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CHAPTER 1. OVERVIEW

1.1 Introduction

The computational strategies used by animals to acquire and use spatial knowledge for

navigation have long been the subject of study in Neuroscience, Cognitive Science, and related

areas. A vast body of data from lesion studies and cellular recordings directly implicates the

hippocampal formation in rodent spatial learning [ON78]. The present model is based on the

anatomy and physiology of the rodent hippocampus [She74, CS92]. We draw inspiration from

the locale hypothesis, which argues for the association of con�gurations of landmarks in the

scene to the animal's own position estimates at di�erent places in the environment [ON78].

The system that generates the animal's own position estimate using the vestibular as well

as motor commands issued is referred to as the Path Integration (PI) system [ON78]. The

PI is hypothesized to play an important role in spatial tasks in terms of disambiguation of

con
icting spatial cues and generation of relational information between available landmarks.

At the same time, PI system is an important component of route based navigation system as

it can supply place labels to incoming sensory cues which can be e�ectively used to compute

the sequence of actions that can be used to guide the animal to a goal.

From Various lesion studies it has been found that the hippocampus plays an important

role in spatial tasks, that is, tasks that involve speci�c locations and geometric relationships

between objects. Lesions to hippocampus in rodents produce a severe de�cit in learning of

new spatial tasks, while at the same time keeping the stimulus-response type of task learning

largely intact [MGRO82, MW93a, DMW99].

Apart from its linkage with the spatial tasks, it has been found that the hippocampus

plays an important role in incorporation and retention of new memories. It has been proposed
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by numerous researchers that the hippocampus works as a temporary storage for new mem-

ories [Mar71, Buz89, CE93]. These memories are then supposed to be transferred to a more

permanent storage site. This idea is still under scrutiny by many researchers and is not com-

pletely accepted. Opponents of this transfer of memory idea hypothesize that the hippocampus

works more like an index for retrieval of memories and is not simply a temporary storage site

[NM97, ESYB96, Eic96].

Despite such great interest in spatial learning and the hippocampal formation, there are

relatively few computational or conceptual models that explain this wealth of experimental

data at a low level, and yet be general enough to shed new light on the general principles

that guide learning and behavior. By low level we mean a level at which the performance of

the hippocampal system is explained with respect to its performance on speci�c tasks and the

degradation of performance on the same tasks upon lesion or inhibition of the hippocampus. In

this thesis, we examine how the computational model developed by Balakrishnan and Honavar

(1999) [Bal99] explains some of the important experiments on the rodent spatial learning and

navigation system which critically involves the hippocampus and its surrounding brain regions.

1.2 Organization of Thesis

The next chapter presents an overview of the anatmoical and functional characteristics

of the hippocampal formation. Chapter 5 discusses some existing models for explaining the

function of the hippocampus. In Chapter 6 we discuss the computational model for rodent spa-

tial learning and navigation developed by Balakrishnan and Bousquet, and Honavar[BBH98d].

This model has been utilized in the present thesis to perform some behavioral experiments that

validate the model in the context of reproducibility of rodent behavior. These experiments will

be discussed in Chapter 7. We then reach the main conclusions of this thesis and propose some

related future work in Chapter 8.
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CHAPTER 2. REVIEW OF FUNCTIONAL AND ANATOMICAL

ORGANIZATION OF THE HIPPOCAMPAL FORMATION

2.1 Introduction

The hippocampal formation consists of the hippocampus proper (also called \Ammon's

Horn", abbreviated as CA) and surrounding structures; dentate gyrus and subiculum. The

hippocampus is a bi-lateral limbic structure, the details of which will be discussed in the

following sections.

The hippocampal formation is believed to be one of the major sites responsible for pro-

cessing and incorporation of new spatial information [ON78]. One of the reasons to believe so

is based on lesion studies carried out on animals, where it was found that animals with lesions

in the hippocampal region were unable to learn spatial tasks [ON78, MGRO82].

Similar �ndings are also available in human subjects. A famous example is that of patient

H.M. who, after undergoing bilateral resection of temporal lobes was rendered completely

unable to learn and remember information. At the same time H.M. had a normal short-term

memory and was able to recall many events that happened before the surgery [Mil72, Mil73].

Further, it was also found that H.M. was able to learn new motor skills but he was unaware

of his coming across the task before.

Another case that attracted much attention was that of patient R.B.. Patient R.B. was

found to be unable to learn and remember new information. On the other hand, he showed

normal conditioning, priming behavior. After the death of R.B. due to unrelated causes, it

was found that the degeneration was mainly con�ned to the CA1 region of the hippocam-

pus [ZMSA86].

The role played by the hippocampus in human navigation is still a matter of controversy.
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Recent studies using positron emission tomography (PET) scan and regional cerebral blood


ow (rCBF) has shown that speci�c subparts of the human hippocampus are active when

subjects perform navigational tasks. The measurements were made while human subjects

played a virtual reality game (Duke Nukem 3D) and it was found that the activity in the

right hippocampus was proportionate to the accuracy of navigation. Activity level in the left

hippocampus did not co-vary much with the accuracy of navigation, and it was interpreted

that this region actively maintains the memory trace of the destination during navigation of

recollection of paths taken during previous trials [MBD+98]. Although the foregoing study

precisely states the brain regions active during spatial navigation and planning, the role of

human hippocampus during spatial tasks involving physical locomotion are still unclear.

More recent studies in primates have shown existence of \Spatial view" cells in the primate

hippocampus. Recordings from the monkey hippocampus were performed while the monkey

walked actively in an obstacle-free laboratory room. The cells �rings were found to have a

high correlation with which area of the environment, in this case laboratory walls, the monkey

was looking at. This characteristic is in contrast with the rodent hippocampus where the

pyramidal cells �re when rodent is at a particular place in its environment regardless of its

orientation [RTR+98]. Previous studies by the same group have shown that 9.3% of neurons in

primate hippocampus respond to stimuli appearing at some but not other corners of a computer

monitor. 2.4% of cells only �red when a novel stimulus at speci�c locations on the computer

monitor were displayed for the monkey [RMC+89]. Furthermore, it has been shown that these

Spatial view cells encode location of stimuli with reference to an allocentric frame and not the

position of stimulus on the retina, head direction or the location of the monkey [GFRR99].

2.2 Inputs and Outputs in the Rodent Hippocampal Formation

The hippocampal formation receives highly processed sensory information from the cortical

regions via the entorhinal cortex and from non-cortical regions via the fornix. It also projects

back to the cortical regions via the entorhinal cortex and to the subcortical regions via fornix,

as will be discussed shortly.
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2.2.1 Inputs to the hippocampal formation

The inputs to the hippocampal formation can be further divided into those from the cortical

regions and those from the non-cortical regions.

The inputs from the cortical regions come via projections onto the entorhinal cortex which

in turn projects to the hippocampal formation. Tract tracing experiments have shown major

pathways originating from the inferior temporal gyri (higher processing area for visual sensory

information), parietal and temporal lobes (higher processing area for auditory sensory infor-

mation) and also from the frontal lobes. The only exception here is the olfactory information.

Direct projections, as opposed to projections from higher areas of sensory information pro-

cessing in the cortex, from the olfactory bulb and pyriform cortex onto entorhinal cortex have

been found. Most inputs from these cortical regions arrive into the super�cial cortical layers

of the entorhinal cortex. Entorhinal cortex is thus believed to be a place for multi-sensory in-

formation integration. It has been contended that the hippocampal formation receives inputs

form virtually all higher cortical regions [CE93].

The entorhinal cortex also receives inputs from amygdala, medial septum, dorsal raphe

nucleus, locus ceruleus and parts of the thalamus. Most of the pathways from the septum onto

hippocampus are cholinergic as well as GABAergic [TM91]. A recent study has found select

nuclear divisions of the amygdala project to the entorhinal cortex as well as hippocampus,

subiculum and parasubiculum in a topographically ordered fashion [PRS+99]. A coarse topo-

graphic speci�city in terms of projections from other cortical as well as non cortical areas has

also been observed. More rostral cortical areas project more heavily to more rostral portions of

the parahippocampal cortex, and more caudal neocortical areas project more heavily to more

caudal portions of the parahippocampal cortex [CE93].

The inputs from the non cortical structures come via the fornix. The fornix carries in-

puts from the thalamus, septum, hypothalamus and other brainstem nuclei. The subcortical

inputs are believed to serve as modulatory signals that in
uence activity in the hippocampal

formation [TM91].

Most of the inputs to the hippocampal formation are believed to be excitatory, except some
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inputs from the septum, as mentioned above.

Apart from that, the hippocampus receives connections from the other hippocampus through

the commissural pathways that join the two hippocampi across the midline [CS92].It is rea-

sonable to assume that cortical inputs carry time-dependent information arriving from the

external events noted by the sensory systems [TM91].

2.2.2 Outputs from the hippocampal formation

The entorhinal cortex also projects back to the same cortical areas mentioned above. Most

of the projections from entorhinal cortex to the cortical regions have been observed to be from

cortical layers V/VI.

Entorhinal cortex also sends �bers back to the septum. Projections to the septum also

originate from the pyramidal cells in the hippocampus as well as from non pyramidal cells

from the same area. The pyramidal cells of CA3 and CA1 subdivisions of CA project to the

lateral septum. These connections are excitatory. The non-pyramidal cells in the hippocam-

pus project to the medial septum/diagonal band. The latter projections are believed to be

inhibitory [TM91].

2.3 Anatomy of the Hippocampal Formation

The anatomical connections in the hippocampal formation are some of the most well-

studied, partly due to the systematic structure in the connections themselves, and partly

because of the numerous examples of neuronal plasticity that have been observed in this region.

The hippocampus is an elongated C shaped structure spanning from the septal nuclei

to the temporal cortex. Figure 2.1 shows major synaptic connections found in slices taken

perpendicular to to the long axis (septotemporal axis). These slices show a structure that

resembles two interlocking `C' shaped arrangements. One `C' is known as the Dentate gyrus,

within which the granule cell layer is the principle layer. The other `C' is the hippocampus

proper, and is also referred to Cornu Ammonis (abbreviated as CA) and is subdivided into

regions CA1 through CA4. Such a structure is seen all along the septotemporal axis.
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Figure 2.1 Schematic of connections in hippocampus

Using simultaneous stimulation and recording studies as well as neuronal tract tracing tech-

niques, the major connection pathways in hippocampal formation are now well-understood [AW89].

In brief, the circuitry can be described as follows.

2.3.1 Entorhinal cortex and the perforant path

The entorhinal cortex is the origin of a strong projection (the perforant pathway) to the

dentate gyrus and hippocampus [AW89].

Cortical layers II and III of the entorhinal cortex project via perforant path �bers into the

dentate gyrus, the hippocampus and the molecular layer of the subiculum. Anterograde and

retrograde tracing techniques have shown that projections from very constrained regions in the

entorhinal cortex reach wide septotemporal areas of the dentate gyrus, as opposed to earlier

suggestions by Andersen, Bliss and Skerde (1972) . It can also be concluded that a single

layer of the dentate gyrus along the septotemporal axis is innervated by multiple focal points

in the entorhinal cortex. One of the suggestions for the functional role is that these highly

divergent connections result in a sparse, distributed encoding of the highly processed sensory

information which is then delivered to the hippocampus via the dentate gyrus.

It should also be noted here that far reaching projections of the inhibitory 'basket cells' in

the dentate gyrus have also been found [SDL78]. It can therefore be concluded that excitatory

as well as inhibitory connections span over long distances over the septotemporal axis in the
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hippocampus.

2.3.2 Dentate gyrus and mossy �bers

The dentate gyrus receives projections from the entorhinal cortex through the perforant

path. Dentate gyrus in turn provides input to the CA3 layer of the hippocampus proper.

\The dentate gyrus can be divided into three layers: The molecular layer, in which perforant

path �bers terminate; the granule cell layer, which is populated by the principal cell type, the

granule cell; and a deep or polymorphic layer which is populated by a variety of neuronal types.

The granule cells give rise to the mossy �bers, which collateralize in the polymorphic layer and

then enter the CA3 layer where they form en passant synapses with the proximal dendrites of

the pyramidal cells" [AW89]. These mossy �ber synapses with CA3 are strong, which has led

researchers to suggest that they provide the context [O'K89] or reference frame of the task to

be performed [MBG+96], by transformation of the sensory input activity arriving at entorhinal

cortex into a non-overlapping activity pattern of granule cells, which in turn are conveyed to

the pyramidal cells in the CA3 layer. It has been found that on an average, CA3 pyramidal

cells get about 330,000 contacts from the mossy �bers collectively, or, a granule cell makes

contact with around 14 CA3 pyramidal cells and each CA3 pyramidal cell is innervated by

only about 46 granule cells [CS92].

2.3.3 CA3-CA1 connections

The hippocampus proper can be further divided into stratum moleculare, stratum radia-

tum, stratum of pyramidal cell bodies and stratum oriens as one progresses further from the

septotemporal axis radially.

The CA3 region of the hippocampus primarily contains pyramidal cells that show a char-

acteristic complex spiking behavior. These pyramidal cells are arranged in a single layer, in

stratum of the pyramidal cell bodies. The dendrites of these cells descend into the deeper

stratum oriens as well as into stratum radiatum and stratum lacunosum-moleculare.

The CA3 and CA1 pyramidal cells receive inputs from three di�erent sources: (i) from
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cortical layer II of entorhinal cortex through the perforant path, synapses of which are formed in

the uppermost parts of the apical dendrites of pyramidal cells in CA3. Some direct connections

from cortical layer III of entorhinal cortex to CA1 apical dendrites have also been found.

