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A B S T R A C T

The rapid development and large body of literature on machine learning potentials (MLPs) can make it difficult to know how to proceed for researchers who are not
experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLPs. This
review paper covers a broad range of topics related to MLPs, including (i) central aspects of how and why MLPs are enablers of many exciting advancements in molec-
ular modeling, (ii) the main underpinnings of different types of MLPs, including their basic structure and formalism, (iii) the potentially transformative impact of uni-
versal MLPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this
nascent class of MLPs, (iv) a practical guide for estimating and understanding the execution speed of MLPs, including guidance for users based on hardware availabil-
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ity, type of MLP used, and prospective simulation size and time, (v) a manual for what MLP a user should choose for a given application by considering hardware re-
sources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch,
(vi) discussion around MLP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key
limitations of present MLPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems,
and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of
MLPs over the next 3–10+ years.

1. Introduction

This paper was inspired by the workshop “Machine Learning Poten-
tials – Status and Future (MLP-SAFE)”, which was held online on July
17–19, 2023. It represents select themes and key points we thought
would be of particular interest to the broader materials science and
chemistry communities. The rapid development and large body of liter-
ature on machine learning potentials (MLPs) (sometimes also called
machine learning force fields) can make it difficult to know how to pro-
ceed for researchers who are not experts but wish to use these tools. The
spirit of this paper is to help such researchers by serving as a practical,
accessible guide to the state-of-the-art in MLPs. We aim to keep deep
mathematics and formalism to a minimum, as such details can be read-
ily found in other excellent reviews and references therein.[1–9] In con-
trast, we believe that guidance on the general landscape of MLPs- their
practical use, trade-offs, pros and cons for particular problems, timing,
and how to get started running them is still challenging to learn from
the literature. We note that a recent Comment published by Ko and Ong
and a Perspective from Duignan both highlight many of the same topics
addressed in this Review,[10,11] albeit more briefly and at a higher
level, and we therefore feel the present work serves as a complemen-
tary, more in-depth examination of the present state of MLPs from a
practical perspective. Our target audience is technically literate mater-
ial scientists and chemists, with a background in molecular modeling,
but not MLP experts. Therefore, we do not discuss technical details of,
for example, basis function expansions, but do provide guidance on
how to understand the broad differences between approaches (e.g.,
atomic cluster expansion (ACE) vs. graph neural networks (GNNs)) and
the benefits and tradeoffs of using different approaches. This paper will
provide a high-level guide on the key fundamental aspects needed to
understand the landscape of MLPs, including their enormous potential
range of applications, general frameworks, typical workflows (includ-
ing fitting and/or using pre-fit MLPs), speed and accuracy, supporting
infrastructure, and some guidance on MLP choice.

This review paper covers a broad range of topics related to MLPs
and is organized as follows. In Sec. 2, we provide a list of MLPs dis-
cussed throughout this review, including their abbreviations and key
references to original work. In Sec. 3, we outline the central aspects of
how and why MLPs are enablers of many exciting advancements in mol-
ecular modeling. In Sec. 4, we discuss the main underpinnings of differ-
ent types of MLPs, including their basic structure and formalism (Sec.
4.1), the differences between MLPs using explicit featurization ap-
proaches of the atomic environments vs. implicit approaches leveraging
graph neural networks (Sec. 4.2) and details of the explicit and implicit
approaches more specifically in Sec. 4.3 and Sec 4.4, respectively. In
Sec. 5, we highlight the potentially transformative impact of universal
MLPs (U-MLPs) for both organic and inorganic systems, including an
overview of the most recent advances, capabilities, downsides, and po-
tential applications of this nascent class of MLPs. In Sec. 6, we provide a
practical guide for estimating and understanding the execution speed of
MLPs, including guidance for users based on hardware availability,
type of MLP used, and prospective simulation size and time. Next, Sec.
7 functions as a practical manual for what MLP a user should choose for
a given application by considering hardware resources (Sec. 7.1),
speed requirements (Sec. 7.2), energy and force accuracy requirements
(Sec. 7.3), as well as guidance for choosing pre-trained potentials (Sec.
7.4), and fitting a new potential from scratch (Sec. 7.5 and Sec. 7.6).
Discussion in Sec. 8 centers around MLP infrastructure, including

sources of training data, pre-trained potentials, and hardware resources
for training. Sec. 9 summarizes some key limitations of present MLPs
and current approaches to mitigate such limitations, including methods
of including long-range interactions, handling magnetic systems, and
treatment of excited states. Finally, we conclude in Sec. 10 with some
more speculative thoughts on what the future holds for the develop-
ment and application of MLPs over the next 3–10 + years.

2. A list of MLPs

In the following discussions, we will often refer to MLPs by their
acronyms. To help clarify the meaning and appropriate citations for
these MLPs we here summarize the names, acronyms, and standard ci-
tations of the MLPs that are discussed in this paper. Note that this is not
meant to serve as a comprehensive list of existing MLPs.

Accurate NeurAl networK engINe for Molecular Energies (ANAKIN-
ME, ANI for short): [12].

Allegro: [13].
Atomic Cluster Expansion (ACE): [14].
Atomic Energy Network (ænet): [15,16].
Atomistic Line Graph Neural Network-based Force Field (ALIGNN-

FF): [17].
Atoms-In-Molecules Network 2 (AIMNet2): [18].
Behler-Parrinello Neural Network (BP-NN, or BP)[19].
Crystal Hamiltonian Graph Neural Network (CHGNet)[20].
Deep Molecular Dynamics (DeepMD): [21,22].
Elemental Spatial Density Neural Network Force Field (Elemental-

SDNNFF): [23].
EquiformerV2-OMAT24: [24].
Fast Learning of Atomistic Rare Events (FLARE): [25].
Gaussian Approximation Potential (GAP): [26].
Graph-based Pre-trained Transformer Force Field (GPTFF): [27].
Graph Networks for Materials Exploration (GNoME): [28].
Graph Atomic Cluster Expansion (grACE): [29].
Mattersim: [30].
ACE with message passing (MACE): [31].
MACE foundation model (MACE-MP-0): [32].
MACE-OFF23 potential for organics (MACE-OFF23): [33].
Moment Tensor Potential (MTP): [34].
Neural Equivariant Interatomic Potential (NequIP): [35].
Orb: [36].
PreFerred Potential (PFP): [37].
Scalable EquiVariance-Enabled Neural NETwork (SevenNet): [38].
SchNet: [39].
Spectral Neighbor Analysis Potential (SNAP): [40].
Three-body Materials Graph Network (M3GNet): [41].
Ultra-Fast Force Fields (UF3) potential: [42].

3. What makes MLPs so exciting?

For this paper, we will define an MLP as a function that takes as in-
put a set of atoms with positions {xi, yi, zi} and element types {ni} and
maps this atomic configuration to a total energy E for that set of atoms i.
The MLP therefore serves as a potential energy surface (PES) function.
The MLP generally also provides forces, which are spatial derivatives of
the PES generated by the MLP. The forces are generally available
through a formal derivative expression that can be derived from the
MLP and no numerical differentiation of E{xi, yi, zi} is required. A simi-
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lar situation occurs for stresses. We note that some of the presently best-
performing MLPs are trained separately on energies and forces, and are
nonconservative in the sense that the forces are not directly calculated
by differentiating the PES[24,30,36]. The purpose of an MLP is to en-
able efficient calculation of material properties, typically using molecu-
lar dynamics (MD), for myriad applications ranging from understand-
ing and predicting chemical reactions to designing stronger metal al-
loys to developing more effective drugs. We note that here we define a
“material” to mean any collection of atoms, from crystals to gasses to
molecules. Throughout this work, we consider a model to be an MLP if
it can provide energies and forces (regardless if these quantities are con-
nected analytically through differentiation or obtained from separate
models), and the model is capable of performing MD simulations.

Historically, atomistic simulation of materials has been divided into
two very different approaches. On the one hand, ab initio molecular dy-
namics (AIMD) has enabled high accuracy simulations of small num-
bers of atoms, providing rich insight into the structural, thermody-
namic, and transport properties of materials at the very smallest scales.
On the other hand, classical molecular dynamics simulations with
physics-based potentials (PBPs) have enabled researchers to qualita-
tively study how atomic interactions drive the emergence of diverse
phenomena on much larger scales. For a long time, these two ap-
proaches were disconnected. AIMD was incapable of achieving the
scale needed to observe many phenomena of scientific interest, while
PBP-based MD could not provide accurate representations of specific
materials. The emergence of MLPs has revolutionized the practice of
atomistic simulations by bridging this disconnect. By leveraging mas-
sively parallel computing resources and flexible parallel simulations
frameworks such as LAMMPS,[43] it is now possible to directly simu-
late large-scale emergent phenomena in specific materials with accu-
racy that approaches that of AIMD.

MLPs differ from traditional PBPs in that MLPs utilize a highly flexi-
ble approach to represent the PES function (e.g., a neural network), typ-
ically taken from the machine learning (ML) community. In contrast,
PBPs use a highly constrained functional form guided by physics (e.g., a
Lennard-Jones or Born-Meyer potential). The categories of PBPs vs.
MLPs are somewhat arbitrary and inexact, as there is really a contin-
uum of possible approaches between the extreme limits of a purely
physical set of equations with almost no fitting parameters (a pure PBP)
and a purely numerical fit done with almost no physical guidance (a
pure MLP). An overview of the different general approaches for con-
structing PBPs and MLPs is provided in Fig. 1. Starting from the physics

Fig. 1. Overview of approaches for generating (a) physics-based potentials and
(b) machine learning-based potentials. Adapted with permission from Ref. [47].

limit, PBPs can incorporate increasingly flexible functions to become
more like ML models, e.g., as has been done in the very flexible forms
for pair interactions in the Embedded Atom Method (EAM) potentials.
[44,45] Conversely, starting from the pure ML side, MLPs can be made
more like PBPs by introducing physically-motivated terms to the PES
representation, e.g., adding in a Ziegler-Biersack-Littmark repulsive in-
teraction to ensure that atoms do not behave unphysically when close
together, as is available in several MLP training packages.[21,22,46] In
addition, many intermediate approaches are possible, e.g., as discussed
in the review by Mishin.[4] Here, we will follow the standard conven-
tion of referring to any potential that uses traditional ML featurization
or modeling approaches as an MLP.

MLPs have an advantage vs. PBPs because their flexible functional
form can fit essentially arbitrarily complex atomistic scale potential en-
ergy landscapes. We note that by “energy landscape” we mean the
ground state Born-Oppenheimer surface, as is generally produced by ab
initio calculations. One of the main disadvantages of MLPs vs. PBPs is
that MLPs require a lot of training data to learn the physics of the sys-
tem. However, as ab initio data continues to become more plentiful,
more accurate, easier to obtain, and codified in standard databases
(e.g., the MPtrj database [20] contained in the Materials Project and the
Open Materials 24 (OMAT24) database released by Meta [24]) the high
training data requirements of MLPs become increasingly easy to meet,
giving MLPs a notable and increasing advantage over PBPs. We can
think of MLPs today as an improved version of traditional PBPs, but
with greater accuracy and more flexibility to model complex systems, at
the expense of higher computational cost (depending on the type of
MLP used). Very flexible and accurate PBP functional forms are often
difficult to develop because they require significant domain expertise
and physical insight to construct.

When using MLPs, it is important to note that the level of improve-
ment in accuracy and number of elements modeled vs. using PBPs ap-
pears to be so great that the introduction of MLPs is more revolutionary
than evolutionary. The physical functional forms in PBPs, for all their
ingenuity, almost always do not have sufficient complexity to quantita-
tively model the necessary behavior of interacting atoms across all the
conditions of interest, which often contain many complex changes in
bonding and charge state. In contrast, modern MLPs can capture many
chemical changes of interest provided adequate training data is avail-
able. We stress that MLPs are not fundamentally limited in any particu-
lar way, e.g., to only metallic vs. ionic systems, or to only nonreactive
vs. chemically reactive processes. While this is a good initial perspec-
tive for those new to MLPs, there are definitely some constraints on pre-
sent MLP capabilities, and we enumerate some of the major present lim-
itations of MLPs in Sec. 9. Distinctions that were often essential to de-
termining the form and applicability of PBPs, e.g., organics vs. inorgan-
ics, bond-breaking / reactive vs. not, metallic vs. ionic vs. covalent, are
often not particularly important for whether an MLP is applicable. Fur-
thermore, the accuracy of MLPs is typically on the scale of a few to tens
of meV/atom, which is often an order of magnitude better than typical
PBPs.[1,48] Additionally, MLPs are straightforward to iteratively im-
prove and can be fixed if they show undesirable errors by adding more
training data.[49] While PBPs can be iteratively improved as well, do-
ing so is more difficult than improving MLPs, because instead of just
providing more diverse training data, more fundamental changes to the
underlying functional forms may be needed, which requires significant
expertise to do properly. Finally, MLPs with excellent testing errors are
quite easy to fit (typically ranging from just days to a couple of months
for a system comprising a few elements for a graduate student with the
necessary skills), and good pre-fit potentials, including ones covering
large parts of chemical and structural space, are becoming widely avail-
able, e.g., as seen with the recent development of Universal MLPs (U-
MLPs) (see Sec. 5). Given all the advantages of MLPs, it seems possible
that MLPs will be easy enough to train for most systems that they may
at least partially replace ab initio calculations in applications needing
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just forces and energies. Even partial replacement of ab initio calcula-
tions will dramatically accelerate many kinds of molecular modeling,
but one notable example is that quantum mechanics-based AIMD might
be almost entirely replaced by MLP MD. This replacement of AIMD with
MLP MD would make similar time and length scales to those studied
with AIMD accessible with orders of magnitude less compute time.
Such an increased efficiency is an important change as a significant
amount of the compute time used in ab initio simulations is devoted to
running AIMD. Perhaps more importantly, the use of MLP MD would
unlock gains of orders of magnitude in accessible length and time scales
vs. AIMD for many systems, enabling the study of new physical regimes
inaccessible with AIMD. There is growing evidence that we will be able
to develop quantitative U-MLPs, something like the foundational mod-
els in computer vision and language machine learning, which can di-
rectly, or with some fine tuning, provide almost instant access to quan-
tum mechanical accuracy on almost any chemical system at the scale of
millions to billions of atoms and for microsecond or longer timescales.
[20,28,32,41] Thus, MLPs may dramatically enhance the capabilities of
molecular simulations, significantly impacting chemistry, biology, ma-
terials science and engineering, physics, and many other disciplines.
The necessary understanding, methods, and tools exist today to enable
non-experts to apply MLPs to practical problems, and it is reasonable to
expect an explosion of use across many fields of science in the next few
years. However, there are still significant challenges to realizing the full
potential of MLPs, including refining the best features and architec-
tures, developing optimal training strategies, finding ways to include
additional physics (e.g., long-range interactions), scaling up to univer-
sal potentials, and successfully developing and adopting potentials for
many complex systems of interest.

4. Understanding the types of MLPs − basic formalisms

In this section, we discuss the basic formalism behind MLPs. The
goal of this discussion is to provide a qualitative description to help
guide users in understanding what aspects control the key properties
users care about, which include e.g., (1) human vs. computational MLP
training limitations, (2) MLP speed of execution, (3) MLP accuracy, (4)
MLP ease of use, and (5) appropriateness of an MLP to specific prob-
lems. Detailed mathematical descriptions of MLP formalisms can be
found in many other reviews.[1–9] This section provides a high-level
overview of the basic construction of an MLP (Sec. 4.1), discussion of
the construction and use cases of MLPs created by explicitly featurizing
atomic positions with specific functional forms (Sec. 4.3), discussion of
the construction of MLPs created implicitly through featurizing by
graph neural network approaches (Sec. 4.4), the general differences be-
tween these two approaches (Sec. 4.2), and, finally, the unification of
these two approaches into a single over-arching MLP framework (Sec.
4.5). We stress that this section was written to reflect the historical de-
velopment of different MLP formalisms, where we discuss differences
between various approaches which we believe accurately portrays how
the community has thought of MLP development until recently. How-
ever, these previously perceived differences between various MLP for-
malisms appears to be collapsing into a single over-arching formalism,
which we discuss in more detail in the following subsections.

4.1. The basic structure of an MLP

Almost all MLPs have the same qualitative structure, although the
details of the implementation differ between MLP types. The idea be-
hind this structure is that for use in an MLP, the local environment of all
atoms must be represented by some set of numbers, or features, which
we will call its atomic environment featurization (AEF). In Fig. 1B, this
is described as “local structural parameters”. The AEF is built in a man-
ner such that it can be represented as a manageable set of numbers,
then that featurization is fed into an ML model. The potential accuracy

of the model depends on how well these features and the model can
capture the local environments, and, generally, larger sets of features
are better able to capture environments (this is sometimes referred to as
an AEF that is more “expressive”).

