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Abstract-- We identify three fundamental issues underlying 
many problems in power systems today: distributed computing, 
communications, and data integration. We review the 
characteristics of intelligent agents and multi-agent systems 
(MAS) technologies and argue that MAS offer a modular, 
extensible, flexible, and integrated approach to address all three 
of these issues and the problems resulting from them. The MAS 
design methodology is summarized, and an illustrative MAS 
application scenario in electric power systems is presented. 

Keywords--Multiagent systems, distributed computing, 
communication, data and information, design methodology, 
negotiated decision-making. 

I.  INTRODUCTION 

system is centralized if its components are restricted to   
one site, decentralized if its components are at different 

sites with no or limited coordination, and distributed if its 
components are relatively autonomous entities which work 
together to achieve some overall objective [1]. The notion of 
autonomous components and coordination are the basic 
ingredients of any distributed systems. A multiagent system is 
a distributed system consisting of multiple software agents, 
which form “a loosely coupled network, called a multiagent 
system (MAS), to work together to solve problems that are 
beyond their individual capabilities or knowledge of each 
entity” [2]. Of particular interest are MAS in which the 
individual agents display significant intelligence and 
autonomy. In the past few years, MAS technologies have 
found applications in many distributed systems such as 
distributed problem solving, distributed information fusion, 
and distributed scientific computing [3,4,5]. Electric power 
systems, being geographically distributed but with fairly 
extensive communication networks, is a good application 
domain for innovative distributed solutions. Recently, we have 
been investigating MAS based approaches to power systems 
problems [6,7,8] and see significant potential in them for 
contributing to power systems problems in distributed 
computing, communications, and data integration. 

This paper is organized as follows: Section II describes 
characteristics of various traditional distributed computing 
techniques. Section III introduces communication and 
information integration problems encountered in power 
systems and current industry efforts to solve them. Section IV 
argues that MAS is well suited as an integrated solution 
approach to these problems. Section V presents a MAS design 
methodology. Section VI describes a prototypical MAS 
solution to a power systems problem. Section VII concludes. 

II.   DISTRIBUTED COMPUTING 

Distributed computing refers to computing that involves 
multiple loosely coupled processors working together to solve 
an overall problem [9]. Distributed computing offers a natural 
approach to solving complex data and computation intensive 
problems that arise in power systems analysis and control. 
Many approaches to distributed computing have been 
developed over the past decades. These include Socket 
Programming, Remote Procedure Calls (RPC), object-oriented 
DCE, DCOM, CORBA, Java RMI, and Message-Oriented 
Middleware (MOM) [9]. These approaches have their relative 
advantages and disadvantages [9]. Some major limitations 
with respect to the design of robust, networked applications 
that involve many autonomous, heterogeneous entities are: (1). 
The interactions among participating entities are fixed a-priori 
through explicitly coded instructions by the application 
developer. As a result, they lack run-time adaptive behavior. 
(2). Ongoing interaction requires ongoing communication, 
making them unsuitable for applications that have to operate 
in environments where maintaining continuous 
communication is expensive or infeasible and connections are 
unreliable. These considerations have motivated the 
development of approaches to distributed computing based on 
agents which provide ways to maintain ongoing interaction 
without ongoing communication [10]. MAS and related 
technologies offer an attractive paradigm for design of 
distributed networked applications that involve many 
relatively autonomous, heterogeneous entities [5]. 

III.  COMMUNICATION AND DATA INTEGRATION 

The emerging presence of computer and digital 
technologies has brought much greater efficiency and 
operational potential to the electric utilities. However, as both 
hardware and software vendors design systems suited to their 
own specific applications, the number of data storage 
platforms/formats and corresponding access/retrieval/interface 
methods have burgeoned. This has resulted in numerous and 
heterogeneous “information islands” at different levels 
throughout the power system, which are labor-intensive to 
identify, access, and integrate for a given purpose. In response, 
the power community has begun efforts to standardize 
communication protocols and information/data storage. 