(ii) from dentate gyrus through mossy �bers which make connections to the proximal apical

dendrites of CA3 pyramidal cells, and (iii) recurrent inputs from other CA3 pyramidal cells.

See Figure 2.2 for a clear picture of the connections mentioned above. Unlike CA3 cells, CA1

cells do not project to other pyramidal cells of CA1 [CS92].

Sb

V

Olfactory
Frontal
Parietal

Temporal

II

III

VI

Subiculum

postSub
preSub

CA1

CA3

Cortex

Recurrent collateralsEntorhinal Cortex
(EC)

Dg

Mossy
fibers

Dentate Gyrus

Schaffer collaterals

Hippocampus

Perforant path

Back projections to
cortical areas and septum

Figure 2.2 Schematic of major connection pathways in hippocampus

The number of recurrent collaterals on a CA3 pyramidal cell from other CA3 pyramidal

cells is believed to be around 6000, or about 1.8% of the CA3 cell population. These recur-

rent connections are located on the dendritic tree spaced between the mossy and perforant

inputs [CS92]. Some researchers have likened the structure of the recurrent collaterals to an

auto-associative recurrent network suggesting that CA3 serves as a pattern completion device

capable of recalling entire scenes from partially observed data [Mar71, Rol90]. However, others

have suggested a hetero-association role, suggesting that these collaterals predict future acti-

vations of the neurons based on the current activations [McN89, MN89]. Some experimental

evidence for this latter view is provided by [SM96].

In CA3, mossy �bers from the dentate gyrus project into a region just above the pyramidal

cell layer. Axons from CA3 pyramidal cells then make highly collateralized connections that

terminate within the CA3 layer and make strong projections into the CA1 layer via the Scha�er
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collaterals.

As discussed earlier, the CA1 pyramidal cells receive excitatory inputs from the entorhinal

cortex via the perforant path and from the CA3 pyramidal cells through the Scha�er collaterals.

Axons from the CA1 pyramidal neurons project via the alveus to the subiculum and also to the

deep cortical layers of the entorhinal cortex. Subiculum also receives input from the entorhinal

cortex and projects to the pre- and post-subiculum, the deep layers of the entorhinal cortex,

and to the hypothalamus, septum, anterior thalamus and the cingulate cortex. All these

connections are excitatory [CS92].

The a�erents from brain-stem areas to the hippocampus proper have been found to synapse

mostly in stratum lacunosum/moleculare of CA1 and CA3 and in a restricted part of the hilar

zone under the granule cells in the dentate gyrus. These connections are believed to contribute

towards most of the serotonin found in hippocampus [ON78].

It has also been found that for the CA3 pyramidal cells, majority of dendrites were located

in stratum oriens, while almost the same amount of dendrites were present in stratum radiatum

and stratum lacunosum-moleculare. For the CA1 region pyramidal cells, majority of dendrites

were found in stratum radiatum. Presumably, more dendrites in a particular stratum would

mean a greater number of en passant synapses as well as synapses with interneurons in the

stratum in question [AW89].

CA3 and CA1 regions also contain interneurons that suppress the activity in pyramidal

cells. It has been found that the pyramidal cells make excitatory connections to the basket

cells present in the stratum of pyramidal cells, which in turn provide GABAergic inhibitory

input back to the pyramidal cell. It has been found by experiments with CA1 cells that when

Scha�er collaterals and commissural axons in stratum radiatum were stimulated, the range

of frequencies under which LTP was produced increased in the presence of a GABA type A

receptor agonist (muscimol), while LTP was induced only at very low frequencies in presence

of GABA type A antagonist (picrotoxin) [SM99]. Thus, this inhibitory loop, presumably

between pyramidal and basket cells is believed to be a controlling mechanism for LTP and

LTD induction.
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It has also been found that interneurons in the lacunosum-moleculare region of CA1 are not

restricted to the CA1 region. The dendritic and axonal processes of some of these interneurons

were seen ascending in stratum lacunosum-moleculare, crossing the hippocampal �ssure, and

coursing in stratum moleculare of the dentate gyrus. Stimulation of hippocampal a�erents

caused excitatory as well as inhibitory postsynaptic potentials in these interneurons. EPSPs

were most e�ectively elicited by stimulation of �ber pathways in transverse slices, whereas

IPSPs were predominantly evoked when major pathways were stimulated in longitudinal slices.

Thus, these interneurons are di�erent in characteristics from the interneurons (for example,

basket cells) and the pyramidal cells [LS88a, LS88b].

It has recently been found that during rhythmic oscillations in area CA3, interneurons with

similar dendritic and axonal arbors behave di�erently. One group of interneurons is powerfully

excited by CA3 pyramidal cells, whereas two other interneuron groups were relatively unaf-

fected by pyramidal cell �ring. One of these groups of interneurons is inhibited by other local

interneurons during the pyramidal cell bursts. Thus, morphologically similar interneurons are

wired radically di�erently and hence produce very dissimilar �ring characteristics [MWK98]. It

has also been found that one group of these interneurons can undergo LTP while another group

is incapable of undergoing LTP. mGluR system is supposed to govern this kind of behavior

[Informal talk by Lacaille]

The major connections in the hippocampus can be summarized as shown in Figure 2.2 [BBH98a].

2.4 Physiological Properties of Hippocampal Cells

2.4.1 Spatiality and directionality of pyramidal cell �ring in area CA

Apart from evidence from lesion studies, cellular recordings from pyramidal cells in the

hippocampal formation of behaving rodents have show that many such cells �re in complex

spike bursts only when the animal is in a constrained region of its environment. Such cells show

a characteristic, complex spiking behavior which is distinct from other cells found in the vicinity

of these cells. O'Keefe named them place cells and the corresponding regions where each is

active, the place �eld [O'K76]. The speci�c regions in which these cells �re are well de�ned for
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a given environment and can be manipulated by changing the size and sensory cues available

in the environment within which the experiments are carried out [ON78, OD71, TSE97].

Cells with such location-speci�c �ring have been found in almost every major region of the

hippocampal system, including the entorhinal cortex [QMKR92], the dentate gyrus [JM93],

hippocampus proper [OD71, O'K76], the subiculum [BMM+90, SG94], and the postsubicu-

lum [Sha96].

In addition to place cells, head-direction cells have also been discovered. These cells respond

to particular directions of the animal's head, irrespective of its location in the environment.

Each such cell �res only when the animal's head faces one particular direction (over an ap-

proximately 90 degree range) in the horizontal plane. The �ring of these cells can be altered

by a complex interaction between visual and angular motion signals. Importantly, in every

case reported to date, any manipulation that alters the reference direction of one of these cells

results in a corresponding alteration in the reference direction for the whole system which

is in contrast to hippocampal place cells where partial re-mapping of groups of cells encod-

ing the same environment is possible. These cells were �rst discovered in the postsubicular

area of the hippocampal formation [Ran84, TMR90a, TMR90b]. Since then, such directional

cells have also been discovered in the retrosplenial cortex [CLBM94, CLG+94], the anterior

thalamus [Tau95, BS95a], and the laterodorsal thalamus [MW93b].

A number of experiments have been performed in order to determine the properties of the

place and head-direction cells. It is now known that the spatial representation in the place

cells is not grid-like, i.e., adjacent neurons are as likely to represent distant portions of the

environment as close ones [O'K76, MKR87, OS87, O'K89, WM93]. Also, place cells are active

in multiple places in the environment [OS87] and also in multiple environments [KR83, MKR87,

MK87]. Further, places appear to be represented in the hippocampus using an ensemble code,

i.e., a set of place cells appear to code for a place [WM93].

Experiments have also revealed that when the animal is introduced into a familiar environ-

ment, place �elds are initialized based on visual cues and landmarks [MK87, MKR87, SKM90].

Once initialized, the place �elds have been found to persist even if the visual cues are removed
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in the animal's presence [OS87], implying that place cell �ring must also be maintained by a

source other than visual stimulus. It has been found that place �elds of CA1 cells are conserved

in darkness, provided the animal is �rst allowed some exploration of the apparatus under il-

luminated conditions [MLC89, QMK90]. This has led to the hypothesis that place �elds are

maintained by ideothetic (self-motion) mechanisms, i.e., by the path integration system.

2.4.2 Spike characteristics of hippocampal place cells

It has been found that the place cells show a very characteristic �ring pattern within the

�ring �eld. These cells �re in bursts that last for a maximum of 2 seconds and �re at a

peak rate of around 20 action potentials. Further each burst contains around 10 to 20 action

potentials. This �ring pattern is further modulated by the ubiquitous theta wave modulation

present whenever the animal is in a state of locomotion [ON78]. It has been found that even

though the �ring of these place cells is highly correlated with the location of the animal, the

�ring itself is not robust in the sense that across visits to the same place does not reliably

produce the bursts. Even if the animal takes a path through the place �eld which is very

similar to a previous path there is no guarantee that the same or a similar sequence of action

potentials will be observed. In fact, this variability is found to be in excess of what one should

expect if the generating process for these spikes is supposed to be a Poisson process with the

probability of �ring set to the mean �ring rate of the place cell in question measured over the

complete recording session [FM98]. Apart from this \excess variability" observed in place cells,

it has been found that the hippocampal place cells are strongly modulated by the activity in

the inhibitory interneurons. In a novel environment, it has been found that the amount of

activity in these interneurons is low and hence the amount of synaptic inhibition on the place

cells is signi�cantly low which then grows as the familiarity of the animal to the environment

increases [WM93].
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2.5 Conclusion

The large body of experimental data found over the years begs a functional explanation.

Some e�orts in this direction have been made by a number of researchers [RT98, NM97,

MBG+96, CE93] which will be discussed in the following chapters. Most of these e�orts have

either been towards explaining a subset of experimental data or towards delivering a very

high level theory which would be diÆcult to justify using neuroanatomical data without many

assumptions which cannot be directly justi�ed.

The precise mechanisms that give rise to this intriguing behavior of cells in and around

the hippocampal formation as well as the reason for survival of a structure like the hippocam-

pal formation in the evolutionary process are yet to be determined. The uniformity of the

types of defects that arise across many species following damage to the hippocampal formation

gives strong evidence in the favor of the idea that hippocampal formation is of prime impor-

tance to the overall process of memory incorporation and learning. E�orts towards a better

understanding of the processes in hippocampal formation seem to have taken two separate

paths. One school works on the lowest possible level to discover the mechanisms that govern

long term potentiation (LTP) of cells in order to discover the molecular basis of LTP, while

the other school works at a very high level systems approach where the �ring characteristics

of cells or the hippocampal formation is directly linked to behavior of animals, for example,

see [Sha97, ON78, MGRO82]. The modeling e�orts in this direction also have been limited to

some high-level explanations of place �eld characteristics [BDJO97] which shed little light on

the precise mechanisms required for the other types of cells in the hippocampus. At the other

extreme, e�orts are concentrated on some cell-level modeling techniques that only addresses

induction of LTP etc [WLJS92].

Interesting avenues of research have also opened up in the direction of mutant and knock-

out models where the behavioral as well as in-vivo recordings shed new light on the underlying

learning processes. Such experiments are extremely useful for pin-pointing the exact brain

regions and their roles in memory incorporation [KHH+98, MBT+96, CGT+98] to consider

the set of experiments. Modeling e�orts at this \middle level" that bridge the gap between
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cellular/molecular level theories of LTP induction and the large-scale behavioral level theories

are worth pursuing in the light of these mutant and knock-out studies.

In conclusion, the overall functional role of the hippocampal formation is still largely un-

known and researchers are only beginning to understand the various mechanisms and connec-

tions that give rise to learning and memory formation mediated by the hippocampal formation.

Modeling e�orts at all levels of explanation are in order at this point where there is an abun-

dance of data which can not be explained with a single, coherent, set of theories of learning.
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CHAPTER 3. SPATIAL LEARNING FROM A COMPUTATIONAL

CONTEXT

3.1 Background

As we saw in Chapter 2, lesion and pharmacological studies performed by numerous ex-

perimenters suggested that hippocampus is critically involved in the formation of a \cognitive

map". The cognitive map in this context denotes representation of objects in an animal's

environment which is formed by storing relative spatial positions of di�erent objects.

It is interesting to note that there is growing evidence that some storage of relative temporal

positions or sequences of events are also stored in the hippocampus [NM97, SM96, Eic96].

Hence, hippocampus is no longer believed to be a static map of one's environment, but a

region where new spatial as well as temporal information is learned and consolidated.

A number of diverse models for spatial learning and navigation exist in the literature. It

is generally accepted that the hippocampus is the prime site linked with learning of a wide

range of tasks, most of which have a distinct spatial component [ON78, Hea98]. Most models

that deal with biologically inspired spatial learning, and therefore have the hippocampus as a

major part, are conceptual models [MBG+96, Mar71, RH96, NM97, Eic96], some are concrete

computer simulations[Zip86, RT96, RT98, BA96] and some have also been implemented in

robots[Bro85, BDJO97].

The above models mostly fall into two major categories. Either they are high level con-

ceptual descriptions of underlying psychological or physiological phenomena [Mar71, Buz89,

CE93, MW93a, NM97] or they are a low-level task oriented speci�cation of hippocampal func-

tion [Zip86, RT98, BS95b]. There is a general lack of literature in the area of specifying

exactly the computational requirements for learning a representation of ones spatial environ-
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ment. These models will be discussed in more detail in Chapter 5.

