy structure on K where G = (M, E)
is the communication graph, see Section 2. We have defined an associated L-reasoner
as a function R : Q×M → Ω and have specified what it means for such a function to
be a secrecy-preserving reasoner, see Definition 2.3. In Section 2, we have also shown
that secrecy-preserving reasoners and secrecy envelopes are equivalent concepts, in
the sense of the statements of Theorems 2.9 and 2.10.

In most applications we expect that neither the reasoners nor the envelopes are “fin-
ished” entities, but rather are constructed piecemeal. Starting at the pre-query stage
with a finite reasoner or a finite envelope, they evolve as the queries are presented,
depending on secrecy considerations, but are kept finite at all times. In this section,
we pursue this idea further.

3.1. A Simple MSQ Algorithm - Lazy Evaluation

For a finite subset D ⊆ Q × M and a (finite) function ρ : D → Ω, analogously to the
notation used in Section 2, we define the sets of queries: Qρ

i,B = {α ∈ Q | ρ(α,Mi) = B}

with B ∈ Ω, and Pρi,B =
⋃

j:(Mi,Mj)∈A
Qρ
j,B for B ∈ {Y,N}. We require that ρ be negation

consistent, i.e., Qρ
i,N = {¬α | α ∈ Qρ

i,Y }. The function ρ will be called a D-answer (or

just an answer). Thus ρ represents answers (perhaps, to be) given to queries in D. In
the pre-query stage D = ∅ and we initialize the answer by: Init(α,Mi) = U iff for some
j, Mj ∈ M with (Mi,Mj) ∈ E and α ∈ Sj . For any D 6= ∅, any D-answer is an extension
of Init.

We say that ρ : D → Ω is secrecy-preserving (w.r.t. D) if it satisfies the following
properties:

— [Yes Property] Qρ
i,Y ⊆ K+;

— [Closure Property] (Qρ
i,Y)

+ ∩ (Qρ
i,N ∪ Qρ

i,U) = ∅;

— [Secrecy Property] (Pρi,Y)
+ ∩ Si = ∅,

Recall that for any set of assertions Γ, Γ+ = {α | Γ ⊢ α} where ⊢ denotes inference in
the deductive apparatus associated with the formal language L, see Section 2. Observe
also that the initial answer Init is secrecy-preserving w.r.t. ∅.

Now suppose that a D-answer ρ : D → Ω is given (together with the corresponding
query sets Qρ

i,B , B ∈ Ω, and P ρi,B , B ∈ {Y,N}) and a query (α,Mi) comes along. Denote

by ρ′ : D′ → Ω be the new resulting answer. If (α,Mi) ∈ D, then D′ = D and ρ′ = ρ.
Otherwise, we have to extend D by adding (α,Mi) and (¬α,Mi), and update the answer
function: For each (α,Mi) ∈ D, ρ′(α,Mi) := ρ(α,Mi); otherwise, ρ′(α,Mi), along with
the relevant query sets, is computed as indicated in Algorithm 1.

LEMMA 3.1. Given a knowledge base K = 〈K,Q,Ω〉, a secrecy structure S = 〈M, S,
G〉, a finite subset D ⊆ Q × M, and a secrecy-preserving D-answer ρ, let ρ′ be the
new answer resulting from Algorithm 1 with the input (α,Mi). Then ρ′ is also secrecy-
preserving.

PROOF. Let D′ = D ∪ {(α,Mi)}. We need to show that ρ′ is negation consistent and
that it satisfies the three secrecy-preserving properties given above. Since ρ is secrecy-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 J. Tao et al.

input : α ∈ Q, Mi ∈ M

1 if (α,Mi) /∈ D then
2 D := D ∪ {(α,Mi), (¬α,Mi)}
3 if K 0 α and K 0 ¬α then
4 Qρ

i,U := Qρ
i,U ∪ {α,¬α} and ρ(α,Mi) := U

5 else
6 let ᾱ ∈ {α,¬α} such that K ⊢ ᾱ
7 if there exists j where (Mi,Mj) ∈ E and β ∈ Sj s.t. Pρj,Y ∪ {ᾱ} ⊢ β then

8 Qρ
i,U := Qρ

i,U ∪ {α,¬α}

9 else
10 Qρ

i,Y := Qρ
i,Y ∪ {ᾱ} and ρ(ᾱ,Mi) := Y

11 Qρ
i,N := Qρ

i,N ∪ {¬ᾱ} and ρ(¬ᾱ,Mi) := N

12 forall the j where (Mi,Mj) ∈ E do
13 Pρj,Y := Pρj,Y ∪ {ᾱ} and Pρj,N := Pρj,N ∪ {¬ᾱ}

14 end

15 end

16 end

17 end
18 return ρ(α,Mi) to Mi

Algorithm 1: Lazy Evaluation Lazy(α,Mi)

preserving, it follows from Lines 6, 10 and 11 that ρ′ is negation consistent and that
the Yes Property is satisfied.

We next show that the Secrecy Property is satisfied. Since ρ is secrecy-preserving,

we have (Pρi,Y)
+ ∩ Si = ∅, and so Pρi,Y ∩ Si = ∅. If α /∈ Pρ

′

i,Y , then Pρ
′

i,Y = Pρi,Y and the

Secrecy Property is satisfied. Otherwise, α was added to Pρ
′

i,Y in Line 13. Therefore, the

condition in Line 7 was not satisfied. It follows that for every j where (Mi,Mj) ∈ E and

every β ∈ Sj , P
ρ′

j,Y = Pρj,Y ∪ {α} 0 β. In particular, for every β ∈ Si, P
ρ′

i,Y 0 β. Hence,

(Pρ
′

i,Y)
+ ∩ Si = ∅.

To show that ρ′ satisfies the Closure Property, we assume that Qρ′

i,Y ⊢ α. There are

three cases:

— If α ∈ Qρ
i,Y , then (α,Mi) ∈ D, D′ = D and ρ′ = ρ. Since ρ is secrecy-preserving, so is

ρ′.

— If α ∈ Qρ′

i,Y \Qρ
i,Y , then α was added to Qρ′

i,Y in Line 10. From Lines 6-11, we see that

α /∈ Qρ′

i,N and α /∈ Qρ′

i,U .

— If α ∈ (Qρ′

i,Y)
+ \ Qρ′

i,Y , then we have α ∈ Qρ′

i,U ∪ Qρ′

i,N . However, since K ⊢ γ for

every γ ∈ Qρ′

i,Y , (Qρ′

i,Y)
+ ⊆ K+. In particular, α ∈ K+, i.e., K ⊢ α. Therefore, from

Lines 6-11, α /∈ Qρ′

i,N and so α ∈ Qρ′

i,U , which means that the condition in Line 7 was

satisfied: there exists j where (Mi,Mj) ∈ E and β ∈ Sj s.t. Pρ
′

j,Y ∪ {α} ⊢ β. However,

since Qρ′

i,Y ⊢ α and Qρ′

i,Y ⊆ Pρ
′

j,Y (see Lines 10-14), we have Pρ
′

j,Y ⊢ β, contradicting

the Secrecy Property for ρ′. Hence, α /∈ Qρ′

i,U .

It follows that the Closure Property is satisfied.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:15

Note that in Algorithm 1, Qρ
i,Y , Qρ

i,N and Qρ
i,U are disjoint sets at all times: when

D ⊆ Q×M gets larger, these sets also get larger, but never overlap. Moreover, since (i)
S is assumed to contain no tautologies, (ii) the inference system ⊢ is complete, and (iii)
for any β ∈ Si, P

ρ
i,Y 0 β (by the Secrecy Property), if α is a tautology, then α ∈ Qρ

i,Y (see

Lines 6, 7 and 10). Therefore, when D is really large, the D-answer ρ approximates the
secrecy-preserving L-reasoner R given in Definition 2.3.

3.2. Envelope Maintenance

The lazy evaluation approach is rather simple, but as the number of queries increases,
the sets Pρi,Y get larger and checking condition in Line 7 in Algorithm 1 takes longer

time. Thus, answering queries will tend to be more time consuming as the KB contin-
ues to operate. In this section, we propose an alternative solution to the SPQA problem
that involves precomputing finite parts of an envelope.

Definition 3.2. Let K = 〈K,Q,Ω〉 be a KB and S = 〈M, S,G〉 a secrecy structure on
K. Given a finite set Q′ such that K ∪

⋃m
i=1 Si ⊆ Q′ ⊆ Q, a collection E = {E1, E2, ...,

Em}, where for 1 ≤ i ≤ m, Si ⊆ Ei ⊆ (Q′ ∩K+) \ T, is called a (partial) envelope for S
w.r.t. Q′ if the following two properties are satisfied for every 1 ≤ i ≤ m:

— [E1’] for every α ∈ Ei, (K
+ ∩ Q′) \ Ei 2 α;

— [E2’] for every α ∈ Si,
⋃

j:(Mj ,Mi)∈E((K
+ ∩ Q′) \ Ej) 2 α.

E is said to be tight w.r.t. Q′ if it satisfies an extra minimality property:

— [TE’] for every Mi ∈ M and every α ∈ Ei, there exists an edge (Mi,Mj) ∈ E and
β ∈ Sj such that

⋃

k:(Mk,Mj)∈E((K
+ ∩ Q′) \ Ek) ∪ {α} � β.

Recall that given a KB K = 〈K,Q,Ω〉 and a formula α ∈ K+, a finite set Γ ⊆ K+ is α-
minimal if Γ � α and for every β ∈ Γ, Γ\{β} 2 α, and that we have defined Fα = {Γ | Γ
is α-minimal}. Given a finite set of formulas Q′ such that K ∪

⋃m
i=1 Si ⊆ Q′ ⊆ Q, let

Fα
∣

∣

Q′
= {Γ ∈ Fα | Γ ⊆ Q′}. Note that Fα

∣

∣

Q′
is finite. Algorithm 2 provides an approach

for obtaining a partial envelope w.r.t. Q′. Lemma 3.3 shows that Algorithm 2 is correct.

input : K, S = 〈M, S = {S1, ..., Sm},G〉, Q′

1 for 1 ≤ i ≤ m do
2 Ei := Si
3 while there exist γ ∈ Ei and Γ ∈ Fγ

∣

∣

Q′
such that Γ ∩ Ei = ∅ do

4 Let φΓ be an arbitrary but fixed element of Γ
5 Ei := Ei ∪ {φΓ}
6 end

7 end
8 for 1 ≤ i ≤ m do
9 E′

i :=
⋃

j:(Mi,Mj)∈E Ej
10 end
11 return EQ′ = {E′

1, ..., E
′
m}

Algorithm 2: Partial Envelope Computation

LEMMA 3.3. Given a KB K, a secrecy structure S and a finite set of formulas Q′

such that K ∪
⋃m
i=1 Si ⊆ Q′ ⊆ Q, Algorithm 2 computes a partial envelope for S w.r.t.

