

Automata-Based Verification of Security Requirements of Composite Web Services

Hongyu Sun1, Samik Basu1, Vasant Honavar1 and Robyn Lutz1,2

1Department of Computer Science, Iowa State University
Ames, IA, 50011-1040, USA

2Jet Propulsion Laboratory/Caltech
{sun, sbasu, honavar, rlutz}@cs.iastate.edu

Abstract— With the increasing reliance of complex real-world
applications on composite web services assembled from
independently developed component services, there is a
growing need for effective approaches to verifying that a
composite service not only offers the required functionality but
also satisfies the desired non-functional requirements (NFRs).
In high-assurance applications such as traffic control, medical
decision support, and coordinated response to civil
emergencies, of special concern are NFRs having to do with
security, safety and reliability of composite services. Current
approaches to verifying NFRs of composite services (as
opposed to individual services) remain largely ad-hoc and
informal in nature. In this paper we develop techniques for
ensuring that a composite service meets the user-specified
NFRs expressible in the form of hard constraints e.g.,
“response time has to be less than 5 minutes.” We introduce an
automata-based framework for verifying that a composite
service satisfies the desired NFRs based on the known
guarantees regarding the non-functional properties of the
component services. We further show how to improve the
efficiency of verifying that a composite service indeed satisfies
a desired set of NFRs by: (i) Exploiting information about the
applicability of specific NFRs (e.g., security) only to certain
subsets of the component services that make up a composite
service to minimize the verification effort and (ii) Identifying
inconsistencies between NFRs with overlapping scopes. We
illustrate how our approach can be used to verify the security
requirements for an Emergency Management System. We also
show how the approach can be used to verify whether a
composite service satisfies any desired set of NFRs that can be
expressed in the form of hard constraints of a quantitative
nature.

Keywords-Composite Web Service, Security, Verification,
Quality of Service

I. INTRODUCTION
As web technologies become increasingly widespread,

there is a proliferation of independently developed web
services in many application domains. Complex real-world
applications typically rely on composite web services
assembled from multiple independently developed composite
services. Consequently, a variety of approaches have been
developed for assembling composite services that satisfy the
user-supplied functional specifications [1, 2]. Functional
requirements (FRs) describe how the composite service
ought to process its input so as to generate the desired output.
A number of techniques are available for verifying whether a
composite service satisfies the user-specified FR [1, 2, 9].

However in many applications, a composite service needs
to satisfy not only the desired FR but also the user-specified
non-functional requirements (NFRs) [25]. NFRs typically
specify constraints that must be met with respect to the
security, safety and reliability of composite services. NFRs
can be hard constraints or soft constraints. Hard constraints
refer to constraints that must be satisfied e.g., “response time
has to be less than 5 minutes”. Soft constraints on the other
hand specify user preferences over non-functional attributes
e.g., “the lower the cost, the better”. NFRs that specify
quality requirements e.g., with respect to response time, are
often also called Quality of Service (QoS) requirements [10].

Ensuring that a composite service satisfies not only the
desired FRs but also NFRs is especially critical in the case of
high assurance applications such as traffic control, medical
decision support, and coordinated response to civil
emergencies [27]. Consider, for example, an Emergency
Management System (EMS) [6]. The key FR of an EMS
(see Fig. 1) is to dispatch ambulance(s), fire truck(s) and
police to a location upon request using available resources.
An EMS consists of several components: the Scheduler
Service that takes the request messages from the field
officers’ mobile terminals; the Emergency Resource Services
(e.g., Police.A and Police.B) that interact with the resource
databases and manage the local resources of ambulances, fire
trucks and police; and the Dispatcher Service that interacts
with ambulances, fire trucks and police cars, and dispatches
them to the target location.

An EMS is a high-assurance system because failure to
meet its functional (e.g., dispatch ambulance to an accident
victim) or non-functional requirements (e.g., keep patient
information confidential) can have disastrous consequences.
The reliability of the system, the availability of the services,
the effectiveness of resource allocation and the security of
communications are crucial to public safety. For example,
messages in an EMS must be secured against malicious
eavesdropping, interception and falsification before
deployment. Hence, security NFRs for an EMS might
require that the messages in different scenarios be sent at
different encryption levels depending on the type of
emergency incident. For national security related incidents,
messages and service operations may need to be protected
with stronger encryption than in the case of civilian
incidents. An example of a security NFR for an EMS is that
a request to dispatch police shall be processed using highly-
encrypted message paths.