A. Utility Communications Architecture (UCA)  

The Utility Communications Architecture (UCA) [11,12] 
was developed under the sponsorship of the Electric Power 
Research Institute (EPRI) through a process of broad industry 
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involvement. The objective has been to allow for seamless 
integration across the utility enterprise using off-the-shelf 
international standards to reduce costs. UCA is a flexible and 
scaleable architecture that provides communications solutions 
from simple devices to control centers all based upon 
compatible, standard and interoperable communications 
protocols and device object models. The UCA protocols are 
organized according to the Open Systems Interconnection (OSI) 
reference model. The UCA Version 2.0 includes profiles 
employing protocols from both the OSI and TCP/IP families 
of protocols. The Inter-Control Center Communications 
Protocol (ICCP, also known as Telecontrol Application 
Service Element 2, TASE.2) defines a standardized use of 
Manufacturing Message Specification (MMS) in UCA Version 
2.0 compliant networks for real-time exchange of data within 
and between control centers, power plants, and SCADA 
masters. The Generic Object Models for Substation and 
Feeder Equipment (GOMSFE) contains detailed object 
models of common field devices, including definitions of their 
associated algorithms and communications behavior visible 
through the communication system. The device models 
developed within the UCA 2.0 effort make use of a common 
set of services to describe the communications behavior of the 
devices. A standard mapping of these services onto the UCA 
application layer protocol (MMS), when used in conjunction 
with the device models, completely specifies the detailed 
interoperable structure for utility field devices. The services 
and mapping to MMS are defined in UCA Common 
Application Service Models (CASM). CASM is the document 
that illustrates the step-by-step processes that must be 
followed for a communications service to be performed within 
UCA. 

B. Common Information Model (CIM)  

Electric utility organizations have long needed to exchange 
system information with one another in order to construct 
simulation environments for power system economics and 
security analysis. Even though most Energy Management 
Systems (EMS) and Distribution Management Systems (DMS) 
are now supplied with standard operating systems on standard 
computer platform hardware, these systems are still built on 
proprietary databases. The consequences of this led to 
boundaries between different EMS systems and locked the 
user out of the environment. 

Between 1993-1994, the Electric Power Research Institute 
(EPRI) Working Group on Control Center Application 
Interfaces (CCAPI) developed objectives to publish a set of 
guidelines for application interfaces, to develop associated 
support tools, and to promote the use of open software 
engineering approaches in EMS. The Common Information 
Model (CIM) [13] is the foundation of the overall CCAPI 
framework. The CIM provides a standard for representing 
power system objects along with their attributes and 
relationships. The CIM is partitioned into a number of 
submodels, or packages, for convenience: a Wires Model, 
SCADA Model, Load Model, Energy Scheduling Model and a 
Generation Model. The CIM facilitates the integration of EMS 
applications developed by different vendors; entire EMS 
systems developed by different vendors; or EMS systems and 
other systems concerned with different aspects of power 

system operations, such as generation or distribution 
management. 

C. Data Integration Needs for Asset Management  

Recently there has been a great deal of investment in 
developing asset management tools. These tools may be 
classified by function. There are several which provide 
work-flow functions, work-order tracking, and data storage. 
Examples of these tools are Maximo [14], Cascade [15], and 
Asset-Sentry [16]. Typical data stored includes equipment data 
(nameplate, maintenance histories, and condition data). Some 
companies have several additional data repositories that house 
such information as outage schedules, operating histories (e.g., 
a process-information or PI-historian), and equipment-specific 
condition data (e.g., dissolved gas analysis results, tap changer 
temperatures, etc.). Because of the number and diversity of the 
asset management data repositories, EPRI has developed the 
maintenance management workstation (MMW) that acts as a 
database integrator providing a number of functionalities 
among which is the ability to bring data from multiple sources 
to a consolidated data set. 