Q′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 J. Tao et al.

PROOF. From Lines 2 and 9, it is clear that Si ⊆ E′
i. Since S does not contain

tautologies, by the definition of Fα
∣

∣

Q′
, EQ′ does not contain any tautology. Moreover,

E′
i ⊆ (Q′ ∩K+) \ T.
We first show that for a given i, after Line 7,Ei is an envelope w.r.t. Q′ for the induced

single-agent secrecy structure Si. Suppose that for some α ∈ Ei, (K
+ ∩ Q′) \ Ei � α.

Then there is a finite set Γ ⊆ (K+∩Q′)\Ei such that Γ � α and Γ is α-minimal. Hence,
Γ ∈ Fα

∣

∣

Q′
. Since Γ ∩ Ei = ∅, the condition in Line 3 is satisfied, and so there exists

φΓ ∈ Γ such that φΓ ∈ Ei. This contradicts the assumption Γ ∩ Ei = ∅ and implies that
Ei is an envelope for Si w.r.t. Q′.

Next we show that EQ′ = {E′
1, ..., E

′
m} is an envelope for S w.r.t. Q′. We need to verify

that EQ′ satisfies Properties E1’ and E2’.

— [E1’]: Suppose that for some i and α ∈ E′
i, (K

+∩Q′)\E′
i � α. Then α ∈ Ej for some j

with (Mi,Mj) ∈ E . Since (K+∩Q′)\E′
i ⊆ (K+∩Q′)\Ej , every model of (K+∩Q′)\Ej

is a model of (K+∩Q′)\E′
i, and so (K+∩Q′)\Ej � α. This contradicts the fact shown

above that Ej is an envelope for Sj w.r.t. Q′.
— [E2’]: Suppose that for some i and α ∈ Si, we have

⋃

j:(Mj ,Mi)∈E((K
+ ∩Q′) \E′

j) � α.

This is equivalent to (K+ ∩ Q′) \ (
⋂

j:(Mj ,Mi)∈E E
′
j) � α. By the definition of EQ′ , we

have Ei ⊆
⋂

j:(Mj ,Mi)∈E E
′
j . It follows that (K+ ∩ Q′) \ Ei � α, contradicting the fact

that Ei is an envelope for Si w.r.t. Q′.

Note that EQ′ = {E′
1, ..., E

′
m} may not be tight. One can obtain a tight partial en-

velope by examining each element in each E′
i in EQ′ , removing the formula if we still

have a partial envelope without it, and keeping it otherwise.
Since Q′ is finite, Ei is finite and so is E′

i. If a query q ∈ Q′ is posed by the querying
agent Mi, it will be answered “Yes” if q ∈ (K+ ∩ Q′) \ E′

i, “No” if ¬q ∈ (K+ ∩ Q′) \ E′
i,

and “Unknown” otherwise. If a query q′ /∈ Q′ is posed, before answering q, the envelope
will be updated by taking E′

i as the new secrecy set for each 1 ≤ i ≤ m and computed
according to Algorithm 2.

COROLLARY 3.4. Given a KB K = 〈K,Q,Ω〉, a secrecy structure S = 〈M, S = {S1,
S2, ..., Sm}, G〉, and two finite subsets of Q: Q1 ⊆ Q2 ⊆ Q, let EQ1

= {E1
1 , ..., E

1
m}

be obtained from Algorithm 2 with the input K, S = 〈M, S = {S1, ..., Sm},G〉 and
Q1. Then EQ2

= {E2
1 , ..., E

2
m} obtained from Algorithm 2 with the input K, S ′ =

〈M, {E1
1 , ..., E

1
m},G〉 and EQ2

is a partial envelope for S w.r.t. Q2.

Corollary 3.4 shows that when the system evolves with new queries, a new envelope
could be obtained from the old one, and so queries can be safely answered by consider-
ing the new envelope.

Next we show how to answer queries given a partial envelope. Given a KB K, a
secrecy structure S and a finite set of formulas Q′ such that K ∪

⋃m
i=1 Si ⊆ Q′ ⊆ Q, and

a partial envelope E = {E1, ..., Em} for S w.r.t. Q′, let D = Q′ × M. Define a function
ρ : D → Ω, by

ρ(α,Mi) =







Y if α ∈ (K+ ∩ Q′) \ Ei,

N if ¬α ∈ (K+ ∩ Q′) \ Ei,

U otherwise.

The following theorem shows that for any query α ∈ Q′, if α is not in the current partial
envelope, it can be truthfully answered without compromising secrecy.

THEOREM 3.5. ρ is secrecy-preserving w.r.t. D.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:17

PROOF. By definition, ρ is negation consistent. We need to show that ρ satisfies the
three secrecy-preservation properties in Section 3.1.

— Yes Property: We need to show that Qρ
i,Y ⊆ K+. By definition of ρ, Qρ

i,Y =

{α | ρ(α,Mi) = Y } = (K+ ∩ Q′) \ Ei ⊆ (K+ ∩ Q′) ⊆ K+.
— Closure Property: We need to show that (Qρ

i,Y)
+ ∩ (Qρ

i,N ∪ Qρ
i,U) = ∅. Suppose that

there is α such that α ∈ (Qρ
i,Y)

+ and α ∈ Qρ
i,N ∪ Qρ

i,U . Since α ∈ (Qρ
i,Y)

+ and Qρ
i,Y

is disjoint from Qρ
i,N ∪ Qρ

i,U , we have α ∈ (Qρ
i,Y)

+ \ Qρ
i,Y and Qρ

i,Y ⊢ α. By definition

of ρ, (K+ ∩ Q′) \ Ei ⊢ α, implying K ⊢ α. If α ∈ Qρ
i,N , then, by definition of ρ,

¬α ∈ (K+ ∩ Q′) \ Ei, implying K ⊢ ¬α. However, this contradicts the assumption
that K is consistent. Therefore, α ∈ Qρ

i,U . Obviously, when α ∈ Q′ and K ⊢ α, then

α ∈ K+∩Q′, which implies that α ∈ Ei. Since (K+∩Q′)\Ei ⊢ α, from the soundness
of the inference system, (K+ ∩ Q′) \ Ei � α. This contradicts the fact that E is a
partial envelope (see property E1’). Hence, ρ satisfies the Closure Property.

— Secrecy Property: We need to show that (Pρi,Y)
+∩Si = ∅. Suppose that (Pρi,Y)

+∩Si 6=

∅. Let α ∈ Si such that (Pρi,Y)
+ ⊢ α. Then

⋃

j:(Mj ,Mi)∈E((K
+ ∩ Q′) \ Ej) ⊢ α and by

the soundness of ⊢, we obtain
⋃

j:(Mj ,Mi)∈E((K
+ ∩Q′) \Ej) � α. This contradicts our

assumption that E is a partial envelope (see property E2’). Therefore, ρ satisfies the
Secrecy Property.

3.3. Correspondance between D-answers and Partial Envelopes

As shown in Theorems 2.9 and 2.10, secrecy-preserving reasoners and secrecy en-
velopes are equivalent concepts. In Theorem 3.5, we show how to obtain a secrecy-
preserving D-answer from a partial envelope. Here we show how a secrecy-preserving
D-answer corresponds to a partial envelope.

Given a KB K = 〈K,Q,Ω〉, a secrecy structure S = 〈M, S = {S1, S2, ..., Sm},
G〉, a finite set D ⊆ Q × M and a secrecy-preserving D-answer ρ w.r.t. D, let Q′ =
⋃

i∈{1,...,m}

⋃

B∈Ω Qρ
i,B . Then Q′ contains all the queries that have been evaluated for

some querying agent(s). Since different querying agents may ask different queries, a
query q ∈ Q′ that has been evaluated for some Mi such that ρ(q,Mi) ∈ Ω may not
be defined for another Mj where i 6= j. To obtain an answer such that all querying
agents share the same query space, we extend the D-answer as per Algorithm 3. Let
D′ = Q′ × M. After an execution of Algorithm 3, we obtain a D′-answer ρ′ : D′ → Ω
where ρ′ is a total function. It follows from Lemma 3.1 that ρ′ is secrecy-preserving.

input : D, Q′

1 for 1 ≤ i ≤ m do
2 for α ∈ Q′ do
3 if (α,Mi) /∈ D then
4 call Lazy Evaluation Lazy(α,Mi) (see Algorithm 1)
5 end

6 end

7 end

Algorithm 3: Extending a D-Answer

THEOREM 3.6. Let E = {E1, ..., Em} where Ei = (K+ ∩ Q′) \ (Q′)ρ
′

i,Y . Then E is a

partial envelope for S w.r.t. Q′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 J. Tao et al.

PROOF. Since (Q′)ρ
′

i,U is initialized to be
⋃

j:(Mi,Mj)∈E Sj and (Q′)ρ
′

i,Y ∩ (Q′)ρ
′

i,U = ∅ (see

Section 3.1), we have Si ⊆ Ei. Moreover, by Lazy Evaluation (Algorithm 1 lines 3-16)
and the assumption that Si ⊆ K+ \T, we have Ei ⊆ (K+ ∩Q′) \T. Next we verify that
E satisfies properties E1’ and E2’ in Section 3.2.

— [E1’]: Suppose that for some i and α ∈ Ei, (K
+ ∩ Q′) \ Ei � α. Since the inference

system ⊢ is complete w.r.t. �, we have (K+ ∩Q′) \Ei ⊢ α, i.e., (Q′)ρ
′

i,Y ⊢ α. Therefore,

α ∈ ((Q′)ρ
′

i,Y)
+. By definition of Ei, Ei ⊆ (K+ ∩ Q′) and so α ∈ (K+ ∩ Q′). Since

Ei∩(Q
′)ρ

′

i,Y = ∅, it follows from Algorithms 3 and 1 that α ∈ (Q′)ρ
′

i,U ⊆ (Q′)ρ
′

i,N∪(Q′)ρ
′

i,U .

