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Accurate and comprehensive identification of surface-exposed proteins (SEPs) in parasites is
a key step in developing novel subunit vaccines. However, the reliability of MS-based high-
throughput methods for proteome-wide mapping of SEPs continues to be limited due to high
rates of false positives (i.e., proteins mistakenly identified as surface exposed) as well as false
negatives (i.e., SEPs not detected due to low expression or other technical limitations). We
propose a framework called PlasmoSEP for the reliable identification of SEPs using a novel
semisupervised learning algorithm that combines SEPs identified by high-throughput exper-
iments and expert annotation of high-throughput data to augment labeled data for training
a predictive model. Our experiments using high-throughput data from the Plasmodium falci-
parum surface-exposed proteome provide several novel high-confidence predictions of SEPs
in P. falciparum and also confirm expert annotations for several others. Furthermore, Plas-
moSEP predicts that 25 of 37 experimentally identified SEPs in Plasmodium yoelii salivary
gland sporozoites are likely to be SEPs. Finally, PlasmoSEP predicts several novel SEPs in P.
yoelii and Plasmodium vivax malaria parasites that can be validated for further vaccine studies.
Our computational framework can be easily adapted to improve the interpretation of data from
high-throughput studies.
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1 Introduction

Malaria remains one of the largest global health burdens to-
day, with an estimated 438 000 deaths and 214 million new
infectious occurring annually [1]. This disease is caused by
a eukaryotic parasite of the genus Plasmodium that is trans-
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mitted by infected Anopheles mosquitoes. Five Plasmodium
species infect humans, including P. falciparum and P. vivax,
which together cause nearly all of the mortalities and mor-
bidities. In addition, there are several Plasmodium species
that infect small animals, and thus serve as excellent models
of infection (e.g. P. yoelii and P. berghei in mice, P. cynomolgi
in nonhuman primates). These parasites (except P. vivax,
which cannot be continuously passaged in the laboratory)
have been used to identify weaknesses in the parasite that
can be exploited for chemotherapies and vaccine candidates.
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Significance of the study

Profiling the surface exposed proteome of the malaria para-
site is of major importance for understanding host-parasite
interactions and for identifying novel subunit vaccine candi-
dates. MS-based proteomic techniques have increasingly be-
come the state-of-the-art experimental approach for mapping
surface exposed proteins (SEPs) in many target pathogens.
However, more efforts are needed to improve the reliabil-
ity of the interpretation of the results of such experiments.
We propose a novel computational approach to effectively
postprocess MS results and filter out false positive as well
as false-negative results. Specifically, we integrate imperfect

results of MS experiments for mapping SEPs in P. falci-
parum, expert annotation of these data, and semi-supervised
machine learning approaches to develop prediction models
that could be used to: (i) validate the output of MS experi-
ments; (ii) predict novel SEPs that have been missed by the
MS experiments; (iii) predict novel SEPs in different species
of Plasmodium (e.g., P. yoelii and P. vivax). This study, which,
to the best of our knowledge, is the first study of its kind,
opens up opportunities for developing community resources
that integrate and improve the reliability of SEPs identified
by high-throughput MS-based proteomic experiments.

Current efforts to reduce and eliminate parasite transmis-
sion have relied upon controlling the mosquito vector, supply-
ing insecticide-treated bednets, and administering antimalar-
ial drugs that kill the blood stage of the parasite. In contrast to
these efforts, the development of an effective vaccine against
P. falciparum and P. vivax has encountered several barriers,
and to date no licensed vaccine candidate has reached the
levels of protection thought to be required to make a substan-
tial impact upon parasite transmission (reviewed in [2]). The
most advanced vaccine candidate (called RTS,S) provides lim-
ited, short lived protection in Phase III clinical trials in Africa,
but has served as an important first milestone [3]. The RTS,S
vaccine consists of a single surface protein (circumsporozoite
protein, CSP) that is present on the sporozoite form of the
parasite, which is transmitted from mosquitoes to humans.
As CSP is known to have considerable variation in field iso-
lates (ibid), parasites are likely to evade antibody-based im-
mune responses by simply changing the composition of this
protein. Ongoing efforts now aim to improve upon RTS,S
by adding additional antigens to create bivalent or multiva-
lent vaccine candidates, and by using alternate delivery ap-
proaches (e.g. viral vectors) [4]. However, the experimental
validation of surface-exposed proteins (SEPs) that will be ac-
cessible to antibodies has been limited in scope, and thus the
list of vetted antigens available for multivalent vaccines has
remained short.