In this chapter, the issue of representation of spatial information in order to perform local-

ization and navigation in one's environment is discussed. What kind of information is required

and how it should be represented by an animal (or a mobile robot, for that matter) in or-

der to successfully navigate in its environment needs to be clearly de�ned. We discuss the

aforementioned issues in the light of a biologically plausible computational model developed

by BalakrishnanEtAl (1998) [Bal99, BBH98a] for rodent spatial navigation and localization.

The model is based based on the locale system hypothesis suggested by O'Keefe and Nadel

(1978) . The main idea behind locale system hypothesis is that landmarks, or more generally,

objects are represented as relations between one another in terms of their relative positions

or some other similar metric. Such a representation is supposed to arise due to a fusion of

incoming sensory information of di�erent modalities with the path integrator estimate. Here,

from a spatial learning context, path integrator means a system that keeps track of the animal

or mobile robots own position with respect to an allocentric frame of reference. In a more

general case, path integrator can be considered as a series of operations performed on objects

available to the animal to change their con�guration, or, their relative position according to a

�xed metric. In the spatial learning context, it is assumed that the path integrator uses move-

ment commands issued to the motor system as well as the independent movement sensors (e.g.

vestibular system in animals or acceleration/velocity sensors in mobile robots) as its input.

In the following sections, and in rest of this thesis, we discuss the spatial learning problem

in the context of learning about one's physical environment for the purpose of localization and

navigation. The arguments presented here can be extended for learning arbitrary relations

between objects in one's environment, given a metric for measuring relative positions of objects.
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3.2 Sensory Information Available to a Mobile Robot or a Navigating

Animal

3.2.1 Linear distance based measurements

It is reasonable to assume that the primary information available to a navigating entity,

an animal or a mobile robot, is the available landmarks in the environment. Any stable an

sensorily distinct object in the environment can be considered to be a landmark for the pur-

pose of learning a spatial environment. It has been substantiated by experiments [ON78] and

simulations [RT96] that rodents use the perceived size of prominent objects and therefore pre-

sumably estimated distance of landmarks from their current position as landmarks for learning

spatial environments. In an enclosed environment, distances of walls of the environment also

serve for the learning purposes [BDJO97, OB96].

Distances of three unique landmarks in a two dimensional spatial environment are suÆcient

in order to �nd one's location in the environment, provided that the allocentric position, or in

the case of animals with respect to position of goal or home, is available. It can be easily shown

that in such a case an estimate of landmarks can be found by solving the following equations

for x and y which are the unknown Cartesian coordinates of one's position.

d21 = (x� x1)
2 + (y � y1)

2

d22 = (x� x2)
2 + (y � y2)

2

d23 = (x� x3)
2 + (y � y3)

2

In the above equations, d1, d2 an d3 are the distances of landmarks from the subject's

current position and (x1; y1), (x2; y2) and (x3; y3) are the coordinates of landmarks. After

simple manipulations the solution of above equation reduces to solution of two linear equations.

It can be seen above that the animal only needs to represent the allocentric location of three

unique landmarks in order to successfully navigate. In case landmarks are not unique, it is

required that there be at least three landmarks that are not arranged in a symmetric fashion.
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3.2.2 Angular distance based measurements

In the case when the subject has compass information available to it, the task becomes

signi�cantly easier, as only the coordinates on one landmark need to be known in order to

successfully navigate. It has been hypothesized that animals must use a strategy where distal

cues are used to reset the compass direction estimate, while local cues are used for more precise

position estimate [TSE97].

Indeed, distinct sets of cells have been found in the hippocampal formation of rodents

whose �ring has strong correlation with spatial nature of the task; the hippocampal pyramidal

cell have strong correlation (among other parameters) with the position of the animal's head,

regardless of its direction. These cells are therefore aptly named place cells. Also, the spatially

constrained region in which these cells �re with high frequency are called place �elds[ON78].

On the other hand Presubiculum[Ran84], Anterior Thalamic nucleus[Tau95], and Lateral Dor-

sal Nucleus [MW93b] of the Thalamus have cells that �re in preference of the animal's head

regardless of its position in the environment. There is substantial evidence that anterior Thala-

mic head direction cells �re in anticipation of the head direction in the rat [BS95a]. This gives

strong evidence in favor of a predict-observe-correct model for head direction system [RT96].

The above hypothesis, where there are are systems that keep track of compass information

and allocentric positions of only a few prominent and stable landmarks in the environment, is

attractive when the subject can judge its distance and angle with respect to a \north pole"

from the landmarks. When information of other modalities like odor and sound are present.

These modalities can only supply directional information about sound and odor sources. In

such a case, it is still possible to obtain estimate of one's position if multiple, unique sensory

modalities are available. Computations involved in such a case require access to an allocentric

compass direction, as opposed to allocentric positions of landmarks. Also, the transformations

required in order to �nd one's position do not remain linear as in the above case. Nevertheless,

given a set of distal cues like far away and stable objects like mountains, sun etc. can be

used to successfully reset compass direction, after which only angular distances need to be

computed [Zip86].
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3.3 Representation of Information

3.3.1 Storage

In any case, there nonlinear reverse mappings from the observations of landmarks, be it lin-

ear or angular, to places are required. Either signi�cant amounts of computations are required

at each point in order to determine place, or places need to be simply represented as snapshots

of sensory information available at the di�erent places. In the latter case, the problem reduces

to that of storing these observation vectors along with the estimated positions of the subject

whenever such sensory information is observed. Furthermore, it is more advantageous to store

relationships between pairs, or more generally subsets, of available landmarks in terms of their

linear or angular distances.

Whenever the subject needs to �nd its own position, it can make observations of either

angular positions of the landmarks (in case compass information is available) or linear distance

measurements of landmarks in case their allocentric position is known. After this, the closest

match to this incoming measurement needs to be found from the previously stored observations.

The place label associated with nearest the neighbor of observation from these previously stored

vectors of observations can then be used to determine the subject's position.

This brings us to an important issue. How should one generate the position labels that

are required for labeling these sensory information vectors? Navigating animals and mobile

robots usually have some way of sensing their own displacement from the motor commands

issued or from acceleration sensors, e.g. vestibular inputs in animals). This information can

be used to keep track of subject's own motion which will henceforth be called path integration

system. When the subject is �rst introduced in the environment the path integration system

is reset to an arbitrary state and is associated to the �rst sensory observation vector available

to the subject. After each motion step, the subject reaches a new place in its environment and

therefore has a sensory information which is di�erent from that available previously. At the

same time subject has the updated path integrator estimate after the motion step is performed.

If the sensory information at this new place is signi�cantly di�erent from the previous step,



21

based on some discrimination metric, a new prototype vector for this new place can be stored

along with the newly generated path integrator estimate. In such a fashion tuples containing

(sensoryinformation; path� integratorestimate) can be generated and represented.

3.3.2 Retrieval

Upon re-entry in the environment the localization problem reduces to that of �nding the

closest match from the available sensory vectors and reseting the path integrator estimate to

the associated label to these vectors. Computationally, this is a hard problem, mostly because

there is no general way of �xing a distance measure between these stored sensory information

vectors.

Even if the environment where subject is being introduced is identi�ed straight away, search

for suÆciently similar sensory information vector from those stored is time consuming. The

problem becomes even more severe when multiple environments are stored by the subject and

it also has to pick the right map before setting its path integrator estimate based on the stored

sensory information for the map (the map selection problem).

Most of the techniques available in Vector Quantization literature and Associative Memory

literature can be applied to tackle this sensory information vector storage problem [Koh89,

Has95, Mar71].

3.3.3 Noise and inaccuracies in sensors and path integrator

The sensory measurements as well as the path integrator estimates are prone to noise.

E�ects of such noise on the path integrator can be seen in the drifting of place �elds in

darkness [MBG+96]. The model discussed in the next explicitly addresses the errors in sensory

measurement and path integration estimates. The model e�ectively reduces these errors by

applying a Kalman Filter [Kal60] like update mechanism.
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3.4 Conclusion

In this chapter, we gave an overview of the type of information processing required of an

animal or a mobile robot in order to successfully learn and represent spatial environments.

Using the computational model proposed in this chapter, we have simulated some of the im-

portant spatial learning experiments performed on robots and have found the functioning of

the model to be satisfactory [BBH98b, BBH98a].

In the following chapters, we discuss the model used for these behavioral simulations 6 and

the results of these simulations 7.

We have completely ignored the issue of route-based or topological representation, where

relations between places are stored instead of the positions of landmarks or expected sensory

information available at di�erent places in the environment. The route-based representation

scheme has the advantage that the subject does not need to plan its route at every point of the

environment. Once the subject knows the task at hand and is able to localize in its environment,

it just needs to pick a program, or a sequence of actions, that can take it to a desired goal

location. It is easy to see that such route based navigational systems can be generated in the

framework discussed above. Upon reaching the reward sequence of recent activations of place

cells along with the motor system commands that were issued can be stored as a program.

Next time onwards, when faced with similar situation, the subject just needs to pick the right

program and execute it in order to reach the goal. Thus, spatial learning can give rise to a

stimulus-response type of behavior. Again, the issue of sorting these programs, and hence,

learning a total order of these programs in terms of their relevance to the tasks at hand needs

to be addressed.

It has been found that a hippocampal place cell is usually involved in representation of

multiple environments and has place �eld characteristics that are radically di�erent from en-

vironment to environment [ON78]. At the same time, manipulation of sensory cues can cause

rapid and drastic re-mappings in the size, shape, and even existence of place �elds [KR83,

MCM91, SKM90]. It can be argued that many of the sensory cues are \characteristic" in the

sense that they occur very frequently and therefore place cells must be capable of detecting
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this characteristic sensory information in various environments. Thus, by encoding only a few

dimensions of the complete sensory vectors instead of complete sensory information, avail-

able storage can be utilized more eÆciently. At the same time, many of the environments

represented can be quickly eliminated simultaneously by non-�ring of only a few place cells,

thus reducing the complexity of the map selection problem problem mentioned above. Again,

choosing the correct subset of features to be encoded is a problem that should be addressed if

such encoding is to be made feasible.

Also, it is supposed that these place cells do not simply respond to the incoming sensory

information but are also modulated by the path integrator estimate, so that the place cell

�res only when the path integrator estimate is in accordance with the sensory information

which should be present given the path integrator state [ON78]. Also, the place cells appear

to be modulated by the context of the spatial task to be performed [FM98]. Whether such

dependence on multiple, diverse controlling parameters is computationally more eÆcient needs

to be seen.
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CHAPTER 4. FORMALIZATION OF COGNITIVE MAPS FOR

SPATIAL LEARNING AND NAVIGATION

In this chapter we elaborate on the intuitive idea of spatial learning and localization. We

will de�ne the minimum requirements for a system that is capable of learning, representing,

and retrieving the spatial information in order to perform navigational tasks. We will develop

these requirements based on the idea of locale hypothesis as developed by O'Keefe and Nadel

(1978) .

In order to develop the formal requirements for spatial learning and localization, we accept

the existence of two systems that feed into each other. The �rst system is the Local View

(LV) which represents the current and (possibly) immediately preceding percepts of an animal

or a mobile robot. The second system is the Path Integrator (PI) system that represents the

current position of an animal or a mobile robot. These two systems together can be thought

of as a \spatial map" for navigation and localization.

The inputs to these systems, or alternatively the spatial map, can be all or a subset of the

input information discussed in Chapter 3.

Here, we formally discuss how this incoming information can be utilized to perform the

navigation task. In order to do so, we divide the di�erent operations performed on the map

into two categories, namely, the intra-map operations and the inter-map operations.

In the discussion to follow, the variables denoted in bold typeface are vectors.

4.1 Preliminaries

The intra-map operations are closely related to the storage issues discussed in Chapter 3,

section 3.3.1. These are the operations on the spatial map that enable the spatial learning
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system to incorporate information about di�erent places in a given environment in order to

successfully reset the PI upon re-entry. Let us �rst de�ne the percepts available to the animal

or mobile robot.

4.1.1 The local view

Consider L to be the set of landmarks in the environment, so that:

L = fl1; l2; :::; lng

We consider a perceptual observation Ox to be a set of vectors ox;i, each describing the

observation of a landmark li place x in the environment. It is possible to have one (possibly

unique) observation Ox for each place x 2M where M is the current environment.

Hence, assuming that we do not have any missing observations of landmarks, Ox is an

n-tuple (ox;1; :::;ox;n). Here, ox;i is a vector that describes landmark i in the system. For

the biological spatial navigation system, this is usually considered to be an activity pattern of

neurons in the sensory system. For a robotic system, ox;i can be denoted by a di dimensional

feature vector such that ox;i 2 <
n.

To give a simple example, the observation Ox can be a sequence of landmarks scanned

in an orderly fashion. As seen in Figure 4.1, at a given position, the observation could be a

systematic scan of the environment. In such a case, Ox1 = dcab while Ox2 = abcd.

Here, the observation dcab simply denotes the relative position of landmarks as observed

from positions x1;x2. We diverge from the notation described earlier, for the sake of conve-

nience in representation. The same information can be conveyed by representing each obser-

vation of landmark by the relative positions of other landmarks from a given landmark.

It can be shown that, for unique landmarks in general position, di�erent regions of the

environment can be identi�ed uniquely using the landmark observations as described above.