However, this contradicts the Closure Property and so contradicts the assumption
that ρ′ is secrecy-preserving. Therefore, E1’ is satisfied.

— [E2’]: Suppose that for some i and α ∈ Si, we have
⋃

j:(Mj ,Mi)∈E((K
+ ∩Q′) \E′

j) � α.

It follows from the definition of Ei that
⋃

j:(Mj ,Mi)∈E(Q
′)ρ

′

i,Y � α. Since the inference

system ⊢ is complete w.r.t �, we have
⋃

j:(Mj ,Mi)∈E(Q
′)ρ

′

i,Y ⊢ α, i.e., (P ′)ρ
′

i,Y ⊢ α. This

contradicts the Secrecy Property of ρ′. Therefore, E2’ is satisfied.

Note that depending on the order of chosen elements in the set {1, ...,m} and Q′

in Algorithm 3, different executions of Algorithm 3 may result different answers ρ′,
and hence, different partial envelopes may be obtained. However, once an order is
fixed, the resulting answer ρ′ and the corresponding partial envelope are both secrecy-
preserving.

One may have realized that the complexity of Lazy Evaluation depends heavily on
the condition checked in line 7 of Algorithm 1. As history grows larger, Pρj,Y gets larger

and checking this condition on the fly takes more and more time. On the other hand,
the complexity of computing a partial envelope mainly depends on the condition check-
ing at line 3 in Algorithm 2. Given a specific language and a well-formed formula γ in
the language, breaking its proof can often be done by looking at the formula itself and
checking subformulas of γ as well as the operators that connect the subformulas. Such
an example will be given in Section 4.2. Compared to the Lazy Evaluation, this is ob-
viously more efficient. With the partial envelope in hand, queries posed by agent Mi

can be answered simply by checking membership of (K+ ∩Q′) \Ei where both K+ ∩Q′

and Ei have been logged.

Remark regarding the relationship between CQE and our MSQ System. In
the literature of controlled query evaluation [Biskup 2011; Biskup and Weibert 2008;
Biskup et al. 2010; Biskup et al. 2008; Biskup and Tadros 2012], a secret is preserved
if for any sequence of queries there are two different models that are indistinguishable
in the sense that they produce the same answers to the queries; one being a model
of the secret and the other a model of the negation of the secret. Our framework also
respects this property of secrecy-preservation. More specifically, given a finite set of
queries Q′ ⊆ Q and a partial envelope E = {E1, ..., Em}, by property E1’, for any
α ∈ Ei, (K

+ ∩ Q′) \ Ei 2 α, and so (K+ ∩ Q′) \ Ei ∪ {¬α} is consistent. Moreover, since
α ∈ Ei ⊆ K+, K+ 2 ¬α, and therefore (K+ ∩ Q′) ∪ {α} is also consistent. By Theorem
3.5, any query q ∈ Q′ can be truthfully answered to agent Mi if q ∈ (K+ ∩ Q′) \ Ei
or ¬q ∈ (K+ ∩ Q′) \ Ei, and unknown otherwise. This means that our MSQ system
produces the same answers to a sequence of queries posed by any querying agent Mi

in the both models: one being a model of (K+ ∩ Q′) ∪ {α} and the other a model of
(K+ ∩ Q′) \ Ei ∪ {¬α}.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:19

4. ILLUSTRATION OF MSQ SYSTEMS

In this section we aim at illustrating the construction of MSQ systems. As the first
example, we take a simple language of Propositional Horn logic. Propositional Horn
theories are widely used in computer science [Makowsky 1987; Dowling and Gallier
1984]. For the second illustration, we take the Description Logic AL which extends
FL− by allowing atomic negation [Baader et al. 2003]. It is also a sub-language of the
Description Logic ALC which is extensively researched in the Semantic Web commu-
nity [Baader et al. 2003] and serves as a foundation of the Web Ontology Language
(OWL) [Staab and Studer 2009]. In both cases, we have not dealt with the tightness
of envelopes. A simple approach to obtaining a tight partial envelope from a partial
envelope is by checking whether removing each assertion in the partial envelope com-
promises the secrecy and removing the assertion from the partial envelope if it doesn’t.
Depending on the properties of a language, algorithms for computing a partial enve-
lope may be optimized to create a tight partial envelope during the construction.

From Sections 2 and 3, in particular, Theorems 2.11 and Lemma 3.3, we see that
one way to build an envelope for a secrecy set Si is to hide, for each α ∈ Si, and every
Γ ∈ Fα, some formula γ ∈ Γ. Since we have assumed that the inference system ⊢
is complete w.r.t. �, this means that for every inference rule Γ ⊢ α if α needs to be
protected, we also protect one element of Γ, i.e. φΓ. In Section 2.1, we have commented
that such φΓ could be computed given a KB represented in a specific language. The
idea is to invert the inference rules into new rules that enforce the intuitively obvious
requirement: whenever the conclusion of an inference rule is to be secret so must be
at least one of its premises. This methodology was developed by the authors in [Tao
et al. 2010]. We illustrate this approach with the following two cases and show how
the inverted rules (together with some additional rules) help construct an envelope.
Once an envelope is constructed, secrecy can be preserved while answering queries
according to our framework, see Sections 2 and 3.

4.1. Propositional Horn MSQ System

Recall that a propositional Horn Clause is a clause containing at most one positive
literal, i.e., generally, it is of the form: x1 ∧ · · · ∧ xk → η where x1, x2, ..., xk are propo-
sitional names and η is either a propositional name, in which case the Horn clause is
called a rule, or it is ⊥, in which case it is called a constraint. In this section we shall
have no further use of constraints. A Horn clause is called a fact if k = 0 and η 6= ⊥,
i.e. it consists of a single positive literal. We assume a single underlying inference rule,
forward chaining, which is known to be sound and complete for Horn logic w.r.t. the
usual semantics of propositional logic,

FORWARD CHAINING (FC):
l1 ∧ l2 ∧ · · · ∧ lk → p, l1, l2, ..., lk

p

where p, l1, l2, ..., lk are all propositional names.
A Horn KB is a triple K = 〈K,Q,Ω〉 where K is a finite set of Horn clauses, Q is the

set of all (relevant) facts (the query space), and Ω = {Y,N,U} is the answer space. The
set K can be further partitioned K = R ∪ F where R, the TBox, contains a set of rules
in K and F , the ABox, is the set of facts in K. By F+ we denote the set of all facts
derivable by applying the FC-rule with assumptions in the ABox F and rules in the
TBox R: F+ = {p | K ⊢FC p and p is a fact}. Obviously, if K is finite, so is F+.

Given a collection of querying agents M = {M1, M2, ..., Mm}, a corresponding col-
lection of secrecy sets S = {S1, S2, ..., Sm}, and a communication graph G, we have a
secrecy structure S = 〈M, S,G〉. We assume Si ⊆ F+. To compute an envelope for S, we

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 J. Tao et al.

can use the approach suggested in Theorem 2.8: for 1 ≤ i ≤ m, compute an envelope
E1
i for the single-agent secrecy structure Si = 〈{Mi}, {Si}, 〈{Mi}, {(Mi, Mi)}〉〉. Letting

E∗
i =

⋃

j:(Mi,Mj)∈E E
1
j , E∗ = {E∗

1 , ..., E
∗
m} is an envelope for S.

It remains to show how to compute an envelope for the single-agent secrecy structure
Si. We invert the FC-rule into a new rule, denoted by FCI and it is formulated as
follows for each 1 ≤ i ≤ m:

FC
I -RULE:

p ∈ E′
i, l1 ∧ l2 ∧ ... ∧ lk → p ∈ R, l1, l2, ..., lk ∈ F+ \ E′

i

E′
i := E′

i ∪ {l}, for some l ∈ {l1, l2, ..., lk}

The actual computation of the envelopes proceeds by initializing E′ = {E′
1, E′

2, ...,
E′
m} with E′

i = Si (1 ≤ i ≤ m). The FCI -rule is then applied repeatedly until it is no
longer applicable. Denote by E1 = {E1

1 , E
1
2 , ..., E

1
m} the resulting collection of sets. To

show the correctness of our procedure we must prove that for each 1 ≤ i ≤ m,

THEOREM 4.1. E1
i is a finite secrecy envelope for Si.

PROOF. It suffices to show that E1
i satisfies Axiom E1: for every α ∈ E1

i , F+\E1
i 2 α.

Since ⊢FC is complete w.r.t. � (for Horn KBs), we argue instead that for every α ∈ E1
i ,

F+ \E1
i 0FC α. Note that for a fixed i, once a rule in R is used in an application of FCI -

rule for computing E1
i , it is no longer applicable (for that fixed i). Thus, after at most

|R| applications of the FCI -rule (for that i) the computation of the set E1
i is complete.

Hence, for any α ∈ E1
i , for any rule l1 ∧ ...∧ lk → α ∈ R, we have {l1, ..., lk}∩E

1
i 6= ∅ and

so F+ \ E1
i 0FC α. The theorem follows.

Since E∗ is an envelope, by Theorem 2.10, a query can be safely answered by check-
ing whether it is provable from the given KB and its membership status w.r.t. E∗. The
envelope E∗ resulting from the single-agent “slices” in a manner indicated above need
not be tight.

Example 4.2. Given a Horn KB K = 〈K,S,R〉 where K = 〈F = {l1, l2, s}, R = {l1 ∧
l2 → s}〉, S = 〈{M1,M2}, {S1, S2}, 〈{M1,M2}, {(M1,M1), (M2,M2), (M1,M2)}〉〉 and
S1 = S2 = {s}. Suppose that E1

1 = {s, l1} and E1
2 = {s, l2}. Obviously, E1

1 is an envelope
for S1 and E1

2 is an envelope for S2. In fact, E1
1 is a tight envelope for S1 and E1

2 is
a tight envelope for S2. Let E∗

1 = E1
1 ∪ E1

2 = {s, l1, l2} and E∗
2 = E1

2 . Then we have
E∗ = {E∗

1 , E
∗
2} is an envelope for S. However, E∗ is not tight because we could remove

l1 from E∗
1 and still result an envelope for S. In fact, there are two tight envelopes for

S: E∗
1 = {{s, l1}, {s, l1}} and E∗

2 = {{s, l2}, {s, l2}}.