Our previous work has provided an initial, and then more
recently a comprehensive, list of proteins on the surface of
the transmitted sporozoite form of the parasite, which are
accessible to antibody-based immune responses [5, 6]. Taken
together, these catalogues of SEPs provide a much needed,
experimentally validated list to draw upon to design next gen-
eration, multivalent malaria vaccines. These studies have fo-
cused primarily upon P. falciparum, which can be grown in
the laboratory and is thus amenable to these studies.

In the absence of data describing the SEPs in other human-
infectious malaria parasites, it would be advantageous to
draw upon our current knowledge of the surface proteome
of sporozoites to accurately predict which proteins may be

targetable. The supervised machine learning approach [7] is
an efficient and cost-effective approach to extract hidden pat-
terns from data (e.g., P. falciparum SEPs) and train predictive
models that could be applied to predict novel SEPs in other
human-infectious malaria parasites. However, the reliability
of the predictions depends mainly on the quality of the train-
ing data. Taking into account the technical limitations of MS
techniques [8, 9], our identified P. falciparum SEPs are ex-
pected to have a significant number of false positives (labeled
cytosolic proteins from dying cells) as well as false negatives
(due to limits of detection and sample scarcity), making the
applicability of supervised machine learning algorithms to
learn from such data a practical challenge. To address this
challenge, we propose a novel framework for developing re-
liable predictive models from noisy high-throughput P. fal-
ciparum surface exposed proteomic data. Our approach inte-
grates expert annotation of high-throughput data and semisu-
pervised machine learning algorithms [10] to develop reliable
predictive models for predicting SEPs in Plasmodium. Our
results using simulated datasets acknowledge the viability of
semi-supervised learning (SSL) to develop classifiers from
small-size labeled data by exploiting available unlabeled data.
Moreover, we demonstrate improvements in performance
of SSL by leveraging noisy expert-annotated data. Finally,
we have extended our approach to predict SEPs in human-
infectious P. vivax, which cannot be continuously cultured in
the laboratory. Taken together, here we provide the scientific
community with predicted and experimentally validated SEPs
for different Plasmodium species, along with an algorithm to
help guide experimental validations of these proteins’ poten-
tial as malaria subunit vaccine candidates.

2 Materials and methods

2.1 Surface-exposed proteomics

The surface exposed proteome of P. yoelii sporozoites was
determined as previously described with few modifications
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[5,6]. The detailed procedure is reported in Supporting Infor-
mation Materials and Methods.

2.2 SSL

SSL [10, 11] is a class of supervised learning (SL) that makes
use of available (often large amounts of) unlabeled data
to train a model using a small set of costly labeled data.
Many machine-learning researchers reported considerable
improvements in classifier performance when unlabeled data
is used in conjunction with small-size training data as op-
posed to building the model using only available labeled train-
ing data. In Supporting Information Materials and Methods,
we summarize the self-training algorithm [10], a commonly
used semisupervised algorithm that has been successfully
used for various SSL tasks in Bioinformatics applications
(e.g., [12–17]).

2.3 Self-training with potentially labeled data

In some applications, in addition to the labeled data L and
unlabeled data U, we may have access to potentially labeled
data P where the labels are based on information (e.g., expert
opinion) that may be less reliable than direct experimental
evidence. In Supporting Information Materials and Methods,
we present a natural extension of the self-training algorithm
to SSL that takes advantage of such potentially labeled data
when available. Our Java implementation of the proposed
self-training algorithm has been made freely available to the
broader research community as part of the EpiT tool [18]
(available at http://ailab.ist.psu.edu/epit/). This allows our
algorithm to be invoked using the WEKA GUI [19] and to take
advantage of several amino acid sequence derived features for
building classifiers using EpiT.