4.2. Explicit vs. implicit MLPs

Determining how to distinctly categorize different MLP approaches
is challenging. This complication is the result of the multiple different
ways researchers approach the featurization portion of MLP develop-
ment, and, as discussed below, how greater understanding in the field
has prompted the convergence of various approaches, making the
boundary between MLP approaches more nebulous. However, we think
that a helpful distinction at present is to consider MLPs as being based
on “explicit AEF” vs. “implicit AEF”. We note that the designation of ex-
plicit vs. implicit AEF is analogous to what others, such as Schütt et al.,
have previously called “handcrafted” vs. “learned” representations.[39]
By explicit AEF MLPs, we mean MLPs that define an explicit set of fea-
tures for each element. Explicit AEFs are the type of potentials that
were first invented by Behler and Parrinello[19] and have dominated
MLPs until quite recently, where the specific formulations of these ex-
plicit AEF MLPs are discussed below in Sec. 4.3. In contrast, implicit
AEF MLPs are MLPs that define a set of features or chemical descriptors
which are learned, rather than pre-defined. Implicit AEFs result in
learned features (sometimes called “embeddings”) of the atoms and
bonds comprising a material. MLPs employing implicit AEFs will gener-
ally involve more ML architectural complexity, potentially making
them harder or slower to use, train, and execute. Of particular impor-
tance is that the learned features from implicit AEFs can scale with
number of different chemical species much more efficiently than those
used in most explicit AEF MLPs, and it is therefore this category of im-
plicit AEFs that is almost always used for modeling many elements
(e.g., > 5). As of this writing, implicit AEF MLPs are almost entirely
based on deep learning approaches for learning effective features. For
example, implicit AEF MLPs include all of the graph neural network
(GNN) approaches (e.g., M3Gnet,[41] NequIP,[35] etc.) and the newest
implementations of DeepMD.[21,22] Therefore, we will usually just re-
fer to implicit AEF methods as deep learning methods, although these
two categories are technically distinct.[39]In the text below, we will re-
fer to explicit and implicit or deep learning-type MLPs when the above
distinction is useful.

4.3. Explicit AEF type MLPs

In this section, we describe the explicit construction of the AEF. The
standard way to treat the mathematical representation of atom types
and positions is to consider each atom as having an energy given by the
atom type and its local environment (the positions and element types of
nearby atoms). For this description, we refer to a given atom under con-
sideration as the target atom (atom i in Fig. 1). The initial AEF for a tar-
get atom is generally constructed by writing the local atomic environ-
ment as a set of densities for a given atom type and then expanding that
density function using a basis set consisting of radial and angular func-
tions (for example, Bessel and spherical harmonic functions, respec-
tively). The explicit AEF is most effective when it respects the symme-
tries of materials, which typically include permutations, translation,
and rotation. A symmetry-aware representation can be created by tak-
ing tensor products of the initial AEF over the target atom and its near
neighbors. These tensor products can then be combined to create a set
of values that are covariant (i.e., change in a structured and predictable
way) with symmetry operations. The final ML model then operates on
these tensors, generally to predict a single scalar energy. It is possible
and quite common to just keep scalar-covariant, generally called invari-
ant, features, which can then be used in almost any ML model, provided
the ML model is continuously differentiable.
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Once an AEF is established, any atom and its environment can be
mapped onto a vector, which can then be used as an input feature in a
standard ML model. We call the simple passing of the AEF as features
into the ML model the “explicit AEF approach”. A graphical overview of
the explicit AEF approach is given in Fig. 2. The training target values
for the ML model are typically a set of energies and forces. These ener-
gies and forces could come from any source but are almost always taken
from a large set of ab initio calculations, such as density functional the-
ory (DFT). Any DFT cell calculation that provides energies and forces,
including stable structures, structures calculated during atomic relax-
ations, and structures calculated during AIMD are potentially of use.
Then, the model parameters are estimated by standard regression meth-
ods. One difference from typical regression problems is that the training
data are not just simple functions of the AEFs. First, the forces on a sin-
gle target atom are often given as the derivative of the ML function, and
so in this case the fitting loss function must have a term that depends on
the derivative of the ML model function. It is worth noting that some
MLPs are trained on energies and forces separately, e.g., NN-based
MLPs trained without forces, where comparable accuracy can be ob-
tained by increasing the training dataset size.[51,52] Second, the train-
ing energies are each total energies for a whole set of atoms comprising
a molecule or crystal unit cell (almost no ab initio methods allow easy
formal decomposition of the total energy into values for each atom),
and so the fitting loss function typically must have a term that depends
on the sum of energies of all the atoms in each calculated configuration.
Note that some MLP code packages will fit to other properties as well,
e.g., stress tensor, virial, polarizability, etc.[21,34] These additional
properties can all be included in the fitting with regression approaches
like those just described but with adjustment to the loss function. As-
suming one is using an established MLP code repository or package,
these manipulations should be automatic and thus largely invisible to
the user, and one can consider the MLP fitting qualitatively as fitting a
simple regression problem. As with any regression, there are many pos-
sible ML models available. The most widely used models for MLPs,
listed in approximate order of their conceptual simplicity, decreasing
speed of fitting and execution, and increasing accuracy are: Linear Re-

gression (LR) (simplest, fastest, least accurate), Gaussian Process Re-
gression (GPR), and Neural Networks (NNs) (complex, slowest, most ac-
curate). We note that the speed of fitting GPR is highly dependent on
the dataset size, and, for small datasets, GPR can have accuracies ex-
ceeding those of NN approaches, which tend to excel for problems in-
volving large datasets.[1] Here, we exclude GNNs as they are discussed
separately in Sec. 4.4 in the context of implicit AEFs. From the above
discussion, it is worth noting that some highly popular ML models used
in regression problems, such as random forests, are not suitable for
MLPs because they do not possess continuous derivatives.

There is no universal answer to which ML model is best for MLPs,
but with good featurization, LR and GPR have both proven to work very
well and are generally simpler to fit than NNs. Many of the most widely
used MLPs can be described with this explicit AEF framework. Specifi-
cally, the original Behler-Parrinello potential used atom-centered sym-
metry functions (ACSFs) as AEFs and a NN ML model,[19] the Gaussian
Approximation Potential (GAP) uses the Smooth Overlap of Atomic Po-
sitions (SOAP) approach to construct AEFs and a GPR ML model,[26]
the Spectral Neighbor Analysis Potential (SNAP) used hyperspherical
bispectrum functions (HBFs) as AEFs and a LR ML model,[40] the Mo-
ment Tensor Potentials (MTP) used moment tensor functions (MTFs) as
AEFs and a LR ML model,[34] and the Atomic Cluster Expansion (ACE)
uses the product of radial functions and spherical harmonics as its AEF
and a LR ML model.[14] It should be noted that it has recently been re-
alized that the ACE formalism is a superset of most other methods,
meaning that ACSFs, SOAP, HBFs, and MTFs are all specific cases of
ACE.[14] Note that this does not make these other potentials irrelevant,
since any given potential may represent specific choices that are excep-
tionally efficient to train or execute, but it does help to realize that ACE
appears to be a comprehensive formalism for expressing state-of-the-art
explicit AEFs for MLPs. Moreover, it is possible to combine any of these
AEFs with any ML model. For example, the FitSNAP software[46] al-
lows SNAP and ACE featurizations to be combined with PyTorch and
JAX models.[53].

While the explicit AEF formalism is very effective, it has until re-
cently had a significant scaling problem[13] which we describe here.

Fig. 2. An overview of the explicit AEF approach of making an MLP, including acquiring reference data from ab initio calculations, choosing a featurization approach
to represent the local chemical environments, and an ML regression model to map the chemical environments to energies and forces. Adapted with permission from
Ref. [50].
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We note this argument is based on the ACE basis construction, but it is
quite general and similar issues occur in other related explicit AEF for-
malisms. Let Nb be the number of basis functions used to expand the
density of one species around a target atom and S be the number of
species. Then there are Ntotal_basis = Nb⨯S total basis functions for one
target atom. Let v be the number of atomic sites we couple to in tensor
products (here v + 1 is called the bond order, and v + 1 = 2 gives pair
information, v + 1 = 3 gives 3-body information, and so on). For a
given bond order, there are order O((Nb⨯S)v) basis functions. For a typi-
cal bond order of 3, this gives quadratic scaling with the number of ba-
sis functions and species, which can become quite slow for a complex
basis and for large numbers of species. The species scaling typically lim-
its most explicit AEF potentials to approximately 5 or fewer species.

4.4. Implicit AEF and GNN MLPs

There are a few solutions to the issue of poor of scaling for explicit
AEFs, particularly with the number of species. The general approach to
overcoming this scaling problem is to instead use an implicit AEF to em-
bed the chemical space in a learned feature vector (i.e., an embedding)
that can effectively represent different chemistries without explicitly
developing basis functions for each one. This approach appears to work
very well, dramatically reducing the complexity of treating different
species. The exact reason this works is not totally clear, but likely is be-
cause the properties of different elements are not independent, and
their interactions in subclusters inform their more complex cluster in-
teractions (e.g., pair couplings can dominate the energy of a cluster of
10 different atom types). Probably the most widely used approach that
provides efficient embedding (as well as has other potential advantages
and disadvantages) are GNNs, discussed more below. However, there
are other approaches. For example, the DeepMD[21,22] MLP repre-
sents the local environment as embedding vectors that are constructed
by a neural network based on some or all of local atom distances, an-
gles, and types. The weights of the embedding network are trained dur-
ing fitting, making the AEF an implicit function of the coordinates that
is learned during training and allowing DeepMD to fit many elements. A
number of papers have recently shown how features in standard ex-
plicit AEF MLPs might be manipulated to reduce the scaling with
species, where such an approach by Lopanitsyna, et al. is illustratively
named “chemical compression”.[54–56] Darby et al. in particular has
shown that linear embedding of the elements into a fixed dimensional
vector space corresponds formally to tensor-decomposition, and as the
dimension increases will converge to the uncompressed result.[54] Ar-
trith et al. showed that element-specific weights allow constant-size
AEF vectors irrespective of the number of chemical elements and
demonstrated the method for up to 11 species[16] and a similar ap-
proach was independently proposed by Gastegger et al.[57] An out-
standing example of the power of these approaches is the graph ACE
(grACE) method and package, which are now available and appear to
provide excellent scaling with the number of elements while achieving
high accuracy.[29] These recent papers and emerging packages suggest
that soon the chemical scaling issues associated with the explicit AEF
approach may be greatly reduced or removed altogether.

A GNN is an NN architecture that operates on graphs, where graphs
are collections of nodes and the connections between them (called
edges). Perhaps not surprisingly, a graph is an excellent way to think
about interacting atoms, where nodes are mapped to atoms and edges
are mapped to reasonably near neighbor bonds. GNNs and the graph
representation provide a somewhat different approach to constructing
an AEF with some clear advantages vs. the explicit AEF approaches dis-
cussed above, and therefore have become a very popular approach for
MLPs. In a graph, sets of embeddings are associated with each node
and/or edge, and these embeddings can be mapped to properties of the
atoms by the GNN. GNNs iteratively update the embeddings of a target
node/bond through learned mappings of connected node/bond embed-

dings onto the target node/bond, with the connections determined by
the graph structure. Each one of the updates is typically done in one
layer of the GNN. These updates are also given structural information
like bond lengths or more detailed AEF parametrizations. Because
GNNs encode the features of atoms and bonds through a learned map-
ping to embedded features, these features can potentially represent the
chemistry and structure much more effectively than the basis function
tensor products in the standard explicit AEF MLP described in Sec. 4.3.
In particular, compared to explicit AEFs, these embeddings appear to
avoid the explosion in complexity and resultant scaling problems with
number of species noted in Sec. 4.3. Thus, GNNs using implicit AEFs
appear to have the ability to scale to almost arbitrary numbers of chem-
ical components. Not all GNNs are equivalent. For example, recent
GNNs are often so-called E(3) equivariant NNs (e.g., NequIP[3541],
MACE[32], TeaNet[58]), which work with highly expressive equivari-
ant tensor representations of atomic environments and operate on them
to preserve the proper symmetries. Such GNNs appear to be particularly
data-efficient in fitting. Also, most GNN MLPs effectively couple a
widening range of atoms/bonds to a target atom/bond at each layer of
the GNN. The multiple layers needed to get good convergence often ef-
fectively couple atoms 3–4 nm apart. This coupling can be advanta-
geous for capturing longer range interactions, e.g., as shown for
M3GNet in comparison with MTP potentials.[41] However, this cou-
pling of 3–4 nm is much longer than typical ranges of direct physical in-
teraction in almost all PBPs and explicit AEF MLPs (which are almost al-
ways 1 nm or less) and can lead to significant memory and paralleliza-
tion issues. Therefore, researchers are now exploring more local equi-
variant NN approaches, e.g., Allegro,[13] which has excellent scalabil-
ity with multiple processors.

4.5. Unifying explicit and implicit AEFs

It is worth noting that all of these MLP methods are increasingly ap-
pearing to be different aspects of a single general MLP approach. As dis-
cussed above, explicit and implicit AEFs were developed largely inde-
pendently. Explicit AEFs focus on local descriptions of atomic energy
obtained by the interaction with all neighbors within a cutoff distance.
Implicit AEFs recursively incorporate via message passing information
about atoms that can be several cutoff distances away. The messages
are assembled from the local atomic environment within a cutoff dis-
tance and then employed for the computation of the energy of another
atom. From the viewpoint of explicit AEFs, message passing modifies
the character of an atom. In an explicit AEF, neighboring atoms are
characterized by their positions and chemical species. In an implicit
AEF, neighboring atoms are characterized by further attributes col-
lected from the atomic environment. For example, this makes a carbon
atom on a surface different from a carbon atom in the bulk. In equivari-
ant neural networks the additional attributes are vectors and tensors,
which essentially give the carbon atom an environmentally dependent,
non-spherical character.

ACE provides a complete basis for the local atomic environment.
Applied to the local atomic environment of neighboring atoms, ACE fa-
cilitates formally complete messages.[59] Recursive application of ACE
in an implicit AEF is multi ACE (MACE).[31].

However, while intuitive, it is not necessary to take an iterative
evaluation as the starting point. In fact, the ACE basis was extended to
incorporate more general graph basis functions.[29] In this setting, the
ACE basis functions build on star graphs, whereas the more general
graph basis functions on tree graphs. In complete analogy to ACE, in
graph ACE the energy or any other local or semilocal property is written
as a linear combination of graph ACE basis functions, i.e. in an explicit
AEF. Only for an efficient numerical evaluation of graph ACE functions
and by employing tensor decomposition along the graph ACE basis
functions, an iterative evaluation is employed. This iterative evaluation
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comprises message passing equivariant neural networks such as
NequIP,[35] MACE, i.e. it corresponds to implicit AEFs.

This facilitates the following understanding. AEFs can be formu-
lated in an explicit way. Here, graph ACE provides a general and com-
plete representation. Explicit AEFs with graphs that have two or more
layers can be transformed to implicit AEFs for numerically efficient
evaluation, resulting in message passing neural networks. In practice,
even single layer explicit AEFs are evaluated iteratively for numerical
efficiency,[60] which means that they should fall into the implicit AEF
category, too.

Therefore, the distinction between explicit and implicit AEFs re-
flects the history of the development of AEFs in the past years more
than their actual structure. To the best of our knowledge, all AEFs can
be represented in an explicit way. Iterative evaluation for numerical ef-
ficiency leads to implicit representations of AEFs. These results increas-
ingly suggest that we may be converging on a single general formalism
for MLPs, and the seemingly very different approaches in use today are
actually specific choices within the general formalism. Such under-
standing will hopefully allow the community to extract the approaches
that are simultaneously optimized to be the most efficient for training,
and fast and most accurate for prediction.

5. Universal MLPs

To date, the vast majority of MLPs are trained on a limited domain
of chemical or materials systems. This amounts to an MLP that repre-
sents a particular materials family (e.g., perovskite oxides, 2D MXenes,
etc.) or particular chemical system (e.g., the Li-Co-Mn-Ni-O composi-
tion space) well, but is not transferable in the sense that these MLPs are
unable to extrapolate to accurately model new elements or structure
types that are not present in the specific training data. As discussed in
Sec. 4 above, part of the reason researchers focus on small numbers of
chemical species is related to the explicit AEF approach used, many of
which do not scale well to include more than ∼ 5 species. The creation
of accurate, highly general MLPs that cover many more elements and
conditions than typical MLPs is highly desirable as it would produce a
potential with the widest possible domain of applicability, enabling the
study of the statics and dynamics of many types of chemically complex
systems, potentially for long simulation time scales. In thinking about
scaling up MLPs to more chemical species, we propose that it is useful
to distinguish a few categories of MLPs, specifically:

1. Targeted MLPs (T-MLPs). These are the typical MLPs that cover
approximately 1–10 (usually < 5) elements and are typically
under some constraints of chemistry, structure, or phase (e.g.,
oxides with certain compositions, multiple elements in a fixed
crystal structure for high entropy alloys, or molten (liquid) phase
salts) although these latter constraints can be quite few or
potentially even none.