We next show that computing minimum size envelopes is NP-hard for Horn KBs.
We specify the Minimum Envelope problem (ME) by the pair 〈〈K,S〉, N〉 where K =
〈K,Q,Ω〉 is a Horn KB, S = 〈M, S,G〉 is a secrecy structure for K and N is a positive
integer. The decision problem is to determine whether S has a secrecy envelope E =
{E1, ..., Em} satisfying |

⋃

1≤i≤mEi| ≤ N . It is easy to see that the problem is in NP as

this only involves checking that E satisfies the axioms E1 and E2. The NP hardness
of this problem can be shown by reduction from the Hitting Set (HS) problem: Given
a finite set X, a finite collection of non-empty sets C = {C1, ..., Ck} ⊆ P(X) and an
integer 0 ≤ N ≤ |X|, the problem is to determine whether or not there is a subset
Y ⊆ X such that |Y | ≤ N and for every C ∈ C, C ∩ Y 6= ∅. Given such an instance of
HS, we construct an instance of ME as follows:

— M = {M1}, a single querying agent;
— the communication graph consists of a single self-loop on M1;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:21

— S = {S1}, with S1 = {si | Ci ∈ C}, where si’s are new symbols;
—N ′ = N + |C|;
—K = F ∪R where F = X ∪ S1 and R = {l1 ∧ ... ∧ lr → si | Ci = {l1, ..., lr} ∈ C}.

CLAIM 2. C has a hitting set Y ⊆ X with |Y | ≤ N if and only if 〈K,S〉 has a secrecy
envelope E = {E1} such that S1 ⊆ E1 ⊆ F+ and |E1| ≤ N ′.

PROOF. Suppose that Y ⊆ X is a hitting set for C with |Y | ≤ N . Define the set
E1 := Y ∪ S1. Since Y ∩ S1 = ∅, |E1| = |Y | + |S1| ≤ N + |C|. Moreover, for every C ∈ C,
C ∩ Y 6= ∅. Therefore, none of the rules in K can be used in applying the FC-rule to
F+ \ E1. It follows that E1 is a secrecy envelope for S.

Conversely, let E = {E1} be a secrecy envelope for S such that S1 ⊆ E1 ⊆ F+ and
|E1\S1| ≤ N . By Axiom E1 and the soundness of the FC-rule, this implies that for every
α ∈ E1 : F+\E1 0FC α. We show that the HS instance C = {C1, ..., Ck} ⊆ P(X), together
with an integer 0 < N ≤ |X|, has a hitting set of size at most N . Define Y := E1 \ S1.
It now suffices to show that for every Ci ∈ C, Y ∩ Ci 6= ∅. Let Ci = {l1, ..., lr}; by the
definition of the reduction, this implies that l1 ∧ ...∧ lr → si belongs to R. If none of the
lj(1 ≤ j ≤ r) belongs to Y , then they all belong to F+ \ Y and hence also to F+ \ E1

because Ci ∩ S1 = ∅. Therefore, F+ \ E1 ⊢FC si ∈ E1, which yields a contradiction.

In light of the preceding result, it is not feasible to compute a minimal cardinality
envelope. However, because of the finiteness of Propositional Horn KB envelopes, a
tight envelope can be obtained by first constructing an envelope and then repeatedly
eliminating (from the envelope) those assertions that are not essential for protecting
secrets.

4.2. MSQ System for Description Logic AL

Recall from Section 1 that the idea behind our approach to secrecy-preservation is to
place secrets as well as assertions from which secrets are deducible into an envelope so
that under OWA a reasoner can feign ignorance without resorting to outright lying. In
Section 4.1 we have seen how this idea was applied to the simple case of Propositional
Horn Logic where all the facts we need to protect are propositional facts. In this section
we illustrate how to apply our MSQ framework to a considerably more expressive
language, the Description Logic AL [Baader et al. 2003], where we need to protect
compound assertions which may contain quantifiers. Usually, a KB consists of both an
Abox and a TBox [Baader et al. 2003]; however, since our goal is to illustrate the MSQ
framework, considering the subsumption problem for the sublanguage FL0 of AL is
coNP-complete w.r.t. an acyclic TBox and PSpace-complete w.r.t. cyclic TBoxes [Baader
2009], for the sake of simplicity, we shall assume that the TBox is empty. Moreover, in
addition to its added expressive power, it has very good computational characteristics,
e.g., concept satisfiability (without TBoxes) can be checked in linear time [Schmidt-
Schauß and Smolka 1991].

4.2.1. Syntax and Semantics. The non-logical signature of AL consists of three mutually
disjoint sets: a set of concept names NC , a set of role names NR and a set of individuals
(or objects) NO. The set of AL expressions consists of the set of role names NR and the
set of concept expressions C recursively defined as follows:

C,D −→ A | ⊤ | ⊥ | ¬A | C ⊓D | ∀R.C | ∃R

where A ∈ NC , ⊤ is the top symbol, ⊥ is the bottom symbol, C,D ∈ C and R ∈ NR. An
AL assertion is an expression of the form C(a) or R(a, b) where C ∈ C, R ∈ NR and
a, b ∈ NO. An ABox is a finite set of assertions.

Under the classical interpretation, a formula is interpreted as either “true” or “false”.
However, under the OWA, given a KB K, the answer to a query α can be “Yes” (if

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 J. Tao et al.

K � α), “No” (if K � ¬α), or “Unknown” (otherwise). To test K � α one usually runs the
tableau algorithm to check the satisfiability of K ∪{¬α}, see [Baader et al. 2003]. This
is what we may think of as an algorithmic approach to OWA. In ALC, any formula can
be transformed to its negation normal form using De Morgan’s laws to push negation
inside and then check for satisfiability. Such an algorithmic approach does not work
for AL because negation is allowed only in front of concept names and existential
restriction is unqualified; hence, the usual tableau algorithm is not directly applicable.
In this section we incorporate the “Unknown” truth value into the semantics of AL and
transform the tableau algorithm for satisfiability into a sound and complete inference
system for answering queries. As one shall see, our semantics is a generalization of
the classical two-valued semantics. If an application only requires two-valued answers
such as “Yes” and “No”, or maybe “Yes” and “Unknown”, this three-valued semantics is
easily adapted into the two-valued case.

With the soundness and completeness of the inference system for answering queries,
we further show how to invert the rules of the inference system for AL and thus ob-
tain an algorithm for constructing envelopes. In more detail, the semantics of AL is
provided by means of an OW-interpretation7 I = (∆, ·I) where ∆ is a non-empty do-
main and ·I is an interpretation function such that

— for each individual a ∈ NO, aI ∈ ∆;
— for each concept name A ∈ NC , AI is a weak 3-partition of ∆, AI = (AI

N , A
I
U , A

I
Y);

this means that AI
N , A

I
U and AI

Y are mutually disjoint and their union is ∆ (but they
can be empty);

— for each role R ∈ NR, RI is a weak 3-partition of ∆×∆ of the following special form
RI = (∅, RI

U , R
I
Y); the reason for RI

N = ∅ is that in AL, role negation is not allowed.

The function ·I is extended to compound AL expressions for all a ∈ NO, A ∈ NC ,
R ∈ NR and C,D ∈ C as follows:

(1) ⊤I = (∅, ∅,∆) and ⊥I = (∆, ∅, ∅);
(2) (¬A)I = (AI

Y , A
I
U , A

I
N);

(3) (C ⊓D)I = ((C ⊓D)IN , (C ⊓D)IU , (C ⊓D)IY) where
— (C ⊓D)IY = CI

Y ∩DI
Y , and

— (C ⊓D)IN = CI
N ∪DI

N ,
— (C ⊓D)IU = ∆ \ ((C ⊓D)IY ∪ (C ⊓D)IN);

(4) (∃R)I = (∅, (∃R)IU , (∃R)
I
Y) where

— (∃R)IY = {d ∈ ∆ | ∃b ∈ ∆ : (d, b) ∈ RI
Y } and

— (∃R)IU = ∆ \ (∃R)IY = {d ∈ ∆ | ∀b ∈ ∆ : (d, b) ∈ RI
U};

(5) (∀R.C)I = ((∀R.C)IN , (∀R.C)
I
U , (∀R.C)

I
Y) where

— (∀R.C)IY = {d ∈ ∆ | ∀b ∈ ∆ : (d, b) ∈ RI
Y → b ∈ CI

Y },
— (∀R.C)IN = {d ∈ ∆ | ∃b ∈ ∆[(d, b) ∈ RI

Y ∧ b ∈ CI
N]} and

— (∀R.C)IU = ∆ \ ((∀R.C)IY ∪ (∀R.C)IN).

An OW-interpretation I = (∆, ·I) satisfies assertion C(a) (resp. R(a, b)), if aI ∈ CI
Y

(resp. (aI , bI) ∈ RI
Y); this is denoted by I � C(a) (resp. I � R(a, b)). An ABox A is

satisfiable if there is an OW-interpretation I satisfying all the assertions in A; we then
say that I is a model of A. An individual a ∈ NO is an instance of a concept C w.r.t A,
denoted by A � C(a), if I � C(a) for all models I of A.

An AL knowledge base is a triple K = 〈A,Q,Ω〉 where A is an AL ABox, Q, the
query space, is the set of all assertions over the vocabulary of A, and Ω = {Y,N,U}

7OW stands for Open World.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:23

is the answer space. Given a collection of querying agents M = {M1, M2, ..., Mm}
with respective secrecy sets S = {S1, S2, ..., Sm} and a communication graph G, we
define a secrecy structure S = 〈M, S,G〉 (cf. Definition 2.2). We say that an AL ABox
is in normal form if universal restriction does not contain a conjunction, i.e., for every
concept expression of the form ∀R.C occurring in the ABox, C is not in the form of
C1 ⊓ C2. It is easy to verify that ∀R.(C1 ⊓ C2) is equivalent to ∀R.C1 ⊓ ∀R.C2.