2.4 Our framework

Figure 1 summarizes our proposed framework for improving
the reliability of the results of high-throughput proteomics
experiments for identifying SEPs. First, the output of one
or more high-throughput proteomics studies for identifying
SEPs in P. falciparum is used to generate a set of non-SEPs
from the entire P. falciparum proteome (see Section 2.5 for de-
tails); Experimentally identified candidate SEPs are annotated
by domain expert(s) as known SEPs, likely SEPs, unlikely
SEPs, and unknown SEPs. Second, our novel self-training
algorithm is applied to labeled, annotated, and unlabeled P.
falciparum data to build a classifier for predicting SEPs in
P. falciparum, PlasmoSEP. Third, the PlasmoSEP classifier
and two additional Bioinformatics tools (SignalP [20] and an
in-house model trained to predict protective antigens in par-
asites) are integrated together into a final prediction model
that returns the maximum prediction score from these three

Figure 1. Flowchart of PlasmoSEP framework for integrating pro-
teomics studies, expert annotations, bioinformatics tools, and
semisupervised learning for accurate identification of SEPs in the
malaria parasite (Plasmodium spp.).

predictors. The final model is then used to predict SEPs from
among the experimentally identified candidate SEPs. This
helps filter out false positives from proteomics experiments,
which have been especially problematic in recent studies.
Finally, an integrated model is also used to identify novel
SEPs from entire P. falciparum proteomes and proteomes of
other related malaria species, P. yoelii and P. vivax.

2.5 Classification experiments

We experimented with the two self-training algorithms us-
ing simulated and real-world datasets. Detailed description
of the datasets, the extracted features, and the experimental
settings are provided in Supporting Information Materials
and Methods.

2.6 Other sources of information

To improve the reliability of our predicted SEPs, we used two
additional types of evidence for complementing the predic-
tions supplied by the PlasmoSEP classifier: (i) prediction of
signal peptides provided by SignalP Web server [20] (as the
presence of a signal peptide in a protein suggests that the
protein is secreted or is a membrane protein [21, 22]); and
(ii) prediction of protective antigens in parasites provided by
our in-house classifier, described in Supporting Information
Materials and Methods.
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Figure 2. AUC comparisons between supervised learning (SL)
and semisupervised learning (SSL), Algorithm 1, using NB (top)
and RF100 (bottom) as supervised and base classifiers.

3 Results and discussion

3.1 Predictive models trained using semisupervised

methods outperform those trained by their

supervised counterparts

First, we compared the performance of SL and self-training
(both using two basic SL algorithms, Naı̈ve Bayes (NB) and
random forest with 100 trees (RF100)) on the simulated
datasets. In this experiment, the training dataset was ran-
domly partitioned into labeled data L = {L+ ∪ L−| s.t. |L+| =
|L−|} and unlabeled data U. Figure 2 reports the area under
ROC curve (AUC) [23] estimated using the independent test
data for NB (top) and RF100 (bottom) trained using only L
and self-training classifiers using an NB and RF100 classi-
fiers trained on L and U for different choices of |L+|. Our
results show that when the number of labeled data samples is
small, the self-training algorithm substantially outperforms
its supervised counterpart. For all choices of |L+| considered
in this experiment, the classifiers trained using the semisu-
pervised algorithm (SSL_NB and SSL_RF100) consistently
outperform those trained using their supervised counterparts
(SL_NB and SL_RF100).

3.2 Noisy expert-annotated data improve the

performance of models trained using SSL

The results summarized in Fig. 2 suggest that when |L+|
is less than 110 positive samples or, in other words, when

Figure 3. AUC comparisons between basic SSL and our proposed
SSL (SSL_k%) with k% noise in potentially labeled data using NB
(top) and RF100 (bottom) as base classifiers.