For identi�cation of regions outside of the convex hull formed by the landmarks in the

environment, only the observations of landmarks on the hull are required, as it is evident from

Figure 4.1. Each region outside of the convex hull made up of landmarks is labeled by the

observation in the above convention for that region.
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Figure 4.1 Observations of landmarks from di�erent positions in an envi-
ronment

For regions within the convex hull, angular measurements become necessary and therefore

a richer observation is called for.

In the general case, the observation of the environment at time t does not only depend

on the current sensory information, but also on a history of sensory inputs. Let us de�ne the

Finite-time Local View (LV t
0 ) as follows.

De�nition 4.1 (Finite-time Local View (LV t
0 )) Finite-time Local View

LV t
0 = Ox0; : : : ;Oxp
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is a �nite vector of observations from time t = 0 to t = p where t = 0 is time at which either

the agent was �rst introduced in the environment or the time at which the current context �rst

became relevant. t = p is the present time, or, the time of the latest observation available to

the agent.

Similarly, we can also de�ne the In�nite-time Local View (LV t
�1) which contains the

complete history of observations. We shall see later that the In�nite-time Local View has no

direct value except that it is implicitly utilized by the animal while learning to perform actions

for a given LV and PI state. Of course, assuming a �nite age of the agent, LV cannot be in�nite

in length, but it is unbounded.

De�nition 4.2 (In�nite-time Local View (LV t
�1)) In�nite-time Local View

LV 0
�1 = Ox

�e; : : : ;Ox0 ; : : : ;Oxp

is an unbounded vector of observations from time t = �e to t = p where t = �e the �rst known

observation of any environment. Also, t = p is the present time, or, the time of the latest

observation available to the agent.

It is not possible for an agent to use LV t
�1 as its local view of environment, because it

grows with experiment and record of observations of unrelated environments is of little value in

the present context of navigation. Instead, it only a �nite history of observations that matters

for decision making. Of course, LV t
�1 matters in the sense that it is used while learning to

select useful actions.

Our de�nition of LV t
0 is still inadequate in the sense that not all elements of LV t

0 will be

useful for selection of actions. Furthermore, some observations are more important towards

selection of action than others. This is true for observations Oxi as well as the measurements

of individual landmarks within each observation. Let us de�ne appropriate weighting functions

for the observations for taking this fact into account. The state of the PI system determines

which observations of the environment are to be more useful for navigation than others. At the

same time, past experiences of the animal dictate which landmarks are more stable or reliable
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for the task than others. For example, if the task is to �nd a route home, an antenna tower or

a large building is more reliable for performing tasks than an truck or a certain color parked

in the curbside. On the other hand, one might wish to use all the vehicles on the freeway as

landmarks for the purpose of driving as opposed to the trees and buildings around the freeway,

as they are much more important for completion of the navigational task. Let us consolidate

all these experience and task driven facts into the function Filter as follows.

De�nition 4.3 (Local View Filter) Filter is a function that takes as its input the current

PI state s and LV t
0 and returns a modulating vector W such the product W � LVt

0 gives an

encoding of LV t
0 that is directly relevant for the present navigational task.

W = Filter(s;LVt
0)

It is important to apply Filter to the local view before using it further in order to update

the PI state or to learn action-selection, as it reduces the input feature space signi�cantly by

removing the irrelevant features in the environment. Of course, learning of the Filter function

itself is very diÆcult in the general case.

From a connectionist point of view, Filter can be thought of as an inhibitory set of con-

nections that suppresses the activity of sets of cells whose �ring is redundant to the required

sensory information for the task at hand. In other words, it is the regulatory network that does

�ltering of irrelevant information and contributes towards the stability of the network by de-

creasing the sum of excitation present in the network that could lead to unbounded oscillations

because of excitatory lateral connection usually found in almost all brain areas.

4.1.2 The PI state

Let us now de�ne what we mean by the PI state.

De�nition 4.4 (PI State) A PI state s is a tuple (sp; c) where sp is the state vector denoting

the current position of the agent in the environment relative to an allocentric reference point,

while c is the present context.
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The context is a combination of the task at hand and the current environment of the agent.

Let us therefore split the context c into two parts, namely, the task speci�c context ct and the

environment speci�c context ce. The environment speci�c context is simply the encoding of

the environment that the agent is currently in, out of the possible memories of environments

it has access to.

Task speci�c context, on the other hand is more dynamic in the sense that it changes while

the task is being performed. The agent needs to have access to information about the amount

of task completion, the task at hand as well as the states of di�erent drives like hunger, sleep

etc. All these parameters are required to be constantly tracked in order to update task speci�c

context.

In the following sections, we shall use the de�nitions described above to de�ne some oper-

ations that need to be performed in order to store new information about places and at the

same time keep a coherent trace of the pre-existing memory of an agent's environment.

At the same time, it is of prime importance to learn how to make the appropriate action

in order to take the agent to it's desired goal. In the succeeding parts of this chapter we shall

brie
y discuss this issue.

In the case of rodents, it is by now accepted that the PI is distributed across various

brain sections. As described in Chapter 2, there exist cells in the post subiculum, anterior

thalamic nucleus, and retrosplenial cortex that show high �ring frequency correlation with the

allocentric direction as well as angular velocity of the animal's head. The latter suggests that

the inputs to these cells must be from the vestibular system, as the vestibular system tracks

the angular acceleration of the head apart form other parameters related to the animal's

movements. Furthermore, some of these cells also show a preference for left turns as opposed

to right turns or vice-a-versa. The other cells that are very widely studied are the pyramidal

cells in the area CA of hippocampus that show strong dependence on place of the animal

in its environment. These cells are commonly referred to as place-cells. Also, as seen in

Chapter 2, these cells show an elevated �ring rate only when the animal is at certain places in

the environment. This is true even in environments that show symmetry; the place-cells �re
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only at a geometrically constrained places and mostly do not correspond to the symmetry of

the environment. For example, an overwhelming majority of these place-cells �re only at one

place instead of four even when the environment has four fold symmetry. Even across sessions,

if the point of entry to environment is kept constant with a symmetrical environment, these

place cell �ring �elds remain essentially constant. This means that the hippocampus either

receives PI signal that breaks the symmetry of �ring �elds, or it is capable of generating its

own PI signal using the head-direction and other vestibular signals. Figure 2.2 shows that

hippocampus has outgoing excitatory connections to subiculum which in turn projects to post

subiculum where head direction cells are in abundance. The other major incoming pathway

to the hippocampus is through the fornix which conveys signals from the brain stem. All this

evidence strongly implicates hippocampus to be a PI system or at least a major component

thereof. For a stimulating discussion of the hippocampus as a PI system, refer to [MBG+96].

Also, the place-cell �ring �elds have completely di�erent shapes and sizes in di�erent en-

vironments. Even within an environment, for linear or radial-arm mazes, the place-cell �ring

�elds have directionality; they �re with higher frequency when the animal travels in one direc-

tion of the arm as opposed to the other. With environmental manipulations, it is also possible

to change the �ring �elds of place-cells even during a single trial, regardless of the type of the

environment [ON78, MK87, SKM90]. It is also found that in open environments, either all

cells keep their �ring �elds or all cells change their �elds simultaneously.

All these observations can be explained by accepting the existence of a distributed code for

the context which is represented across the hippocampus. We can then maintain that the PI

state and therefore the hippocampal attractor network state encodes the context as well. The

context changes with environmental manipulations (dynamic re-mapping) or with the stages

of task completion (directionality in radial arm mazes and re-mapping once reward is achieved

in food hunting or systematic search tasks).

With the above in mind, we de�ne the context as follows.

De�nition 4.5 (Context ) The context c is a tuple (ce; ct), where ce is the environment

speci�c context, or the encoding that represents the current environment, while ct is the internal
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state speci�c context.

In the above de�nition, the internal state speci�c context encodes the current state of the

agent's drives (e.g., hunger, thirst, sleepiness, . . . ) as well as the amount of completion of task

so far. In that sense, internal state speci�c context is a time-dependent context.

4.1.3 The cognitive map

Using the above de�nitions of the PI and LV, it is now possible to de�ne the cognitive map.

The requirements for a cognitive map were discussed in Chapter 3. Brie
y, the cognitive map

should at the very least be useful in performing at least two operations. First, using the LV

and possibly task speci�c context, it should be possible to �nd the complete PI state.

Second, it should be possible to �x the environment speci�c context. Simply put, the

second requirement states that using the LV and the task speci�c context it should be possible

to decide which of the possible environments the animal is currently in. For the purpose,

we de�ne the cognitive map as the mapping from LV to PI along with a pattern completion

algorithm that completes the joint vector LV � PI given any partial information about LV

and context.

De�nition 4.6 (Cognitive Map) Cognitive Map M is a system with two functional compo-

nents:

1. Mapping: It is a mapping (Filter(LV t
0 ); ct; ce)! s

2. Completion: It is a completion device that returns ce or ct using the LV and task speci�c

context. (Filter(LV t
0 ); ct)! ce

For the remainder of this chapter we shall use the de�nitions given so far to de�ne opera-

tions on the cognitive map for acquisition and representation of new information about one's

environment. We divide the learning and retrieval operations on the cognitive map in two

parts; those that use a single representation of the environment (intra map operations), and

those that require simultaneous access to representations of multiple environments (inter map

operations).
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In the discussion to follow, LV will denote the �ltered local view, be it the �nite or the

in�nite local view. The operations themselves will not vary with the type of LV used, but the

learning algorithms and the underlying hardware will change widely based on the type of LV.

4.2 Intra Map Operations

4.2.1 Operations on LV

The major learning operation on LV is the one that associates the LV with the current PI

state s. We de�ne the association as follows.

De�nition 4.7 (LV � PI) The association (or mapping) LV � PI relates a PI state s to a

local view LV and vice-a-versa, such that, given the LV measurement a set of possible PI states

s can be determined. Similarly, given the PI state a set of possible LV measurements can be

determined.

An example implementation of such a LV � PI association is a bi-directional associative

memory [Mar71, Has95]. It is always useful to incorporate any partial information available

about the entity to be predicted using the LV � PI association. In order to utilize the

association between PI and LV eÆciently, we need an algorithm for e�ectively searching or

determining the missing quantity or quantities using the available information.

We de�ne the completion function that performs this operation as follows. Here, s0 and

LV 0 are the PI state and LV measurements available at a given place and time. Of course,

some of the attributes within these quantities could be missing, or one of the quantities could

be completely missing. For example, upon re-entry in an a-priori known environment, the sp

de�ned in De�nition 4.4 could be missing or partially available. On the other hand, in order

for the agent to keep track of the correctness of it's actions, the agent needs to correctly predict

the LV and compare it with the incoming LV measurements. In such a case, the agent would

decide to trust it's PI state in order to �nd what to expect from the environment. As we shall

see in the following chapters, such predictions of PI state and/or LV observations can be used
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to re�ne the LV � PI mapping itself. Such re�nement or update operations can help reduce

measurement or inherent system noise.

With the above in mind, we de�ne the pattern completion device as follows.

De�nition 4.8 (Pattern Completion Function) The pattern completion function, Complete,

returns the tuple (s;LV) using the available, possibly partial, information about the PI state s0

and LV measurement LV 0:

(s;LV) = Complete(s0;LV0)

At the same time, whenever complete information about the PI state and LV is available,

the agent needs to remember the (s;LV) pair for future calls to Complete function. Let us

call the operation that remembers the (s;LV) pair the Associate function.

De�nition 4.9 (Learning Association) The Associate function receives the complete tuple

(s;LV) as input and incorporates it into the current cognitive map Mt to return the updated

cognitive map Mt+1. After the associate function is called, subsequent calls to Complete in

similar situations but with missing information can return more reliable completions of missing

information:

Mt+1 = AssociateMt(s;LV)

In the above de�nition, the subscript of Associate function denotes the representation or

the state of cognitive map at the time of call to Associate function. The strategies used to

associate PI state to LV can be drastically di�erent based on the richness of representation

required for the current context as well as the amount of information already stored in the

cognitive map for the present task-speci�c context.

Apart form the Associate function that links the current PI state to LV, we also need to

learn what kind of sensory information and how deep a history of sensory perceptions is really

required for e�ectively completing the missing information regarding sensory information or

PI state during subsequent calls to Complete. In other words, we need to learn the Filter

function.
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We de�ne operation LearnF ilter that accomplishes this task. Based on the current context

as well as the current status of the cognitive map, LearnF ilter �gures out what weights for LV

should be produced by the Filter function. We de�ne the Filter learning operation as follows:

De�nition 4.10 (Filter Learner) The Filter learning function LearnF ilter takes in the

current task-speci�c context and the current state of cognitive map and updates the Filter

function. This update is such that the updated Filter function would assign higher weights to

LV attributes that matter more for the given ct and ce.

In the above de�nition of Learning Filter has to evaluate how prominent certain LV at-

tributes are for a given environment and task as a whole and not for a given PI state. This

requires a constant evaluation of the agent's progress in the environment and at the same

time a constant observation of how good the LV attributes are as predictors of PI state. Of

course, the learning of Filter is not is not restricted to the spatial learning system or even to

the hippocampal formation. In order to evaluate the progress and success of the navigational

task, we need to assess the rewards received at the end of the task as well as while the task is

performed, and therefore other regions that specialize in prediction and evaluation of rewards

are also be involved in the process.