2010 21st International Symposium on Software Reliability Engineering

1071-9458/10 $26.00 © 2010 IEEE

DOI 10.1109/ISSRE.2010.20

348

2010 IEEE 21st International Symposium on Software Reliability Engineering

1071-9458/10 $26.00 © 2010 IEEE

DOI 10.1109/ISSRE.2010.20

348

Security guarantees for encryption and authentication of
the messages for each service are typically specified using
the web service security policy (WS-Security and WS-
Policy) which is included in the WSDL specification for the
service [20]. The security NFR for the EMS, however,
applies to the composite service which consists of the
multiple component services that make up the EMS. This
presents us with the challenge of verifying that the security
guarantees available for the individual component services
that make up the composite service indeed satisfy the
security NFR of the composite service. For a composite web
service, the security requirements can apply either globally
(to all services in the composite web service) or locally (to
more than one service operation but not to all). Service
operations are the external functionalities of a component
service defined in their public interfaces. A service operation
takes an input, takes actions on the input and returns the
output. A component service can have one or more service
operations.

Figure 1. An illustrative example: excerpt of a web-based Emergency

Management System

Other similar emergency management systems in
existence include the Incident Command System of the U.S.
Federal Emergency Management Agency (FEMA) and the
National Incident Management System (NIMS) for major,
multi-site incidents [29]. Many incidents in emergency
management systems have historically been caused by
incorrect request or dispatch data (e.g., the London
Ambulance System in 1992 and the Australian Emergency
System in 2006) [28].

Current approaches to verifying non-functional
requirements (NFRs) of composite services (as opposed to
individual services) remain largely ad-hoc and informal in
nature. In this paper we develop techniques for ensuring that
a composite service meets the user-specified non-functional
requirements expressible in the form of hard constraints. We
introduce an automata-based framework for (1) representing
NFRs that can be expressed in the form of hard constraints
and (2) verifying that the composite service satisfies the
NFRs based on the known guarantees regarding the non-

functional properties of the component services. We
illustrate how our approach can be used to verify the
security requirements for an emergency management
system. However, the proposed approach can be used to
verify whether a composite service satisfies any desired set
of non-functional requirements that can be expressed in the
form of hard constraints of a quantitative nature.

The proposed approach to static verification of NFRs of
composite services incorporates two novel elements:
1. Scoping of NFRs: In many situations, specific NFRs

(e.g., with respect to security) may be applicable only to
specific subsets of the component services that make up
the composite service. Moreover, the subset of services
that need to satisfy a NFR may differ across the
different NFRs (e.g., response time, security). Existing
quality of service models for composite web service are
not expressive enough to represent NFRs that apply to
specific subsets of the services that make up a
composite service [10, 11, 12]. To allow modeling of
NFRs that apply to different subsets of components of a
composite service, we introduce the notion of scope.
The increased precision in the description of NFRs
enables more efficient verification of NFRs.

2. Consistency checking of NFRs: NFRs with
overlapping scopes can be inconsistent (and hence
unsatisfiable) in the case of some candidate composite
services. This scenario is not uncommon in settings
where attempts to achieve one NFR (say, with respect
to security) may rule out the achievement of another
NFR (say, with respect to response time) [3]. Hence,
when the scopes of different NFRs overlap, checking
the consistency of NFRs can help avoid effort that
would otherwise be wasted in exploring composite
services that would violate the NFR constraints. Our
automata-based model permits the consistency
checking of NFRs with overlapping scopes.

We introduce and compare three alternative strategies in
the case that multiple NFRs exist and analyze their relative
advantages and disadvantages under different scenarios.
This approach to verifying the NFRs can also support
efficient re-verification of composite services as needed
when NFRs are updated.

The rest of the paper is organized as following. Section II
provides an overview of our approach. Section III briefly
reviews an approach to exploring the space of candidate
compositions. Section IV describes our approach to
modeling NFRs and several strategies for verifying whether
a candidate composition satisfies the NFRs. Section V
describes related work. Section VI concludes with a brief
discussion and limitations and directions for further
research.

II. OVERVIEW
Our overall approach to assembling a composite service

that satisfies both the functional and non-functional
requirements (in the case of security related NFRs) is shown

349349

in Fig. 2. The functional composition algorithm [9] (briefly
reviewed in Section III below) uses a goal model in the form
of an automaton to encode the user-specified FR. A
composite service is represented as an automaton where
states represent the component services participating in the
composition and inter-state transitions represent composition
of the corresponding component services. The functional
composition algorithm assembles a composite service that
verifiably satisfies the FR by exploring the space of
candidate compositions.

The focus of this paper, however, is on verifying that a
composite service assembled by the functional composition
algorithm also satisfies the NFR. We use an automaton to
represent the non-functional properties of a composite
service (See Section IV for details). The latter correspond to
sequences of properties of non-functional attributes of the
component services that make up a composite service.
Labels on transitions of the NFR automata encode the set of
non-functional constraints that are satisfied by the services
that are connected by the respective transitions.

A composite service is said to satisfy a given set of NFRs
if and only if the sequence of properties over non-functional
constraints represented by the NFR-automata is also realized
by the automaton that encodes the composite service. A
composite service conforming to a desired NFR is obtained
by computing and verifying the product of the automaton
representing the composite web service and the automaton
representing the corresponding NFR. This lifts the NFR
analysis from the level of individual services to the level of
the search space of candidate compositions obtained from
the functional requirements.