the size of the labeled training data is less than 220 samples,
the AUC of the SSL model is less than 0.80. To examine
whether potentially labeled data (e.g., expert-annotated data)
improve the performance of the semisupervised self-training
algorithm, Algorithm 2, we designed the following experi-
ment. We set |L+| to 90 and we randomly selected a subset of
the remaining training data as potentially labeled such that
potentially labeled data include an equal number of positively
and negatively labeled samples (e.g., |P+| = |P−|). We also
experimented with different numbers of potentially labeled
data samples (|P+| = {10, 30, 50, 70, 90}) and different lev-
els of randomly added noise to the labels of the potentially
labeled data. Using NB as the base classifier, we found that,
for all choices of the number of potentially labeled samples
and the fraction that are incorrectly labeled, predictive models
trained using our proposed semisupervised self-training algo-
rithm that takes advantage of potentially labeled data outper-
form those that do not (Fig. 3A). We repeated the experiment
using RF100 as the base classifier for the two self-training
algorithms (with |L+| set to 30 because for |L+| greater than
30, the AUC of SSL_RF100 is greater than 0.80 and very close
to the upper limit for performance obtained using RF100
and the entire training dataset). Figure 3B shows that the
proposed SSL algorithm using noisy potentially labeled data
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consistently outperforms the basic SSL algorithm so long as
the fraction of potentially labeled data with incorrect labels
does not exceed 30%. Interestingly, in some of the cases, the
models trained on noisy potentially labeled data outperform
or perform as well as those trained on accurate potentially
labeled data. This observation may be explained in part by
the theoretical results that suggest that noise in the train-
ing data mimics the behavior of regularization which in turn
helps reduce overfitting and improve generalization, at least
in the supervised setting [24]. This finding suggests that the
proposed approach to SSL can take advantage of noisy poten-
tially labeled data.

3.3 PlasmoSEP predicted SEPs in P. falciparum

We applied our proposed semisupervised self-training algo-
rithm to learn from a P. falciparum surface-exposed proteome
dataset, as described in Section 2. Briefly, each protein se-
quence is represented using its composition transition distri-
bution features (see Supporting Information Materials and
Methods) and we applied Algorithm 2 to train a RF clas-
sifier with 100 trees (RF100) from labeled, unlabeled, and
potentially labeled data. Our choice of a RF100 classifier is
based on its superior performance observed on the simulated
data and its ability to cope with high-dimensional data [25].
The final learned model was then applied to the total P. fal-
ciparum salivary gland sporozoite proteome (2003 proteins)
and a score was assigned to predict the probability that the
protein is surface exposed. Two additional scores for each pro-
tein are obtained using SignalP and our in-house protective
antigenicity predictor, respectively. Supporting Information
Table 1 reports the three scores for every protein in the P.
falciparum salivary gland sporozoite proteome and ranks all
proteins using the maximum of the three scores. Support-
ing Information Table 2 reports the top 190 ranked proteins,
those with a maximum score �0.7. Interestingly, this set of
190 predicted P. falciparum SEPs covers the 13 known SEPs
(Supporting Information Table 3), 11 of 24 proteins anno-
tated by expert curation as likely to be SEPs (Supporting In-
formation Table 4), and only four of 41 proteins tagged as
unlikely to be SEPs (Supporting Information Table 5). Fi-
nally, of 127 proteins tagged as unknown by expert curation,
23 proteins are predicted to be SEPs (Table 1). The top hit in
the prediction for both P. falciparum and P. yoelii (see below),
which also scored positively for P. vivax was GAPDH. Inter-
estingly, while GAPDH is commonly regarded as a cytosolic
housekeeping protein, it was recently shown experimentally
to also be a bona fide surface antigen, and thus likely has
moonlighting functions on the cell surface as well [26]. We
hold that predicted SEPs in these lists, which may similarly
be dismissed due to having a well-known/canonical cytosolic
function, should be considered as having a possible surface
function.

It should be noted that neither SignalP, a program for
predicting secreted proteins, nor our in-house classifier for

predicting protective antigens in parasites, on its own, is suf-
ficiently reliable as a predictor of SEPs. However, because
any protective antigen is essentially surface exposed or an
exported protein [27, 28] and secreted proteins are frequently
(but not always) retained on the cell surface [5, 6], we em-
ploy these two predictors to aid in the identification of poten-
tial SEPs that are not detected by our PlasmoSEP classifier.
Therefore, the final PlasmoSEP score is set to be the max-
imum of scores predicted by the PlasmoSEP, SignalP, and
the antigenicity classifiers. For example, if a query protein
is assigned a low prediction score by PlasmoSEP classifier
and a high score by SignalP and/or the antigenicity classifier,
then we conclude that PlasmoSEP prediction is more likely
to be a false negative and we return the high score assigned
by SignalP and/or the antigenicity classifier as our final pre-
dicted score. On the other hand, if a query protein is assigned
a high score by PlasmoSEP classifier but low scores by Sig-
nalP and/or the antigenicity classifier, then we conclude that
the query protein is likely to be surface exposed that is not
secreted or not a putative protective antigen.