We make the following simplifying assumptions

(1) the ABox A and the secrecy sets S are satisfiable and in normal form,
(2) all individual names occurring in S occur in A,
(3) for 1 ≤ i ≤ m and every α ∈ Si, A � α, and
(4) querying agents ask queries only about individuals occurring in A.

Recall that an MSQ system is a triple 〈K,S,R〉 (See Definition 2.3). By Theorems
2.8 and 2.10, in order to define a secrecy-preserving reasoner R, it suffices to show
how to construct an envelope for each induced single-agent secrecy structure, which
for notational simplicity, we denote by S = 〈{M}, {S}, 〈{M}, {(M,M)}〉〉. Henceforth,
we focus on the single-agent case.

4.2.2. A Sound and Complete Inference System for AL. As indicated in Sections 2 and 3,
in order to construct an envelope, we need an underlying sound and complete infer-
ence system for AL. We fashion our inference system after the tableau algorithm for
the satisfiability problem for the Description Logic ALCQ [Baader and Sattler 2001].
Since the query space for AL knowledge bases is potentially infinite, as suggested in
Section 3.2, at the pre-query stage, we restrict the inferences (and, correspondingly,
the envelope) to a finite set of sub-expressions of assertions occurring in A ∪ S.

Definition 4.3. Given a set of AL-assertions B, the set of sub-expressions of roles
and concept expressions occurring in B, denoted by Sub(B), is defined as follows:

—C(a) ∈ B ⇒ C ∈ Sub(B) and R(a, b) ∈ B ⇒ R ∈ Sub(B);
—C ⊓D ∈ Sub(B) ⇒ {C,D} ⊆ Sub(B);
— ∀R.C ∈ Sub(B) ⇒ {R,C} ⊆ Sub(B);
— ∃R ∈ Sub(B) ⇒ R ∈ Sub(B).

We now fix Φ = Sub(A ∪ S). The inference system for AL is presented in Figure 1,
in the form of tableau completion rules in which B is initialized as the ABox A. The
tableau algorithm, denoted by Λ, non-deterministically applies the completion rules
until no further applications are possible.

⊓1-rule: If (C1 ⊓ C2)(a) ∈ B and {C1(a), C2(a)} * B ,
then B := B ∪ {C1(a), C2(a)}.

∃1-rule: If ∃R(a) ∈ B and there is no b ∈ NO s.t. R(a, b) ∈ B,
then B := B ∪ {R(a, c)} where c ∈ NO is fresh.

∀-rule: If {∀R.C(a), R(a, b)} ⊆ B and C(b) /∈ B,
then B := B ∪ {C(b)}.

⊓2-rule: If C1 ⊓ C2 ∈ Φ, {C1(a), C2(a)} ⊆ B and (C1 ⊓ C2)(a) /∈ B,
then B := B ∪ {(C1 ⊓ C2)(a)}.

∃2-rule: If ∃R ∈ Φ, there is b ∈ NO s.t. R(a, b) ∈ B and ∃R(a) /∈ B,
then B := B ∪ {∃R(a)}.

Fig. 1. Completion rules for AL

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 J. Tao et al.

The first three rules break down assertions into smaller constituents whereas the
last two rules construct compound assertions, all restricted to Φ. In reference to the
∃1-rule, an individual a ∈ NO is fresh if a has not been used before during the execution
of Λ. An ABox is closed if it contains a clash, i.e., it contains {A(a),¬A(a)} or ⊥(a) for
some A ∈ NC and a ∈ NO. An ABox that is not closed is open and it is completed if none
of the completion rules (in Figure 1) is applicable. With Φ defined as above, the ABox
resulting from the application of Λ is denoted by AΛ

Φ and it is unique up to renaming
of “fresh” individuals introduced by the ∃1-rule.

THEOREM 4.4. (Soundness of Λ) For all individuals a, b occurring in A, C(a) ∈
AΛ

Φ ⇒ A � C(a) and R(a, b) ∈ AΛ
Φ ⇒ A � R(a, b).

PROOF. Let I = 〈∆, ·I〉 be an arbitrary model of A. We prove the claim by induction
on the construction of AΛ

Φ. The base case is when no rule was applied yet. Since I is a
model of A, for every C(a), R(a, b) ∈ A, I � C(a) and I � R(a, b). For the induction step,
denote by A′ (A′′) the ABox before (after) the application of a completion rule.

— If the ⊓1-rule is applied, then (C1 ⊓ C2)(a) ∈ A′, {C1(a), C2(a)} * A′ and
{C1(a), C2(a)} ⊆ A′′. By IH, I � (C1⊓C2)(a) means aI ∈ (C1⊓C2)

I
Y = (C1)

I
Y ∩ (C2)

I
Y ,

and so I � C1(a) and I � C2(a).
— Since the application of the ∃1-rule always creates a fresh individual (that does not

appear in A, the claim holds true vacuously.
— If the ∀-rule is applied, then {∀R.C(a), R(a, b)} ⊆ A′, C(b) /∈ A′ and C(b) ∈ A′′. If a

or b does not occur in A, the claim holds. If a, b occur in A, by IH, I � ∀R.C(a) and
I � R(a, b), i.e., we have aI ∈ {d ∈ ∆ | ∀c : (d, c) ∈ RI

Y → c ∈ CI
Y } and (aI , bI) ∈ RI

Y .
It follows that bI ∈ CI

Y and so I � C(b).
— If the ⊓2-rule is applied, then C1⊓C2 ∈ Φ, {C1(a), C2(a)} ⊆ A′, (C1⊓C2)(a) /∈ A′ and

(C1 ⊓ C2)(a) ∈ A′′. By IH, I � C1(a) and I � C2(a), i.e., aI ∈ (C1)
I
Y and aI ∈ (C2)

I
Y

implying aI ∈ (C1)
I
Y ∩ (C2)

I
Y = (C1 ⊓ C2)

I
Y . It follows that I � (C1 ⊓ C2)(a).

— If the ∃2-rule is applied, then ∃R ∈ Φ, R(a, b) ∈ A′, ∃R(a) /∈ A′ and ∃R(a) ∈ A′′. If a
does not occur in A, the claim holds vacuously. If (a does and) b doesn’t occur in A,
then b was freshly introduced by applying the ∃1-rule either to the assertion ∃R(a)
or to an assertion ∃R(c) for some c 6= a. The former case contradicts the assumption
∃R(a) /∈ A′; in the latter case, the R(a, b) could not have been added to A′, contra-
dicting R(a, b) ∈ A′. Finally, suppose that both a and b occur in A. By IH, I � R(a, b)
and so aI ∈ {d ∈ ∆ | ∃b : (d, b) ∈ RI

Y }. Therefore, aI ∈ (∃R)IY . i,e., I � ∃R(a).

To prove the completeness of Λ, we define a canonical OW-interpretation J = 〈∆, ·J 〉
for an open and completed ABox AΛ

Φ as follows:

— ∆ := {a ∈ NO | a occurs in AΛ
Φ};

— aJ := a for all a occurring in AΛ
Φ;

— for A ∈ NC ∩ Φ, AJ = (AJ
N , A

J
U , A

J
Y) with AJ

U = (∆ \AJ
Y) \A

J
N where

AJ
Y := {a ∈ ∆ | A(a) ∈ AΛ

Φ} and AJ
N := {a ∈ ∆ | ¬A(a) ∈ AΛ

Φ};

— for R ∈ NR∩Φ, RJ = (∅,∆×∆\RJ
Y , R

J
Y) where RJ

Y := {(a, b) ∈ ∆×∆ | R(a, b) ∈ AΛ
Φ};

— J is extended to Φ as indicated in Section 4.2.1.

COROLLARY 4.5. For every role assertion R(a, b) where R ∈ Φ and a, b occur in AΛ
Φ,

R(a, b) ∈ AΛ
Φ ⇔ J � R(a, b).

The following lemma points out a relationship between the canonical OW-
interpretation J and the completed ABox AΛ

Φ. In fact, together with Corollary 4.5,
it shows that J is a model of AΛ

Φ, and hence a model of A.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:25

LEMMA 4.6. C(a) ∈ AΛ
Φ ⇒ J � C(a).

PROOF. The proof is by induction on the structure of concept expressions. The basis
is when C is A or ¬A where A ∈ Φ. In these cases the implications follow from the
definition of J . The induction step includes the following cases:

—C = C1 ⊓ C2. Since AΛ
Φ is completed, by the ⊓1-rules, C1(a) ∈ AΛ

Φ and C2(a) ∈ AΛ
Φ.

By IH, J � C1(a) and J � C2(a). Hence, a ∈ (C1)
J
Y ∩ (C2)

J
Y = (C1 ⊓ C2)

J
Y . So

J � C1 ⊓ C2(a) and the claim holds.
—C = ∃R. Since AΛ

Φ is completed, by the ∃1-rule, ∃R(a) ∈ AΛ
Φ implies that there is

b ∈ ∆ such that R(a, b) ∈ AΛ
Φ. By Corollary 4.5, R(a, b) ∈ AΛ

Φ ⇔ J � R(a, b). Moreover,

with b ∈ ∆, J � R(a, b) ⇔ (aJ , bJ) ∈ RJ
Y ⇔ aJ ∈ (∃R)JY ⇔ J � ∃R(a). Therefore, the

claim holds.
—C = ∀R.C1. If ∀R.C1(a) ∈ AΛ

Φ, since AΛ
Φ is completed, by the ∀-rule, for every b ∈ ∆,

R(a, b) ∈ AΛ
Φ implies C1(b) ∈ AΛ

Φ. By Corollary 4.5, R(a, b) ∈ AΛ
Φ ⇔ J � R(a, b). By

IH, we have J � C1(b). That is, for every b ∈ ∆, (aJ , b) ∈ RJ
Y → b ∈ (C1)

J
Y . Hence,

J � ∀R.C1(a).

For the proof of the completeness theorem, we will need the following auxiliary
Lemma.

LEMMA 4.7. For any ∀R.C ∈ Φ and any a that occurs in A, A � ∀R.C(a) ⇒
∀R.C(a) ∈ AΛ

Φ.