The non-functional properties, e.g., security policies, of
the component services are extracted from their WSDL
specifications. A domain terminology mapping table is used
to translate the user-specified NFR, e.g., “messages shall be
highly-encrypted” into the terminology used in the WSDL
specification (“messages must use standard Basic128Sha256
encryption algorithm with a 256-bit key”).

The verification of a composite web service consists of
two main parts, as shown in Fig. 2. The first part is the
functional composition of the component web services. This
is prior work [9], briefly reviewed in Section III below. The
goal model is an automaton constructed to model the
functionalities of the required system. With the goal model
as input, an iterative algorithm generates a composite web
service that verifiably satisfies the functional requirements.

The second part of the process, and the contribution of
this paper, is the verification of the security non-functional
requirements, shown in the bottom half of the diagram. The
security NFR is modeled in an automaton-based model, as
described in Section IV below. The composite web service
derived from the first step can then be verified against this
security automaton. During the verification, the security
policies of the service operations are pulled from the
appropriate WSDL files. The domain terminology mapping
table is used to translate the security policies into an
algorithm-readable input and to provide the algorithm with
the aggregation rules needed to handle security NFRs.

It must be noted that the focus of this paper is on static
verification of NFR. Verification of NFRs where
satisfaction is contingent on runtime performance (e.g.,
whether an ambulance reaches its destination in time to
meet a response time NFR) can only be dynamically
verified at runtime and are beyond the scope of this paper.

Figure 2. Overview

III. FUNCTIONAL COMPOSITION
In our approach, we take the pre-construction of the

composite web service meeting the FRs as fundamental. This
is illustrated in the top half of the overview in Fig. 2. In our
illustration, we use the algorithm described in previous work
[9] to achieve this construction, but other approaches, such
as those in [1, 2], would also work.

The goal model in Fig. 3 is constructed as a first step in
composing the component services into a composite service.
The goal model captures two types of information required
by the FRs: the workflow of the composite service and the
component level functionality for each service operation.
The states represent component services and the transitions
represent the input/output messages for the service
operations. Note that one component service can have more
than one operation, so may be represented by multiple states.
For example, the ambulance service can have service
operations to provide availability information regarding
ambulance resources and to reserve these resources.

350350

The label on each transition represents a guard condition
or service operation functionality required to be realized by a
component service, such as Scheduler_Reserve. Each
operation can take message inputs and produce message
outputs. The goal model identifies the service operations and
workflows of the EMS as a functionality template for
required EMS candidates. The functionalities, such as
scheduling, reserving and dispatching firetrucks,
ambulances, and police are specified in the goal model.

The goal of the functional service composition algorithm
is to find component services providing the required
functionalities. The Iterative Forward and Backward Search
Algorithm [9] is invoked with the goal model in Fig. 3 as
input to generate the composite web service. The algorithm
maintains a composition result set during the computation
and tentatively searches forwards and backwards in the
component service registry for a service that satisfies the
functional requirement. The result set moves forward if the
current component service satisfies the service operation
specified in the goal model and stores it in the result set;
otherwise, it moves backwards and tries another component
service. The algorithm uses an exhaustive search to find all
composite web services satisfying the goal model finally.

Figure 3. Functional goal automaton of the EMS

IV. SECURITY REQUIREMENT VERIFICATION
To be able to verify the NFRs, the first step is to model

them. As shown in the overview in Fig. 2, each security
NFR is modeled as a security property automaton.

A. NFR Automata Derivation
We thus first define the finite state automaton used to

model the composite web service and the NFRs.

Definition 1: A finite state automaton is a tuple FSA =

(S, ��, �, P, F) where S is the finite set of states, �� � S is the
start state, and � � S × 2P × S is the transition relation of
the form s � � � �� such that s, �� � S, and � � 2P is a
subset of propositions P. Finally, F �S is the set of final
states.

A finite sequence is said to be accepted by the FSA if and

only if the sequence starts from �� and terminates in any of
the final states in F. The NFRs and composite web services
are described using FSA.

Fig. 4 shows a composite web service automaton derived
from the FR goal model in Fig. 3. This candidate represents
an instance of the EMS where only police need to be
dispatched. The composite web service is here augmented
with its associated security NFRs on the transitions.

Figure 4. A composite web service candidate automaton of the EMS

with security policies associated

We will also model the NFR property constraints using

the automaton in Definition 1. Note that an automata-based
property model can represent both safety and liveness
properties [4, 5], where a safety property is of the form “a
program never enters an undesirable state” and a liveness
property is of the form “a program eventually enters a
desirable state”. If a state violating a safety property is
encountered during composition of the composite web
service automaton and the NFR automaton, or if a state
satisfying a liveness property is not reached in any branch at

351351

the end of the composition, we say that this composite web
service violates the NFR. To achieve compositional
verification of the multiple NFR properties, we unify the
types of properties by converting the liveness properties to
safety properties via use of an additional trap state � to
capture those undesirable final states in the liveness
properties. This is described more fully in [4].