2. Universal MLPs (U-MLPs). These attempt to cover a large number
of species under different levels of constraints, e.g., transition
metal oxides in solid form or organic molecules with select heavy
elements. These typically cover 10–100 elements and could range
in conditions, from a very strong constraint such as a specific
crystal lattice to allowing almost any atomic configuration.
Obviously, the MLP would be considered more universal as more
elements are included and fewer constraints on the considered
chemical or material structures are made. It can be useful to
consider these MLPs in two categories, which we call semi-
universal-MLPs (SU-MLPs) and true U-MLPs. Both require a
method that can scale well with number of species and target a
large number of species. However, SU-MLPs focus on a select
domain, e.g., transition metal oxides in solid form or organic
molecules with select heavy elements. A good example of an SU-
MLP is the recent AIMNet2,[18] which targets molecular and

macromolecular structures and is applicable to species containing
up to 14 chemical elements in both neutral and charged states,
making it valuable for modeling the majority of non-metallic
compounds. As another example of a SU-MLP, the work of
Rodriguez et al. built the Elemental Spatial Density Neural
Network Force Field (Elemental-SDNNFF), which produces
accurate forces for Heusler alloys constituting 55 different
elements and accurate predictions of phonon properties.[23] A
third example is the SuperSalt potential from Chen et al.,[183]
which models M−Cl molten salts for 11 cations M, and was shown
to be significantly more accurate than the MACE-MP0 U-MLP for
these materials. In contrast, U-MLPs attempt to cover a very large
fraction or even almost all of the periodic table with atoms
potentially in any arrangement. Even for U-MLPs, it is typical to
exclude elements that are very impractical or intractable to study,
e.g., Nobelium (atomic number 102 or anything with an atomic
number above 103). Thus, the relevant portion of the periodic
table for materials and chemistry is generally up to about 100
elements. U-MLPs typically cover over 50 elements and may
accurately model solids, liquids, and molecular structures. A good
example of this class is the recent M3GNet potential from Chen
and Ong,[41] with 89 elements and no particular constraints on its
applicability (although there is a strong bias in training to solid
phases), or the above-mentioned MACE-MP0, which is trained on
the same data and was shown to be effective for running stable MD
simulations.[32]

The exact values of the number of elements or level of structural
constraint in the categories above are somewhat arbitrary, although T-
MLPs are distinct from U-MLPs in that the latter typically require scal-
able implicit AEF methods (see Sec. 4). In particular, in this section U-
MLPs will be used rather loosely to indicate an MLP which has been
trained on sufficiently large and diverse datasets such that it provides
usefully accurate predictions on a wide range of compositions and
structures for molecules and/or materials. If the training data is suffi-
ciently large and diverse, the MLP may provide accurate predictions for
the behavior of most chemically relevant elements in the periodic table.

Universal potentials are not limited to MLPs and have been devel-
oped previously in the context of PBPs. The creation of universal PBPs
dates back to 1981 with the seminal work of Weiner et al.[61] Since
this time, the universal force field (UFF) of Rappe et al.[62] and the As-
sisted Model Building with Energy Refinement (AMBER) force fields
[61,63] have emerged as some of the most popular universal PBPs,
where the main utility of these potentials is for modeling molecular sys-
tems (e.g., to aid drug discovery), as opposed to condensed phases. The
relative utility of these universal traditional PBPs vs. U-MLPs is difficult
to determine at this stage since the development of U-MLPs is still in the
nascent stages. The first reported U-MLP for organic systems (represent-
ing molecules initially containing only C, H, O, N atoms) is the Accurate
NeurAl networK engINe for Molecular Energies (ANAKIN-ME, ANI for
short) potential from the work of Smith et al. in 2017,[12,64] which
was expanded in 2020 to include S, Cl and F elements (thus cover-
ing ∼ 90 % of drug-like molecules).[65] The ANI potential has similar
applicability as the universal AMBER PBP for organic systems, but in
MLP form. The latest iteration of this U-MLP as of this writing came in
late 2023, termed the atoms-in-molecules neural network potential
(AIMNet2) U-MLP.[18] This U-MLP extends the ANI potential to in-
clude up to 14 elemental species and additional energy terms related to
short-range van der Waals (vdW) correction and long-range electrosta-
tic correction, enabling higher fidelity predictions of organic molecules
and macromolecules which can also include the effects of charged
species and species with different valence states. In addition, the ANI-
1xnr potential extended the success of the ANI U-MLP to also enable the
accurate modeling of condensed phases of organic systems (comprising
C, N, H, O) such as liquids, supercritical fluids, and chemical reactions.
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[66] Finally, the MACE-OFF3 potential,[33] also published in late
2023, uses the MACE message-passing framework to construct a U-MLP
for the 10 most-occurring elements in organic chemistry (H, C, N, O, F,
P, S, Cl, Br, I). Compared to the most recent ANI potentials, MACE-OFF3
uses only short-range interactions, yet results in improved performance
on a number of benchmark molecular simulation properties compared
to ANI.

The first published U-MLPs intended to have broad applicability
across most elements in the periodic table came nearly simultaneously
in early 2022.[41,58] In just the past two years, many U-MLPs capable
of representing most elements in the periodic table have been devel-
oped: (1) the 3-body Materials Graph NETwork (M3GNet) potential
from Chen and Ong;[41] (2) the Crystal Hamiltonian Graph Neural Net-
work (CHGNet) of Deng et al.;[20] (3) the unified atomistic line graph
neural network-based force field (ALIGNN-FF) of Choudhary et al.;[17]
(4) the tensorial message passing neural network PreFerred Potential
(PFP) from the work of Takamoto et al.,[37] which is now shared as a
commercial product in the Matlantis package;[67] (5) the Graph Net-
works for Materials Exploration (GNoME) U-MLP from Merchant et al.,
[28] which is a custom-trained version of NequIP from the work of
Batzner et al.[35] fit to an in-house database of roughly 80 million DFT
calculations;[28] (6) the SevenNet-0 potential from Park et al.,[38]
which is also based on NequIP and trained in the same Materials Project
data as M3GNet but refined to provide good scaling on many processors
for modeling larger systems; (7) the equivariant graph tensor network
MACE-MP0, developed by Batatia et al.,[32] which was trained on the
same publicly available data used by the CHGNet model, and was
demonstrated to have a high degree of accuracy on three illustrative ap-
plications of dynamics of aqueous systems, heterogeneous catalysis,
and metal–organic frameworks but also showed stable nanosecond-
long molecular dynamics on over 30 examples with diverse chemistry;
(8) the graph-based pre-trained transformer force field (GPTFF) devel-
oped by Xie et al.,[27] a GNN model with transformer blocks integrated
into the model architecture; (9) MatterSim,[30] a large-scale deep
learning model from researchers at Microsoft trained on actively-
learned DFT data from a large custom database of roughly 17 million
atomic configurations, including many non-ground state structures
over a large temperature (0–5000 K) and pressure (0–1000 GPa) range;
(10) the Orb model developed by Neumann et al.,[36] which achieved
excellent performance on the MatBench leaderboard and offers the ad-
vantage of faster performance compared to other leading U-MLPs,
where, for example, it was found Orb performed 3–6 times faster than
MACE, particularly for large system sizes and if dispersion corrections
were included; and, finally, (11) the EquiformerV2-OMAT24 model
from Meta,[24] which trained the EquiformerV2 model[68] on a novel
open source database of roughly 118 million atomic configurations,
leading to, as of this writing, the best performance on the MatBench
leaderboard. An overview of some example capabilities of U-MLPs is
given in Fig. 3.

The above U-MLPs are made possible by advancements in previ-
ously developed GNN models to include physical information of how
the bond energies of a system evolve with the positions of the con-
stituent atoms, enabling the acquisition of forces and stresses via differ-
entiation of this learned energy dependence. For example, the M3GNet
potential is an extension of the MatErials Graph Network (MEGNet)
model[69] to include 3-body interactions (note, general N-body inter-
actions are possible, but 3-body is used for computational efficiency),
explicit atomic coordinates, and the 3⨯3 crystal lattice matrix.[41] As
another example, ALIGNN-FF extends the ALIGNN model,[70] which
already incorporates many-body interactions, to also produce atomwise
and gradient predictions, thus enabling calculation of the force on each
atom and stress on the system.[17] In addition to advancements to un-
derlying GNN models, U-MLPs have been made possible by the growth
of large computational databases, namely those containing tens of
thousands of static DFT calculations and AIMD simulations. Each cata-

loged DFT structure provides one energy and 3 N forces (N = number
of atoms in the structure) to use for training the universal MLP. The
presently available U-MLPs were all trained on various databases of
DFT calculations, as summarized in Table 1. In addition, Fig. 4 shows
the evolution of DFT database size used to train various U-MLPs over
time. We find, on average, that the database size has increased by more
than an order of magnitude each year, from roughly 2⨯105 in 2022
(M3GNet) to a present maximum of 1.18⨯108 in 2024 (EquiformerV2-
OMAT24). Even one more year of following this trend would bring the
community to the level of training on billion calculation databases, a
demanding goal but one that would likely bring further improvements
in performance.

While it is possible to train a U-MLP on only energies, Chen and Ong
recommend training on energies, forces, and stresses to obtain the most
physically accurate potential, and the inclusion of stresses is needed if
one is interested in modeling structural phase transformations or per-
forming molecular dynamics simulations where volume can vary (e.g.,
NPT ensemble).[41] These U-MLPs tend to have very good accuracy
when averaged over large test data sets, evidenced by test errors in
CHGNet (M3GNet) which have energy, force and stress mean absolute
errors on test data of 29 (35) meV/atom, 70 (72) meV/Angstrom, and
0.308 (0.41) GPa, respectively. ALIGNN-FF, trained only on energy and
forces as seen in Table 1, has energy and force mean absolute errors on
test data of 86 meV/atom and 47 meV/Angstrom, respectively. Note
the higher errors for ALIGNN-FF are likely due to the authors using
roughly 300 k of the 4 million data points available to them for training
due to hardware and speed constraints, and not a fundamental limita-
tion of the ALIGNN-FF approach. These values are comparable to other
MLPs that cover much smaller domains of chemical space.

In general, the developers of these U-MLPs (M3GNet, CHGNet,
ALIGNN-FF, PFP, GNoME, MACE-MP0) all perform multiple bench-
mark tests on various classes of materials structures, chemistries, and
prediction of resulting materials properties. While the specific tests and
comparisons are too numerous to list here and also not directly compa-
rable due to different databases used for training and testing, all of
these U-MLPs are successful in accurately modeling a very large domain
of materials phenomena, with typical energy, force and stress errors
greatly surpassing many-body PBPs such as EAM and modified EAM
and achieving comparable or slightly worse accuracy than explicit AEF
approaches relying on local environment representations like MTP.
Therefore, it appears possible these U-MLPs may soon be able to
achieve near DFT accuracy across many different arrangements of
atoms.

The CHGNet U-MLP is unique from the other U-MLPs discussed here
because it additionally includes the electronic effects of valences by ex-
plicitly embedding the magnetic moments on the vector representation
of each atom, thereby enabling charge-informed atomistic simulations.
[20] The inclusion of such electronic effects in an MLP might be benefi-
cial to modeling some materials phenomena that are highly correlated
with charge states (i.e., transition metal bonding dictated by the ions’
valence states, and phase transformations driven by charge dispropor-
tionation, discussed more below). There are different approaches to
represent charge on an atom, and in CHGNet, the charge is inferred via
the DFT-calculated magnetic moment, which is essentially the localized
spin density that is governed by the electron orbital occupancies of a
given valence. Therefore, the training data and predicted outputs of
CHGNet consist of energies, forces, stresses, and magnetic moments on
every atom in the system, where the addition of magnetic moments in
training led to further error reductions of energy, force and stress (in
the range of 1–10 %, depending on the property) compared to not in-
cluding magnetic moments in training. More important than slight er-
ror reductions is the new ability to model key pieces of physics gov-
erned by specific valence states and charge transfer, which was not pos-
sible with any previously formulated MLP. To illustrate the power of
this capability, Deng et al.[20] highlight the ability of CHGNet to (i) ac-
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Fig. 3. Examples of applications of U-MLPs. (a) Li diffusivity in the solid electrolyte material Li3La3Te2O12 using the CHGNet potential, adapted with permission
from Ref. [20]. (b) Calculated thermodynamic stabilities (as signed convex hull distance) of a set of hypothetical predicted materials using the M3GNet potential
and compared to DFT calculations, adapted with permission from Ref. [41]. (c) Time to optimize the structure of large protein structures using AIMNet2, adapted
with permission from Ref. [18]. (d- left) Number of newly discovered stable materials using a GNN model that only predicts the formation energy of a given crys-
tal based on number of unique elements in the structure, (d- right) mean absolute error as a function of training set size using the same GNN, Ref. adapted from
[28].

curately discriminate different valence states of transition metal with
the example of V oxidation in Na4V2(PO4)3, (ii) enable the study of
charge transfer-based dynamic information with the example of charge-
coupled degradation in LiMnO2 battery cathode material, where the
degradation is driven by the dynamic differences of Mn2+ and Mn3+ vs.
the immobile Mn4+ cations, and (iii) model how the electronic entropy
effects in the battery cathode material LixFePO4 drives the finite tem-
perature phase stability of this material, where the inclusion of Fe va-
lences in CHGNet correctly reproduces the qualitative miscibility gap as

Li is added to LixFePO4, whereas no miscibility gap is observed if the Fe
valence effects are ignored. Finally, it is worth noting that while the
original CHGNet model took 8.3 days to train on a single A100 GPU,
the recently developed FastCHGNet includes several optimizations
which results in significantly faster training, down to just 1.5 h when
using 32 GPUs.[71].

There have been at least five notable, recent studies benchmarking
the performance of different U-MLPs. First, work by Yu et al.[72] com-
pared the ability of M3GNet (and the newer Pytorch-based MAT-GL im-
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Table 1
Summary of data and applicability domain of U-MLPs.
U-MLP name Training database Number of

elements
represented

Training data amount Notes

M3GNet Materials Project 89 62,783 compounds: 187,687 energies, 16,875,138
forces, and 1,689,183 stresses

Training data taken from Materials
Project dating back to its inception in
2011

CHGNet Materials Project + Trajectory database 89 146,000 compounds: 1,580,395 energies,
49,295,660 forces, and 14,223,555 stresses

Training data taken from Materials
Project GGA and GGA + U relaxation
trajectory up to Sept 2022 version.

ALIGNN-FF JARVIS-DFT 89 307,113 energies and 3,197,795 forces for 72,708
compounds

PFP
(Matlantis)

Custom 96 (previous
versions were for
18 (TeaNet) and
then 45 elements)

Roughly 60 million configurations Training data is a custom in-house set
performed by a collaboration of
Preferred Networks, Inc. and the
ENEOS Corporation

GNoME Materials Project + Custom 94 Roughly 89 million configurations from 6 million
compositions

Initial training done on Materials
Project data from 2018 comprising
69,000 materials. Later fits include
about 89 million configurations

MACE-MP0 Materials Project + Trajectory database 89 ∼150 k compounds comprising ∼ 1.5 million atomic
configurations

An additional dispersion correction
model can be used to accurately
capture dispersion physics not present
in the training data

SevenNet-0 Materials Project 89 Same training data as used to build the M3GNet
potential

Same training data as used to build the
M3GNet potential

GPTFF Atomly.net Value not given in
text

Roughly 2.2 million crystal structures, consisting of
a total of 37.8 million energies (349 k of these are
equilibrium states), 11.7 billion force vectors, and
340.2 million stresses

MatterSim Initial data from public databases like
Materials Project, Materials Project
Trajectory, and Alexandria, then customized
with additional DFT calculations

89 Roughly 17 million atomic configurations Sampling techniques include
simulations with temperatures ranging
from 0-5000 K and pressures from 0 to
1000 GPa

Orb Materials Project Trajectory and Alexandria 89 Value not directly mentioned in text Orb found to be 2–6 times faster than
closest competitors (depends on system
size)

EquiformerV2-
OMAT24

Initial data from public databases like
Materials Project, Materials Project
Trajectory, and Alexandria, then customized
with additional DFT calculations