PROOF. Suppose ψ = ∀R.C(a) /∈ AΛ
Φ. From ψ and the canonical OW-interpretation

J = 〈∆, ·J 〉 we will construct a new OW-interpretation Jψ which, as we will show, is a
model of A that does not satisfy ψ. The construction proceeds as follows:

Step 1 Initialization. We define a domain ∆′ and a function J ′ as follows
— ∆′ := ∆ ∪ {x} where x /∈ ∆,

— bJ
′

:= bJ for all b occurring in AΛ
Φ,

—AJ ′

:= AJ for all A ∈ NC ∩ Φ,
— PJ ′

:= PJ for all P ∈ NR ∩ Φ and P 6= R,

—RJ ′

:= (∅,∆′ ×∆′ \RJ ′

Y , RJ ′

Y) where = RJ
Y ∪ {(aJ , x)}.

Step 2 Construction I. For all ∀R.D(a) ∈ AΛ
Φ where D 6= C and D is not of the form

∀S.D′,

— if D ∈ NC , then DJ ′

Y := DJ ′

Y ∪ {x};

— if D = ¬A where A ∈ NC , then AJ ′

N := AJ ′

N ∪ {x};

— if D is of the form ∃S, then ∆′ := ∆′ ∪ {xS} where xS is new and let SJ ′

Y :=

SJ ′

Y ∪ {(x, xS)}.
Step 3 Construction II. Let Γ = {∀R.∀S.E(a) ∈ AΛ

Φ | ∀S.E 6= C}. For every γ ∈ Γ,
let dep(γ) be the number of universal quantifiers in the prefix of γ. For example,
dep(F (b)) = dep(¬F (b) = dep(∃P (b)) = 0 and dep(∀P.F (b)) = 1 if F ∈ NC . Then
extend the construction of J ′ using Algorithm 4.

Step 4 Completion. Let ∆ψ be the ∆′ after the Step 3.

— For every A ∈ NC∩Φ and z ∈ ∆ψ \∆, if z /∈ AJ ′

Y ∪AJ ′

U ∪AJ ′

N , then AJ ′

U := AJ ′

U ∪{z}.

— For every P ∈ NR ∩ Φ, PJ ′

U = ∆ψ ×∆ψ \ PJ ′

Y .

Note that in Step 2, by the definition of Φ, ∀R.D ∈ Φ ⇒ R,D ∈ Φ. In Step 3, at all times
during the construction using Algorithm 4, Γ contains only assertions whose concept
expressions are universally restricted. By the definition of dep(γ) for γ ∈ Γ, an assertion
∀P1.∀P2.A(z) will be checked after an assertion ∀P1.∃P2(z). This guarantees that if z

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 J. Tao et al.

1 while Γ 6= ∅ do
2 Let k be the current minimum dep(γ) for γ ∈ Γ
3 Let Γk := {γ ∈ Γ | dep(γ) = k}
4 for ∀P.F (y) ∈ Γk do

5 if there is y′ such that (y, y′) ∈ PJ ′

Y then
6 if F ∈ NC then

7 Let FJ ′

Y := FJ ′

Y ∪ {y′}
8 else if F = ¬A where A ∈ NC then

9 Let AJ ′

N := AJ ′

N ∪ {y′}
10 else if F = ∃Q then
11 Let ∆′ := ∆′ ∪ {y′′} where y′′ is new

12 Let QJ ′

Y := QJ ′

Y ∪ {(y′, y′′)}
13 else if F = ∀Q.G then
14 Let Γ := Γ ∪ {F (y′)}
15 end

16 end
17 Let Γ := Γ \ {∀P.F (y)}
18 end

19 end

Algorithm 4: Jψ construction Step 3

has a P1-successor z1, then a P2-successor, say z2, of z1 will be created before checking
the assertion ∀P1.∀P2.A(z) so that z2 will be correctly put into the concept name A’s
interpretation. Let Jψ be J ′ after completion of Step 4. It is easy to see that ∆ψ is

finite and that for every A ∈ NC ∩ Φ and every P ∈ NR ∩ Φ, AJ
Y ⊆ A

Jψ
Y , AJ

N ⊆ A
Jψ
N and

PJ
Y ⊆ P

Jψ
Y . Define Jψ = 〈∆ψ, ·

Jψ 〉. To show that Jψ is an OW-interpretation, we need

to show that for all A ∈ NC ∩Φ, A
Jψ
Y ∩A

Jψ
N = ∅. Suppose that there is y ∈ A

Jψ
Y ∩A

Jψ
N for

someA ∈ NC∩Φ. Since J is a model, we have y ∈ ∆′\∆. Then from the above procedure,
there are two assertions ∀S1. · · · .∀Sj .A(b) ∈ AΛ

Φ and ∀S1. · · · .∀Sj .¬A(b) ∈ AΛ
Φ, which

contradicts the fact that J satisfies AΛ
Φ (see Corollary 4.5 and Lemma 4.6).

CLAIM 3. Jψ is a model of A.

Proof of the claim. We need to show that for every E(b) ∈ A, Jψ � E(b) and for
every P (b, c) ∈ A, Jψ � P (b, c). Since J is a model of A, for every P (b, c) ∈ A, we have

(bJψ , cJψ) = (bJ , cJ) ∈ PJ
Y ⊆ P

Jψ
Y , and so Jψ � P (b, c). For E(b) ∈ A, we have the

following cases:

—E = A ∈ NC . Since J is a model of A, bJψ = bJ ∈ AJ
Y ⊆ A

Jψ
Y , and so Jψ � A(b).

—E = ¬A where A ∈ NC . Since J is a model of A, bJψ = bJ ∈ (¬A)JY = AJ
N ⊆ A

Jψ
N =

(¬A)
Jψ
Y . So Jψ � ¬A(b).

—E = E1 ⊓ E2. Since J is a model of A, bJψ = bJ ∈ (E1 ⊓ E2)
J
Y = (E1)

J
Y ∩ (E2)

J
Y ⊆

(E1)
Jψ
Y ∩ (E2)

Jψ
Y = (E1 ⊓ E2)

Jψ
Y . So Jψ � E1 ⊓ E2(b).

—E = ∃P . Since J is a model of A, bJψ = bJ ∈ (∃P)JY if and only if there is c ∈ ∆ such

that (bJ , c) ∈ PJ
Y . Since PJ

Y ⊆ P
Jψ
Y , we have (bJ , c) ∈ P

Jψ
Y , and so Jψ � ∃R(b).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:27

—E = ∀P.D. Since J is a model of A, J � ∀P.D(b), i.e., for every c ∈ ∆, (bJ , c) ∈ PJ
Y ⇒

c ∈ DJ
Y . For every z ∈ ∆ψ \∆, if (bJ , z) ∈ P

Jψ
Y , then we have the following cases: by

the definition of Jψ (specifically, see Algorithm 4),

— if D ∈ NC , then z ∈ D
Jψ
Y .

— if D = ¬A where A ∈ NC , then z ∈ A
Jψ
N = (¬A)

Jψ
Y .

— if D = ∃S, there is z′ ∈ ∆ψ such that (z, z′) ∈ S
Jψ
Y , and so z ∈ (∃S)

Jψ
Y .

— if D = ∀S.D′, we have z ∈ (∀S.D′)
Jψ
Y .

Note that due to our normal form assumption for assertions in the ABox, D is not

of the form D1 ⊓ D2. It follows that z ∈ D
Jψ
Y . Therefore, for every c ∈ ∆ψ, we have

(bJψ , c) ∈ P
Jψ
Y ⇒ c ∈ DJψ , and so Jψ � ∀P.D(b).

Because of our normal form assumption, for the assertion ψ = ∀R.C(a), C is not a
conjunction and the construction of Jψ guarantees that Jψ is not a model of ∀R.C(a).
Since Jψ is a model of A, we have A 2 ∀R.C(a). Thus, the claim that for any ∀R.C ∈ Φ
and any a that occurs in A, A � ∀R.C(a) ⇒ ∀R.C(a) ∈ AΛ

Φ holds.

The following example illustrates how we construct a model to show that the ABox
need not entail an assertion of the form ∀R.C(a) that is not in the ABox.

Example 4.8. Suppose that we have an ABox A = {∀R.∃S1(a), ∀R.∃S2(a),
∀R.∀S1.A(a), ∀R.∀S2.¬A(a), ∀R.C(b)} and that the secrecy set S = ∅. Then Φ =
{R,S1, S2, A,¬A, ∃S1, ∃S2, ∀R.∃S1, ∀R.∃S2, ∀R.∀S1.A, ∀R.∀S2.¬A, ∀S1.A, ∀S2.¬A, ∀R.C,
C}. Since no completion rule is applicable to A, AΛ

Φ = A. Let ψ = ∀R.C(a).

Fig. 2. J and Jψ in Example 4.8

In Figure 2, we have the canonical model J for AΛ
Φ and the extension Jψ of J where

— La = Lb = {∀R.∃S1, ∀R.∃S2, ∀R.∀S1.A, ∀R.∀S2.¬A, ∀S1.A, ∀S2.¬A, ∀R.C},
— Lψa = La \ {∀R.C},

— Lψb = Lb,
— Lψx = {∃S1, ∃S2} ∪ La,
— Lψy = {A} ∪ La,

— Lψz = {¬A} ∪ La.

We use the convention that for a concept expression D ∈ C and individual c ∈ NO,

D ∈ Lc (respectively, D ∈ Lψc) means c ∈ DJ
Y (respectively, c ∈ D

Jψ
Y). It is easy to see

that Jψ is a model of A. But since C /∈ Lψx , Jψ 2 ψ.

THEOREM 4.9. (Completeness of Λ) Let AΛ
Φ be an open and completed ABox as de-

fined above. Then for every C,R ∈ Φ and a, b occurring in A, A � C(a) ⇒ C(a) ∈ AΛ
Φ

and A � R(a, b) ⇒ R(a, b) ∈ AΛ
Φ.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 J. Tao et al.

PROOF. By Corollary 4.5, we have A � R(a, b) ⇒ R(a, b) ∈ AΛ
Φ. Suppose that A �

C(a). We argue that J � C(a) ⇒ C(a) ∈ AΛ
Φ by induction on the structure of concept

expressions. Since J is a model of A, J � C(a). The base case is when C is A or ¬A
where A ∈ Φ∩NC . By the definition of the canonical model J , we have C(a) ∈ AΛ

Φ. The
induction step includes the following cases.