4.2.2 Operations on PI

As the agent navigates in the environment it's position and the amount of completion of

task changes. Therefore, we de�ne another operation; which we will call StateUpdate. This

operation returns the new PI state s0 based on the history of PI states as well as the actions

performed by the animal. If LV information is available to the agent while navigating, that

information is also taken into account. Let us call the history, most probably �nite, of PI states

as st0. Here, time 0 is the time when PI was �rst reset, and time t is the time immediately

prior to the adjustment operation. We de�ne the StateUpdate operation as follows:

De�nition 4.11 (PI State Update) PI state update operation uses the available PI state

history st0, the set of actions performed since the last PI state update (denoted by a) and
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available LV information to return the next PI state s0.

s0 = StateUpdate(st0;a;LV)

To give a rough example of the StateUpdate operation, as the animal moves in its envi-

ronment, the StateUpdate operation takes the stream of LV measurements coming in, as well

as vestibular outputs which encode the action performed, to update its own position estimate

in the environment as well as to an extent, the present task dependent context itself. It is

crucial to appreciate the importance of the StateUpdate operation, as it potentially can help

reduce the errors in observations and the previous PI state that also contains the context and

information about the current environment. At the same time it functions as an important

element in the mechanism that tracks the progress of task.

Simultaneously with the StateUpdate operation, it is necessary to keep track of the cor-

rectness of the present context and the task dependent context. As we shall see in the next

section, this requires across-map information and to some extent also some domain knowledge

about the task being performed.

4.3 Inter-Map Operations

In the foregoing section, we looked at di�erent operations that need to be performed in

order to learn new spatial information, represent it, and utilize it in order to self-localize

in a spatial environment. Thus far, we have completely neglected the existence of multiple

environments to choose from.

4.3.1 Choosing a context

Upon introduction to an environment, based on the task at hand as well as the memory of

already learned environment, context needs to be �xed. Fixing of context can be divided into

two parts.

In order to decide ct, we require the previous state of the PI, as it conveys information about

the previous position as well as the previous context. At the same time, we also require the
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incoming sensory information in order to decide which of the tasks at hand can be performed

�rst in case there are multiple equally important tasks to choose from.

Let us de�ne the operation of choosing these contexts FindContext as follows:

De�nition 4.12 (Context Finding Operation) The context �nding operation FindContext

returns the context c which is a combination of the task speci�c context ct and the environment

speci�c context ce based on the previous PI state(s), LV and the agent's internal state I.

c = ct + ce = FindContextt(s
t
0;LV; I) + FindContexte(s

t
0;LV;E)

Here, FindContextt and FindContexte denote mechanisms that decide the task speci�c

context and the environment context. In the above expression, I denotes the internal state of

the agent, e.g. hunger, thirst, sleepiness etc. The internal state largely determines what task

the agent should perform �rst in order to satisfy these drives.

In the above expression E denotes the set of environments to choose from. In order to

choose an environment from multiple choices, we require a search through the representations

of all available environments using the LV and the previous PI state s. The previous PI state is

required in order to discard some of the environments that the subject is highly unlikely to be in.

In other words, s imposes some continuity conditions that helps reduce the search space. Once

a set of candidate environment is selected, the problem now reduces to �nding an environment

that best matches the current observation. For the purpose, the operation Complete described

in the foregoing section can be repeatedly called with successive substitutions of c = ct + ce.

Here, ce is unknown. In this fashion, ce that returns a coherent and valid PI state is found.

Sometimes it may not be possible to �x ce straight away, in which case multiple hypotheses

about c need to be entertained simultaneously and be discarded as more observations arrive.

It has also been hypothesized that the hippocampus is involved in prediction of amount of

completion of task. As the experience of the animal on speci�c tasks like navigating in linear or

radial arm mazes increases, the place cells start to �re more and more in anticipation of future

places. In other words, the place cells drift such that their �ring is more and more correlated to

the animal's future place [Eic96]. This suggests that the hippocampus is not only involved in
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encoding, but also in prediction. Similar phenomena have been found in the anterior thalamic

nucleus (ATN) head-direction cells of the rat. These cells who strong correlation with the head

direction of the animal around 200ms in the future [BS95a].

4.3.2 Learning the context

It is evident from the foregoing discussion that it is required to learn an encoding of the

environment that facilitates �xing ce as quickly and reliably as possible. In other words

the FindContext operation de�ned in De�nition 4.12 in the previous section is required to

be learned. This operation is such that it should learn multiple environments, rather than

possible PI states within an environment. Let us de�ne a function named LearnEnvironment

that maps observations to an environment. The LearnEnvironment operation is very similar

to the Associate operation de�ned in De�nition 4.9 except that it updates the computation

performed in FindContext such that correct context can be �xed with higher and higher

reliability as training progresses. It is very likely that multiple, similar environments exist, in

which case the function FindContext can be many-to-many.

We need to bear in mind that every time FindContext fails to return a context c that is

consistent with the current c and which satis�es the continuity with previous PI state, it can be

assumed that the subject is in a new environment context. In such a case LearnEnvironment

needs to be called at the end of, or even continuously during, the learning episode that results in

learning the new environment. The operation LearnContext needs the new LV �PI mapping

and labels the mapping with the present environment context ce and ct. This is precisely the

mapping FindContext requires to �x the context upon re-entry to the environment. Hence,

we arrive at the de�nition of LearnEnvironment as follows:

De�nition 4.13 (Learn Environment) The function LearnEnvironment takes as its ar-

guments the current LV �PI mapping and a �nite sequence of previous PI states st0 along with

the set of candidate contexts returned by FindContext. Using this information, LearnEnvironment

labels the LV � PI mapping with the current context c.
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4.3.3 Merging environment contexts

It is diÆcult to acquire all possible observations experience all task speci�c contexts for

a given environment in a single learning episode. During one exploratory episode for a given

task context ct, only a subset of all possible observations can be learned. In such a case,

upon re-introduction into the environment, it is not possible to recognize the environment

correctly using the observation that has never been seen before. Also, it is possible that two

task contexts are also equivalent but the agent may not realize so until the end of the task,

when it �nds that the LV � PI mapping learned for the two di�erent contexts were terribly

similar.

With the above in mind, we need an operation that will recognize the equivalence of

two contexts and modify FindContext so that upon subsequent visits to the same context

c = ct+ ce the context can be correctly recognized. We call this the context merge operation,

which modi�es the LV �PI mapping discussed above in a way similar to LearnEnvironment.

The Merge operation is in the re-organization operation that consolidates multiple memories

of the same environment or task context into one.

In the case of merging of task contexts, this can be thought of as acquisition of new

procedural skills from declarative skills by classifying all these di�erent tasks into equivalence

classes.

We de�ne the Merge operation as follows.

De�nition 4.14 (Map Merge) The Merge operation takes in a set of LV � PI operations

that are contextually equivalent and returns a single LV � PI mapping along with a new

encoding of context cnew that represents all the old, equivalent set of contexts.

Once the Merge operation is performed, subsequent calls to FindContext return the new

context whenever observations of LV, agent internal state and previous PI states for any of

the old, equivalent contexts are encountered. For the Merge operation to work, a similarity

measure between multiple LV � PI mappings needs to be performed. This problem is one of

the hardest to solve as it requires comparisons between newly learned environment for which
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encoding strategies and important features for encodings were hitherto unknown.

4.4 Selection of Actions

The ultimate aim of all of the foregoing learning is to produce behavior that enables the

animal or mobile agent to correctly perform the task at hand. This requires learning of a

mapping from the PI state to an action that leads to the goal. It should be remembered here

that the goal depends on the task context. Therefore, the behavior to be learned here can be

denoted as:

De�nition 4.15 (Action Selection Mechanism)

a = Action(s)

Where a is the action or a sequence of actions that can lead the subject to a goal, for

example, food at the end of the sequence of actions.

It is not clear whether the action should be selected continuously using the Action opera-

tion, or whether the Action operation simply returns a program P to be executed in order to

reach a goal state. If a program is selected by Action and then executed separately, then there

needs to be a program state p. The program execution can then be de�ned as a sequence of

program states thorough which the behavioral component of the system needs to pass through

to complete the behavioral task. In any case, we need another operation that keeps a check on

the execution of the actions and ensure that the actions are performed correctly with respect

to the task at hand. If the actions are performed incorrectly, these can be tracked by checking

the trace of PI states with the sequence of PI states that the system needs to go through in

order to complete the task. We de�ne an CorrectAction operation that takes in the current

observation, PI state, the action to be performed a, and the current state of the behavioral

program p and returns correction Æa to the action a.

At the same time, we also need a mechanism that learns the program itself. Most probably

this is a completely separate system that is discussed extensively in the literature [RM86,

KLM96, BS81].
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CHAPTER 5. EXISTING COMPUTATIONAL MODELS

In this chapter we review some of the major computational modeling e�orts for the func-

tion of the hippocampal formation. These models take some of the standard computational

paradigms to propose the function of the hippocampal formation at various conceptual levels.

Most of the models described here either explain some subsets of experimental evidence from

experiments or rodents, or they explain the function of the hippocampus at a very abstract,

general level. The abstract, general level modeling usually limits itself to storage and retrieval

of arbitrary vectors and do not usually explain individual behavioral experiments. A more

detailed description of hippocampal modeling e�orts can be found in Trullier et. al. (1997) .

As we discuss below, the modeling e�orts for spatial learning and navigation can be classi�ed

into three major classes: Place-Response, Topological, and Metric based navigation models.

We discuss some important models in each of these classes below.

5.1 Place-Response Based Navigation Models

In Place-Response based navigation models, each place is associated with an action that

leads the animal closer to a desired goal location. One of the earliest models using this approach

was developed by Zipser (1986) . In his model, Zipser proposed a model in which each of the

simulated place cells was tuned to a speci�c landmark in the environment. The place cells were

also directly linked with a goal cell which encoded a vector to goal location from the place

where the given stimulus and consequently �ring of the place cell would occur. In a population

code version of the model a number of such place cells, each encoding an individual landmark

or a subset of landmarks specify a place. A weighted average of goal cell encodings would then

be used to navigate to an estimated goal location.
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Brown and Sharp (1995) proposed a very similar model where the hippocampal place cells

and the Subicular head direction cells converge to two clusters of cells in the nucleus accumbens

(NA). Each cluster in NA in their model corresponds to a turn direction and the place cell

and head direction cell connectivity and �ring pattern directly maps to a turn command.

Availability of a reward results in increase of synaptic strength in recently active connections,

or in other words, activity dependent LTP is used for goal memory incorporation.

The major problem with the models described above is that multiple goal locations cannot

be represented. Also, these models are highly susceptible to interference between representation

of multiple environments in the same neural region. There is strong evidence of involvement of

the same hippocampal pyramidal cell in representation of multiple environments [MBG+96].

Apart from that, latent learning or pre-learning an environment in the absence of a goal location

is not possible.

The model of Burgess and O'Keefe relaxes the severity of these problems signi�cantly [BRO94,

BO96]. Their model hypothesizes the function of the hippocampus, entorhinal cortex cells,

head direction cells in the subiculum and has a set of goal cells which is distinct from the rest

of the cells in their model. Their model uses winner-take-all type of learning in place cells

and subicular cells, and a form of Hebbian or activity dependent learning between place cells,

subicular cells, entorhinal cortex cells, and goal cell groups. They also use a spiking model of

neuronal activity to model the EEG �-rhythm dependent modulation of cell �ring observed in

the hippocampus. They hypothesize the existence of goal-cells downstream of the hippocam-

pus, which are assumed to be tuned to di�erent goals and updated based on reinforcements

obtained at the goal locations. A goal is chosen based on the place cell and head direction cell

activity as well as the entorhinal cortex cell activity which is meant to provide some sort of a

context for accomplishing the navigational task.

5.2 Topological Navigation Models

The Topological Navigation scheme gives emphasis to storage of relations between encod-

ings of places. In such a scheme, places can be represented in the form of directed graphs,
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with each link labeled by the action to be taken to reach a place from its immediate neighbor.

In order to reach the goal, animal must perform a graph search from the current node to a

speci�c node which can be labeled with a reward. The links can then be used to determine

the actions to be performed in order to reach the reward. It is easy to see that this type of

learning can incorporate latent learning, or learning in absence of explicitly de�ned goals and

rewards, as well as can represent multiple goals. But it is unclear how well such models can

predict the ability and computing time for planning to reach the goal from a behavioral and

reaction time standpoint. Also, the models are not very scalable.

The model proposed by Muller et al. (1991) encodes the spatial map as a graph. In their

model, place cells are allotted before the simulated animal (animat) is even introduced into

the environment and are connected together by links that can be modi�ed using synaptic

plasticity. As the animat moves from place to place, these place cells �re in speci�c sequences

and correlated activity dependent LTP links these place cells to each other. In such a fashion

the animat can remember relationships between places and also subsequences of places visited

over its training period.

The model of Schmajuk and Thieme (1992) also have proposed a very similar model. The

di�erence between Schmajuk and Thieme model and Muller model is that the former model also

has a Hebbian learning that associates these pre-con�gured place cells with another set of cells

that they call \view nodes". These view nodes are supposed to encode the sensory information

at the particular place which is encoded by the place cells. Furthermore, their model also has a

fast component that runs pre-learned routes in forward direction, thus determining the course

of action to reach the goal. The slow component on the other hand simply predicts the next

place based on the current place and the current intended motor command.

5.3 Metric Based Navigation Models

Although there is no clear-cut delineation between Topological representation and Metric

based Navigation, modeling e�orts in the literature have made a distinction between the two.