D. An alternative and unifying approach 

UCA, CIM, and the asset management tools represent 
current efforts to facilitate communication needs and 
information processing needs within an information-intensive 
industry. An underlying, common theme is to standardize and 
centralize by defining and utilizing standard, interoperable 
communication protocols, by providing common 
object-models of power system data items, and by aggregating 
data into warehouses such as MMW. Therefore, the focus has 
been on aggregation of the data itself. MAS represent an 
alternative where the focus is on the processing rather than on 
the data, leaving the data both heterogeneous and distributed. 
We argue that MAS represents within a single technology a 
unified solution to the problems that drive the need for UCA, 
CIM, and many of the various asset management tools. 

IV.  POTENTIAL OF MULTIAGENT SYSTEMS 

Multiagent systems have proven to be an effective paradigm 
in a number of distributed networked applications that require 
information integration from multiple heterogeneous 
autonomous entities [5, 17]. More recently, MAS have begun 
to emerge as an integrated solution approach to distributed 
computing, communication, and data integration needs for 
deregulated power systems. 

A. Agent-based Computing and Agent-oriented Programming 

A multiagent system consisting of multiple agents can take 
advantage of computational resources and capabilities that are 
distributed across a network of interconnected entities. An 
agent-based approach allows the creation of systems that are 
flexible, robust, and can adapt to the environment. This is 
especially helpful when components of the system are not 
known in advance, change over time, and are highly 
heterogeneous. Agent-based computing offers the ability to 
decentralize computing solutions by incorporating autonomy 
and intelligence into cooperative, distributed applications. 
Each agent perceives (the state of its environment), infers 
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(updates its internal knowledge according to the newly 
received perceptions), decides (on an action), and acts (to 
change the state of the environment). Agent-oriented 
programming (AOP) is the software paradigm used to 
facilitate agent-based computing and extends from 
object-oriented programming (OOP) by replacing the notions 
of class and inheritance with the notions of roles and messages, 
respectively [18]. 

B. Knowledge-level Communication Capability  

Within a multiagent system, agents can communicate with 
each other using agent communication languages (ACLs), 
which resemble human-like speech actions more than typical 
symbol-level program-to-program communication protocols. 
This capability enables agents to distill useful knowledge from 
voluminous heterogeneous information sources and 
communicate with each other on the basis of which they 
coordinate their actions. By enabling performance of 
computation where computing resources and data are located, 
and allowing for flexible communication of relevant results to 
relevant entities as needed, MAS offer significant new 
capabilities to power systems, which have for so long 
depended on various forms of expensive telemetry to satisfy 
most communication needs. 

C. Distributed Data Access and Processing 

Another benefit offered by MAS is the distribution of 
agents across a network. Software agents may have different 
levels of intelligence, ranging from data agents and functional 
agents to decision agents (corresponding to what were termed 
data view, function view, and dynamics view in [18]).  
Special agents can be designed to capture heterogeneous and 
proprietary information/data, such as the application described 
in [19]. This application uses a three-layer architecture 
consisting of the physical layer, the ontological layer, and the 
user-interface layer. The physical layer allows the system to 
communicate with the distributed information sources. It is 
based on a federated database architecture. The ontological 
layer automatically bridges the syntactic and semantic 
mismatches among the heterogeneous data sources. Finally, 
the user interface layer enables users to interact with the 
system, define ontologies, post queries and receive answers. 
Because each agent is designed to perform a specific role, with 
associated knowledge and skills, distributed and 
heterogeneous information may be efficiently assimilated 
locally and utilized in a coordinated fashion in distributed 
knowledge networks [5], resulting in reduced information 
processing time and network bandwidth in comparison to that 
of more traditional centralized schemes. 