89 Roughly 118 million atomic configurations As of this writing, state-of-the-art
performance on MatBench leaderboard
and largest publicly-available DFT
database

plementation), CHGNet, MACE-MP0, and ALIGNN-FF to predict various
materials properties. Regarding the convergence behavior of cell relax-
ations, they found CHGNet and MACE-MP0 to be best, with M3GNet
having numerous cases of providing non-converged full-volume relax-
ations. All models could predict formation energies roughly as well,
though CHGNet had the lowest MAE at just 81 meV/atom, while all
other models had MAEs that were 129 meV/atom or higher. For vibra-
tional properties, MACE-MP0 emerged as the best, while ALIGNN-FF
demonstrated some significant qualitative errors with reproducing
phonon band structures. Second, work by Focassio et al.[73] compares
predictions of M3GNet, CHGNet, and MACE-MP0 for predictions of
bulk and surface total energies and surface energies for 73 elemental
systems for which bulk and surface slab data were available in the Ma-
terials Project, where a total of 1497 surface structures were consid-
ered. As shown in Fig. 5, all three U-MLP models were able to accu-
rately reproduce the total energies of bulk (note, on average CHGNet
has the lowest prediction errors), which is sensible as these bulk struc-
tures were included in the U-MLP training data. The errors for surface
energies are much more significant than for bulk, which is the result of
these surfaces not being present in the training data. Surface energy
prediction errors with M3GNet and CHGNet show systematic underpre-
diction and MACE-MP0 shows multiple instances of overprediction. Fo-
cassio et al. also show that targeted MLPs like MTP and NequIP can
have lower errors for predicting properties of specific systems vs. the
zero-shot U-MLP predictions, improving accuracy at the cost of losing
generality. The third benchmark from Deng et al.[74] shows the under-
prediction of energy and forces by U-MLP in a series of material model-
ing tasks, including surface energy, defect energy, mixing energy,

phonon vibrations, ion migration barriers, etc. The observation of un-
derpredicted properties aligns with the report by Focassio et al. The un-
derpredicted energies and forces are attributed to a systematic soften-
ing of the U-MLP PES, where the U-MLPs are found to predict smoother
energy landscapes than the real PES described by DFT. The author
claimed the softening effect is driven by the biased sampling in U-MLP
training dataset, where the training atomic configurations are taken
from DFT ionic relaxations and are therefore close to local PES minima.
The fourth benchmarking work we discuss here is from Riebesell et al.,
[75] who focused on the ability of U-MLPs and other GNN-based ML
models (e.g., MEGNet, ALIGNN) to predict stable materials (i.e., materi-
als with a convex hull energy within some threshold, chosen as being on
or below the Materials Project training data convex hull). They tested
these models on the dataset from Wang et al.,[76] which consists of un-
relaxed structures of materials less well-sampled in the Materials Pro-
ject and was generated by a chemical-similarity based element substitu-
tion process using structures from the Materials Project. They found
that all three U-MLP models outperformed all other models, and that, in
particular, MACE-MP0 performed best for discovering new stable mate-
rials, where the classification F1 scores for finding stable materials fol-
lowed the order of 0.67 (MACE-MP0) > 0.61 (CHGNet) > 0.57
(M3GNet) > (everything else). The MACE-MP0 and CHGNet models
had MAE values of convex hull energy of 60 meV/atom. Finally, work
from Casillas-Trujillo et al. sought to evaluate the ability of M3GNet,
CHGNet and MACE-MP0 to predict metallic alloy mixing thermody-
namics. A striking result of their work is that none of these 3 U-MLPs
were able to accurately reproduce the mixing energies of metallic bi-
nary alloys in adequate agreement with DFT results.[77] These findings
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point to the need for careful benchmarking when pursuing the use of U-
MLPs for a new problem of interest, and, if sufficient accuracy is not ob-
tained, the consideration of carefully selected additional training data
to fine-tune the U-MLP to obtain enhanced accuracy. To this end, recent
work from Wines and Choudhary established the Computational High-
Performance Infrastructure for Predictive Simulation-based Force
Fields (CHIPS-FF), which is an open-source infrastructure specifically
tailored for benchmarking materials properties predicted with various
U-MLPs.[78] The problems identified in the above benchmarking stud-
ies suggest a benefit to a focusing on not just force and energy errors but
also quantitative assessment of U-MLP errors on physically relevant
properties, e.g., surface energies, defect energies, mixing behavior, elas-
tic constants, etc. Testing of such behavior will benefit from the careful
generation of sophisticated test datasets to assess U-MLP performance.
There are challenges for how to do this effectively since, once a test set
is established, it is tempting for the community to begin effectively fit-
ting new potentials to minimize errors on these test sets, which may in-
advertently create undesirable performance of the potential with re-
spect to other properties. Developing and properly utilizing such test
datasets is expected to play an important role in the refinement of U-
MLPs. It is important to note the that the limited ability for low energy
and force errors on training and test data to assure good performance in
predicting important materials properties is not limited to U-MLPs and
is a challenge for MLPs. We discuss this issue further in Sec. 7.5.3.

U-MLPs are expected to keep improving rapidly. Such improve-
ments can come from simply refitting a potential to more data e.g., as
already demonstrated by Takamoto et al.[37,58,79] Improvement can
also come from expanding the underlying MLP formalism to include
new pieces of physics, as was done by Anstine et al. to include vdW and
electrostatic contributions to the total energy of the organic U-MLP
AIMNet2,[18] and the addition of dispersion and vdW interactions to
MACE-MP0 despite the potential only being trained on PBE-level DFT
data.[32] A different and more subtle method of using additional data
to improve a U-MLP is through fine-tuning of an existing model. Fine
tuning is a process by which a large NN model that is already trained

has its weights only slightly altered to match a small amount of new
data, with the goal to keep the model accuracy on its original training
data while increasing the model accuracy on the new data. Fine-tuning
typically involves updating a small fraction of the weights, typically in
layers involved in just the final steps before output. Such fine-tuning
has been widely applied in other ML problems (e.g., computer vision
and language models). Through this approach, U-MLPs may form the
basis for more focused models that can be fine-tuned using new data
comprising more specific chemical or structural families of materials or
molecules. Since the weights in the U-MLPs have been pre-conditioned
on comprehensive datasets, the fine-tuning process typically requires
fewer data compared to fitting a new potential, and may result in lower
errors than training from scratch.[28,74,80] For example, Merchant et
al. found that the error of a fine-tuned U-MLP also follows a power-law
as a function of its pretraining data size[28] (i.e. larger pre-training
dataset sizes led to better downstream fine-tuned U-MLP’s. The
M3GNet, CHGNet and MACE Python packages already allow for fine-
tuning, so this approach can be readily explored by users.

U-MLPs have several promising use cases. The first is that they may
drastically speed up DFT calculations by providing a means to quickly
relax a set of atomic positions much closer to equilibrium positions
prior to running a full DFT calculation. In their work on developing
M3GNet, Chen and Ong discuss how such speedup may reduce DFT cal-
culation time for relaxing material structures by a factor of three.[41]
This application is largely insensitive to inaccuracies in the U-MLP
since the final output is from a full ab initio calculation and it is there-
fore extremely appealing. One could imagine it becoming standard
practice and having a large impact, cutting typical ab initio calculation
times significantly across potentially billions of future calculations. A
second use case is replacing and expanding beyond AIMD. Similar to all
MLPs, U-MLPs are useful for simulating large-scale, long-time dynamic
phenomena inaccessible to current AIMD length and time scales. Such
speed-up of DFT and MD studies has the potential for disruptive trans-
formation of atomistic modeling, potentially impacting thousands of
studies each year. A third use case is materials exploration. Different

Fig. 4. Evolution of DFT database size used to train U-MLPs over time. The small circle points are values for individual U-MLPs, and the large blue squares are the av-
erage for a given year (note that SevenNet-0 was not included in the average for 2024). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Benchmarking performance of U-MLP models for predicting bulk and surface total energies and surface energies. ML vs. DFT total energies for (a) bulk and
(b) surface. (c) ML predicted vs. DFT-calculated surface energies. (d) Data from (c) but plotted as a box-and-whisker plot of the ML vs. DFT residuals. Figure adapted
with permission from Ref. [73].

from more targeted MLPs, U-MLPs have a much broader domain of ap-
plicability, increasing the chemical and structural complexity of sys-
tems that can be modeled with typically a small or minimal loss in accu-
racy. This makes U-MLPs particularly powerful for exploring many
chemistries and structures, e.g., screening for a certain property like Li-
ion conductivity or high elastic modulus. In particular, the lack of scal-
ing issues with many components makes U-MLPs uniquely positioned
for exploration of chemically and structurally complex multicomponent
materials with, for example, >5 species. There is thus a massive oppor-
tunity to screen materials properties across the periodic table which
was only possible with computationally expensive ab initio calculations
in the past, but which could be made roughly 1000⨯ faster for even
modest-size unit cells with the aid of U-MLPs. As a demonstration of the
beginnings of such an approach, Chen and Ong developed
matterverse.ai, a Materials Project-like repository containing millions
of hypothetical structures generated using physics-based considerations
of reasonable materials structures and chemistries, and for which for-
mation energies were subsequently calculated and screened using the
M3GNet potential.[41] Similarly, Merchant et al. used a GNN model
that directly predicts the formation energy of a crystal to propose
381,000 new stable (at T = 0 K) materials, expanding the number of
known stable inorganic materials by nearly an order of magnitude.
Given the rapid advances in generative AI, one can imagine the possi-
bilities of combining generative inverse materials design approaches to-
gether with U-MLPs for fast materials exploration and screening, for ex-

ample using tools like the Crystal Diffusion Variational Autoencoder
(CDVAE) of Xie et al.[81,82], the MatterGen model of Zeni et al.[83],
the Symmetry-aware Hierarchical Architecture for Flow-based Traver-
sal (SHAFT) model of Nguyen et al.[84], a diffusion probabilistic model
employing unified crystal representations of materials (UniMat) from
Yang et al.,[85] or even using large language models trained to produce
stable crystal structures.[86,87] Joining generative and U-MLP meth-
ods may provide a powerful new way to discover exceptional new ma-
terials that would not have been considered by way of conventional
screening approaches.

Presently, the main drawbacks of U-MLPs include the same limita-
tions as noted for more targeted MLPs (see Sec. 9) with the additional
(and quite major) limitation that its true domain of applicability is quite
uncertain. While U-MLPs are much broader in their domain than tar-
geted MLPs, the currently available models almost certainly have many
areas of major weakness that cannot be easily predicted in advance. For
example, using a U-MLP to study Li diffusion in solid electrolytes might
provide excellent diffusivity values for 95 % of the materials but be
quite far off for 5 % of considered materials.

We discuss some strategies for the effective use of U-MLPs in their
present stage of development in Sec. 7. U-MLPs are also generally
slower than targeted MLPs, as noted in the discussion of MLP execution
speed in Sec. 6. That said, there is an enormous advantage to a large,
centralized effort around one or a few U-MLPs. These advantages in-
clude the ability to efficiently integrate state-of-the-art improvements,
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e.g., adding long-range forces, speed optimizations, multi-fidelity learn-
ing, fine-tuning, uncertainty quantification, etc. It may be that the ag-
gregation in one place of all the best practices and state-of-the-art ap-
proaches helps grow the value of U-MLPs over targeted MLPs. Overall,
U-MLPs represent a very exciting advance of MLPs that will likely have
a significant impact on the field of atomistic modeling. The coupled
facts that a single potential (i) may soon produce energy, force, and
stress values (and perhaps additional properties, such as magnetic mo-
ments) with near ab initio-level accuracy and order of magnitude more
than ab initio speed, (ii) can be applied to almost every chemically rele-
vant element in the periodic table, and (iii) can include increasingly
complex physics, offers the tantalizing possibility of future U-MLPs
functioning as a truly foundational model for materials modeling, in
turn replacing a significant fraction of explicit quantum mechanical cal-
culations with no need for explicit training. Fully realizing the potential
of U-MLPs would allow researchers to quickly and easily explore prob-
lems that are practically inaccessible to present physics-based ap-
proaches and greatly increase the overall impact of atomic-scale materi-
als modeling.

6. Execution (Inference) speed of MLPs

Speed for execution of an MLP is important when one is performing
a large number of calculations, which might occur during long MD runs
or large-scale searches of configuration and chemical spaces. Key issues
to consider for timing are: the processor used for calculations (speed of
CPU, GPU, or other hardware), system size, and MLP type (e.g., com-
plexity, where increasing complexity generally corresponds to greater
accuracy and slower execution). It is very difficult to quantitatively as-
sess the speed of MLPs unless one makes a direct comparison of the
same calculations with proper controls for hardware, hyperparameter
settings, etc. However, there are some relevant studies available, and
qualitative trends can be determined from different performance re-
ports in the literature. We stress that the values given here should be
treated very cautiously as qualitative guides and careful benchmarking
for your project should be part of any extensive study where speed is an
issue. A common metric for assessing performance that allows for some
comparison across different numbers of atoms, processors, and steps

from MD or other multi-step simulations is processor-seconds per atom

per step, , where is the number of atoms

[88], is the number of steps in the simulation (where one step of an
MLP involves evaluation of the total energy and forces on all the atoms
for one atomic configuration, e.g., as might occur during one MD time-
step), is the number of processors being used), and is the wall-
clock time required to execute steps. The units for each measure
are given in brackets. Note that processors could be either individual
cores on a multicore CPU or entire GPU processors. Typical nodes on
high performance computing resources may contain dozens of cores
and up to 6 or more GPUs. As long as each processor has a sufficiently
large number of atoms to work with, the performance in proc-
s/atom/step will be insensitive to both and . The results dis-
cussed here will mostly be approximately in this linear scaling regime.
An exception to this is the = 1 special case, where simulations are
run on a single core or single GPU. Performance here is usually signifi-
cantly better than larger scale parallel calculations with ≫1,
where there is additional overhead of MPI network communication. For
the = 1 special case, performance is given in units of simply s/
atom/step. All performance results are based on a typical state-of-the-
art CPU or GPU from the last few years (relative to 2023). For CPUs,
these provide about 1011 floating point operations per second (FLOPS)
and for GPUs (e.g., NVIDIA® V100 Tensor Core GPU) these are about
1012 FLOPS. Note that in the following discussions we will be giving ap-
proximate performance values and thus generally round to the nearest
order of magnitude.

First, we consider performance for cases running on a single CPU or
GPU processor under close-to-optimal conditions, with a reasonable
system size (e.g., 100–1000 atoms) that can fit into memory limits on
the CPU/GPU. Good scaling for parallel execution up to very large sys-
tem sizes has been achieved and will be discussed more below. Timing
values for a number of explicit AEF type MLPs (see Sec. 4.3) under dif-
ferent levels of complexity (i.e., basis set size) are shown in Fig. 6.[1,
60] Well-fit MLPs of the explicit AEF type range from about 10-5 to 10-3

s/atom/step (note that this is just proc-s/atom/step for one processor)
depending on the number of degrees of freedom used, typically set by
the number of terms that are included in the basis function expansions.

Fig. 6. Trends in computational cost (speed of the MLP) for a set of major MLPs for (a) Cu and (b) Si molecular dynamics calculations (done on one CPU with 108
atoms for 2500 steps). The varying colors correspond to different MLPs and the points for each color correspond to larger basis function sets, which generally lead to
greater accuracy and larger computational cost. The abbreviations are Atomic Cluster Expansion (ACE), Gaussian Approximation Potentials (GAP), Moment Tensor
Potentials (MTP), Neural Network Potential (NNP), Spectral Neighbor Analysis Potential (SNAP), and quadratic SNAP (qSNAP). Figure with data originally from Ref.
reproduced with permission from Ref. [60][1].
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A typical speed of the faster explicit AEF type MLPs (e.g., MTP and
ACE) is about 10-4 s/atom/step. As a concrete example of timings, Bern-
stein evaluated GAP, ACE and MACE potentials for 1024-atom cells of
CuxAl1-x alloys using MD.[88] He found that ACE timings ranged from
about 0.06⨯10-3 to 0.18⨯10-3 s/atom/step, while GAP was slower at
2.1⨯10-3 s/atom/step, both computed for one processor. MACE timings
ranged from 0.042⨯10-3 to 0.12⨯10-3 s/atom/step on a single NVIDIA
A100 GPU. For reference, timing is about 103 s/atom/step for standard
well-converged DFT in a state-of-the-art code for ∼ 100 atom unit cells
of a typical set of elements, 10-3 s/atom/step for a ReaxFF potential
(one of the most complex physics-based traditional potentials), and 10-6

s/atom/step for the Lennard-Jones and EAM interatomic potentials
(some of the fastest physics-based potentials).[89].

Next, we consider the timing of deep learning-based MLPs. Deep
learning MLPs are generally similar to, or somewhat slower, than non-
deep learning explicit AEF approaches, although it can be hard to com-
pare as the former are often run on GPUs. Nonetheless, some results ex-
ist that give a qualitative sense of the relative speeds of deep learning
MLPs under different conditions. DeepMD typically performs at about
10-3 proc-s/atom/step on a CPU, and was accelerated 39 times (so
about 10-4 proc-s/atom/step) on a GPU in a direct comparison.[90]
M3GNet,[41] which models a very large number of elements (89) and is
what we refer to as a U-MLP (see Sec. 5), takes about 10-3 proc-
s/atom/step on a single CPU to perform a structural relaxation of
K57Se34, an example chosen for its large energy change during relax-
ation. Recent testing of the PFP U-MLP from Matlantis gave about 10-3

s/atom/step on a GPU for 100–1000 atom unit cells running MD in
LAMMPS.[91] These values were about 5 times slower than well-
converged MTP and ACE fits on identical systems run on a single CPU,
and about 50–100 times slower than the same runs on a large set of
CPUs.

An interesting developing area to increase MLP speed is the ultra-
fast approach,[42] which uses computationally cheap spline functions
to describe the atomic environments and linear regressions for energy/
force predictions. The potentials resulting from the ultra-fast approach
are extremely fast compared to existing MLPs at the price of limited
flexibility and possibly greater errors for complex systems. For exam-
ple, such potentials are about 103 times faster than typical explicit AEF
MLPs, with similar prediction accuracy to SNAP, GAP, and MTP on
some test cases, putting them at about 10-6 s/atom/step and compara-
ble to the fastest simple PBPs.

Efficient architectures and scaling up the number of CPUs and GPUs
used to evaluate MLPs can lead to large speedups, which is particularly
useful for the somewhat slower deep learning methods. Note that these
timing values are somewhat faster than above, likely because the inclu-
sion of more atoms is allowing for more efficient use of the processors.
DeepMD achieved about 10-5 proc-s/atom/step with about 127 million
Cu atoms, and SNAP achieved 10-6 proc-s/atom/step on about 20 bil-
lion C atoms, both running on 27,900 GPUs (4650 nodes on the Summit
machine).[92] A deep learning MLP particularly optimized for scaling
and performance is Allegro,[13] which uses a strictly local equivariant
neural network and ACE-like atomic features, and while it can be exe-
cuted on CPUs, it is best run on GPUs. Allegro models of water achieved
about 10-5 proc-s/atom/step with 4, 64, 1024 GPUs and 105, 106, 107

atoms, respectively.[93] Note that the choice of hyperparameters (i.e.,
complexity) can change this approximate timing by an order of magni-
tude and that this is for an optimally tuned MLP. To increase execution
speed, typically a more complex model is first used to verify the fidelity
of the training data and learning process, before being reduced in size,
while still reproducing a target property of interest with sufficient accu-
racy.