Finally, we found that our predicted SEPs are consis-
tent with their known biological roles in the parasite. Thus,
the predicted SEPs include invasion-related proteins such as
rhoptry neck proteins (ASP, RON2, RON3) and sporozoite
invasion-associated protein 1 (SIAP1), surface adhesion pro-
teins (CSP, TRAP), members of the gliding motility/inner
membrane complex (IMC) apparatus, proteases (ROM4), per-
forins to aid cell traversal (PLP1), and metabolite transporters
(Supporting Information Tables 2 and 3). As shown by previ-
ous experimental studies [6], even proteins that are transiently
exposed to the surface during gliding, traversal, or invasion
cues are truly surface exposed and are accessible to mem-
brane impermeable labeling reagents and antibodies.

3.4 PlasmoSEP predicted SEPs in P. yoelii salivary

gland sporozoites

In order to demonstrate the utility of the PlasmoSEP predic-
tor across Plasmodium species, we next applied PlasmoSEP
to the proteome of the rodent-infectious malaria species P.
yoelii. Our previous studies, which first described an approach
to identify the surface-exposed proteome of sporozoites, un-
covered only a small number of proteins that were surface
exposed on P. yoelii [5]. As this small number of proteins is
insufficient for robustly testing the algorithm, we have built
upon these initial findings and have now used improved la-
beling and washing conditions to expand the high confidence
surface-exposed proteome (Table 2, Supporting Information
Table 6). In brief, highly purified sporozoite samples were
split just prior to addition of the biotin-conjugated cross-
linker, with one half receiving the disulfide-containing label-
ing reagent (EZ-Link Sulfo-NHS-SS-Biotin) and the other half
remaining unlabeled. These matched controls were otherwise
treated identically throughout the experiment, including a
high stringency washing protocol in urea and SDS. Together,
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Table 1. List of predicted P. falciparum SEPs with maximum score ≥ 0.70 from the set of expert annotated unknown SEPs

ID Name PlasmoSEP SignalP Antigenicity Max_score

PF3D7_1462800 Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)

1.00 0.17 0.35 1.00

PF3D7_0818900 Heat shock protein 70 (HSP70) 1.00 0.11 0.56 1.00
PF3D7_1444800 Fructose-bisphosphate aldolase (FBPA) 1.00 0.10 0.25 1.00
PF3D7_0903700 Alpha tubulin 1 1.00 0.14 0.38 1.00
PF3D7_0922200 S-adenosylmethionine synthetase (SAMS) 1.00 0.11 0.32 1.00
PF3D7_0627500 4-Methyl-5(B-hydroxyethyl)-thiazol

monophosphate biosynthesis enzyme
1.00 0.12 0.60 1.00

PF3D7_1140400 Conserved Plasmodium protein, unknown
function

1.00 0.10 0.62 1.00

PF3D7_1133400 Apical membrane antigen 1 (AMA1) 0.00 0.55 0.91 0.91
PF3D7_1235700 ATP synthase subunit beta, mitochondrial 0.90 0.15 0.27 0.90
PF3D7_0826700 Receptor for activated c kinase (RACK) 0.90 0.10 0.41 0.90
PF3D7_0620000 Conserved Plasmodium protein, unknown

function
0.00 0.87 0.58 0.87

PF3D7_1335900 Sporozoite surface protein 2 (TRAP) 0.10 0.85 0.30 0.85
PF3D7_1028600 Conserved Plasmodium protein, unknown