Figure 5. Global security requirements: (1) all service operations shall
employ highly-secured messages; (2) all service operations shall have

authentication.

Scoping the NFRs. The scope of each NFR constraint is

specified as the dotted line as shown in the excerpts in Fig.
5. A global NFR property can be described as a single self-
loop with a NFR property constraint on it. For example, Fig.
5 shows two global security properties. One requires that all
service operations shall employ a high encryption level and
the other requires that all messages and operations shall be
authenticated. The concept of “Encryption Level = High”
and “Authentication = True” in the constraints will be
defined in the domain terminology mapping table in Section
IV.B.

In the composite web service, a NFR may refer only to
the properties or behaviors of some services or some
message paths. A scope of a NFR property refers to a user-
defined subset of the services or service operations to which
the NFR property actually applies. For example, a user of the
EMS for a search and rescue incident may require only the
service operations of reading and writing the Police Resource
to be highly encrypted, rather than globally requiring all
service operations to be highly encrypted. Similarly, that user
may require only the message to dispatch the police to be
authenticated. In the excerpts in Fig. 6, the dotted lines
describe the local scopes of these security properties.

The FR goal model introduced in Section III is used here
as a template to specify NFR constraints and their scoping
information. Since all composite web service candidates
have the same workflow as that specified in the goal model,
a trace equivalence check can be performed to verify that the
composite web services satisfying the FRs also satisfy the
required security constraints.

We now derive the security NFR constraint model from
the goal model in Fig. 3. We illustrate the process with the
NFR described in Section I, i.e., that a request to dispatch
police shall be processed using highly-encrypted message
paths. The construction of a NFR property constraint consists
of the following steps:

1. Identify the scope in the goal automaton (Fig. 3) for this
NFR constraint. For the security NFR of concern here,
we identify the path with the Police_Resource operation
in it to be the scope.

2. Label the NFR constraint for the scope to cover all the
operations within the scope. Here we label the path we
identified in step 1 as “Encryption Level>=High”.

3. Simplify the model, if possible, by merging the states
and transitions unrelated to the scope into a single state
with a self-loop.

4. Prune unrelated states and paths. Here we remove the
other branches from the graph, yielding the security
NFR automata in Fig. 6.

 Figure 6. Locally scoped security requirements: (1) all requests to dispatch
police shall employ highly-encrypted messages; (2) messages to dispatch the

police shall be authenticated.

To verify that the composite web service satisfies the
security NFR, we must first retrieve the security guarantees
of the individual component services. The composite web
service produced by the functional composition, e.g., Fig. 4,
is stored in Web Service Business Process Execution
Language (WSBPEL) [19] file. This WSBPEL file records
the workflow of the participating component services and
associates with their WSDL files, which further describes
their service operations. Each service operation, as shown in
Fig. 4, is associated with a set of NFR attributes in the
WSDL file, namely the security property described in the
WS-Security. The security policies named in Fig. 4, such as
Basic192, are different security policies which each contain
the description of an encryption algorithm, a signature key
length, a symmetric or asymmetric key and other security
attributes. The following XML excerpt shows how a security
policy is associated with a service operation:

Security Policy Binding to Service Operations
<Policy wsu:Id="medium_secure">
 <ExactlyOne>

352352

<sp:Basic192 ... />
 </ExactlyOne>
</Policy>

<wsdl:binding name="SecureBinding"

type="tns:ReservationInterface" >
 <PolicyReference URI="# medium_secure " />
 <wsdl:operation name="Reservation"

>...</wsdl:operation>
 ...
</wsdl:binding>

In the first part of this piece of code, a Basic192 security

solution (described in [22]) is defined in the security policy.
In the second part, this policy is bound with the Reservation
operation in the WSDL file of the police service. This
reservation operation reserves the police resources to
dispatch and prevents concurrent allocation of the same
units. The binding between the security policy and the
service operation allows our approach to retrieve the security
policy for each operation in a composite web service for
verification.

As shown in Fig. 4 and the XML code, the security
policies are specified for each operation of each component
of a composite service. Note that the security policies of
different operations can differ from each other. The resulting
sets of security policies (and the associated enforcement
algorithms) are collectively used to construct a domain
terminology mapping table that allows the different security
policies to be compared with each other.

B. Domain Terminology Mapping
During verification, the security policies of the service

operations associated with a service are retrieved from the
WSDL specifications of the corresponding service. A
domain terminology mapping table is designed to bridge the
gap between the user’s requirements (Low, Medium, High,
or Critical level encryption) and the specifications described
in the web services (algorithms and minimum key lengths).
Table I defines, for our illustrative example, an excerpt of the
different encryption levels specified in WS-Policy [22] and a
Boolean option for an authentication feature for the
composite web service. These choices associate with
different security policies in WS-Security used by the web
services.