As another example of an MLP particularly optimized for scale and
speed, the GPU implementation of the FLARE potential,[25] based on
C++ with a Python wrapper, was used to model heterogeneous cataly-
sis of H2/Pt(111) for 0.5 trillion atoms on 27,336 GPUs nodes, achiev-

ing 10-6 proc-s/atom/step.[94] However, the speed of FLARE on CPUs
reduces significantly compared to GPUs, down to roughly 10-3 proc-
s/atom/step. It is useful to note that the performance for SNAP, FLARE,
and Allegro all begin to deviate significantly from linear scaling of in-
verse time with processors (constant B values) by around 105 atoms/
GPU for the Summit hardware used in these tests (NVIDIA V100-16 GB
GPUs). While these timings are very impressive, it is important to real-
ize that PBPs can also take advantage of parallelization and GPUs. For
example, a GPU-accelerated classical force fields model based on the
Martini potential recently achieved 6 microseconds/day on 136,000
particles (B = 10-9 proc-s/atom/step) using six V100 GPUs.[95].

In summary, from the above-discussed timings we can learn at least
two important lessons. The first lesson is that, similar to PBPs, scaling
up to even hundreds of billions of atoms is possible for some MLPs.
These calculations generally require multiple GPUs, which can be a
challenge to access, but options are becoming increasingly available
(see discussion of infrastructure for MLPs in Sec. 8). The second lesson
is that the general trend of speed we noted on one CPU, which is that
simple PBPs are fastest, followed by explicit AEF MLPs, then finally im-
plicit AEF deep learning MLPs, largely still holds with larger-scale cal-
culations. That said, we stress that the details of the MLP fit and opti-
mization can matter a lot for large-scale calculations, so one should
choose an optimal approach carefully if pursuing such studies.

7. MLP choices – what should i use when?

When choosing MLPs, many factors can be considered. We list a few
of these factors in this section and provide some guidance on how to
think about each of them. We start from basic aspects of hardware, ac-
curacy, and speed and then progress to the details of pursuing a specific
MLP.

7.1. Hardware resources

Hardware resources could be an initial deciding factor in choosing
MLPs both when fitting a new potential or using a pre-trained potential.
Generally, explicit AEF MLPs such as MTP, ACE, SNAP, and GAP have
fewer parameters and functions than NN-based MLPs and run well on
CPUs. On the other hand, NN– and GNN-based MLPs mostly rely on
GPUs. Some potentials, like MTP, can presently only be run on CPUs,
while ACE is faster when fit using GPUs but can be used for MD simula-
tions on both CPUs and GPUs. NN-based MLPs are primarily created to
be fit and used with GPUs, although they can be run on CPUs, with typi-
cally a 10-100⨯ slowdown on CPU vs. GPU calculations (see discussion
of MLP timings in Sec. 6). These trends generally suggest that if you
only have access to CPUs, then explicit AEF MLPs are likely best as they
will be certain to run and will typically run with reasonable speed. If
you have access to GPUs, then both explicit AEF and NN-based MLPs
are potentially good choices. Given the growing importance of U-MLPs
and the use of GPUs in training and executing many MLPs, it is likely
advisable to have access to at least one high-performing GPU if you are
planning extensive use of MLPs. In addition to the discussion above, in
Matlantis, which is commercially deployed as SaaS, PFP is provided via
an API, allowing users to execute inference without considering the en-
vironment setting and optimization of computing devices. In practice,
the inference is executed in backend GPUs or specific deep learning ac-
celerators named MN-Core series. [96].

7.2. Speed requirements

The overall simulation time depends on the size of the system, the
number of execution steps in the simulation, available hardware re-
sources, and the computational cost of the MLP. Assuming the first
three factors are fixed by the project and infrastructure needs of the
user, the MLP framework determines the overall simulation time. As
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previously discussed in Sec. 6, explicit AEF MLPs are about 10-100⨯
faster than implicit AEF deep learning MLPs. If the computational cost
is not a limitation, deep learning MLPs typically provide the highest ac-
curacy and may be adopted. Otherwise, the user could opt for any of the
explicit AEF MLPs that provide the desired accuracy.

7.3. Accuracy requirements

While the promise of MLPs is to achieve any desired property accu-
racy with respect to ab initio methods, in practice there is an accuracy
limit of MLPs to keep the computational cost of the MLP reasonable
given the available resources. One limiter of MLP accuracy stemmed
from the insufficient description of the atomic environment in the ear-
lier MLPs such as Behler-Parrinello NNs, GAP, and SNAP. More recent
MTP and ACE formalisms introduced new methods to give a complete
description of the atomic environment and used linear regression to
learn the PES, enabling an increase in the accuracy of MLPs while keep-
ing the computational cost tractable. In recent years, it has been shown
that equivariant GNNs can achieve very high accuracies with a practical
computational cost, where NequIP, Allegro, TeaNet, SO3krates[97] and
MACE are examples of such approaches. Thus, the authors recommend
that if GPUs are available, training with equivariant models such as
NequIP, Allegro, TeaNet, SO3krates or MACE is likely to yield the high-
est accuracy. Furthermore, it has been found that higher accuracy may
be obtained by fine-tuning a pre-trained potential as opposed to to
training a new MLP from scratch, even for tasks that were out-of-
distribution compared to the training data.[80] In a few personal expe-
riences by the authors, we have found that for real systems, with abun-
dant training data available (meaning we could keep running more DFT
as needed until we see little improvement in the potential), the AEF
methods like ACE tend to have root mean squared error (RMSE) on en-
ergies and forces that are 2–3 times those of GNN methods like MACE. If
there are only CPUs at hand, the authors suggest MTP or ACE. Imple-
mentations of these various methods are likely to improve and diversify
utilizing popular hardware, and therefore we expect the field to change
rapidly.

7.4. Using A pre-trained potential

Depending on the type of study, one may decide to use a pre-trained
potential or to fit a potential from scratch. It will likely save a lot of time
if one can start from a pre-trained potential, so this is a logical first step
to explore. Pre-trained potentials may be found in online repositories or
by searching through scientific articles. For example, pre-trained tar-
geted MLPs for specific systems (e.g., GAP potential for Cu) can be
found on the NIST Interatomic Potentials Repository and the Open
Knowledgebase of Interatomic Models (OpenKIM).[98–100] When de-
ciding to use a pretrained potential, one must make sure that the poten-
tial is suitable for the study. Given the recent availability of U-MLPs and
their ease of use across many systems, they represent an appealing op-
tion, and importing pre-trained versions of U-MLPs from their respec-
tive repositories is straightforward.[101–103] However, although U-
MLPs generally have low energy and force errors compared to their ab
initio training data, their ability to predict accurate materials properties
is not ensured by these low errors (see Sec. 5) and they have not been
thoroughly validated for accurate prediction of materials properties
across most systems. It is therefore quite possible that despite some im-
pressive successes (see Sec. 5) that many properties, from vacancy for-
mation energies to melting temperatures, may be incorrectly predicted.
Furthermore, U-MLPs can be slower than other MLP or PBP approaches
(see Sec. 6), so speed requirements should be considered. However,
given the rapid rise of such U-MLPs in just the past couple of years, it is
likely that increased property prediction benchmarking will be avail-
able, and iterative improvements to the U-MLPs, e.g., through fine-
tuning, will further aid in improving their accuracy and generalizabil-

ity. For the time being, there are a few simple strategies one can use to
apply U-MLPs most effectively, which we summarize here:

1. Validate the U-MLP predicted energies and forces for your
system of interest. One way to ensure the accuracy of an
untested MLP for a specific system and purpose is to run some
relevant ab initio simulations for your problem and compare the
ab initio and U-MLP energies and forces. One should be careful to
choose ab initio settings such as functional, energy cutoff, k-point
density, etc., consistent with the training data used for the MLP
(e.g., choosing the right pseudopotentials and Hubbard U values
for GGA + U calculations). Good agreement is strong support
that the U-MLP is applicable to your system. Such a benchmark
can be done with just a handful of static ab initio calculations on
small unit cells and therefore can be quite fast. The use of
benchmarks that directly relate to the property of interest, e.g.,
an activated state for a chemical reaction or few points on a
gamma surface for stacking fault energies, are likely best.

2. Validate the U-MLP property predictions for your system. In
many cases, the benchmarking described above can be easily
extended to include comparing ab initio and U-MLP calculation
of specific properties of interest, e.g., a set of phonon dispersion
curves, diffusion coefficients or defect formation energies,
particularly for small systems or simplified cases. Good
agreement on target properties provides even greater confidence
in the U-MLP than just similar energies and forces on select
structures. For example, one might calculate diffusion
coefficients in a small unit cell with ab initio and the U-MLP and,
if similar results are achieved, apply the U-MLP to much larger
systems or different compositions.

3. Apply U-MLPs to problems that can easily detect failures or are
not overly sensitive to failures. Many applications might not suffer
too much from intermittent failures of the U-MLP. For example,
using a U-MLP to pre-relax other ab initio calculations is a very
robust application tolerant to U-MLP failures since the final
calculated result does not directly depend on the accuracy of the U-
MLP. In addition, failures in the pre-relaxing can be easily
identified and corrected by checking against the corresponding ab
initio relaxation. As noted above, in developing the M3GNet U-
MLP, Chen and Ong comment that pre-relaxing hypothetical
structures with their U-MLP before performing ab initio
calculations resulted in approximately 3⨯ time savings compared
to running ab initio on un-relaxed structures.[41] Another example
might be using U-MLPs for an initial screening of a large set of
candidate materials for a specific property, where a highly accurate
calculation may not be necessary in the initial steps. Failures of the
U-MLP might lead to false positives (keeping unpromising
materials) or false negatives (removing promising materials) but
later screening with full ab initio calculations can catch the false
positives, and, typically, screening is often more focused on getting
a few successes than ensuring no false negatives. A final example is
generating physically relevant atomic configurations (which need
to be calculated with ab initio methods later) for training a more
specific potentials, a way in which U-MLPs might help accelerate
the development of more targeted MLPs.

Despite the exciting potential of U-MLPs, the high levels of uncer-
tainty in their applicability means that many practitioners presently
still either fit their own potential or use a pre-trained potential that is
specifically fit for the material under investigation. As a new trend dif-
ferent from this, some early adopter researchers have begun to perform
calculations without finetuning. For example, Matlantis provides pre-
trained U-MLP (PFP), with the aim of allowing users to do practical sim-
ulations without having to perform finetuning. In all cases, it still mat-
ters that the training data used for the potential is consistent with the
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type of study being considered, both in terms of atomic structures,
chemical states, and relevant physics. For example, (i) an MLP that is
trained on pristine crystalline phases and crystals with stacking faults
and vacancies may not be appropriate to conduct a study on the amor-
phous phases of the same material, (ii) an MLP trained on low valence
transition metal states might not represent high valence states of these
same metals well, or (iii) a potential trained on ab initio methods like
the DFT-PBE functional may not be suitable for layered materials or
molten salts, where vdW contributions are significant (although in this
case the potential might be corrected by empirical vdW corrections). In
general, for all MLPs, one should validate the energy, force, and prop-
erty predictions as much as possible for a specific use case unless it very
closely matches previously published or well-validated work. Many
considerations related to the issues above are likely relevant for choos-
ing an optimal pre-trained potential but, since the potential has already
been developed, it is likely that the original authors have already taken
these items into consideration (e.g., choosing the right potential for the
hardware they ran on, etc.). Thus, one can take guidance from the ear-
lier work about optimal use. That said, it might still be useful to have a
sense of how different potentials behave related to the above issues, and
in the next section we summarize the key concerns in the context of fit-
ting a new potential.

7.5. Fitting A new potential: general workflow

7.5.1. Basic ideas
If no pre-trained potential is available, one will need to choose an

MLP framework and fit a potential from scratch. In this section, we pro-
vide some strategies and guidance from hands-on experience to help
new users approach choosing an MLP to fit. In addition to the above
considerations when using a pre-trained potential, a few new factors be-
come relevant when fitting your own potentials, which we discuss here.

The basic idea behind fitting MLPs is the same as in almost all re-
gression ML problems. One defines a loss function and adjusts the para-
meters of the ML model, typically using some kind of matrix inversion
or backpropagation, until the loss function is minimized. For MLPs, the
loss function is usually a weighted sum of RMSEs on a few targets,
which are usually forces on atoms and total energy, but can also include
other properties such as stress tensor, virial, polarizability, etc. Typi-
cally, the most important terms are the RMSE in forces and energy and
these are standard to report. It is important to realize that, although
MLP fitting is similar to other ML models, it is helpful to use domain
knowledge (from physics, chemistry, and materials science) to perform
successful training and assessment, which we call science-informed fit-
ting. Science-informed fitting is very helpful, at least at present, because
the MLP fit will almost certainly not be perfect for all possible configu-
rations of atoms, so the user is suggested to apply their domain knowl-
edge to develop a model that is adequate for their needs.

At present, there is no agreed-upon standard or widely accepted op-
timal workflow for fitting an MLP. However, multiple authors have pro-
vided very helpful articles that cover the major considerations and pro-
vide excellent practical guidance.[104–107] Here, we describe the typi-
cal general workflow, and then go into some of the detailed questions
and choices associated with its implementation. In addition, a standard
set of procedures and software for generating or acquiring training
data, fitting, comparison, and deployment of MLPs is provided in Sec.
8. The general approach is to generate an initial set of ab initio data

, consisting of atomic configurations related to your problem of in-
terest (e.g., liquid configurations for studying a melt, different vibra-
tional modes for studying phonons, or multiple distortions for study-
ing molecular systems). Then, fit an initial potential to ∼ 80 % of
and test on the left-out ∼ 20 % of to assess accuracy on energy and
forces (this approach and the details below can be readily extended to
other targets if they are used). In the case of training GNNs, it is com-
mon practice to train on 80 % of the data, reserving 10 % for validation

(to guide the GNN training process) and 10 % for testing. If the fit qual-
ity is not adequate (e.g., the force and/or energy RMSE is too high), one
develops additional data, adds it to to form a new data set we call

, and then performs a similar assessment. If is sufficiently
large, then no iterations may be needed. If the system is complex and/
or relatively small data sets are being added at each step, then this
might take many iterations. Atomic configurations for different are
generally determined based on user intuitions about important configu-
rations for the application of interest (e.g., known stable compounds in
the material), independent samples from MD trajectories, guidance
from active learning (discussed below), or some combination of all of
these, depending on the application. The required amount of data to ob-
tain a desirable fit can vary, but for typical systems with 3–4 species,
the number of total energies NE and the number of forces NF used in
training are approximately NE ∼ 103 and NF ∼ 105. This estimate is very
approximate, and model type and architecture (e.g., MTP vs. ACE, equi-
variant vs. invariant features, etc.) can also affect the results. In particu-
lar, for deep learning methods, the error vs. amount of training data
(the learning curve) is expected to follow a power law, but the power
law exponent can depend on significantly on the details of the MLP.
[108].

7.5.2. Determination of test data
The first potential fitting issue we address is strategies for determin-

ing useful test data sets for validating the MLP fit. Random cross-
validation (CV) or k-fold CV are both reasonable if the data is not highly
correlated. However, if the data has many similar conditions, e.g., as
occurs for data generated from AIMD trajectories or small perturbations
to existing structures, then these random CV approaches will yield
overly optimistic predictions. The predictions will be overly optimistic
due to the “twin” problem, where extremely similar data is present in
both the train and test sets, and the model predictions are thus indica-
tive of data that looks just like the training data. In the case of highly
correlated or otherwise similar data, one can assess the potential more
robustly by comparing ab initio and MLP predictions from new condi-
tions, e.g., MD at a new temperature or MD from a much later time than
that used during training. An even better way to assess the MLP in such
cases is to apply the MLP in expected or near-to-expected use cases and
check errors on select configurations from those conditions. For exam-
ple, assume you are trying to predict the diffusion of Li in a solid-state
electrolyte at low or even room temperature. The bulk of the training
data might be AIMD trajectories at higher temperatures so that many Li
hops occur. An example of good test data would be to simulate low-
temperature hopping with the MLP, extract configurations where the
hopping occurs, run these with ab initio methods, and compare the ab
initio and MLP energies and forces for those configurations as a test. Ob-
viously, when possible, testing the ability of the potential to predict the
properties of interest is essential. Continuing the example above, one
should be sure that the ab initio and MLP-predicted Li diffusion match in
the higher temperature conditions where the ab initio simulations are
reliable and can be well-converged. However, extensive property test-
ing is generally difficult as it can be challenging to have a robust ground
truth, proper simulations often take a long time for the ground truth
even using the MLP, and there are generally relatively few property val-
ues for comparison (e.g., one might have only 5–10 densities or diffu-
sion coefficients as compared to many thousands of forces). This dispar-
ity makes it desirable to know as much as possible that a potential will
be robust before starting significant property exploration. This robust-
ness is generally assessed through energy and force errors and brings us
to the second issue.