function
0.00 0.10 0.85 0.85

PF3D7_0812300 Conserved Plasmodium protein, unknown
function

0.00 0.84 0.39 0.84

PF3D7_0917900 Heat shock protein 70 (HSP70-2) 0.10 0.84 0.48 0.84
PF3D7_0513300 Purine nucleoside phosphorylase (PNP) 0.80 0.12 0.56 0.80
PF3D7_0524000 Karyopherin beta (KASbeta) 0.00 0.10 0.78 0.78
PF3D7_0708400 Heat shock protein 90 (HSP90) 0.10 0.13 0.75 0.75
PF3D7_0827900 Protein disulfide isomerase (PDI8) 0.00 0.74 0.35 0.74
PF3D7_1361800 Conserved Plasmodium protein, unknown

function
0.00 0.11 0.70 0.70

PF3D7_0922500 Phosphoglycerate kinase (PGK) 0.00 0.10 0.70 0.70
PF3D7_0320300 T-complex protein 1 epsilon subunit, putative 0.00 0.10 0.70 0.70
PF3D7_1037300 ADP/ATP transporter on adenylate

translocase
0.70 0.19 0.19 0.70

the high stringency washes and improved elution conditions
(e.g. reducing the disulfide bond present in the crosslinker)
reduced background contamination substantially, with only
one and two proteins being captured in the unlabeled control
replicates [5].

Several aspects of these data indicate that these proteins are
bona fide surface proteins. As anticipated, many well-known
SEPs are detected in this experimentally defined list, includ-
ing CSP, TRAP, SPECT2, SIAP1, GAMA, TRSP, hexose trans-
porter, and many others [5, 29–32]. Many of these proteins
serve as the basis for existing malaria vaccine antigens (CSP,
TRAP) or are the chosen targets for chemotherapeutics (hex-
ose transporter) [2, 29]. Additionally, proteins involved in the
IMC that are used by the invasive forms of the parasite for
locomotion (termed gliding motility) were also detected [33].
Several of these proteins were also recently shown to be acces-
sible to antibodies for P. falciparum sporozoites, and should
now be considered during selection of antibody-based ther-
apeutics and vaccines [6]. Lastly, the orthologues of 43 of 52
proteins (83%, Supporting Information Table 6) with known
P. falciparum orthologues were also detected in our recent
P. falciparum surface-exposed proteome, again lending sup-
port to the categorization of these proteins as being surface
exposed.

Comparison of the PlasmoSEP predicted surface-exposed
proteome with the experimentally determined surface-
exposed proteome demonstrates the practical utility of our
approach. Table 2 reports the predicted scores of PlasmoSEP,
SignalP, and antigenicity predictors on a set of 37 identified
high confidence (defined as having two or more unique pep-
tides and/or published confirmation of surface exposure in-
dependent of mass spectrometric methods) SEPs on P. yoelii,
ranked by the maximum score of the three predictors. Our
approach confirms that 25 proteins are surface exposed with
a prediction score ≥ 0.60. Interestingly, a careful examina-
tion of the 12 proteins not identified by our approach reveals
that six of them are unlikely to be exposed to the surface
and three of them are likely to be SEPs. This suggests that
our approach is very promising in computationally assessing
high-throughput results. Finally, we provide our predicted
scores for the entire P. yoelii proteome in Supporting Infor-
mation Table 7. Our predictions suggested that 159 proteins
are expected to be surface exposed with prediction score �0.7
and 65 of these proteins have prediction scores �0.8.

It should be noted that the extremely small number (13) of
known SEPs in our training data makes it very challenging
to estimate a reasonable cut-off score (i.e., one that corre-
sponds to a desired sensitivity-specificity tradeoff) for reliably
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Table 2. List of 37 identified SEPs in P. yoelii salivary gland sporozoites using MS experiments and their predicted PlasmoSEP, SignalP, and
antigenicity scores

ID Name PlasmoSEP SignalP Antigenicity Max

PY17X_1330200 Glyceraldehyde-3-phosphate dehydrogenase,
putative (GAPDH)