The security solutions specified in WS-Security are
mapped to an encryption level based on the minimum key
length of their encryption algorithms. By using a symmetric
encryption algorithm, the message sender and the receiver
can share a key, in order that only the genuine sender can
encrypt and the real receiver decrypt the communication
[31]. The optional authentication feature is mapped to the
security policies based on whether a symmetric encryption is
applied. These mappings are stored in a table for use and
reuse in verification that candidate composite services satisfy
the security NFRs.

TABLE I. SECURITY TERMINOLOGY MAPPING TABLE EXCERPT

Encryption�
Level�

Security�Algorithm�
Min��Key�
Length�

Sym�
metric�

Low� None� 0� No�

Medium�
Basic128� 128� No�

Basic128Sha256� 128� Yes�

High�

Basic192� 192� No�
Basic192Sha256� 192� Yes

TripleDes� 192� No�
TripleDesSha256� 192� Yes�

Critical�
Basic256� 256� No�

Basic256Sha256� 256� Yes�

Authentication� Security�Algorithm�
Min��Key�
Length�

Sym�
metric�

False�

None� 0� No�

Basic128� 128� No�

Basic192� 192� No�

TripleDes� 192� No�

Basic256� 256� No�

True�

Basic128Sha256� 128� Yes�

Basic192Sha256� 192� Yes�

TripleDesSha256� 192� Yes�

Basic256Sha256� 256� Yes�

C. NFR Aggregation Rules
An aggregation rule combines the valuations of non-

functional attributes of component services that fall within
the scope of the corresponding NFR [11]. For example, in
the case of the EMS encryption requirement, the aggregation
rule is defined as: the encryption level of the composite
service is the minimum encryption level of the component
services that fall within the scope of the NFR for EMS
encryption. We implement this aggregation rule in the
following aggregation script, which is used by the security
NFR verification algorithm.

 Encryption Level Aggregation Script:
1: Define Low=0
2: Define Medium=1
3: Define High=2
4: Define Critical=3
5: Define Initial_Security_Level=3
6: Int Aggregate(Int current_security, Int

new_security)
7: {if(current_security>new_security){
8: current_security=new_security; }
9: return current_security;
10: }
11: Bool isSatisfied(Int current_security, Int

desired_security)
12: {
13: If(current_security< desired_security) return false;
14: return true;
15: }

353353

D. NFR Verification Algorithm
In order to verify that a NFR is satisfied in a candidate

composite web service known to satisfy the FRs, we
compose the automata representation of the composite web
service and the NFR property. In our approach, all automata
compositions are synchronous, i.e., multiple automata can
make progress in parallel for each step [15]. The problem of
whether a composite web service conforms to a desired NFR
is addressed by calculating the synchronous product of
automata representing the composite web service with those
representing the corresponding NFRs. The composite web
service is said to satisfy the NFRs if and only if the sequence
of properties over non-functional attributes as represented by
the NFR-automata is also present in the automaton of the
composite web service. The verification process can be
viewed as an equivalence check.

Definition 2: Given two automata,	
��= (�, ��, �,

�,
) , for i � {1, 2}, their product is another FSA denoted
by
��� �
��� = (���, ����, ���, ���,
��), where ��� �
�� � ��, ���� = (���, ���), ��� = �� � ��,
�� = {(��, ��) | ��
�
�, �� �
�}. Finally, ���	�� � ��

� � �� and ���	�� � ��
�

� �� and (��, ��) �		�� 	� �� � (��� , ���) � ���.

The automata composition concept can be used in two

ways: (1) to verify a NFR automaton with a composite web
service, and (2) to verify the consistency of two or more
NFR automata if two or more NFR properties need to be
combined.

When the automata composition algorithm encounters
any service within the scope, then, if there is an aggregation
rule associated with that NFR, the aggregation script that
implements the aggregation rule is included in the
verification algorithm.

The verification algorithm uses an entrance condition to
detect entry into the relevant scope for the current NFR, and
an exit condition to trigger evaluation of whether the current
NFR has been satisfied in the composite web service. Fig. 7
shows the composed automaton and how aggregation is
applied to the scope range for the security NFR in the EMS
example during automata composition. During the
composition of the composite web service automaton and the
security property automaton, the states and transitions of
both automata merge when they share the same predicates.
When the composition enters the scope of the security
constraint, the encryption level value starts to aggregate for
each merged transition according to its aggregation rule and
the terminology mapping table. When the composition
algorithm leaves the scope, the aggregated encryption level
value is compared to the value required by the constraint to
evaluate its satisfaction (here, a High encryption level). All
these tasks are described inside the aggregation script for the
implementation.

Figure 7. Security property aggregation and composed automata

The algorithm to verify a NFR property automaton

against a composite web service automaton is described in
pseudo code as follows:

Security Level Verification Algorithm:
Let
���= (�� , ��� , �� , �� ,
�) be the composite web

service automaton.
Let
��� = (�� , ��� , �� , �� ,
�) be the security

constraint automaton.
Let
���=� be the initial composed automata.