7.5.3. Required energy and force accuracy
The second potential fitting issue we address is what accuracy of en-

ergies and forces is needed in the test data to ensure a useful MLP, by
which we mean an MLP that can be used for a wide range of simulations
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and yields accurate predictions for properties of interest. At present,
there is no exact answer to this question. The accuracy that can be
achieved will depend on the conditions being explored and the range of
elemental species and structures considered, as well as the type of MLP.
For example, a simple liquid phase of just one element may yield much
smaller errors, both relative and absolute, than modeling oxidation of a
complex surface at high temperatures. However, there are still chal-
lenges in learning even single-element systems. For example, Owen, et
al.[109] found that early transition metals have higher relative errors
than late platinum- and coinage-group elements. This apparent diffi-
culty in learning is attributed to the sharp d-electron density of states
above and below the Fermi level, resulting in complex physics which
makes the PES difficult to learn. The relative energy and force errors in
their study of transition metals ranged over about a factor of 10. That
said, typical values for energy and force errors are in the ranges of
1–10 meV/atom and 20–40 meV/Å, respectively, for a very good fit, al-
though force errors of up to around 100–200 meV/Å have been re-
ported in nominally successful MLPs.[1,109] Very accurately trained
MLPs can achieve errors for energies, forces, and stress tensor compo-
nents on the order of 1 meV/atom, 10 meV/Å, and 0.1 GPa, respec-
tively, although in practice one may find somewhat higher (e.g., 2⨯) en-
ergy, force and stress errors which are highly system and potential de-
pendent.

It is reasonable to assume that for a relevant and diverse set of train-
ing data, a lower RMSE on energies and forces will generally translate
into more accurate property prediction. However, depending on the ap-
plication, low energy, force, and stress errors may not be sufficient cri-
teria for ensuring accurate property predictions.[110,111] In addition,
an MLP trained on a large number of chemically diverse systems may
exhibit energy and force RMSEs that vary widely by element or chem-
istry type (e.g., defects in oxides vs. elemental metals), system state
(e.g., solid vs. liquid), and simulation conditions. Obviously, the MLP is
at best as accurate as the ab initio method used to train it, so for the dis-
cussion here we will assume that the ab initio method yields accurate re-
sults. In the case of negligible RMSE on all atoms in all situations, it is
expected that the MLP is essentially equivalent to the ab initio method
used to train it and will ideally yield robust property prediction. How-
ever, this ideal scenario is difficult to reach in practice, due to poor pre-
dictions on outliers. RMSE values are averages over many configura-
tions, so even MLPs with low RMSE can have outliers that have signifi-
cant errors. If these outliers are important for a given property, then the
prediction may not be accurate. Again, referring to the example above,
an MLP trained on a large body of ab initio MD simulation data of a Li
conducting compound may show very low RMSEs on energies and
forces on all the different atom types, but still not accurately capture
the activated state energy of Li during a hop (i.e., this activated state is
an outlier) and therefore yield inaccurate diffusion coefficients. The re-
sult of a low RMSE but the inability of the model to capture some piece
of physics is analogous to situations that often arise when developing
standard ML regression models, where the model is generally reliable
for interpolation tasks (test data similar to training data) but unreliable
for other tasks, even when not formally extrapolating.[86].

As a concrete example of MLP extrapolation issues encountered dur-
ing a study, Zhai et al.[112] demonstrated that a widely-used deep
neural network potential, i.e., DeepMD, can reliably reproduce the
properties of liquid bulk water but provides a less accurate description
of the vapor–liquid equilibrium properties. This problem can be com-
pounded by two potential issues: (1) The ML architecture cannot cap-
ture the essential symmetries and physics, e.g., many-body interactions;
(2) The training data is not at all evenly distributed in structural or
chemical space, a common issue when data is sampled from MD or bi-
ased toward widely studied compositions, leading to data imbalance is-
sues when training robust MLPs. As discussed above in the hypothetical
case of studying Li conductors, the simplest way to avoid such issues is
to be sure that the training data samples as much of the relevant config-

uration space as possible. If one is concerned about predicting diffusion,
then use training data with many activated states for hops, and if one is
concerned about predicting bulk moduli, then use training data from a
range of different stresses. Another way to improve predictability is to
change the evaluation metrics to include force predictions on important
outliers. This technique was suggested by Liu et al. when they observed
that large discrepancies can still be observed in migration barriers even
when defects are included in the training.[113] Considering relevant
rare-event-based metrics (e.g., accuracy for diffusion hops, defects,
atomic vibrations) for MLPs is important, since it is for these configura-
tions where force errors can potentially be large.

An additional complexity in ensuring a robust potential is that small
RMSE is not a guarantor of stable simulations.[111] By stable simula-
tions, we mean particularly long-time (e.g., tens of nanoseconds) MD
simulations.[114] There is a tendency for MLPs to become unstable
during MD simulations and crash. Depending on your needs, this can
make the potential useless. We hypothesize that crashing of the poten-
tial typically occurs due to the system exploring regions of configura-
tion space where forces are not accurate and change in ways that are
too fast for the MD time step to manage. This leads to errors that accu-
mulate and eventually cause numerical instability. In other words, the
numerical integration of the equations of motion being performed by
the MD becomes unstable because the energies and forces are, at least
during some parts of the simulation, not changing slowly on the time
scale of the MD time step. Such an event is not unlikely if the potential
becomes unphysical, since the MD time step, generally taken to be
1–2 fs, is tuned to be effective for a physically realistic system. This
problem can be reduced by starting with progressively more varied
training data. It can also be remedied by running ab initio calculations
on configurations from the MLP simulation just before the observed in-
stability to obtain new training data, which can stabilize the model af-
ter retraining. It is also possible to flag configurations that appear dur-
ing the use of the MLP that are in some way outside the domain of the
training data and running ab initio calculations to add these cases to the
training data. The domain of the training data is typically determined
using some measure of difference from the training data, e.g., active
learning with D-optimality (discussed more below).[115,116] These
domain-based approaches are quite effective in establishing a stable po-
tential for MD and are widely used. Such approaches may require multi-
ple iterations, and it is not clear a priori how many will be needed to
achieve a stable simulation, although typically no more than 5 itera-
tions are needed. The above discussions offer many qualitative guides
for training and test data, but do not provide any concrete approach to
assembling a training database, which brings us to our discussion of this
third important issue.

7.5.4. Determination of training data, use of active learning
The third potential fitting issue we address is how one should choose

training data. Again, this does not have a unique settled answer, but
there are useful guides. The simplest approach is to use domain-specific
intuition to develop a training database that is diverse, relevant, and
large. This is easier than it might sound, and given the speed of modern
ab initio methods, often quite practical. The advantage of this “intuitive
structures” approach is that it is relatively easy to implement, makes
good use of materials knowledge, and tends to yield a good MLP in a
practical amount of time. However, the approach is almost certainly not
optimal in terms of getting the best potential for the least training data,
it is not readily automated, and it may not scale well to MLPs that are
targeting many elements and many kinds of physics all at once. A differ-
ent second approach that seeks to solve these issues is active learning,
which is described next.

For the most efficient training data generation, users have a few op-
tions, and active learning is commonly useful. Note, by active learning
we mean an iterative approach that uses the results of a collection of fits
to suggest the best new training data to add for the next fit to optimize
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some condition, e.g., creating an MLP with the lowest RMSE on some
property. A general overview of the use of active learning to train MLPs
is provided in Fig. 7. To apply active learning, models need access to
uncertainty estimates during configurational sampling. When uncer-
tainties are high, a ground truth calculation (i.e., ab initio calculation) is
automatically invoked. The most common active learning approaches
for MLPs are D-optimality,[116] Gaussian process regression,[25]
querying by a committee of GNNs,[117,118] Bayesian inference force
fields,[119–121] and uncertainty-driven MD simulations with bias po-
tentials.[122,123] The active learning process typically makes use of
the featurization of the atomic environment to automatically guide the
search for unseen and uncorrelated atomic configurations to improve
model predictability. Implementing active learning therefore requires
access to the featurization used in the MLP, and is most easily applied
when built into the MLP package. For instance, MLPs such as MTP,
ACE, and FLARE have built-in active learning functionality in their fit-
ting routines. It is possible to use a featurization separate from the MLP
to implement one’s own active learning framework. Packages such as
Dscribe[124] and matminer[125] can be used to featurize the atomic
configurations for developing one’s own active learning or other data
generation approach.

Here we give a few examples of fitting approaches used in recent
studies. Attarian et al.[126] explored the intuitive structures vs. active
learning based on D-optimality in a study of properties of eutectic com-
position FLiBe salts with an MTP potential. They found that either way
of training data generation resulted in a robust potential, though the ac-
tive learning approach was more efficient as it produced about the same
prediction error with less than half as many training structures (600 vs.
1400 structures). Work from Vandermause et al. also compared the use
of active learning vs. random sampling, and they found that active
learning resulted in more efficient MLP training (i.e., lower RMSE per
training data added) and an overall lower RMSE compared to random
sampling.[25].

There are additional approaches for the efficient generation of train-
ing data that do not leverage active learning. For example, in a recent
study using bias potentials, Kulichenko et al. merged the ideas of query-
ing by committee and metadynamics to model the phase space of pro-
ton transfer in glycine.[122] The use of a bias potential, instead of high-
temperature MD simulations, generates low and high-energy configura-
tions, thus avoiding sampling unnecessary structural distortions. When
the main purpose of active learning is to add weakly correlated or un-
correlated configurations to the training data, bias potentials may be a
direct and efficient approach. As a second example, in their study of
Mo, Chen et al. outlined the selection of training structures using princi-
pal component analysis, and the selection of hyperparameters using a

differential evolution algorithm.[127] Their procedure, using a SNAP
MLP, achieved close to DFT accuracy for elastic constants, melting
point, and surface and grain boundary energies. As a third example,
Vandermause et al. built a FLARE potential for vacancy and adatom dif-
fusion in Al, where the training data was obtained on-the-fly, where se-
lect DFT calculations were performed if the GPR error bar became too
large. In their MD runs, they found that the majority of the DFT calcula-
tion calls occurred near the beginning of the run, with no DFT queries
occurring after 400 ps of MD time.[25].

A valuable tool for developing training data can be to use a classical
PBP or a U-MLP to generate a large initial set of atomic configurations,
which are then sampled intelligently to obtain DFT runs for training
data. This sampling can be done with active learning, as described
above. It can also be done with other approaches. For example, a clus-
tering algorithm can be used to separate different groups of configura-
tions based on some similar features and later a collection of configura-
tions from each cluster is chosen to be calculated with ab initio methods
and used as the training set. Users can take advantage of packages such
as Dscribe[124] to featurize the atomic configurations and ML packages
such as scikit-learn to do the clustering. More recently, enhanced sam-
pling techniques have been utilized to accelerate the sampling of rare
events and integrate that sampling with active learning procedures for
the generation of training datasets for MLPs that can describe rare
events.[122,123,128].

7.6. Fitting A new Potential: More specific considerations

7.6.1. Chemical complexity
As discussed in Sec. 4.3, a drawback of most explicit AEF MLPs as

they are currently formulated is that they scale poorly with the number
of species. This scaling results in a higher computational cost for sys-
tems with a higher number of species both when training and executing
simulations with the potential. For example, FLARE is generally ex-
tremely fast in its execution time (see Sec. 6), but can scale poorly with
training set size and chemical complexity. The general rule is that an
update (i.e., retraining of model parameters) of the FLARE sparse
Gaussian process can become prohibitively expensive when there are
around Nenv = 1,000,000 environments in its training set, where Nenv
= O[ (# training ab initio frames) ⨯ (# atoms/frame) ⨯ (# species)2],
where a frame is one set of ab initio calculated forces and energies (note
that 1 M environments is an upper bound, where in practice FLARE
users may experience slow timing and large memory requirements
when using > 600 k environments).[121] The quadratic scaling with
the number of species is particularly limiting for chemically complex
systems since explicit AEF MLPs can handle less training data, but typi-

Fig. 7. (a) Overview of the use of active learning in constructing reliable MLPs. (b) Learning curve showing improved efficiency of active learning approach vs. ran-
dom sampling for developing MLP of 5-component high entropy alloy. Adapted with permission from Ref. [25].
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cally need sufficiently varied training data to explore the many chemi-
cal configurations. Considering the above limit for FLARE as a concrete
example, offline training (where ab initio calculation frames have al-
ready been calculated and are available for fitting) for a system with a
single species is possible for about 4000 training frames (250 atoms per
frame) while for 5 species the scaling limits the user to about 150
frames, which is likely too few to fit an accurate potential. Similar is-
sues exist for MTP, ACE, and other explicit AEF MLPs, and a brief re-
view of the literature shows that almost all fits with these explicit AEF
MLPs are to 5 or fewer chemical species. A recent attempt by the au-
thors to fit an ACE potential to a 12 species system of chloride salts with
3500 training data using Nvidia Tesla v100-32 GB GPU failed at the
very beginning and the code did not even start the training. A more in-
depth discussion of scaling issues is given in Sec. 4.3. [29].

7.6.2. Training requirements
The difficulty of training an MLP is a key factor in choosing one that

is right for your project. Key things to consider include both the amount
(and potentially variety) of training data and the training time. All
other things being equal (e.g., for the same chemical system and desired
accuracy), the training data requirements for different potentials can be
quite different. For example, molten salt FLiBe potentials were recently
trained with DeepMD and MTP.[126,129] Both approaches produced
excellent potentials, but the MTP fitting was achieved with less than
1 % of the amount of the DeepMD data (although it should be noted
that this was not a head-to-head comparison by the same authors under
identical conditions so should be taken as only a qualitative guide for
the training data differences from these potentials). Early deep learning
MLPs[129,130] required much more training data than explicit AEF
MLPs, but this no longer seems to be true for the newer equivariant
deep learning MLPs, which are much more data efficient. For example,
studies with NequIP report a 1000⨯ improvement vs. DeepMD with re-
spect to data requirements.[131] However, even if a deep learning and
explicit AEF MLP require the same amount of training data, the com-
plexity of the former will typically cause it to train more slowly.

7.6.3. Ease of fitting (Tools and Hyperparameters)
Ease of the fitting process is also a key factor in considering which

potential to use. First, it is important to have good fitting tools associ-
ated with the potential that allow for easy fitting, ideally with active
learning. Most popular potentials now provide such tools, and more are
being developed rapidly, so we will not say more about this require-
ment and just assume it is satisfied for any potentials one might con-
sider. More fundamentally, potentials with fewer hyperparameters are
significantly easier to use. This difference can be large, ranging from
just one hyperparameter in MTP, which makes hyperparameter opti-
mization trivial and fast, to many for Allegro, which can require signifi-
cant experience and skill to optimize to achieve state-of-the-art results.
In this regard, the authors have found that MTP is one of the easiest
MLPs to fit as it only has one hyperparameter, which is called the “com-
plexity level” parameter of MTP, and the user can start from lower lev-
els and increase the complexity level step-by-step to achieve the desired
accuracy. It should be noted that as of this writing (early 2024), MTP
does not support GPU training, so with large training sets many CPU
cores are required. However, this hardware limitation may be removed
at any time with an update to the MTP code. Compared to MTP, the
ACE potential provides much more flexibility in terms of fitting para-
meters for interaction between each pair, triplets, etc., of species. This
flexibility creates a lot of hyperparameters, which correspond to the
bond order of many-body interactions, the number of radial basis func-
tions, and the angular resolution of the description. However, because
ACE featurization allows for good physical intuition, after a few train-
ing sessions with different hyperparameters, the user gets an under-
standing of how to balance the hyperparameters to achieve the desired
accuracy while keeping computational cost low. While this modest

complexity from hyperparameter optimization may seem unimportant,
it can easily increase the overall time to fit a potential by a few multi-
ples. This is because the ab initio simulations and fitting efforts are
largely automated, but the hyperparameter optimization is still often
done somewhat sequentially and by hand. This challenge may reduce
quickly as standardized hyperparameter choices emerge or more auto-
mated optimization methods become available.

7.7. Summary of considerations for choosing a potential

There are many options for possible MLPs for fitting, including those
already mentioned in this paper as well as many others, and, as with
many aspects in this emerging field, there is no standard consensus on
the best MLPs. However, we can provide some guidance to help users
navigate the options. If one needs a fast potential (e.g., simulations for
tens of nanoseconds and longer) and/or one does not have access to
GPUs, then explicit AEF MLPs are likely a good starting point, where we
suggest starting with MTP or ACE due to their ease of fitting and high
accuracy, respectively. Conversely, if one does not need a lot of speed
(e.g., exploring a few thousand structural energies) and/or one has ac-
cess to GPUs, then deep learning potentials are a practical option, al-
though not necessarily required or even the best option. The require-
ments of accuracy, noted in Sec. 7.3, suggest using the more complete
potentials (e.g., MTP, ACE) vs. the older forms (e.g., SNAP), due to
greater potential accuracy with no obvious downsides. In particular,
the work of Zuo, et al. performed a very useful comparison of different
MLPs in 2020 and found that MTP was both highly accurate and very
fast to execute, performing generally somewhat better than GAP, SNAP,
and Behler-Parrinello NN potentials.[1] This suggests that MTP is a
good potential to start with in the absence of more information. As dis-
cussed in Sec. 4.3, recent developments in MLP formalism have shown
that essentially all of the basis functions that underlie different explicit
AEF methods (e.g., ACSF, SOAP, HBFs, MTFs) are special cases of the
ACE formalism.[14] This suggests ACE is a method of choice, but its
flexibility comes with more hyperparameter choices, which can make it
more complex for the user to navigate.