1.00 0.14 0.58 1.00

PY17X_0712100 Heat shock protein, putative (HSP70) 1.00 0.11 0.62 1.00
PY17X_1007600 Sporozoite invasion-associated protein 1 (SIAP1) 1.00 0.87 0.40 1.00
PY17X_1312400 Fructose-bisphosphate aldolase 2 (ALDO2) 1.00 0.10 0.31 1.00
PY17X_0420500 Alpha tubulin 1 1.00 0.14 0.45 1.00
PY17X_1354800 Sporozoite surface protein 2,

thrombospondin-related anonymous protein
(TRAP)

0.50 0.83 0.97 0.97

PY17X_1007700 Perforin-like protein 1,sporozoite micronemal
protein essential for cell traversal (SPECT2)

0.80 0.64 0.56 0.80

PY17X_1461900 Actin I 0.80 0.10 0.52 0.80
PY17X_0835500 Conserved Plasmodium protein, unknown function 0.20 0.67 0.79 0.79
PY17X_0702200 Secreted ookinete protein, putative,GPI-anchored

micronemal antigen, putative (GAMA)
0.00 0.76 0.48 0.76

PY17X_1427200 Conserved Plasmodium protein, unknown function 0.10 0.74 0.54 0.74
PY17X_0210500 Thrombospondin related sporozoite protein,

putative (TRSP)
0.30 0.72 0.31 0.72

PY17X_1210100 Tubulin beta chain, putative 0.70 0.10 0.44 0.70
PY17X_0405400 Circumsporozoite (CS) protein (CSP) 0.70 0.68 0.70 0.70
PY17X_1037800 Glideosome associated protein with multiple

membrane spans 3, putative (GAPM3)
0.70 0.12 0.14 0.70

PY17X_0902700.1 Merozoite adhesive erythrocytic binding protein
(MAEBL)

0.30 0.69 0.44 0.69

PY17X_0826700 Phosphoglycerate kinase, putative (PGK) 0.00 0.10 0.68 0.68
PY17X_0912300 Conserved Plasmodium protein, unknown function 0.40 0.12 0.68 0.68
PY17X_0404800 Inner membrane complex protein 1a (IMC1a) 0.20 0.11 0.67 0.67
PY17X_1439800 Endoplasmin, putative (GRP94) 0.10 0.65 0.47 0.65
PY17X_1217500 Enolase, putative (ENO) 0.50 0.11 0.64 0.64
PY17X_1316500 Gamete egress and sporozoite traversal protein,

putative (GEST)
0.20 0.63 0.46 0.63

PY17X_1034500 Rhoptry-associated protein 1, putative (RAP1) 0.00 0.62 0.22 0.62
PY17X_0910400 Carbonic anhydrase, putative 0.20 0.54 0.61 0.61
PY17X_1134900 Elongation factor 1-alpha, putative 0.60 0.12 0.45 0.60
PY17X_0703100 Protein disulfide isomerase, putative 0.10 0.59 0.49 0.59
PY17X_0404900 Membrane skeletal protein, putative 0.10 0.10 0.55 0.55
PY17X_0525300 Glideosome associated protein with multiple

membrane spans 2, putative (GAPM2)
0.50 0.10 0.27 0.50

PY17X_1361400 Myosin A (MyoA) 0.20 0.10 0.40 0.40
PY17X_0303100 Hexose transporter (HT) 0.40 0.13 0.24 0.40
PY17X_0712800 14-3-3 Protein, putative (14-3-3I) 0.10 0.10 0.32 0.32
PY17X_0706500 Nucleoside transporter, putative (NT2) 0.20 0.11 0.32 0.32
PY17X_1424900 Conserved Plasmodium protein, unknown function 0.10 0.11 0.30 0.30
PY17X_0823700 Sugar transporter, putative 0.20 0.30 0.19 0.30
PY17X_0514100 Conserved Plasmodium protein, unknown function 0.00 0.10 0.22 0.22
PY17X_1143100 60S ribosomal protein L40/UBI, putative 0.00 0.12 0.09 0.12
PY17X_1118200 Histone H3 variant, putative (H3.3) 0.00 0.10 0.03 0.10

Our approach confirms that the first 25 proteins are SEPs with predicted score �0.60.

discriminating SEPs from non-SEPs. Estimation of such a
cutoff score will have to wait until we accumulate a larger
and diverse sample of known SEPs. Until then, our predic-
tions should be viewed as a prioritized list of candidate SEPs
for further experiments, which in turn can help improve the
classifier, in an iterative fashion. Despite this limitation, we
anticipate that these predictions will help to guide future ex-
perimental work for identifying novel SEPs in P. yoelii.