1: Load Security Level Aggregation Script
2: Set current_security= Initial_Security_Level
3: Initial state of
��� : ��� = {���, ���}
4: Call Combine_States(���, ���,	���)
5: If isSatisfied(current_security, required_security) report

success, else report failure.
6: proc Combine_States(���, ���,	���){
7: /*Select the states with satisfied guard conditions */
8: ForEach �� � ���,	��� � �� s.t. ���� � ��: ���

� �� � ��
� , ��� � �� � ��

� and �� � ��
9: Create a new state ��� = {��� , ��� } for
���
10: If ��� is a trap state, return and report failure.
11: Create a new transition ��� � �� � ��

� for
���
12: If InScope,
13: If the guard condition �� is a service operation,

retrieve its security policy name as SName from its
WSDL file.

354354

14: Retrieve the security level as new_level by
searching for SName in the security terminology
mapping table.

15: current_security=Aggregate(current_security,
new_level)

16: Call Combine_States(��� , ��� , ���)
17: End ForEach
18: }

Note that this algorithm is for static verification, while for
dynamic verification (using runtime data), additional
termination criteria are needed.

A verification of the security property in Fig. 7 on the
composite web service in Fig. 4 returns a “Failure” result,
because the aggregation result of the encryption level for this
composite web service candidate is Medium in its required
scope, which is lower than the required High.

E. Handling Multiple Properties
In complex composite web services, there often exists

more than one user specified non-functional requirement to
verify, such as security or availability constraints with
different scopes. An interesting issue is how to handle the
multiple property automata efficiently. Given a candidate
composite web service from the search space, the most
straight-forward way to verify each property automata is to
verify the properties independently and sequentially. This
strategy, Independent Composition (INC), is shown in the
first column in Table II. INC calculates each property
independently with the candidate composite web service and
discards the intermediate calculation results after each inner
loop. INC returns verification failed at the first unsatisfied
NFR property. It is most suited to a search space with few
candidates. A disadvantage of INC is that even if the
properties are inconsistent, such that no composite web
service can satisfy them all, the algorithm has to explore the
entire search space before telling the user that no composite
web service satisfies the NFR.

To overcome this weakness of the INC algorithm, we
introduce the Two-Stage Composition (TSC) algorithm (the
second column of Table II) which detects property
inconsistency before performing the verification. TSC
composes all property automata into one combined property
automaton prior to verification. In this way, the first
inconsistency found during property composition will
terminate the verification process, and the property
automaton causing this failure will be captured and returned
to the user for possible modification of the NFR. In addition,
TSC can assist with efficient verification, since property
automata may share the same predicates on the transitions.
The more predicates shared by the property automata, the
fewer states the combined automaton will have. Another
advantage of using TSC is that the combined property
automata can be reused to verify multiple candidate
composite web services or when NFRs are updated.

A third strategy, the Big-Bang Composition (BBC)
algorithm, replaces the sequential verification of the
properties in INC with parallel verification (the third column
in Table II). BBC composes all the automata including the

candidate composite web service and the property automata
synchronously so that the earliest reachable trap state in any
of the properties can terminate the verification by returning a
failure.

A combined strategy can be applied using a smart
switcher, which pre-calculates the verification overhead
when provided a group of composite web service candidates
and a group of NFR properties. Generally speaking, INC
and BBC are useful for detecting inconsistencies in the
candidate composite web services quickly, whereas TSC is
most useful in quickly locating inconsistencies in the user-
defined NFRs.

V. RELATED WORK
Most existing composite web service verification

approaches focus on satisfying the functional requirements
[1, 2]. However, several researchers have also described
NFRs in the context of Quality of Service (QoS) [10, 11, 12].

Research on modeling and verifying hard constraints
follows three main approaches: context-matching based
techniques [12, 13], axiom-based techniques [8, 11, 14] and
automata based techniques [7, 9, 10].

Context-based property models can be verified by
context-based matching, including syntactic matching and
semantic matching, in order to ensure compliance of the
composition to the functional and non-functional
requirements [12, 13]. The drawbacks for context-based
matching are limited efficiency of searches and inaccuracies
in key word identification.

Rao, Kungas and Matskin introduce an axiom-based
method for semantic web service composition using Linear
Logic theorem proving [8]. Zeng et al. [11] introduce
optimizing preferences over NFRs based on utility functions
in linear programming. However, the Linear Logic prover
requires expert knowledge to construct property models.
Temporal logic-based property models are commonly used
in planning and model checking based web service
composition [2]. These approaches require expert knowledge
and pre-construction of a formal model for each candidate
composite web service. They also can face the state
explosion problem during verification and the problem of
consistency assurance among the property models.

Modeling NFRs using automata allows one to take
advantage of existing automata-based approaches to
functional verification. Foster, Uchitel, Magee and Kramer
describe a model-based approach (LTSA-WS) to verify
composition implementations on functional properties [7].
Pathak, Basu and Honavar [9] introduce an automata-based
goal model to represent the desired functionality of a
composite service and describe and an algorithm for
assembling a set of component services to obtain a
composite service that achieves the desired functionality.
However, existing automata-based approaches focus
primarily on the functional aspects of composition.