This is mainly due to the manner in which these models are wired. It should be noted that
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the topological representation can easily be transformed to a metric based representation by

utilizing the motor commands associated in order to reach one place from another. Similarly,

metric based navigation can be transformed into a topological representation by generating

motor commands and linking di�erent places with such motor commands. Furthermore, there

is no decisive way of �nding which of the two kinds of encodings are really utilized in the

brain. Perhaps it is a mixture of both as both have their own advantages and disadvantages.

Topological representations are faster to learn and consolidate as routes to goals which can

be quickly retrieved, executed and learned. On the other hand, Metric based representation

has compactness of representation and 
exibility in terms of computing detours and short cuts

easily. Also, it is signi�cantly easier to learn new reward locations in the Metric based repre-

sentation as goals can simply be represented by their positions with respect to an allocentric

frame of reference.

Prescott (1992) has developed a model of metric space representation in terms of local

frames de�ned by subsets three landmarks each. By representing the position of a fourth

landmark in the local frame, his model allows the creation of a database of relations between

landmark locations. This model implicitly encodes the metric positions of the places, since any

arbitrary goal location can be determined by a set of intervening local frame transformations

that map the goal frame to the frame that the animat is in. Navigation to a goal requires the

activation of frames that contain the goal location. Each of these active frames predict the

relative position of a fourth landmark. These landmarks are then added to the list of visible

(or available) landmarks and all frames activated by this new set of landmarks are retrieved

from the relational database. This process is repeated until a frame containing the animat's

current location is activated. At this point the set of frame transformations from the current

frame to the goal frame can be used by the animat to navigate. Prescott also extended this

approach to automatically determine the shortest trajectory to the goal.

The model used in this thesis to verify some behavioral experiments is closest to the one

proposed by Redish and Touretzky [WTR94, RT96]. In their model, places are represented in

terms of an ensemble of active place cells. Each place cell is tuned to the identities and ego-
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centric positions of two randomly chosen landmarks visible from the current place. Response

of the place cells also depends on the retinal angle, which can be taken as the visible size of

the landmarks, and an internally generated path integrator estimate of the current location of

the animat. Also, there is a certain degree of 
exibility in what information is considered for

determining the location of the animat. If the animat is reintroduced in the environment, it

should not consider the state of the path integrator in its estimate of position. In this case,

the place cells �re only in response to sensory inputs. A major di�erence between the Redish

and Touretzky model and the model to be described later in this thesis is that the Redish

and Touretzky model is capable of also resetting the head direction or angular orientation of

path integrator while our model assumes that the head direction is available to the model by

some external means. On the other hand, our model explicitly takes into account the sensor

and movement errors and reduces these additive errors using a linear Kalman Filter [Kal60]

scheme. It has been found that the place �elds drift in the absence of visible landmarks. Such

drift is supposed to be due to movement errors. Introduction of Kalman Filter like updates of

position estimate, or the path integrator, and the estimates of place �eld centers in the current

frame of reference e�ectively prevents such drifting in the presence of visible landmarks and

at the same time allows the drifting in the absence of visible landmarks. The model used in

performing the behavioral experiments is described in Chapter 6.
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CHAPTER 6. COMPUTATIONAL MODEL FOR RODENT SPATIAL

NAVIGATION AND LOCALIZATION

In this chapter we present the computational model for rodent spatial navigation and

localization developed by Balakrishnan Et. Al. (1998) [Bal99, BBH97]. We describe the

behavioral experiments performed using this model in the next chapter [BBH98b, BBH98a].

The model is based based on the locale system hypothesis suggested by O'Keefe and Nadel

(1978) . The main idea behind locale system hypothesis is that landmarks, or more generally

objects, are represented as relations to each other in terms of their relative positions. Such

representation is supposed to arise due to a fusion of incoming sensory information of di�erent

modalities with the path integrator estimates of their positions with respect to an allocentric

frame of reference. This allocentric frame of reference is supposed to be dependent on the type

of environment, and independent of the current location of the animal in its environment.

6.1 The Basic Computational Model

The main idea behind the model discussed in this chapter is that the sensory measurements

as well as the path integrator estimates are prone to noise. E�ects of such noise on the

path integrator can be seen in the drifting of place �elds in darkness [MBG+96]. The model

discussed below explicitly addresses the errors in measurement and path integration estimates

and e�ectively reduces these errors by applying a Kalman Filter [Kal60] like update mechanism.

Based on lesion and pharmacological studies performed by numerous experimenters, O'Keefe

and Nadel (1978) suggested that hippocampus is critically involved in the formation of a \cog-

nitive map". The cognitive map in their hypothesis is a representation of objects in an animal's

environment which is formed by storing spatial positions of di�erent objects relative to each



46

other.

It is interesting to note that there is growing evidence that some storage of relative temporal

positions or sequences of events are also stored in the hippocampus [NM97, SM96, Eic96].

Balakrishnan et. al. (1997) have developed a computational speci�cation of this locale

hypothesis that learns to encode landmarks in an environment and their spatial relationships

with each other. This encoding can be utilized by an animat to self-localize, or �nd its position,

in a familiar environment upon re introduction and then compute a trajectory to an estimated

goal location [BBH97, BBH98d, BBH98c, BBH98b, BBH98a]. The system learns a set of

distinct places in the environment and labels the center of each place with metric position

estimates derived from the path integration system. This fusion of sensory and dead-reckoning

information takes place in a functional model of the hippocampal formation.

The overall functioning of the model based on this speci�cation is as follows. During

exploration of its environment, the animat is supplied with sensory information about each

distinct landmark in its environment. The animat estimates the distance and orientation of

each landmark from its present position. For a new place visited, this information is used to

allocate the �rst layer cells in the model. These cells correspond to the cortical layer II and III

entorhinal cortex (EC) cells. Each unit in this �rst layer (henceforth EC layer) of the model

responds to a speci�c type of landmark at a speci�c relative position to the animat. The

activation of these cells is of a Gaussian shape centered at the �rst observed relative position

of the landmark of that particular type. This is consistent with the observed properties of EC

units in rodents [QMKR92]. If none of the current EC layer cells �res in response to a given

landmark, a new EC layer cell tuned to that landmark is inducted in the model.

It is reasonable to assume that each place in the environment can be described by the way

landmarks can be observed from that place, provided the landmarks are stable with respect

to each other. Therefore, the concurrent activity of EC layer cells can be utilized as an

encoding of relations between places. With a two layer network of cells it is easy to see that

conjunctions of literals, truth of each of them denoting landmark presence at speci�c locations

relative to animat, can be easily represented. Thus the second layer cells in the model, which
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correspond to the CA3 layer cells in the hippocampus, encode conjunctions of landmarks at

speci�c relative positions to the current location of the animat. In other words, CA3 units

encode the \snapshot" of the local view of the environment. EC layer cells simply encode

features which in this case are the presence of absence of landmarks of speci�c type present at

a speci�c relative position. Such an encoding has nothing to do with the semantic of the place

itself. The �ring of CA3 cells in response to sensory inputs at a given place thus constitutes

an internal place-code for that place. During training if no CA3 cells �re above a prede�ned

threshold in response to a given sensory input, a CA3 cell is inducted and tied to the currently

active EC layer cells. The connection weight between the newly inducted CA3 cell and the

active EC layer cells is proportionate to the activity level in the EC layer cells.

The path integrator is simply a two dimensional Gaussian random process with its mean

updated at every motor command by an amount that is equal to the translation performed by

the animat. This update is corrupted by a zero mean Gaussian noise to re
ect the inaccuracies

in the motor command. The mean of the path integrator is represented in Cartesian coordinates

with an associated diagonal covariance matrix.

It has been proposed by researchers that CA3 layer cells work as pattern completion de-

vices in situations where limited or corrupt sensory information is available [Rol96]. Other

researchers believe that the pathway formed by direct connection from EC to CA3 and the

parallel pathway from EC through dentate gyrus (Dg) onto CA3 combined perform this pattern

completion-prediction role (Correspondence with Ali Minai).

The model also assumes that goals are learned and represented in terms of their metric

positions. However, this goal representation is believed to reside outside the hippocampus.

This is in accordance with the existence of place cells during pre-training when there is no

reward present.

In addition to learning places by appropriately creating EC and CA3 units, each sensorily

new place is also labeled by the current path integrator estimate. This is done by creating

a new CA1 layer unit, linking it with the currently most active (or winner) CA3 layer cell,

and labeling it with the metric position label from the path integrator. The metric label is
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simply the distance and angle encoded in Cartesian coordinates from the place where the path

integrator was initialized, which in most cases is the point of introduction of the animat into

the environment.

Each of the CA1 unit labels can also be considered a random variable with an associated

covariance matrix, where covariance is computed between all other CA1 unit labels.

When the animal visits familiar places, incoming sensory inputs excite EC cells which in

turn activate a place code in the CA3 layer. As multiple CA1 place codes may correspond to

this CA3 code due to multiple places being sensorily the same, the path integrator estimate

is used to determine the CA1 unit that represents the closest previously visited place. In the

current implementation of the model a Mahalanobis distance test [DH73] is used to determine

which CA1 layer unit is the closest match to the current path integrator estimate. The model

then performs spatial localization by matching the predicted position of the animal which is

the path integrator state with the observed position of the place �eld center, or the position

given by the label of the closest currently active CA1 unit in the sense of Mahalanobis distance.

A Kalman Filter like approach is used to update the current path integrator estimate as well

the labels associated with all CA1 units in the current training episode. This is shown in

Figure 6.1. The meaning of current training episode will become clear in Section 6.3

position
Actual Place code

dead-reckoning

Observation

Match

Field center

Prediction

Update

Position estimate
Field center

Position
estimate

Sensory inputs

CA3 CA1

Figure 6.1 A schematic of hippocampal localization.
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6.2 Learning and Updating Goal Locations

Since our computational model allows the animat to learn places in a metric framework,

goals encountered by the animat can also be remembered in terms of their metric positions.

This idea of computing and remembering goal locations from metric place estimates was �rst

developed in [RT96]. In our work [BBH98a], the animats compute goal positions based on

their current dead-reckoning estimates and the estimated distance to the goal. Thus, goals are

represented in the same coordinate frame as the place �eld centers.

Since the goal locations are labeled in terms of path integrator state which is error prone,

the position estimate of the goal location which is derived from path integrator is also prone

to errors. In what follows we develop a mechanism of updating the estimated goal locations in

a manner that minimizes the variance or the second order variability of the goal location.

Let G be a goal. When the animat visits the goal location for the �rst time, say in step

j, the position estimate of the goal x̂G is initialized to the current path integrator estimate of

the animat x̂0;j . The variance of the goal estimate CGG is set to the current variance of the

animat's position estimate C00. Suppose the animat visits the same goal location again at time

step k. The position estimate of the animat x̂0;k may di�er from x̂G owing to dead-reckoning

errors in the intervening animat motions. Further, one of these may be more accurate than

the other, and the system must then appropriately update the goal position estimates taking

their relative accuracy into account. Let us assume that the position x̂G is updated using a

linear combination shown in Equation 6.1.

x̂+G = �:x̂�G + (1� �):x̂0;k (6.1)

The value of � is determined by the one that minimizes the resulting variance of the goal

estimate under the simplifying assumption that x̂�G and x̂0;k are statistically independent.

V ar(x̂+G) = �2V ar(x̂�G) + V ar((1� �):x̂0;k) (6.2)

CGG = �2:CGG + (1� �)2:C00 (6.3)
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where CGG is the variance of the goal position estimate while C00 is the variance of the

animat's current dead-reckoning estimate. Minimizing the resulting variance,

@CGG

@�
= 0 = 2:�:CGG � 2:(1� �):C00 (6.4)

, � =
C00

C00 +CGG
(6.5)

Thus, the value of � given by Equation 6.5 minimizes the resulting variance (it can be

easily veri�ed that @2CGG
@�2

> 0). Using this expression for � in Equation 6.1 leads us to the

following update rules for goal position estimate and variance:

x̂+G =
C00

C00 +CGG

x̂�G +
CGG

C00 +CGG

x̂0;k (6.6)

CGG =
CGGC

T
00

C00 +CGG
(6.7)

These update expressions are applied each time the animat reaches the goal location. Goal

variance CGG is initialized to 1. When the animat reaches the goal for the �rst time (say, in

step j), the above expressions automatically set x̂+G = ^x0;j and CGG = C00. Thereupon, every

visit to the goal location results in an update of the goal position estimate and its variance,

based on the relative uncertainties in the goal and dead-reckoning estimates. This allows the

animat to maintain reliable goal position estimates. It should also be pointed out that if goals

are encountered in a particular frame f and if at a later point f is merged into another frame,

the goal position estimate and its variance must be appropriately transformed into the other

frame as will be described later.

6.2.1 Representing multiple goals

It is also possible to represent multiple goal locations in a manner similar to the one

described above.

Assume that the animat reaches a goal location at at step k, at which point the path inte-

grator estimate is x̂0;k. If the animat has a record of a goal visit and labeled its representation

by an estimate x̂G with variance given by CGG a Mahalanobis test is performed as follows:
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(x̂G � x̂0;k)
T (CGG +C00)(x̂G � x̂0;k) < � (6.8)

where CGG + C00 is the covariance matrix of this test and � is an appropriately chosen

distance threshold based on the �2 test. Here x̂G is taken to be the prediction of the goal

position while x̂0;k is the observed position of the goal.

If this test is satis�ed, the goal encountered by the animat is said to be the same as the one

visited previously (G). However, if this test fails, the animat is at a new goal location. The

animat then learns this new goal location using the algorithm described earlier and adds this

to its goal memory. Note that any number of goals can be learned and remembered by the

animat.