D. Integratability 

The industry maintains a rich plethora of power system 
software applications, developed in many different computer 
languages, intended for use on many different platforms. 
Extending old applications or developing new ones usually 
involves integrating legacy systems, and doing so is 
cumbersome and labor-intensive. This problem is largely 
overcome by encapsulating legacy systems into autonomous 
agents for interoperability within a larger infrastructure [5]. 

E. Distributed Decision Support 

MAS also offers a powerful task decomposition approach to 
problem solving through interaction among agents. This is 
facilitated by the ability of different agents to coordinate 
behavior through cooperation (agents have established and 
mutually agreeable objectives), negotiation (agents negotiate 
until agreement is reached), or mediation (agents resolve 
conflicts that cannot be resolved by negotiation by appeal to a 
third, neutral agent) [18]. Each of these coordination 
mechanisms finds ubiquitous application in power systems. 
We investigated the use of mechanisms and applications for 
negotiated decision-making [7,8], where autonomous 
distributed agents seek to achieve global objectives that are 
consistent with individual goals. A multiagent negotiation 
system [8,20] was built in which software agents, armed with 
coded negotiation models, represent different decision-makers, 
and conflict resolution is achieved via inter-agent message 
exchange until agreement is reached. This negotiation system 
not only provides the technology necessary to facilitate actual 
negotiation scenarios but also provides the ability to study the 
effects of varying degrees of decentralization in decision 
problems by comparing solutions obtained assuming full 
information and centralized optimization to solutions obtained 
based on sequential, bilateral negotiations.  

V.  MULTIAGENT SYSTEM METHODOLOGY 

Several MAS paradigms and methodologies have been 
proposed in the literature, e.g. MASSIVE [18], DESIRE [21], 
Gaia [22] and MaSE [23], based on different notions of agents 
and multi-agent organizations. Our group uses a 4-stage 
methodology for constructing MAS for power systems 
applications: Analysis, Design, Implementation, and 
Deployment. 

A.  Analysis: environment and tasks 

This is the first stage which identifies the application 
domain, overall problem, objectives, MAS application 
environment, i.e., information that will be available to an 
agent, actions required of the agents, and operational (e.g., 
security) and performance constraints. Task decomposition is 
performed to determine what the system is supposed to do 
(and not how it is supposed to do it) to achieve overall MAS 
objectives. 

B.  Design: roles, interactions, and organizations 

Having decomposed the problem into constituent tasks, the 
next stage is to identify the agents required to effectively 
perform the tasks in terms of (a) definition of agent roles (data, 
functional, decision, mediator, facilitator, etc.) linking 
domain-dependent application features to appropriate agent 
technology, and specifying services to be associated with each 
agent; (b) identifying the types of interactions needed between 
different agents in order to achieve individual or joint goals; 
and (c) specifying the organization of the different agents in 
terms of a society of agents that is consistent with the various 
defined roles and that achieves the overall objectives. 

C.  Implementation: architecture 

A key requirement for implementing a MAS is the selection 
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of system and agent architectures. System architecture 
includes such aspects as multi-agent organization (e.g., 
hierarchical versus flat), agent management, and coordination 
mechanisms, including such things as directory services (or 
yellow pages) that enable each agent to know the capabilities 
of other agents, and the Agent Communication Language 
(ACL) that provides the common basis for inter-agent 
communication. The most common ACLs include Knowledge 
Query and Manipulation Language (KQML) [24] and 
Foundation for Intelligent Physical Agents (FIPA) ACL [25]. 
There are a number of available agent platforms for 
implementing MAS including Voyager [26], Concordia [27], 
Aglets [28], SMART [29] among others. Based on an agent 
platform, individual agents can be extended with abilities to 
process specific messages and communicate with other agents. 
In order to enable inter-agent communication, besides ACL, it 
is also essential to define an appropriate ontology, or 
vocabulary, for the MAS that specify all possible message 
contents. In addition, some kind of inter-agent coordination 
strategy must be in place.  