—C = C1 ⊓ C2. Since J � C1 ⊓ C2(a) ⇔ J � C1(a) ∧ J � C2(a), by IH, J � Ci(a) ⇒
Ci(a) ∈ AΛ

Φ for i ∈ {1, 2}. Since AΛ
Φ is completed, by the ⊓2-rules, (C1 ⊓ C2)(a) ∈ AΛ

Φ.
—C = ∃R. Since J � ∃R(a) ⇔ there is b ∈ ∆ such that J � R(a, b). By Corollary 4.5,
R(a, b) ∈ AΛ

Φ. Since AΛ
Φ is completed, by the ∃2-rule, ∃R(a) ∈ AΛ

Φ.
—C = ∀R.C1. Since A � ∀R.C1(a), it follows from Lemma 4.7 that ∀R.C1(a) ∈ AΛ

Φ.

From Theorem 4.9 and the fact that there is no completion rule to generate ∀R.C(a),
we can see that one cannot conclude ∀R.C(a) unless it is already in AΛ

Φ. This is rea-
sonable because, due to the OWA, the knowledge in the KB is incomplete, and so one
cannot infer all the individuals that are R-successors of a.

4.2.3. Constructing Envelopes for AL Knowledge Bases. We have shown that the tableau
algorithm Λ based on rules in Figure 1 is sound and complete. To construct an envelope,
we invert these completion rules, similarly to Section 4.1. The resulting rules are listed
in Figure 3. In this section, we assume that AΛ

Φ is open and completed.

⊓S1 -rule: If {C1(a), C2(a)} ∩ E 6= ∅ and (C1 ⊓ C2)(a) ∈ AΛ
Φ \ E,

then E := E ∪ {(C1 ⊓ C2)(a)}.
∃S1 -rule: If R(a, b) ∈ E and ∃R(a) ∈ AΛ

Φ \ E,
then E := E ∪ {∃R(a)}.

∀S-rule: If C(b) ∈ E and {∀R.C(a), R(a, b)} ⊆ AΛ
Φ \ E,

then E := E ∪ {∀R.C(a)}.
⊓S2 -rule: If (C1 ⊓ C2)(a) ∈ E and {C1(a), C2(a)} ∩ E = ∅,

then either E := E ∪ {C1(a)} or E := E ∪ {C2(a)}.
∃S2 -rule: If ∃R(a) ∈ E and R(a, b) ∈ AΛ

Φ \ E ,
then E := E ∪ {R(a, b)}.

Fig. 3. Completion rules for computing envelopes

Note that the ∃S1 -rule is used in the proof of Lemma 4.10. Also note that for the ∀S-
rule, we could have non-deterministically choosen ∀R.C(a) or R(a, b) for constructing
E. However, we prefer ∀R.C(a) since putting R(a, b) into E may trigger an application
of the ∃S1 -rule which may potentially trigger application(s) of the ∃S2 -rule and therefore
leading to a larger envelope.

The algorithm that non-deterministically applies these rules is denoted by ΛS . Due
to the non-determinism in applying the ⊓S2 -rule, different executions of ΛS may result
in different sets. Given the set AΛ

Φ (obtained by applying Λ on A with Φ = Sub(A∪ S)),
the set E is initialized as S and expanded with the execution of ΛS . Since AΛ

Φ is finite,
the computation of ΛS terminates. Let E1 be a resulting set (which will stay fixed for
the remainder of this section). By the assumption that for any α ∈ S, A � α (see Section
4.2.1), it follows from Theorem 4.9 that S ⊆ AΛ

Φ, and hence, E1 ⊆ AΛ
Φ.

The next lemma shows that no assertion in the envelope is “logically reachable” from
outside the envelope.

LEMMA 4.10. The ABox AΛ
Φ \ E1 is open and completed.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:29

PROOF. We must show that no completion rule in Figure 1 is applicable to AΛ
Φ \E1.

— If the ⊓1-rule is applicable, then there is an assertion C ⊓ D(a) ∈ AΛ
Φ \ E1

and {C(a), D(a)} * AΛ
Φ \ E1. Since AΛ

Φ is completed, {C(a), D(a)} ⊆ AΛ
Φ. Hence,

{C(a), D(a)} ∩ E1 6= ∅. However, since none of the completion rules in Figure 3 is
applicable to E1, by the ⊓S1 -rule, C ⊓D(a) ∈ E1, yielding a contradiction.

— If the ∃1-rule is applicable, then there exists ∃R(a) ∈ AΛ
Φ \E1 and there is no b ∈ NO

such that R(a, b) ∈ AΛ
Φ \ E1. However, since AΛ

Φ is completed, there exists c ∈ NO

such that R(a, c) ∈ AΛ
Φ, implying R(a, c) ∈ E1. By the ∃S1 -rule, ∃R(a) ∈ E1, yielding a

contradiction.
— If the ∀-rule is applicable, then {∀R.C(a), R(a, b)} ⊆ AΛ

Φ \ E1 and C(b) /∈ AΛ
Φ \ E1.

Since AΛ
Φ is completed, we have C(b) ∈ E1. However, since none of the completion

rules in Figure 3 is applicable to E1, by the ∀S-rule, {∀R.C(a), R(a, b)} ∩ E1 6= ∅,
yielding a contradiction.

— If the ⊓2-rule is applicable, then C1 ⊓ C2 ∈ Φ, {C1(a), C2(a)} ⊆ AΛ
Φ \ E1 and (C1 ⊓

C2)(a) /∈ AΛ
Φ \ E1. Since AΛ

Φ is completed, we have (C1 ⊓ C2)(a) ∈ E1. However,
since none of the completion rules in Figure 3 is applicable to E1, by the ⊓S2 -rule,
{C1(a), C2(a)} ∩ E

1 6= ∅, yielding a contradiction.
— If the ∃2-rule is applicable, then ∃R ∈ Φ, R(a, b) ∈ AΛ

Φ\E
1 and ∃R(a) /∈ AΛ

Φ\E
1. Since

AΛ
Φ is completed, we have ∃R(a) ∈ E1. However, since none of the completion rules

in Figure 3 is applicable to E1, by the ∃S2 -rule, R(a, b) ∈ E1, yielding a contradiction.

Since no rule is applicable to AΛ
Φ \E1, it is completed. Moreover, since AΛ

Φ is open, so
is AΛ

Φ \ E1.

The next theorem shows that the set E1 resulting from ΛS is a partial envelope for
S.

THEOREM 4.11. E1 is a partial envelope for S w.r.t. Φ.

PROOF. We need to show that E1 satisfies Axiom E1’: for every α ∈ E1 ⊆ AΛ
Φ,

AΛ
Φ \E1 2 α. By Lemma 4.10, AΛ

Φ \E1 is open and completed, so (AΛ
Φ \E1)ΛΦ = AΛ

Φ \E1.
By Theorem 4.9, for every C,R ∈ Φ and a, b occurring in AΛ

Φ \ E1, AΛ
Φ \ E1

� C(a) ⇒
C(a) ∈ AΛ

Φ \E1 and AΛ
Φ \ E1

� R(a, b) ⇒ R(a, b) ∈ AΛ
Φ \E1. Therefore, for every α ∈ E1,

since α /∈ AΛ
Φ \ E1, AΛ

Φ \ E1 2 α and so Axiom E1’ holds.

4.2.4. Answering Queries. Recall that in Section 3.2, we discussed how a partial en-
velope can be developed and maintained. In Algorithm 2, for each querying agent
i ∈ {1, ...,m}, Ei is initialized as Si and for every assertion γ ∈ Ei, we check all proofs
of γ, and for each such proof Γ, we “break” it by adding φΓ ∈ Γ to Ei. In the case of AL,
the completion rules for computing envelopes in Figure 3 in fact provide a procedure
for breaking such proofs for any assertion in Ei. The query space Q′ in Algorithm 2
corresponds to the set of subexpressions Φ that restricts the computation of both Λ
and ΛS .

After we have computed E1
i for every i ∈ {1, ...,m}, let E∗

i

∣

∣

Φ
:=

⋃

j:(Mi,Mj)∈E E
1
j for

1 ≤ i ≤ m. By Lemma 3.3, E∗
∣

∣

Φ
= {E∗

1

∣

∣

Φ
, ..., E∗

m

∣

∣

Φ
} is a partial envelope for S (w.r.t. Φ).

When a querying agent Mi poses a query C(a) ∈ AΛ
Φ where C ∈ Φ, it is answered “Yes”

if C(a) ∈ AΛ
Φ \ (E∗

i

∣

∣

Φ
), “No” if ¬C(a) ∈ AΛ

Φ \ (E∗
i

∣

∣

Φ
) (only when C ∈ NC in the case of

AL), and unknown otherwise.
However, if C /∈ Φ, the reasoner cannot conclude an answer with AΛ

Φ and E∗
∣

∣

Φ
and

more work is required. Let Φ′ = Φ ∪ Sub({C(a)}) where Sub({C(a)}) contains all the
sub-expressions of C, see Definition 4.3. The set AΛ

Φ may not be completed w.r.t. Φ′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 J. Tao et al.

Applying Λ on AΛ
Φ, we obtain AΛ

Φ′ . Accordingly, some of the completion rules in Figure
3 may become applicable. For each 1 ≤ i ≤ m, we expand E∗

i

∣

∣

Φ
until none of the com-

pletion rules in Figure 3 is applicable. The resulting set is denoted by E2
i . By Corollary

3.4, E2
i is a partial envelope (w.r.t. Φ′) for the induced single-agent secrecy structure

Si; by Lemma 3.3, E∗
∣

∣

Φ′
= {E∗

1

∣

∣

Φ′
, ..., E∗

m

∣

∣

Φ′
} is a partial envelope for S (w.r.t. Φ′) where

E∗
i

∣

∣

Φ′
=

⋃

j:(Mi,Mj)∈E E
2
j . With the sets AΛ

Φ′ and E∗
∣

∣

Φ′
, queries over Φ′ can be answered

without revealing any secrets. Subsequent queries are treated similarly.