In case of a re-visit to a goal, animat updates the closest available representation of the

goal using the update rule developed in Section 6.2

6.2.2 Navigating to goals

Once the animat has learned the locations of di�erent goals it can navigate to speci�c goals

as required. Two processes are involved in the realization of such goal-directed behaviors.

First, from its memory of di�erent goals encountered and represented, the animat must choose

one goal location to navigate to. Second, once an appropriate goal has been identi�ed, the

animat must move in such a manner as to approach the remembered location of the goal.

It is not clear which kinds of goal selection strategies are used by animals under di�erent

situations. We use a goal selection scheme that uses a combination of recency of goal encounter,

its closeness to the current position of the animat, and a measure of the con�dence associated

with the goal which is updated upon re-visits to that goal location. We choose between the

foregoing three strategies using a random drawing.

In the following chapter we will demonstrate that the implementation of this computa-

tional model provides a satisfactory computational simulation of some behavioral experiments

performed with rodents.
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6.3 Merging Di�erent Learning Episodes (frame merging)

The model also has a capability to learn di�erent parts of the environment over separate,

independent trials and then merge these \frames" or episodes of learning whenever a place

perceptually common to the current and any of the previously learned frames is found. More

details about this process can be found in [Bal99]. Brie
y, over multiple trials, animats allocate

di�erent sets of EC, CA3 and CA1 layer cells upon visits to new places. For frame or episode

fold which is a previously learned episode, CA1 layer cells are labeled by path integrator

estimates for the integrator initialized based on the point of entry for fold. During another

training frame or episode fnew which starts at a previously unvisited place and with path

integrator reset with the new point of entry as start point newly allocated CA1 cells are

labeled by this new state sequence of path integrator and clearly these labels do not match

with the labels on group of CA1 layer cells allocated during fold which has some other place as

path integrator origin. Whenever a CA3 cell linked to both a CA1 cell (or cells) in fold as well

as a CA1 cell (or cells) in fnew, clearly the animat is at a place which is perceptually the same

as a previously visited place. In such a case a coordinate transformation is performed on the

CA1 cells allocated during fold so that their labels become consistent with the path integrator

estimate during the current frame of reference. In other words, the origin of the old frame fold

is shifted to align with that of fnew. Also, the covariance matrix is also updated as described

in Balakrishnan (1999) .



53

CHAPTER 7. BEHAVIORAL EXPERIMENTS AND RESULTS

7.1 Experiments of Collett et al. (1986)

We simulated the behavioral experiments of Collett et al. (1986) using the computational

model of the hippocampal spatial learning described in Chapter 6. The experimental setup

of Collett et al. (1986) consisted of a circular arena of diameter 3.5 meters placed inside a

light-tight black painted room. The arena also contained cylinders of 70 cm height and 11

cm diameter painted black or white as landmarks. Gerbils were trained to locate a sun
ower

seed placed at �xed locations relative to di�erent con�gurations of landmark placement. The


oor of the arena was such that it prevented the gerbil from spotting the seed from a distance.

The arena was illuminated by a single white light hung directly above the setup. It was found

that the animals learned to self-localize and move towards the estimated position of reward

over a number of training trials. Once the animals were trained, the reward was removed from

the environment and landmark con�gurations were changed in order to provide the animal

with con
icting or incomplete information for localization. Upon re-introduction in such a

changed environment, animals searched for reward at its expected position as computed using

this incomplete or altered sensory information. Video tracking system was used to record the

trajectories that the animals took. This information was then used to compute histograms of

time spent by animals at di�erent places in the environment [CCS86]. We reproduce the same

experiments below using the computational model described earlier.

In our simulations, we used a circular arena of radius 10 units. The walls of the environment

did not contain any sensory stimuli. The landmarks, on the other hand, were assumed to be

visible to the animat from all points in the arena. The sensory information, in this case the

distance and orientation of landmarks from the current position of the animat, was assumed to
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be corrupted by a zero-mean Gaussian sensing error with standard deviation �S = 0.01. Each

landmark at a speci�c relative position caused an EC unit to �re. A simultaneous activation

of EC units caused �ring of CA3 and CA1 layers. The animat motion was corrupted by zero-

mean Gaussians with �M = 0.5 units. The animats also possessed means for dead-reckoning

with errors modeled as zero-mean Gaussians with �D = 0.05 units.

For each trial, the animat was introduced into the arena at a randomly selected position and

was allowed to perform 500 steps of sensing, processing and moving. If the animat happened to

see the reward within this time period, it was made to approach and consume it. Each animat

was subjected to �ve such training trials. In each trial the animat created representations of

environment by associating sensory information at di�erent locations in the environment with

its dead reckoning position estimate. These representations were independent of each other

across trials. In case the animat received the same sensory information, or in other words

visited the same place assuming no perceptual aliasing, the independent representations over

di�erent trials were merged together to form a single uni�ed representation. This consolidation

process will henceforth be called frame-merging.

Note that such map consolidations are valid only in the case when there is no perceptual

aliasing. There is no obvious way to circumvent this diÆculty in the present model. One way

to solve the frame-merging problem is to store partial paths, or particular sequences of sensory

information stream, and merge frames only when the animat sees a long sequence of sensory

information instead of a single snapshot of the environment. Such a method is viable in case

of radial or linear maze situations, where frames can be merged only when the animat sees

a particular sequence of sensory information only when it goes in a certain direction; say up

the linear arm as opposed to down the arm. This explains gradual emergence of directionality

observed in hippocampal place cells within arms of a radial arm maze while the lack of the

same in open �eld or central area of radial arms observed by [Eic96].

Once training was complete, the animat was subjected to ten testing trials, in which the

landmarks in the arena were manipulated in speci�c ways which resulted in sensory information

that was partial or con
icting compared to the sensory information available to the animat
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during training trials. Furthermore, and the goal or reward was removed from the arena. Here,

the animat was released at random positions in the arena with its dead-reckoning variance set

to 1. In other words, upon re-introduction the animat was completely uncertain about its

dead reckoning position estimate. Animats were only allowed to self localize and navigate but

were not allowed to induct any new units. A localized animat was allowed a maximum of

300 time steps to navigate to the estimated goal position. Since the goal was not found even

after searching for 25 time steps at the goal location, animat chose another goal location. This

method is consistent with claims by [RT98] where authors have hypothesized three distinct

modes of hippocampal operation; acquisition when new memory traces are stored, recall where

animal retrieves stored memories, and consolidation where memories are probably stored into

more long-term storage probably located in the cerebral cortex.

For the training as well as testing trials, the trajectories followed by the animats were

recorded. Also, the arena was decomposed into cells of size 0.33 � 0.33 and a count of the

amount of time spent by the animats in each cell was kept. A normalized histogram for �ve

animats was then plotted.

We simulated the one, two, and three landmark experiments of Collett et al. (1986), and

the search distributions of our animats (Figures 7.1, 7.2, and 7.3) match rather closely with

those of the gerbils. The large dark squares in the plots denote the landmarks.

Figure 7.1 Left: One landmark experiment. Middle: Two landmarks ex-
periment. Right: Two landmarks experiment with one land-
mark removed.
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Figure 7.2 Left: Two landmarks experiment with landmark distance dou-
bled. Middle: Three landmarks experiment. Right: Three land-
marks with one removed.

Figure 7.3 Left: Three landmarks with two removed. Middle: Three land-
marks with one distance doubled. Right: Three landmarks with
an extra landmark added.

7.2 Water-Maze Experiments of Morris (1981)

Morris (1981) experimented with male hooded rats of the Lister strain to demonstrate that

rats are capable of rapidly learning to locate an object using distal cues.

A circular pool �lled with opaque, milky water was used for the purpose. Objects present

along the walls of the room served as distal cues. The pool was devoid of any objects except

the escape platform. The escape platform was one of the following two kinds. First type was

black colored, circular and protruding above the water, and therefore visible from a distance.

Second type was white colored, circular and submerged in the water, thus virtually invisible.

The population of rats was divided into four groups of 8 individuals each. For Cue +

Place group, the visible, black platform was used, which was always at the same location (NW,

NE, SE, or SW) across all trials for a given rat. The second group was exactly like the �rst

except that the white platform was used instead. This was designated the Place group. In

Cue-only group, rats were trained using the black platform. However, in this case the platform

was placed in one of the four positions, in an unpredictable sequence over trials. Finally, the
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Place-Random group was similar to the Cue-only experiment except in the use of the white

platform instead of the black one.

For each trial, the rats were released in the pool, and their trajectories were recorded along

with the time taken to �nd the platform. Following 20 such trials over 3 days, the groups were

further divided into subgroups of 4 individuals each. Each of these subgroups was subjected

to 4 testing trials, of type A or B.

In Test A the platform was removed and search behavior was observed for 60 seconds.

For Test B, rats of groups Cue + Place and Place were tested with the platform now placed

in the quadrant diagonally opposite the one used in training. Rats of groups Cue-only and

Place-Random were tested with the platform position held �xed. The escape behavior of the

animals was then observed.

In our simulations, we used a circular arena of radius 3.75 units inside a square room

measuring 20 by 20 units. Consistent with the ratio of pool and platform sizes in Morris'

experiments, we chose the radius of our simulated platform to be 0.65 units. It was assumed

that the animat could see the platform from a distance of 0.325 units. Four indistinguishable

landmarks were used, one along each wall of the simulated room.

The sensing, motion, and dead-reckoning errors were same as in the foregoing experiments.

We also assumed that rats swam slower than their normal walking speeds, and hence the size

of motion step was set to 0.4 units.

As in the case of the original experiment, we allowed our animats four pre-training trials

in which they randomly explored the environment for 100 steps without the platform present

in the pool. During this stage, our spatial learning system allowed the animat to acquire a

spatial map corresponding to the environment. In the training trials, the animats engaged in

the goal seeking behavior. If the platform was not found at the particular goal location, the

animat searched for 15 time steps before selecting another goal location and navigated towards

it.

Groups of eight animats each were used in experiments corresponding to groups Cue-only,

Cue + Place, Place, and Place-Random as in Morris (1981). The escape latencies for the �rst
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20 training trials and the last four trials of Test B are shown in �gure 7.4.
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Figure 7.4 Escape Latencies while training and test B.

As seen in Figure 7.4, the Place group quickly learned the goal position. Furthermore,

the Cue group achieved very small escape latencies. One reason for this is the fact that our

simulation had a built-in mechanism to directly approach visible platforms from the start.

Actual animals may not have such direct approach behaviors preprogrammed but may learn

them with experience. Further, as with rats, our animats too perform poorly in the Place-

Random experiment.

Figure 7.5 shows the paths taken during the �rst test trial by representative animats in

di�erent groups. Labels C+P, P, C and P/R denote group Cue + Place, Place, Cue-only and

Place-Random respectively.

7.3 Discussion

The primary goal of the simulations was to test whether our computational model of hip-

pocampal spatial learning and localization was capable of reproducing the behavior of gerbils.

We simulated a number of experiments conducted by Collett et al. (1986) and by Morris

(1981) .

It should be pointed out that our animats did not remember goals in terms of independent

vectors to individual landmarks, as suggested by [CCS86]. Instead, places were remembered

as independent vectors to landmarks, while the goal was simply remembered as a place.
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Figure 7.5 Trajectories followed by the animats (see text for detail).

In the process of simulating behavior, we identi�ed an important issue, namely, how do

animals choose one goal to approach from multiple ones that they might remember? Likelihood

of storage of multiple goal locations in the hippocampus can be ruled out in the light of latent

learning observed by researchers beginning from the early observations of Tolman [Tol48] and

more comprehensively by Keith and McVety [KM88]. Storage of multiple maps based on the

memory of reward location can more easily be ruled out in the light of fast acquisition of new

reward places especially in Morris's Watermaze experiments [Mor81].

In order to simulate the Place-Random experiments of Morris, we had to incorporate a

heuristic goal selection strategy. Our results using this mechanism closely parallel the behaviors

observed by Morris. Indeed, our computational framework allows one to implement and test

di�erent hypotheses of goal selection. Such an approach can lead to a better understanding of

goal selection processes in navigating rodents.

From Figure 7.6 it can be observed that Place and Cue + Place experiments indicate a

strong spatial bias towards the training quadrant. While the former observation is consistent

with the results of Morris, the latter is a surprise. However, this is a direct result of our spatial

learning and navigation strategy, where we have assumed that the animat faithfully learns a
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Figure 7.6 Performance on Test A. Histogram shows the duration of time
spent by the animats in each quadrant. Here TR is the training
quadrant, A/L and A/R are the adjacent quadrants to the left
and right respectively, and OP is the opposite quadrant for
groups Cue + Place and Place. The data from the other groups
simply indicate the quadrant.

place map. There is a possibility that in the presence of reliable visual cues (e.g., platform),

place learning may not be as reliable, since it is not even necessary. This hypothesis regarding

di�erences in place learning in the presence or absence of reliable cues, remains to be studied.

7.4 Variable Tuning Widths of EC Layer Spatial Filters

It has also been found that the prominence given to landmarks in the environment de-

pends on the animals recent experience and also, to some extent, the point of entry into the

environment. Upon availability of extra cues that give multiple choices for �xing the Path

Integration system, animals generally localize by giving more importance to the proximal as

opposed to distal cues [SKM90]. This phenomenon can be explained by some simple extensions

to the computational model described earlier as follows. The consequences and parallels to

experimental evidence will be discussed later in this chapter.