There is a growing interest in techniques for composite
web services that take into account both functional and user
preferences over non-functional attributes of a composition.
Such preferences can be quantitative or qualitative in nature.

355355

TABLE II. THREE STRATEGIES FOR VERIFYING MULTIPLE PROPERTIES

 Independent Composition Two-Stage Composition Big-Bang Composition

Pseudo
-Code

1. For each candidate
composition si in S
1)For each property pj

in P
2)Verify this property

by calculating s i × pj
3)If the verification

failed, jump to the
next s i

4)End For Each
2. Output s i and

terminate
3. End For Each
4. Output “No

composition satisfies
the NFR”

1. Take automata q = p0
2. For j = 1 to k
3. Calculate q × pj and Save the result

as q
4. If there exists only one termination

state in q and it’s a trap state in the
safety property, Output “Property
pj is Inconsistent with the other
properties” and Terminate

5. End For
6. For each candidate composition si

in S
7. Verify the property by calculating

s i ×q
8. If the verification failed, jump to

the next s i
9. Else Output s i and terminate
10. End For Each
11. Output “No composition

satisfies the NFR

1. For each candidate composition
si in S

2. Verify the property by
calculating s i × p 1 × p 2 ×…× p

n. All automata are composed
synchronously rather than pair-
wisely. When a trap state is
reached, the composition
terminates and returns failure.

3. If the verification failed, try the
next s i

4. Else Output s i and terminate
5. End For Each
6. Output “No composition satisfies

the NFR”

Com-
plexity

O(� � ���� � �� �!
"
#$�

%
&$�) O(� ����

�
$� � �' ��

(
 $� �!!! O(� ����

�
$� � ' ��

(
 $� �!!

S is the set of all compositions. S = {��, ��, �), …..��}
n is the number of compositions in the search space
P is the set of all NFRs. P = {��,��, �), …..��}
k is the number of NFRs

Quantitative preferences are expressed using cost functions
or utility functions to be optimized by the composition
algorithm [17]. Qualitative preferences are modeled using
preference networks, conditional preference networks, or
their variants [11, 16, 18].

There is a body of work that focuses on the verification
of web service reliability during service composition. Foster
[32] introduces a service behavior model to ensure that a
composite service is free of deadlocks. Techniques for
assessing the reliability of composite services rely on models
of faults and failures [21, 23, 33]. In other work, Mikalsen,
Rouvellou and Tai propose a model of web transactions to
improve the reliability of composite web services [24].

In web service security, Raya et al. identify
vulnerabilities including jamming, forgery, in-transit
tampering, impersonation, privacy violation and on-broad
tampering [26]. Weiss and Mouratidis model security
requirements using patterns, and global security
requirements of a composite service are verified using
pattern matching [30]. Local scoping and inconsistency are
not addressed.

VI. CONCLUSION
This paper shows how an automatically generated

composite web service of independently developed web
services can be verified to meet the non-functional security
requirements imposed by the user as hard constraints. The
approach described here enables this verification by lifting
the NFR analysis from the level of individual services to the
level of the search space of candidate composite web
services obtained from the functional requirements. The
primary limitations of this approach are (1) that it currently
can only handle those types of NFRs which can be specified
in WSDL and WSDL’s auxiliary specifications, such as WS-
Policy, WS-Security, WS-Trust and WSLA, and (2) that
domain expert knowledge is needed to build the terminology
mapping table. We hope to ease these restrictions in future
work.

ACKNOWLEDGMENT
This research is supported by NSF grants 0541163, 0702758
and 0916275, the latter with funds from the American
Recovery and Reinvestment Act of 2009. We thank the
reviewers for several helpful suggestions.

356356

REFERENCES
[1] S. Dustdar and W. Schreiner, “A Survey on Web Services

Composition,” Int’l Journal of Web and Grid Services, vol. 1,
No.1, 2005, pp. 1–30.

[2] N. Milanovic and M. Malek, “Current Solutions for Web
Service Composition,” Internet Computing, Nov/Dec 2004,
vol. 8, No. 6, pp. 51-59.

[3] L. Chung. B. A. Nixon, E. Yu and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Springer,
1999.

[4] S. Cheung and J. Kramer, “Checking Safety Properties Using
Compositional Reachability Analysis,” ACM TOSEM, vol.
8, No. 1, Jan 1999, pp. 49-78.

[5] H. Guo, Y. Shin and W. Lee, “Enhanced Compositional
Safety Analysis for Distributed Embedded Systems using
LTS Equivalence,” Proc. 6th ICACS, vol. 6, 2007, pp. 115-
120.

[6] B. Bruegge and A.H. Dutoit, Object-oriented Software
Engineering: Using UML, Patterns and Java, Prentice Hall,
2003, pp. 181-196.

[7] H. Foster, S. Uchitel, J. Magee and J.Kramer, “Model-based
Verification of Web Service Compositions,” ASE, 2003, pp.
152-163.