Using a pre-trained MLP avoids training time, which is typically
days to months, and is therefore worth pursuing (Sec. 7.4). U-MLPs can
be a great starting point, but need to be carefully vetted, and at this
stage are likely best used in cases where some post-calculation checking
is built into the project workflow. Reusing targeted MLPs can be a great
solution, but it is recommended to validate at least some aspects of the
MLP since it is likely being used in some ways different from those in
the original studies and assessments. Finally, if you are fitting your own
MLPs, then deep learning potentials are generally needed for more
than ∼ 5 elements, although recent methodological developments are
potentially removing this constraint (Sec. 7.6.1). However, deep learn-
ing MLPs can require more data and take more time to train (Sec.
7.6.2), and may require more human time for hyperparameter opti-
mization (Sec. 7.6.3).

8. MLP infrastructure

In recent years, a plethora of software packages have emerged
within the dynamic landscape of MLPs, catering to both standard-scale
and large-scale simulations. These packages aim to streamline the
process of training, fitting, and deploying MLPs for running MD for di-
verse applications in chemistry and materials science. For standard-
scale simulations, ideal features for packages should include ease of
use, adaptability, intuitive interfaces, and flexibility in handling various
data types and model architectures. On the other hand, large-scale sim-
ulations demand efficient parallelization, scalability, robustness, and
high-performance computing integrations. In the following section, we
explore some of the most prominent and user-friendly packages in both
categories, detailing their features, strengths, and ideal use cases.
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In the effort to promote adoption and advance the accessibility of
MLPs, many tools and platforms have emerged. As mentioned in Sec.
7.4, a notable example is ColabFit Exchange, which functions as an in-
formatics platform tailored for advanced materials and chemistry appli-
cations.[132] ColabFit Exchange contains curated, high-quality data
from publications useful for fitting MLPs. As of January 2025, there are
nearly 400 datasets comprising more than 230 million unique atomic
arrangements. Recent work from Andolina and Saidi generated curated
training datasets of 23 single-element systems and built MLPs with
DeepMD, where all of the training data are hosted on ColabFit Ex-
change.[133,134] Furthermore, packages like the Knowledgebase of In-
teratomic Models-based Learning-Integrated Fitting Framework
(KLIFF) have been developed for general-purpose fitting of MLPs, offer-
ing the versatility to deploy these models within simulation software
like LAMMPS via OpenKIM, as well as automated model verification,
testing (i.e., the automated computation of a wide range of physical
properties for all archived potentials), and archiving on https://
openkim.org.[91] KLIFF also incorporates uncertainty quantification, a
powerful feature for assessing the reliability and confidence associated
with MLP predictions. These tools exemplify some of the concerted ef-
forts made by the community to surmount adoption barriers and propel
the field of MLPs forward. Another emerging platform in the ecosystem
is Garden.[135,136] Garden is designed to make ML models more ac-
cessible and deployable across different computing environments. Mod-
els are collected into domain-specific “gardens”, as a collection of con-
tainerized models linked with structured data via the Materials Data Fa-
cility[137,138] or Foundry,[139] benchmarks, tests, and computing re-
sources. Garden addresses key infrastructure challenges by containeriz-
ing models for consistent execution, facilitating model discovery and
simplified deployment across local machines, cloud resources, and HPC
clusters through Globus Compute integration. Finally, as discussed in
Sec. 7.4, at present there are at least two notable examples of inter-
atomic potential repositories, OpenKIM and the NIST Interatomic Po-
tentials Repository, that include many PBPs but also a growing number
of MLPs.

Below, we discuss a standard set of procedures and software for gen-
erating or acquiring training data, fitting, comparison, and deployment
of MLPs in MD simulations. For MD simulations, LAMMPS has been a
standard in the past decades in the field of materials science with a
comprehensive documentation and most widely used MLPs have li-
braries in LAMMPS. The earlier MLP formulations such as Behler-
Parrinello NNs, GAP, SNAP, and ACE have well-tested libraries (ML-
HDPNN, ML-QUIP, ML-SNAP, and ML-PACE) that have become part of
the LAMMPS code and is easier for users to install and use them. MTP
also has a LAMMPS library, but it needs to be separately acquired from
its Gitlab repository and added to LAMMPS. Recent MLPs such as
DeepMD, MACE and Allegro also have LAMMPS libraries, but currently
their libraries need to be downloaded from their GitHub repositories
and added to LAMMPS. More streamlined integration of state-of-the-art
MLPs with molecular simulation codes is ongoing. For example, the
newest MLPs (e.g., NequIP, MACE) now provide native integration with
JAX-MD, which is a Python library to run end-to-end differentiable MD
simulations on GPUs.[140] In addition to LAMMPS and JAX-MD, an-
other Python library frequently used for MD simulations is the Atomic
Simulation Environment (ASE).[141] ASE provides numerous function-
alities such as MD simulations or static energy/force calculation for
each atomic configuration, that can be used for testing and comparing
MLPs. Many aforementioned MLPs have specific libraries to use with
ASE which are called calculators. U-MLPs such as M3GNet,[41]
CHGNet,[20] MACE-MP0,[32] and EquiformerV2-OMAT24 [24] inte-
grate seamlessly with ASE code, enabling a new user to load in a pre-
trained U-MLP and perform atomic relaxations or MD runs with only a
few lines of python code.

As discussed in Sec. 6 and Sec. 7.1, many MLPs require GPUs for ef-
ficient operation. Access to modest numbers of GPUs (e.g., 1–10) is be-

coming widespread in computational labs but can still be challenging to
access when many are needed for large-scale studies. The Department
of Energy (e.g., Summit) and National Science Foundation (e.g., AC-
CESS, National Artificial Intelligence Research Resource (NAIRR)) all
have machines with large numbers of GPUs to which researchers can
apply for resources. In addition, cloud computing resources, e.g., from
Amazon Web Services (AWS) and Microsoft Azure can be leveraged to
carry out large simulations with modest cost. This “pay-as-you-go” in-
frastructure provides users with instant access to state-of-the-art GPUs
for large-scale applications. Of note is AWS, which recently launched its
EC2 UltraCluster, which contains more than 4000 NVIDIA A100 GPUs.
If more modest GPU computing is sufficient, users may consider using
the free or paid tiers of Google Colab. The Garden framework further
simplifies access to these diverse computing resources by providing
standardized methods for deploying MLPs across different platforms.
Through its integration with Globus Compute, Garden allows re-
searchers to seamlessly utilize various computing resources, from local
machines to DOE facilities and cloud providers.

9. Limits of standard MLPs and advanced MLPs to overcome those
limits

MLPs have significantly enhanced our ability to describe PESs in
various material systems. When dealing with complexities such as long-
range forces, magnetism, and electronic excitation states, it is generally
the case that modifications to standard MLPs are needed. However,
adding more physics is more difficult than simply including more data
for training MLPs. In this section, we provide an overview of the limits
of MLP application within the realm of complex materials and the re-
cent advancements to overcome these constraints.

9.1. Long-range interactions

Long-range interactions are not included in standard MLPs as they
typically focus on learning local atomic descriptors for environments
encompassing a radius of just 5–10 Å, becoming much slower for longer
ranges. A graphical depiction of long-range interactions researchers
hope to integrate into future MLPs is given in Fig. 8. It is possible that
the MLPs which consider contributions only from short-range interac-
tions may be deficient for accurately predicting some properties.[142]
In cases where the importance of nonlocal physics and chemistry is fun-
damental in explaining properties, it becomes imperative to focus on
nonlocal electrostatic and dispersion interactions, which are usually not
represented by local descriptors. To overcome this challenge, several
methodologies and models are employed to enhance the performance
of MLPs for handling long-range interactions.

The first strategy is implicitly incorporating long-range interactions
into short-range interactions, which is particularly useful for homoge-
neous condensed-phase systems with strong screening effects. This es-
sentially comes down to trying to include the correct physics in the
training data and hoping the long-range effects are largely screened or
reasonably quantitatively renormalized into the short-range MLP. One
approach is increasing the cutoff radius in standard MLPs to accommo-
date long-range interactions. For instance, AP-NET utilizes 8 Å cutoff
atom-pair symmetry functions for evaluating monomer–monomer in-
teraction energies.[143] A concrete example of renormalizing a natu-
rally long-range interaction is including dispersion in DFT calculations
for training data for standard short-range MLPs. It is interesting to note
that for molten salts, which are ionic systems with large electrostatic in-
teractions and significant dispersion contributions, there are many suc-
cessful MLP models, demonstrating how effective this simple approach
can be.[126,144–146] The ability to represent long-range electrostatics
with short-range interactions can be understood as a result of screening,
where local charge neutrality makes longer range interactions zero on
average. The nature of this screening has been explained and studied
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Fig. 8. Summary of the general energetic contributions composing the total potential energy (Utotal) of a system. Ulocal refers to the short-range system energies and is
typically inferred using a machine learning model trained on local features. Dispersion corrections, electrostatics, and induction are collectively referred to as the
long-range interaction energy contributions. Adapted with permission from Ref. [142].

quantitatively by Ceder et al.[147] Their work points out that local
charge neutrality is strongly correlated with lower-energy states, and
that higher-energy states, where local charge neutrality is less robust,
have electrostatic interaction that are not well-represented with short-
range interactions. Thus, the success of short-range potentials for ionic
systems may be in a large part due to the typical states explored in
training and application data, which are often lower-energy states asso-
ciated with near-equilibrium molecular dynamics simulations. These
observations imply that for simulations with higher energy states, or
more precisely, states without strong local charge neutrality, re-
searchers should be very careful about using only short-range interac-
tion and more complete treatment of long-range electrostatics may be
necessary.

The second strategy is including explicit long-range interactions,
such as electrostatics, using physics-based functional forms like
Coulomb's law, with or without a dependency on the local atomic envi-
ronment. For instance, the deep neural network potential called Deep-
Pot utilizes a model based on (averages of the positions of) maximally
localized Wannier centers to accurately calculate electrostatics.[148] A
more refined version of DeepPot is the self-consistent field neural net-
work (SCFNN), where SCFNN combines an iterative refinement ap-
proach with maximally localized Wannier centers to enhance the accu-
racy of electrostatics calculations, demonstrated by its ability to accu-
rately predict the high-frequency dielectric constant of water.[149] The
recently updated AIMNet2 (also mentioned in Sec. 5) directly includes
long-range interactions into the MLP formalism, in which the DFT-D3
vdW and electrostatic corrections are explicitly included as energy
terms, allowing an expanded application to neutral and charged states,
as well as diverse organic compounds composed of many different
chemical elements.[18,142] Also, as mentioned in Sec. 5, the MACE-
MP0 U-MLP was trained only on PBE-level DFT calculations (which
only incorporate short-range interactions) and has the ability to add on
the DFT-D3 vdW interactions, which are an empirical correction on top
of the PBE-level model. This correction can be done easily using the
torch-dftd dispersion model implemented in PyTorch.[79] Another ex-
ample of dispersion corrected-MLP is SO3LR.[150] As another example,
in the global gradient-domain machine learning force field, i.e., Sym-
metric Gradient Domain Machine Learning (sGDML) approach, the de-
scriptor of a molecular system is treated as a unified entity, bypassing
the need for arbitrary partitioning of energy into atomic contributions.
[151] The learned model essentially includes all interaction scales. This
unique approach enables the sGDML framework to effectively capture
both chemical interactions and long-range forces. However, due to the

requirement of all correlations of atom–atom interactions, the global
MLPs are usually limited in scaling up to large molecules.

In summary, the presence of long-range interactions has posed some
challenges for MLPs, and substantial efforts have been made to address
this issue. Specifically, the first strategy of renormalizing long-range in-
teractions from training data into short-range interactions in the MLP
has been extensively employed in standard MLPs, requiring no addi-
tional knowledge or extra effort. For applications where long-range in-
teractions have minimal impacts, users are encouraged to implement
this straightforward approach for the first strategy. The second strategy
of explicit long-range interactions is becoming more routine for state-
of-the-art MLPs. For studies that require long-range interactions or
where such interactions are of interest, particularly electrostatics (e.g.,
ions, electrolytes), users are encouraged to employ the MLPs mentioned
in the second strategy discussed above. In addition, small molecular
systems, usually consisting of (at most) a few hundred atoms, where sig-
nificant long-range interactions are in play, are well-suited for using
global representations of the features. Utilizing a global representation
of the entire system typically leads to a reduction in computational
complexity compared with previous methods, thereby enhancing both
the training process and the efficiency of molecular simulations.

9.2. Modeling systems off the born-oppenheimer surface

MLPs are typically a mapping of atomic positions to energy and
forces, and therefore assume this mapping is unique. The natural
unique PES is that of the lowest energy electron configurations for each
atomic arrangement, which is the Born-Oppenheimer surface. How-
ever, it is often of interest to consider some forms of excitations. If the
excitations are fixed, e.g., we ionize the system, then this is just another
uniquely defined Born-Oppenheimer surface determined by some con-
straint and presents no fundamental challenge. One can simply train a
standard MLP on data from the constrained system Born-Oppenheimer
surface. However, if the excitations can move between different Born-
Oppenheimer surfaces, e.g., multiple magnetic states or varying elec-
tronic excitations, then a significant change in the MLP formalism is re-
quired. Here, we discuss two areas being widely studied, namely mag-
netism and electronic excitations, although other types of excitations
might also be of interest.

9.2.1. Magnetism
Different magnetic states of ions possess significantly different prop-

erties, and this complexity becomes critical in the context of magnetic
materials. How to differentiate ions with different spin states is difficult
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and lacks a unique solution in the MLP community. Incorporating spin
degrees of freedom into MLPs, which are crucial for accurately repre-
senting finite temperature phenomena in magnetic materials, has re-
mained a challenging task. In spin density functional theory (SDFT),
magnetization arises from the interplay between magnetic exchange
and band energy contributions,[152,153] where the energy required
for electron redistribution between up and down spin channels depends
on the local density of states (DOS). Iron, for example, exhibits a bi-
modal DOS in its body-centered crystal structure (bcc), resulting in
larger magnetic moments compared to the face-centered cubic (fcc)
structure with a more unimodal DOS.[154] This intricate relationship
between magnetic and atomic structure necessitates the consideration
of multi-atom, multi-spin interactions to capture various magnetic and
atomic arrangements within a single model. Unlike methods derived
from electronic structure theory that seamlessly incorporate the com-
plexity of magnetic interactions,[154] classical PBPs require additional
terms to mimic quantum exchange interactions. One common approach
involves using a classical Heisenberg Hamiltonian,[155] where atomic
spin operators are replaced by spin vectors, and exchange interactions
are parameterized using ab initio calculations.[156] Many MLP ap-
proaches for magnetic systems have adopted similar strategies. For in-
stance, Nikolov et al.[157] expanded the SNAP framework with a two-
spin bi-linear Heisenberg model. Yu et al.[158] developed a neural net-
work-based approach to describe contributions to the Heisenberg
Hamiltonian based on the local magnetic environment, although this
method did not account for lattice information and treated magnetic
moments as unit vectors. Eckhoff and Behler[159] extended the origi-
nal Behler-Parrinello[19] symmetry functions framework but the for-
malism was limited to collinear configurations. Novikov et al.[160] in-
corporated magnetic moments as additional degrees of freedom in the
MTP framework, albeit also restricted to collinear moments. Domina et
al.[161] extended the SNAP framework to handle arbitrary vectorial
fields, demonstrating its functionality with non-collinear spin configu-
rations. Chapman and Ma introduced a neural network correction to an
embedded atom method potential augmented with a Heisenberg-
Landau Hamiltonian for large-scale spin–lattice dynamics simulations.
[162] Finally, as discussed in Sec. 5, the CHGNet U-MLP developed by
Deng et al.[20] goes beyond reporting energies and forces by also pre-
dicting the magnetic moment on every atom in the system, enabling dif-
ferentiation of different valence states and analysis of the underlying
magnetic properties. Despite these efforts, none of the existing ML ap-
proaches for magnetic systems have achieved a transferable and quanti-
tatively accurate description of magnetic interactions suitable for mod-
eling magnetism in different crystal structures.

The ACE method has been expanded to accommodate vectorial or
tensorial characteristics, alongside the inclusion of atomic magnetic
moments and charges in addition to atomic positions, as detailed by
Drautz et al.[163] This extended ACE framework offers a complete
foundation for characterizing the local atomic environment. Unlike be-
ing limited to representing energies solely as a function of atomic posi-
tions and chemical species, ACE can be adapted to encompass vectorial
or tensorial properties and incorporate additional degrees of freedom.
This adaptability is particularly significant for magnetic materials
where potential energy surfaces depend on both atomic positions and
atomic magnetic moments concurrently. Notably, recent work by Ri-
naldi et al. introduced a non-collinear magnetic ACE parameterization
specifically tailored for the prototypical magnetic element, iron.[164]
The model was trained using a diverse set of collinear and noncollinear
magnetic structures, computed using SDFT. Their findings demonstrate
that this non-collinear magnetic ACE method not only accurately repro-
duces the ground state properties of various magnetic phases of iron but
also captures magnetic and lattice excitations crucial for an accurate
description of finite-temperature behavior and crystal defect properties.
[164].