61

EC layer cells in the present model act as spatial �lters, responding to individual landmarks

at speci�c positions relative to the animat. O'Keefe and Burgess [OB96] showed that the place

cells in hippocampus can be modeled as a sum of Gaussians of varying variances where each

Gaussian function encodes the distance to an edge of the environment along one of the two

orthogonal axes. We have extended the spatial �lters in EC in the light of the aforementioned

work so that the tuning curves of such �lters vary with the landmark distances along two

orthogonal axes.

During exploration, if none of the EC units �re in response to an observed landmark

position, an EC unit is recruited with the following activation function:

ECi =
1

2� �1 �2
exp(�

1

2

�
(x� �x)

2

�21
+

(y � �y)
2

�21

�
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�1 = �0
�
1 + 4�21=R

2
�

�2 = �0
�
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�

Where �1 is the distance of the landmark in direction x1 from the current position of

animat, and similarly, �2 is the distance of the landmark in direction x2 from the current

position of animat.

For the purpose of simulation, we set �0 to 1:0 and R was set to 20, the diameter of the

circular arena. As we shall see in what follows, this has an interesting e�ect on the localization

behavior exhibited by animats.

It should also be noted that EC cell �ring is also based on the landmark type, so that an

EC unit �ring signi�es a landmark of a particular type at a particular relative position from

the animat.

7.5 All-Or-None Connections Between EC and CA3 Layers

In the training phase, if none of the CA3 layer cells �re above a predetermined fraction

of their peak �ring level, a new CA3 layer cell is allocated. This newly created cell is then

connected to the active EC layer cells. We have modi�ed the connection weight assignment
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procedure of the existing model to re
ect an all-or-none connection type. Rather than assign-

ing weights proportionate to the activation of corresponding EC cells, we assign a weight of

1=nconn to each links, where nconn is the total number of EC layer cells �ring above their

threshold levels. We set �ring threshold of the newly allocated CA3 layer cell to 70% of its

maximum possible weighted sum of incoming activations. During testing this threshold was

reduced to 25% of the maximum possible activation level in order to allow animats to localize

even in presence of partial sensory stimulus, or in other words, partial activity in the EC layer.

Such a method has been found to be successful in modeling place-cell �ring characteristics in

simpli�ed environments [OB96].

It has been observed that rodents give more importance to landmarks physically closer to

their actual positions while localizing. Sharp and colleagues [SKM90] performed experiments

on rodents in a cylindrical environment with a single cue card. After training, one more cue

was added to the environment, producing a mirror symmetry in the environment. It was found

that an overwhelming number of place-�elds retained their shape and orientation with respect

to only one of the two cues. Also, in most cases, place-�elds were �xed relative to the cue that

was nearest to the animal when it was �rst introduced in the environment.

7.6 Association of Rewards With Places

We have also extended the model to incorporate mechanisms that result in enhanced re-

sponse of the EC layer neurons to landmark types that are closer to the reward locations.

Whenever the animat receives a reward upon visiting a location, the maximum possible acti-

vations in EC layer cells are updated according to the following rule:

Æwj =
1

n� 1
�

nX
i=1;i6=j

di

nX
i=1

di

where n is the number of types of landmarks present in the environment, �(i) is the total

number of landmarks of type i present in the environment, and � is the amount subtracted

from the landmark weights. � is computed as follows:
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� = 0

for i = 1 to n

do

if wi < � �(i)

� = � + wi

wi = 0

else

� = � + � �(i)

wi = wi � � �(i)

endif

done

If multiple landmarks of same type are present, weights are altered by summing the distances

of landmarks of similar types to the estimated goal location. The degenerate case of n = 1

is handled separately. It is clear that the weights remain unaltered if all landmarks are of

the same kind, or, if all landmarks are equidistant from the goal. For the purpose of our

simulations, � was set to 0:05 and the weights were initialized to 1:0.

The above rule gives more preference to landmark types that are near the goal location

by removing a uniform amount � from weights assigned to each of the landmark types, and

redistributing it so that a landmark type gains weight if such a landmark is near the goal. On

the other hand, if there are multiple landmarks of the same type, or, if landmarks are far from

the goal, such landmark type loses weight. It is also clear from the above equations that the

sum of weights assigned to all landmark types remains unaltered.

It should be noted that the activation level is modulated uniformly across all EC cells that

respond to a particular landmark type, and not just for EC cells that are active at the time of

reward presentation.

We hypothesize that such a computation, which gives more weight to a particular type

of sensory stimulus, takes place in the EC-Dg layers, as these layers get sensory information
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from the cortical areas as well as feedback connections from the Subiculum. The Subiculum

is strongly believed to be part of the path-integration system [RT98]. Assuming a population

code in the subiculum, it is conceivable that units encode path integration information which

is reset using subsets of landmarks. This information can be used to supply a modulatory

feedback signal to the units in EC and Dg.

7.7 Simulation Results

All simulation parameters and methods were identical to those in [BBH98a]. Brie
y, the

animats were introduced in an a-priori unknown environment that consisted of one or more

landmarks. The landmarks could be identical or distinguishable from each other depending on

the experiment being performed. Animats then explored their environments and allocated cells

corresponding to di�erent locations in the environment. The animats were also rewarded for

visiting speci�c locations as they explored its environment. After a certain number of training

trials, animats were removed from the environment, landmark positions were altered and the

reward removed. When reintroduced in the environment, animats were able to re-localize,

despite the change in con�guration of the landmarks, using the available perceptual input, and

moved toward the learned goal location.

7.8 Firing Characteristics of Units

In order to simplify analysis, for this part of experiments, animats were trained over a

single training trial of 750 steps of random exploration.

As seen in Figure 7.8, animat consistently localized by giving more preference to the land-

mark physically closer to the point of entry into the environment. This phenomenon was not

guaranteed with the scheme used in [BBH98a]. It should be noted, however, that the overall

behavior displayed by animat stays unaltered with these enhancements, and we get search

histograms similar to those in [BBH98a]. Figure 7.8 also shows the activation of CA1

layer place-cells once animats localized. It is important to note that the place-cell in question

�red only in one of the two clusters over a single test trial. The place-cell in question �red
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Figure 7.7 Left: Trajectories taken by an animat during test trials. Right:
Superimposed place �eld �ring regions during test trials.

Figure 7.8 Left to right: Trajectories taken by animat when trained in an
environment with three landmarks. The landmark on far right
was distinguishable from rest. The landmark on far right was
moved further while testing.

at the position cluster based around position (12; 5) when the animat localized according to

the landmark on the left, while the same place cell �red at places clustered around (18; 6)

when the animat localized using the landmark on the right. Interestingly enough, the right

cluster is spread over a larger area, signifying that the place-cell in question �red over a larger

area of the environment when animat localized using the right landmark. This e�ect can be

explained by con
icting CA3 layer cell �ring pattern due to the incorrect binding of CA1 unit

activity with the path integration system for some of the activated CA1 units, resulting in a

greater path integration estimate variance which in turn causes the CA1 unit in question pass

the Mahalanobis distance test over a larger area of the environment. Figure 7.8 shows the

trajectories during test trials, when one of the landmarks was distinct from the rest during
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training. In some of the trials animats were unable to localize because of lack of training in

those regions of the environment. It can be seen in Figure 7.8 that in one of the test trials,

animat localized solely based on the position of the right most landmark. The reason for such

a behavior is discussed in the next section.

7.9 Landmark Prominence Based on Location and Uniqueness

The extension to the model that alter prominence assigned to landmark type is able to

successfully replicate some of the behavioral results that were unaccounted for in [BBH98a],

namely, the experiments where an array of three landmarks with di�erent types of landmarks

was transformed, in �gure 9 c of [CCS86] as seen in Figure 7.9. The simulation parameters

used here were identical to those in [BBH98a].

In addition, simulations demonstrate that the proposed extensions enable the animat to

acquire associations between rewards and places and use them for goal-directed navigation.

Figure 7.9 Top Left: Training Environment;Top Right: Normalized test
histograms averaged over �ve animats with ten test trials each,
when landmarks were indistinguishable from each other; Bot-
tom: Right-most landmark distinguishable from the rest

As seen in Figure 7.9, during training the animats learned to give more weight to the type

of landmark on the extreme right, due to its proximity to the goal as well as the uniqueness

of its type. During testing, the right most landmark, which was distinguishable from the rest,

was moved further towards right. Animats localized based on this unique landmark. Hence,
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a simple rule to associate the landmark type to a goal location was learned. Obviously, if all

landmarks are identical, no such rule was learned, and the animats localized using a majority

vote, as seen in Figure 7.9, top right. In Figure 7.3 , since only one visit to goal was allowed

during training, the e�ect of prominence given by the animat to the unique landmark was not

very pronounced.
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CHAPTER 8. CONCLUSIONS

In this thesis we presented we developed a framework with associated operations required

to learn and represent spatial information that helps one navigate in an a-priori unknown

environment. We also presented some simulations of behavioral experiments using a model

that roughly follows the framework for spatial learning. We showed that such a model performs

very closely with the actual behavioral experiments performed on animals.

It turns out that the \Cognitive Map" is not just a single system, but is a result of many

system working in synchrony. These systems can be broadly classi�ed into the Path Integrator

(PI) system and the Local View (LV) system, though at some points the boundary between

PI and LV gets blurred.

We presented results of simulations based on experiments performed by Collett et. al.

(1986). These experiments were mainly designed to measure the capabilities of rodents to

learn and represent novel environments well enough to successfully navigate to a �xed reward

location. It was found that our computational model performs equally well with model con-

nections similar to the anatomical �ndings in the hippocampus and surrounding brain regions.

The next set of experiments, namely those of Morris (1981) were designed to �nd the types

of strategies used by rodents to navigate when an escape platform was visible as opposed to

invisible. Although it was not clearly proven in those experiments, it was evident that two

distinct learning systems namely, spatial learning and stimulus-response based learning are

utilized by animals. More conclusive evidence was later supplied by Morris and colleagues

(1982) and even more conclusively by McDonald and White in 1993 . In this thesis we pre-

sented simulation results of Morris water-maze task with our computational model where we

displayed very similar behavior of animats under circumstances similar to those in the original
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experiments. We also showed that two systems, one based on simple stimulus-response and

other based on spatial learning are necessary and suÆcient to reproduce the water-maze ex-

periments. It should be noted here that more complex stimulus-response tasks, reinforcement

learning, classical conditioning, and priming behavior cannot be reproduced by the present

model. Entirely di�erent brain regions and neural mechanisms are believed to be responsible

for these behaviors[MW93a].

We also showed that multiple goals can be successfully represented and utilized for the

navigational purposes by animats.

It remains to be seen how the learned environment can be transformed into a taxon or

route-based navigation system [ON78]. This is a very interesting avenue of research because it

can explain the emergence of an entirely di�erent navigational strategy from this locale system

based navigational system. Also, it is known that as experience of animal in an environment

grows, the animal starts giving more emphasis to this taxon based system where a certain

path to the goal is chosen as soon as the animal self-localizes in the environment, as opposed

to a more exploratory approach where a route to goal is frequently computed. In a sense, it

becomes a matter of choosing a right program to run in order to reach the goal as opposed to

computing the path to the goal itself using a more general purpose map. This strategy is both

computationally more eÆcient, as only a route search operation needs to be performed and at

the same time it is more eÆcient storage wise in case only a few routes in an environment are

frequently taken.

Another intriguing aspect is at the cellular level, where it has been found that although

place cell �ring itself is a robust estimate of animal's position in its environment [WM93], the

action potential bursts of individual place cells are highly irregular. Similar paths taken in

an environment produce very di�erent results; sometimes the burst occurs while sometimes it

doesn't [FM98]. Also this variance is excessive in the sense that the variance of the event that

a burst occurs given a path in the environment is higher than a Poisson process with similar

�ring probability. This is an intriguing result as it is in direct contrast with a population code

where an average (or more generally a simple function) of activity in a set of cells produces
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an estimate of the place. In such a case, all cells should on an average �re regularly for each

event they encode in order to be robust estimators. This leads to interesting possibilities;

perhaps the place cells also encode some yet to be determined signal. Another possibility is

that the �ring of place cells is simply an error signal that is supplied to another set of state

estimators that represent the estimated position of the animals location in its environment. In

other words, place cells act as comparators between what is being seen and what should be

seen given the present path integrator state. In case only a subset of available perceptual cues

are compared as measurements such sporadic �ring of place cells can be explained. The latter

hypothesis is not very far from what the model described here suggests. Further investigations

in this direction are in order.

Exactly how this robust place-dependent or head-direction dependent �ring of cells in

the hippocampal system translates to navigational behavior is yet to be known. It can be

safely assumed that the context, as described in Chapter 4 plays a major role in navigation.

Experiments have found that there is rapid and drastic re-mapping of place �eld characteristics

across environments or even within an environment if the animal performs a task that requires

it to take speci�c paths in its environment repeatedly and in a �xed order. The exact role

of the hippocampal place cells is yet to be known, whether they are more of a part of the PI

system, keeping track of the animal's position relative to the completion of the task at hand,

or whether it is a part of the LV system, responding to the current sensory information and

conveying some encoding of it to the path integrator. Chances are that the hippocampal place

cells are part of both systems, as their �ring is very strongly modulated by both LV as well as

the animal's position in the environment for the current task, and hence most probably, the

PI state. This is what makes investigation of place cells so intriguing and interesting.
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