[8] J. Rao, P. Kungas, and M. Matskin, “Logic-Based Web
Services Composition: from Service Description to Process
Model,” ICWS, 2004, pp. 446-453.

[9] J. Pathak, S. Basu and V. Honavar, “Modeling Web Services
by Iterative Reformulation of Functional and Non-Functional
Requirements,” 4th ICSOC, 2006, pp. 314-326.

[10] M. C. Jaeger, G. Rojec-Goldmann and G. Muhl, “QoS
Aggregation for Web Service Composition using Workflow
Patterns,” Proceedings of the Enterprise Distributed Object
Computing Conference, 2004, pp. 149–159.

[11] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam and
Q.Z. Sheng, “Quality Driven Web Services Composition,”
Proc. 12th Int’l Conference on World Wide Web, 2003, pp.
411–421.

[12] K. Zachos and N. Maiden, “Inventing Requirements from
Software: An Empirical Investigation with Web Services,”
RE '08. 2008, pp. 145-154.

[13] B. Medjahed and Y. Atif, “Context-Based Matching for Web
Service Composition,” Distributed and Parallel Databases vol.
21, No. 1, 2007, pp. 5-37.

[14] Pistore, F. Barbon, P. Bertoli, D. Shaparau and P. Traverso,
“Planning and Monitoring Web Service Composition,”
Artificial Intelligence: Methodology, Systems, and
Applications, Springer Berlin / Heidelberg, 2004, pp. 106-
115.

[15] M. Huth and M. Ryan, Logic in Computer Science,
Cambridge University Press, 2004.

[16] G. Santhanam, S. Basu and V. Honavar, “TCP - Compose * --
- A TCP-Net Based Algorithm for Efficient Composition of
Web Services Using Qualitative Preferences,” Proc. 6th
ICSOC, 2008, pp. 453-467.

[17] S. Sohrabi, J. Baier and S. McIlraith, “HTN Planning with
Quantitative Preferences via Heuristic Search,”
Oversubscribed Planning and Scheduling Workshop of
ICAPS, Australia, 2008.

[18] S. Sohrabi, N. Prokoshyna and S. McIlraith, “Web Service
Composition via Generic Procedures and Customizing User
Preferences,” 5th ISWC, 2006, pp. 597-611.

[19] OASIS, OASIS Web Services Business Process Execution
Language (WSBPEL) TC, Available at http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

[20] W3C organization, “Web Service Policy,” Available at
http://www.w3.org/Submission/WS-Policy/

[21] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M.
Segnan and D. Theseider-Dupre, “Advanced Fault Analysis in
Web Service Composition,” 14th International Conference on
World Wide Web, 2005, pp.1090-1091.

[22] S. Bajaj, et. al. , “Web Services Security Policy Language
Specification V1.2,” W3C member submission, 2006, pp. 30-
34. Available at http://www.w3.org/Submission/WS-Policy/

[23] D. Zhang, Z. Qi and X. Xu, “Reliability Prediction and
Sensitivity Analysis of Web Services Composition,” Petri
Net, Theory and Applications, I-Tech Education and
Publishing, 2008. pp. 20-31.

[24] T. Mikalsen, I. Rouvellou, and S. Tai, “Reliability of
Composed Web Services--From Object Transactions to Web
Transaction,” Workshop on Object-Oriented Web Services,
OOPSLA 2001, Tampa, Florida, 2001.

[25] A. Lamsweerde, “Requirements Engineering: From System
Goals to UML Models to Software Specifications,” Wiley,
2009, pp.24.

[26] M. Raya, P. Papadimitratos and J. Hubaux, “Securing
Vehicular Communications,” Wireless Communications,
IEEE Publication, Oct 2006 vol. 13, Issue 5, pp. 8-15.

[27] A. Avizienis, J.C. Laprie, B. Randell and C.E. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. Dependable Sec. Comput. 1(1),
2004, pp. 11-33.

[28] P. Neumann, “The Risk Digest: Forum On Risks To The
Public In Computers And Related Systems,” ACM
Committee on Computers and Public Policy, vol. 4, Issue 52,
Available at: http://catless.ncl.ac.uk/Risks/

[29] B. O'Neill, “A Model Assessment Tool for the Incident
Command System: A Case Study of the San Antonio Fire
Department,” Applied Research Projects, Paper 270, 2008.

[30] M. Weiss and H. Mouratidis, “Selecting Security Patterns that
Fulfill Security Requirements,” Proc. of RE08, pp. 169-172.

[31] W. Stallings, Network Security Essentials: Applications and
Standards, Prentice Hall, 3rd Edition, 2007.

[32] H. Foster, “Tool Support for Safety Analysis of Service
Composition and Deployment Models,” ICWS 08, 2008,
pp.716-723.

[33] J. Wu and F. Yang, “QoS Prediction for Composite Web
Serviceswith Transactions,” LNCS, Springer
Berlin/Heidelberg, vol. 4652, 2007. pp. 86-94.

357357