A broad range of architectures for agents (including reactive, 
deliberative, adaptive, communicative) have been studied. 
Properties that distinguish the various agent architectures 
include reasoning capabilities, resource limitations, control 
flow, knowledge handling, autonomy, user interaction, 
temporal context, and decision making. 

D.  Deployment  

Here, actual agents are instantiated to cooperatively solve 
the problem. Testing is done to validate the model. 

VI.  AN ILLUSTRATIVE APPLICATION IN POWER SYSTEMS 

Based on the above MAS methodology, we have developed 
a Java™-based software infrastructure, MASPower, for 
instantiation of generic agents capable of persistent interaction 
with environment, inter-agent communication, task 
management, and accessing local and remote information 
sources. The distributed computing components of 
MASPower are engineered using Voyager ORB™ [26]. We 
have used MASPower to explore a prototypical power systems 
application of MAS in electric equipment condition 
monitoring and maintenance scheduling. The resulting 
Multiagent based Condition Monitoring and Maintenance 
System (MCMMS) for power transformers is shown in Fig. 1.  

Large amounts of equipment monitoring data are gathered 
by monitoring equipment, operational hardware, software 
systems and databases that are not easily accessed or generally 
available. Intelligent communication agents, capable of 
accessing distributed, heterogeneous, proprietary data sources, 
can extract all related transformer condition monitoring 
information and communicate with diagnostic agents. 
Diagnostic agents possess knowledge of the necessary 
monitoring techniques. Based on the queried monitoring data, 
diagnostic agents can cooperatively perform diagnostic 
functions. Because monitoring systems continuously collect 
real-time data, the amount of data is enormous, and the 
diagnosis can be data and computation intensive. MAS 
architecture enables diagnostic agents to cooperate to detect 
abnormal situations and identify possible transformer failure 

modes. Once certain predefined operating thresholds have 
been violated, the alarm agent alerts the operating personnel at 
a central control room. Based on the diagnosis, maintenance 
agents recommend appropriate maintenance tasks for each 
piece of equipment. Then we schedule these tasks subject to 
constraints on economic resources, available maintenance 
crews, and restricted time intervals. We have developed a 
system-wide centralized maintenance scheduling optimization 
procedure by maximizing cumulative system risk reduction 
[30]. However, with recent organizational disaggregation and 
functional balkanization in the industry, facility ownership is 
heavily fragmented, and information access and 
decision-making authority is quite limited for any one 
particular organization. Decision problems, such as 
maintenance scheduling, once solved using centralized 
optimization are now more difficult due to distributed 
information and the multiplicity of competing stakeholders. 
We are currently interested in using multiagent negotiated 
decision-making to solve maintenance scheduling 
optimization problem. Different maintenance software agents 
represent different independent utilities. Each maintenance 
agent performs the centralized maintenance scheduling 
optimization in its own territory first. Conflicts among these 
maintenance schedules are then resolved via inter-agent 
negotiations according to the overall system security 
constraints imposed by the ISO-Agent. The maintenance 
schedule obtained through agent negotiations satisfies all 
involved parties. Results are illustrated by comparing 
maintenance schedules, risk reduction, and resource allocation 
between the centralized solution using a single optimization 
and the solution achieved using MAS-based negotiations. 

 

Fig. 1: Multiagent based Condition Monitoring and Maintenance System 
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VII.  CONCLUSIONS 

This paper suggests that intelligent software agent and 
multiagent systems technologies offer an integrated approach 
to the design and implementation of data/information 
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management and distributed decision support infrastructure 
for deregulated electric power systems. As such, it represents 
an alternative solution approach, or at least a way to 
implement certain types of solutions, for power system 
problems related to distributed computing, communications, 
and data integration. A MAS design methodology has been 
presented, and an illustrative application in power systems has 
been briefly described. We conclude that multiagent systems 
technology has significant potential for facilitating the 
complex information processing and decision-making 
problems inherent to deregulated electric power systems. 
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