Recently, Yu et al.[165] introduced the Time-reversal Equivariant
Neural Network (TENN) framework, which incorporates time-reversal
symmetry into the equivariant neural network (ENN). This extension al-
lows ENN to account for physical aspects related to time-reversal sym-
metry, such as the spin and velocity of atoms. Specifically, they devel-
oped TENN-e3, an expansion of the E(3) equivariant neural network, to
maintain the time reversal E(3) equivariance while considering the in-
clusion of the spin–orbit effect in situations involving both collinear
and non-collinear magnetic moments in magnetic materials. TENN-e3
can construct a spin neural network potential and the Hamiltonian for
magnetic materials based on ab initio calculations. TENN-e3 employs
Time-reversal-E(3)-equivariant convolutions to model interactions be-
tween spinor and geometric tensors. TENN-e3 excels at accurately de-
scribing the complex spin–lattice coupling while preserving time-
reversal symmetry, a feature not present in existing E(3)-equivariant
models. Additionally, TENN-e3 facilitates the construction of the
Hamiltonian for magnetic materials with time-reversal symmetry.

In summary, TENN offers a new approach for conducting
spin–lattice dynamics simulations over extended time scales and per-
forming electronic structure calculations on large-scale magnetic mate-
rials. As an instance of TENN-e3, Spin-Allegro can help generate the
spin interatomic potential.[166] On the other hand, the ACE approach
for iron can be directly extended to multicomponent systems, such as
technologically important magnetic alloys and carbides. While concep-
tually straightforward, generating precise and comprehensive DFT ref-
erence data for magnetic multicomponent materials is challenging. Peo-
ple can use efficient sampling techniques based on D-optimality active
learning to address this challenge (see Sec. 7.5.4), which is expanded
to include magnetic degrees of freedom. It can help reduce the number
of required DFT reference calculations. Although these novel methods
have been proposed, the testing has only been on a small number of sys-
tems. Therefore, further exploration and testing of such MLPs on more
magnetic systems are needed to assess the general efficacy.

9.2.2. Excited states
At present, a well-established MLP specifically for excited systems

does not exist. Nevertheless, it is crucial to emphasize that ongoing re-
search efforts aimed at developing and enhancing MLPs are progressing
rapidly, and we discuss a few recent efforts here.

Electronically excited states are central to various fields such as pho-
tochemistry and photophysics. Like magnetism, they represent an addi-
tional degree of freedom that must be added to the potential. Most
MLPs are attempting to learn the PES of molecular/condensed phase
systems at the ground state. It requires careful consideration to design
an MLP that can learn the secondary outputs, i.e., excited-state PES,
corresponding forces, and nonadiabatic and spin–orbit couplings be-
tween them.[167,168] For instance, multiple PESs and their couplings
should be considered when dealing with excited states. Furthermore,
the complexity and high computational expense of generating the un-
derlying training data calculations and the associated complexity of the
corresponding ML models make it more challenging to train an MLP for
excited states than for the ground state. Therefore, the application of
ML models for excited states is significantly more challenging than for
the ground state.

Recently, Marquetand and co-workers developed SchNarc, a frame-
work for excited-state molecular dynamics simulations.[169] SchNarc
combines the surface hopping including arbitrary couplings (SHARC)
approach for photodynamics, which handles states of different multi-
plicities, with SchNet (a message-passing deep neural network), which
efficiently and accurately fits potential energies and other molecular
properties. This framework overcomes current limitations of existing
MLP-based MD simulations for excited states by allowing (i) phase-free
training, eliminating the costly preprocessing of raw quantum chem-
istry data, (ii) treatment of rotationally covariant non-adiabatic cou-
plings (NACs), which can either be trained or (iii) approximated from
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only ML potentials, their gradients, and Hessians, and (iv) handling of
spin–orbit couplings. They extended the model using a NN with multi-
ple outputs to fit all non-adiabatic vectors between different states of
the same spin multiplicity simultaneously,[170] which increases the ac-
curacy of the prediction of excited-state dynamics simulations.

More recently, Zhang and co-workers applied a symmetry-adapted
high-dimensional neural network to treat couplings as derivatives of
NN representations.[171] In this approach, electronic friction was mod-
eled using machine learning and applied to MD simulations of mole-
cules at metal surfaces, thereby treating electron-nuclei coupling in a
rotationally covariant manner. For the non-adiabatic coupling vectors,
a similar strategy akin to force-only training for potentials, by imple-
menting them as derivatives of virtual properties—properties not ex-
plicitly defined in quantum chemistry—constructed by a deep NN. They
extended their embedded atom neural network to a universal field-
induced recursively embedded atom neural network (FIREANN) by in-
troducing pseudo atomic field vectors relative to each atom with rigor-
ous rotational equivariance. The FIREANN is capable of predicting mul-
tiple polarization values for various response properties, making it pos-
sible to accurately capture the excited-state PESs within a single model.
[172].

10. The future of MLPs

Given the rapid development and evolution of the field of MLPs, dis-
cussing the future of MLPs is quite speculative. In particular, the extra-
ordinary pace and disruptive nature of innovations in ML suggest that
all predictions related to this area are highly uncertain. With that
caveat, we share a few ideas of how the field of MLPs may progress in
the near future.

In the near term (∼3–5 years) we see numerous areas where trends
that are already well-established are likely to continue. In terms of sam-
pling, we expect to continue to see new methods of active learning and
ways to determine optimal training structures to emerge, e.g., as done
recently by Fonseca et al. who used ML to sample new areas of configu-
rational space to more optimally improve both explicit AEF MLPs based
on GAP and a deep learning MLP.[173] Additionally, in complex chem-
ical applications such as bond breaking/formation, advances in active
learning can guide the selection of relevant training data, as was illus-
trated by Kulichenko et al.[122].

At this point there are many different databases available that are
used for fitting (e.g., the Materials Project and data shared through Co-
labFit[132,134]), typically developed by single groups in many differ-
ent ways. However, there does not seem to be a leading established ap-
proach to developing databases of pre-existing ab initio calculations for
fitting. This problem has many facets as it involves interacting with
large existing databases, integrating data from multiple levels of accu-
racy, and providing guidance for fitting everything from very focused
potentials (e.g., just C or Si) to large U-MLPs (e.g., with 90 + ele-
ments). We expect that a few underlying approaches and key databases
will eventually become standard and widely adopted for the majority of
use cases.

We also expect further refinements to standard MLP methods. At
present, it seems that the pace of innovation has slowed compared to
what was occurring over the last 10–15 years, and it appears that the
explicit AEF approaches provided by methods like ACE and the deep
learning equivariant GNNs are close to optimal within our present un-
derstanding. Therefore, within the present explicit AEF and deep learn-
ing MLP framework, efforts will shift to modest changes in the formal-
ism, with a focus on allowing more rapid and turn-key fitting and evalu-
ation of these methods, as well as scaling the fitting to larger datasets.
There is a clear need to establish standard methodological approaches
to some of the known limitations of present standard MLPs, which in-
clude incorporating long-range-forces and excited states (including
magnetic states). Short- and long-range forces are relatively straightfor-

ward to treat with either targeted fitting and/or semi-empirical correc-
tions. Recent work has also shown a path for magnetic states, which can
be treated by some advanced methods, such as the non-collinear mag-
netic ACE method and the TENN model, and they are expected to be a
standard part of MLP fitting packages within the next few years. More
general excited state methods are being developed and will likely be-
come widely accessible in the next 3–5 years. That all said, the tools of
deep learning keep improving, driven by enormous commercial and na-
tional priority pressures, which will likely drive rapid improvements in
deep learning training, execution, accuracy, interpretation, and imple-
mentation. To help readers appreciate the rate of change and improve-
ment in this field, we note that the modern form of the MPGNN upon
which so many deep learning MLPs are based is generally attributed to
work published only in 2017.[174] It therefore seems likely that there
will be disruptive innovations in ML that will suggest new and possibly
much more powerful MLP approaches sometime within the next
3–5 years, which may alter the focus of the field significantly.

Also in the next 3–5 years, we expect large and crucially important
improvements in MLP-related infrastructure and corresponding in-
creases in the adoption of MLPs for molecular modeling across the
chemistry, materials, physics, and biology communities. Many studies
using MLPs are still related to benchmarking or basic property predic-
tion, and reuse of MLPs for complex property modeling and materials
discovery and design is still limited. However, as their utility becomes
better known and the MLP infrastructure develops further, we can ex-
pect much more widespread use. In terms of MLP infrastructure, code
packages for fitting (e.g., MTP, ACE, Allegro, etc.) and integration with
major molecular development packages (e.g., ASE, pymatgen) and sim-
ulation tools (e.g., LAMMPS) are already widely available, but can still
be made more comprehensive and easier to use. Furthermore, greater
integration between MLP fitting codes is likely to provide many advan-
tages. For example, we expect there to soon be code packages that can
fit multiple potentials and provide assessment of which is best for your
systems and problem. Similarly, such codes and pre-fit MLPs will be
housed in easily accessible and searchable repositories with an auto-
mated assessment of MLP quality, as is being developed in OpenKIM.
[175] Both fitting and assessment will greatly benefit from a large set of
high-quality benchmark databases. Many benchmarks already exist but
were often not developed with MLP development and benchmarking in
mind (e.g., the Materials Project). Applying FAIR principles to MLPs
will increase the useful infrastructure and enhance their adoption. The
Garden framework represents an early example of this trend, providing
a FAIR-oriented platform that simplifies model publishing, discovery,
and deployment across various computing resources. Such frameworks
will help democratize access to MLPs and ensure reproducibility across
different computing environments. Finally, we note that direct integra-
tion with DFT packages is possible (e.g., as has happened in the VASP
code[176]) but that does not seem to be the direction the field is mov-
ing, likely due to the ease of connecting DFT with the MLP fitting and
the challenges of maintaining all the advantages of the flexible and
evolving MLP ecosystem when integrated with a DFT package. Overall,
navigating the multitude of available options for MLPs is likely to be a
daunting task for at least a few years to come. To facilitate decision-
making on the choice of MLPs for a given application, we expect to see
the emergence of recommendation systems based on the user's intended
applications and case-specific problems. In this regard, we believe it is
important to establish a basis for informed decision-making, i.e., com-
parisons that aid in evaluating the suitability of different packages.

As an external factor affecting MLPs, the continually evolving super-
computing landscape can alter the relative strengths of MLPs based on
their ability to adapt. Already, the dominance of GPU-based supercom-
puters (9 out of the top 10 in the world) renders those MLPs equipped
with GPU-acceleration favorable for scientific applications that require
large-scale simulations, as a CPU-locked MLP will require hundreds of
CPU cores to match the performance of even a single GPU. Such differ-

23



CO
RR

EC
TE

D
PR

OO
F

R. Jacobs et al. Current Opinion in Solid State & Materials Science xxx (xxxx) 101214

ences will be exacerbated as the computing landscape becomes more di-
versified. Even today, of the four fastest supercomputers, one is CPU-
based, while the other three use GPUs from different vendors, whose
native programming models are not interoperable. For the typical user
with access to one or a small handful of computing environments, the
choice of MLP will strongly be influenced by the MLP’s performance, or
even ability to run, on the hardware available to the user. This favors
MLPs that are built on a performance portability layer that makes them
largely agnostic to the underlying hardware, such as SNAP and FLARE,
which use Kokkos, and many of the deep learning based MLPs using Py-
Torch, such as MACE and Allegro. In the future, we may see more radi-
cal changes to hardware. Very recently, the Cerebras wafer-scale AI
chip was used to run MD simulations more than two orders of magni-
tudes faster than CPUs and GPUs.[177] While the Cerebras-based simu-
lations used an EAM potential, the results demonstrate the promise of
new hardware to drastically change the capabilities of MD simulations,
and the MLPs and their implementations that best adjust accordingly
will have a great advantage over the competition.

In the short- to mid-term (5–10 years), a particularly interesting
area will be the development of U-MLPs. U-MLPs are somewhat analo-
gous to the foundational models that have been so impactful in the im-
age generation and natural language processing (NLP) community.
Foundational models generally refer to large models that can achieve
good performance on a wide variety of tasks, which allows them to be
adapted to many specific applications (i.e., they are a foundation for
many other useful more specific models). For example, Large Language
Models (LLMs) in the NLP community have seen an explosion of perfor-
mance and utility over the last few years, and are being integrated into
hundreds of different tools and products. The generality of U-MLPs
across chemistry and structure will also allow them to impact many
more problems than a typical PBP or targeted MLP has done in the past,
which is why they are sometimes referred to as foundational models for
materials and chemistry. At present, U-MLPs are mostly useful for quali-
tative or semi-quantitative screening across many systems, but they are
rapidly becoming quantitative tools for detailed molecular modeling of
specific material properties (e.g., Li diffusion in electrolytes). Future U-
MLPs may function as foundational models, enabling simulation of
longer time scales (e.g., > 1 ms) and modeling of totally new materials
phenomena currently inaccessible with today’s MLPs. It is likely U-
MLPs will continue to improve rapidly, increasingly taking over the ap-
plications presently dominated by targeted MLPs. This transformation
will require a few improvements, but all seem to be well underway.
First, larger, more diverse, high-fidelity training data is needed. How-
ever, improved hardware, both CPU and GPU, will contribute to in-
creasing the output of ab initio data for fitting. Integration of multiple
databases will allow for very large training sets and potentially multifi-
delity training sets[80,178,179] (e.g., with DFT and coupled cluster
data) to support MLPs that approach chemical accuracy (1 kcal/mol)
and overcome limitations of lower fidelity DFT data (e.g., like DFT-PBE
calculations). We also expect infrastructure and methodological inno-
vations to allow for more contributions from the enormous amounts of
data in the broader community, e.g., through online fine tuning or fed-
erated learning approaches. It is reasonable to expect that training data
sets approaching or exceeding a billion training data points will be
within reach in the next few years (we are already seeing training
on ∼ 110x106 DFT configurations). Along with this data, better algo-
rithms and faster GPUs will support more rapid training and evaluation.
A final piece that needs to be developed is likely some form of distilla-
tion (transferring knowledge from a larger to a smaller model) to allow
fast models for specific applications to be easily developed from slower
U-MLPs. This distillation could be as simple as fitting a simpler and
faster MLP to U-MLP data, but more sophisticated direct methods might
be developed. All of these innovations will require improved infrastruc-
ture to have their full impact realized. In particular, the scale of data
and perhaps even model size of U-MLPs will require them to be trained

and likely hosted by just a few leading organizations with large re-
sources, including perhaps government (e.g., NIST), companies (e.g.,
Google, Matlantis), major research groups, and relevant societies (e.g.,
American Chemical Society (ACS)). Such hosting should allow easy use
of the models, fine tuning, and distillation for use in high performance
applications. These resources could supply full compute environments,
just the codes, or some combination. Similar infrastructure is available
for LLMs through tools like the OpenAI and HuggingFace APIs, and
these tools play an enormous role in supporting the adoption of the
LLMs. Frameworks like Garden[135,136] are beginning to lay the
groundwork for this future by providing infrastructure that connects
models with distributed computing resources and simplifies deploy-
ment across different environments – bridging the gap between model
developers and users, much like how APIs from OpenAI and Hugging-
Face have done for LLMs.

As discussed in Sec. 5, the change from targeted MLPs ( ele-
ments) to U-MLPs (40–90 + elements) is a continuum. It is possible
that semi-universal (SU-MLPs) (see Sec. 5) for key classes of materials
with intermediate numbers of elements (e.g., ∼20) and/or limited
phases or structures, might be established, e.g., for organic molecules,
polymers, steel alloys, Al alloys, halide perovskites, electronic materi-
als, molten salts, etc. Such an approach would mimic the very success-
ful methods of the calculation of phase diagrams (CALPHAD) commu-
nity, which typically develops databases in this manner. Such an ap-
proach obviously limits compositional complexity by treating fewer
species, and limits the structural complexity by treating fewer phases
and structures, but could also make fitting easier by treating relatively
consistent physics (e.g., mostly ionic or covalent bonding). Therefore,
SU-MLPs may provide a more practical solution for many materials de-
sign problems than full U-MLPs, or at least bridge the transition from
models containing a few species under limited conditions to those seek-
ing to represent the full periodic table under all conditions.

Overall, the above trends will likely lead to a significant reduction
in ab initio molecular dynamics simulation time, although only after the
method has been used to help train many potentials. This reduction
may reduce overall compute and energy requirements for molecular
modeling research, but we expect a large increase in MLP modeling,
which may offset any gains and likely lead to an increase in the overall
utilization of simulation.

More long-term (>10 years), it is possible the traditional potentials
(e.g., Lennard-Jones, EAM, AMBER, etc.) will be almost fully replaced
by MLPs, but this is not clear. For example, the AMBER potentials for
many organic systems are close to chemical accuracy and very fast,
making it unclear what advantages more complex MLPs would provide.
However, it is possible that MLP approaches will be integrated into
even the fastest and simplest potential approaches. For example, Yu et
al.[180] recently described an approach to fit pair potentials with ML
and then convert them to simple Buckingham form, achieving almost
optimal pair potentials from ML with no loss of speed. It is also possible
that MLPs will grow to become much more like full ab initio simula-
tions, providing not just a mapping of positions to energies and forces
but also to band structures, magnetic moments, charge densities, and
even wavefunctions, replacing huge parts of what is presently done
with quantum simulations.[181] On the other hand, a complementary
vision is that ML integrates with ab initio at a more fundamental level,
e.g., advancing exchange–correlation functionals and/or massively ac-
celerating solutions of the Schrödinger equation (and relativistic exten-
sions). This path might speed up ab initio methods to the level of MLPs,
effectively achieving an MLP from a very different starting point.[182]
Finally, there is perhaps no scientific or engineering field changing as
fast as AI and ML right now, so all researchers need to be vigilant for
new ideas that can bring entirely new frameworks and capabilities to
the molecular modeling community.
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