5. CONCLUSION

In this paper we have introduced a conceptual logic-based framework for secrecy-
preserving reasoning for KBs in multiagent settings based on sound and complete
proof systems. We have adapted the idea of secrecy envelopes (introduced in [Tao et al.
2010]) to this framework (Section 2) and have proved some interesting results about
the structure of such envelopes (Section 2.1). We provided a single sweep bottom-up ap-
proach for constructing tight envelopes in the special case where the communication
graph is an inverted forest, and have shown that this cannot be extended to DAGs. In
practice, we build an initial partial envelope and update it as needed. We illustrated
an application of this general approach in Propositional Horn KBs (Section 4.1) and
Description Logic AL KBs (Section 4.2). In the case of AL, the usual way of answering
queries by checking satisfiability is not directly applicable since negation is allowed
only in front of concept names and existential restriction is unqualified. Therefore,
we utilized three-valued interpretation for answering queries under OWA. Such a se-
mantics allows us to have a sound and complete proof system for answering queries
directly rather than through satisfiability checking. Furthermore, since the rules for
computing an envelope are obtained by inverting the rules of the sound and complete
proof system, OW-interpretations are crucial in computing envelopes under OWA.

We have assumed that the secrecy sets are finite and given. It would be useful to
consider cases where secrecy sets are (in principle) infinite, but have finite descrip-
tions that can be expressed in a suitable policy language. We have also assumed that
the queries and the KB are represented in the same language. It would be useful to
consider query languages different from that of the KB, for example, allowing conjunc-
tive queries. Another direction for future work is to study more general communication
graphs. For instance, graphs that can place additional restrictions on answer-sharing,
perhaps by attaching predicates to edges which could restrict the communication be-
tween querying agents.

REFERENCES

BAADER, F. 2009. Description logics. In Reasoning Web: Semantic Technologies for Information Systems,
5th International Summer School 2009. Lecture Notes in Computer Science Series, vol. 5689. Springer–
Verlag, 1–39.

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-SCHNEIDER, P. F., Eds. 2003.
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press.

BAADER, F., KNECHTEL, M., AND PEÑALOZA, R. 2009. A generic approach for large-scale ontological
reasoning in the presence of access restrictions to the ontology’s axioms. In International Semantic
Web conference, A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, Eds. Lecture Notes in Computer Science Series, vol. 5823. Springer, 49–64.

BAADER, F. AND SATTLER, U. 2001. An overview of tableau algorithms for description logics. Studia Log-
ica 69, 1, 5–40.

BAO, J., SLUTZKI, G., AND HONAVAR, V. 2007. Privacy-preserving reasoning on the semantic web. In Web
Intelligence. IEEE Computer Society, 791–797.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A Conceptual Framework for Secrecy-preserving Reasoning in Knowledge Bases A:31

BELL, D. E. AND LAPADULA, L. 1974a. Secure computer systems. Tech. Rep. ESD-TR-73-278, Vols. 1, 2,
MITRE Corp., Bedford, MA.

BELL, D. E. AND LAPADULA, L. 1974b. Secure computer systems: A mathematical model. Tech. Rep. ESD-
TR-73-278, Vol. 2, MITRE Corp., Bedford, MA.

BELL, D. E. AND LAPADULA, L. 1974c. Secure computer systems: Mathematical foundations. Tech. Rep.
ESD-TR-73-278, Vol. 1, MITRE Corp., Bedford, MA.

BERTINO, E., KHAN, L. R., SANDHU, R. S., AND THURAISINGHAM, B. M. 2006. Secure knowledge man-
agement: confidentiality, trust, and privacy. IEEE Transactions on Systems, Man, and Cybernetics, Part
A 36, 3, 429–438.

BISKUP, J. 2011. History-dependent inference control of queries by dynamic policy adaption. In DBSec.
106–121.

BISKUP, J., KERN-ISBERNER, G., AND THIMM, M. 2008. Towards enforcement of confidentiality in agent
interactions. In Proceedings of the 12th International Workshop on Non-Monotonic Reasoning (NMR08).
104–112.

BISKUP, J. AND TADROS, C. 2012. Revising belief without revealing secrets. Foundations of Information
and Knowledge Systems, 51–70.

BISKUP, J., TADROS, C., AND WIESE, L. 2010. Towards controlled query evaluation for incomplete first-
order databases. Foundations of Information and Knowledge Systems, 230–247.

BISKUP, J. AND WEIBERT, T. 2008. Keeping secrets in incomplete databases. International Journal of Infor-
mation Security 7, 3, 199–217.

BONATTI, P. A., DUMA, C., FUCHS, N., NEJDL, W., OLMEDILLA, D., PEER, J., AND SHAHMEHRI, N. 2006.
Semantic web policies - a discussion of requirements and research issues. In ESWC. 712–724.

BONATTI, P. A. AND OLMEDILLA, D. 2007. Rule-based policy representation and reasoning for the semantic
web. In Reasoning Web. LNCS Series, vol. 4636. Springer, 240–268.

BONATTI, P. A. AND SAURO, L. 2013. A confidentiality model for ontologies. In The Semantic Web–ISWC
2013. Springer, 17–32.

BORGWARDT, S. AND PEÑALOZA, R. 2011. Description logics over lattices with multi-valued ontologies. In
Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume
Two. AAAI Press, 768–773.

DI VIMERCATI, S. D. C., SAMARATI, P., AND JAJODIA, S. 2005. Policies, models, and languages for access
control. In DNIS, S. Bhalla, Ed. Lecture Notes in Computer Science Series, vol. 3433. Springer, 225–237.

DOWLING, W. F. AND GALLIER, J. H. 1984. Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae. J. Log. Program. 1, 3, 267–284.

GODIK, S. AND (ED.), T. M. 2002. Oasis extensible access control markup language (xacml).
OASIS Committee Secification cs-xacml-specification-1.0, November 2002, http://www.oasis-
open.org/committees/xacml/.

GOGUEN, J. A. AND MESEGUER, J. 1982. Security policies and security models. In IEEE Symposium on
Security and Privacy. 11–20.

GRAY, J. W. AND SYVERSON, P. F. 1998. A logical approach to multilevel security of probabilistic systems.
Distributed Computing 11, 2, 73–90.

HALPERN, J. Y. AND O’NEILL, K. R. 2008. Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur. 12, 1,
1–47.

HALPERN, J. Y. AND WEISSMAN, V. 2008. Using first-order logic to reason about policies. ACM Trans. Inf.
Syst. Secur. 11, 4, 1–41.

HODKINSON, I., WOLTER, F., AND ZAKHARYASCHEV, M. 2000. Decidable fragments of first-order temporal
logics. Annals of Pure and Applied logic 106, 1, 85–134.

JAIN, A. AND FARKAS, C. 2006. Secure resource description framework: an access control model. In SAC-
MAT. 121–129.

JAJODIA, S. 1996. Database security and privacy. ACM Comput. Surv. 28, 1, 129–131.

JAJODIA, S., SAMARATI, P., SAPINO, M. L., AND SUBRAHMANIAN, V. S. 2001. Flexible support for multiple
access control policies. ACM Trans. Database Syst. 26, 2, 214–260.

KAGAL, L., BERNERS-LEE, T., CONNOLLY, D., AND WEITZNER, D. J. 2006. Using semantic web technolo-
gies for policy management on the web. In AAAI. AAAI Press.

KAGAL, L., FININ, T. W., AND JOSHI, A. 2003. A policy based approach to security for the semantic web. In
ISWC. 402–418.

KAGAL, L., PAOLUCCI, M., SRINIVASAN, N., DENKER, G., FININ, T. W., AND SYCARA, K. P. 2004. Autho-
rization and privacy for semantic web services. IEEE Intelligent Systems 19, 4, 50–56.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 J. Tao et al.

KOLOVSKI, V., HENDLER, J. A., AND PARSIA, B. 2007. Analyzing web access control policies. In WWW, C. L.
Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy, Eds. ACM, 677–686.

MAKOWSKY, J. A. 1987. Why horn formulas matter in computer science: Initial structures and generic
examples. Journal of Computer and System Sciences 34, 2-3, 266–292.

MCLEAN, J. 1992. Proving noninterference and functional correctness using traces. Journal of Computer
Security 1, 1, 37–58.

OSBORN, S., SANDHU, R., AND MUNAWER, Q. 2000. Configuring role-based access control to enforce manda-
tory and discretionary access control policies. ACM Trans. Inf. Syst. Secur. 3, 2, 85–106.

SCHMIDT-SCHAUSS, M. AND SMOLKA, G. 1991. Attributive concept descriptions with complements. Artif.
Intell. 48, 1, 1–26.

SHANNON, C. 1949. Communication theory of secrecy systems. Bell Systems Technical Journal 28, 656–715.

SICHERMAN, G. L., DE JONGE, W., AND VAN DE RIET, R. P. 1983. Answering queries without revealing
secrets. ACM Trans. Database Syst. 8, 1, 41–59.

STAAB, S. AND STUDER, R. 2009. Handbook on ontologies. Springer.

STRACCIA, U. 2006. Description logics over lattices. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 14, 01, 1–16.

SUTHERLAND, D. 1986. A model of information. In Proceedings of the 9th National Computer Security Con-
ference. Vol. 247. 175–183.

TAO, J., SLUTZKI, G., AND HONAVAR, V. 2010. Secrecy-preserving query answering for instance checking
in EL. In RR. 195–203.

TONTI, G., BRADSHAW, J. M., JEFFERS, R., MONTANARI, R., SURI, N., AND USZOK, A. 2003. Semantic
web languages for policy representation and reasoning: A comparison of kaos, rei, and ponder. In ISWC.
419–437.

WEITZNER, D. J., ABELSON, H., BERNERS-LEE, T., FEIGENBAUM, J., HENDLER, J. A., AND SUSSMAN,
G. J. 2008. Information accountability. Commun. ACM 51, 6, 82–87.

WEITZNER, D. J., HENDLER, J., BERNERS-LEE, T., AND CONNOLLY, D. 2005. Creating the policy-aware
web: Discretionary, rules-based access for the world wide web. In Elena Ferrari and Bhavani Thurais-
ingham (editors), Web and Information Security, Hershey, PA: Idea Group Inc.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