3.5 Application of PlasmoSEP to the

human-infectious P. vivax malaria parasite

As P. vivax parasites cannot be continuously cultured in the
laboratory, it is extremely difficult to conduct experimen-
tal determinations of the surface-exposed proteome of this
malaria parasite species, even with access to patient isolates
from endemic regions. To overcome this limitation, we have

C© 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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instead turned solely to computational approaches. Buoyed
by the success of the predictions of the PlasmoSEP algo-
rithm with P. falciparum and P. yoelii proteomes, we have
also applied this prediction software to the P. vivax proteome
(Supporting Information Table 8). Several known SEPs (CSP,
TRAP, IMC proteins, transporters, and proteins that are se-
creted during gliding and invasion) score positively using
similar thresholds as were applied for P. falciparum and P.
yoelii, indicating that the predictor accurately identifies SEPs.
Moreover, as this is a proteome wide predictor, surface anti-
gens from other life cycle stages (p25 and p28 are known
surface proteins of the ookinete stage) also score positively,
as this algorithm does not restrict the prediction only to
sporozoites. This indicates that the same properties of these
proteins may dictate their surface exposure throughout the
life cycle. Lastly, a great number of the highest scoring pro-
teins have not been experimentally or bioinformatically de-
fined for P. vivax, and are currently noted as “hypothetical
protein, conserved” in PlasmoDB. In light of this, our pre-
dictions that these are SEPs, which may be targetable by
antibodies, may help to focus and prioritize future charac-
terizations. Studies of these top candidates to first verify
that they are indeed surface exposed, and then to also de-
termine the importance of their biological function in the
parasite will help guide efforts to rationally design subunit
vaccines.

4 Concluding remarks

High-throughput MS-based proteomics has increasingly be-
come the state-of-the-art experimental approach for mapping
SEPs in many target pathogens [34, 35]. This is an essential
and key step in developing novel subunit vaccines. However,
due to technical limitations, the MS approach suffers from
false positive as well as false-negative inferred protein iden-
tifications. We address this limitation by integrating high-
throughput experimental studies, expert-annotated data, ma-
chine learning, and in silico bioinformatics tools to substan-
tially improve the reliability of identification of SEPs in the
malaria parasite. Our framework makes use of potentially
labeled data (proteins tagged by an expert as surface or non-
surface exposed) to build classifiers from small amount of
labeled data as well as typically much larger amount of unla-
beled data. By applying our approach to 205 experimentally
determined SEPs of P. falciparum salivary gland sporozoite,
we developed the PlasmoSEP classifier for predicting SEPs in
P. falciparum from amino acid derived information. We used
the PlasmoSEP classifier along with in silico bioinformatics
tools for predicting secreted and protective proteins to filter
out false positives from the P. falciparum SEPs identified us-
ing proteomics experiments, and to predict novel SEPs in P.
falciparum proteome. To further assess the viability of Plas-
moSEP, we used it to predict novel SEPs in P. yoelii (which
were independently validated experimentally) and P. vivax
malaria parasite.

The modularity of the PlasmoSEP framework allows it to
be customized in several ways. For example, it can be easily
modified to make use of potentially labeled data obtained
from annotations supplied by multiple human experts or
some in silico tools (e.g., tools for predicting protein subcel-
lular localization). The framework can be used, in principle,
to improve the reliability of the output of high-throughput
experiments beyond the applications considered in this pa-
per, as long as some labeled data, potentially labeled data,
and unlabeled data are available. Work in progress aims to:
(i) adapt other sophisticated semisupervised algorithms (e.g.
[36, 37]) to learn predictive models from potentially labeled
data; (ii) apply our framework to identify SEPs in other inter-
esting pathogens, e.g., B. pertussis [38]; (iii) Develop a com-
munity resource for depositing the output of MS proteomics,
enable community annotation and integration of data from
multiple studies, and support the application of our frame-
work to these data using Web browser based computational
workflows.
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