
990 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004

An Incremental Learning Algorithm with
Confidence Estimation for Automated

Identification of NDE Signals
Robi Polikar, Member, IEEE, Lalita Udpa, Senior Member, IEEE, Satish Udpa, Fellow, IEEE,

and Vasant Honavar, Member, IEEE

Abstract—An incremental learning algorithm is intro-
duced for learning new information from additional data
that may later become available, after a classifier has al-
ready been trained using a previously available database.
The proposed algorithm is capable of incrementally learn-
ing new information without forgetting previously acquired
knowledge and without requiring access to the original
database, even when new data include examples of previ-
ously unseen classes. Scenarios requiring such a learning
algorithm are encountered often in nondestructive evalua-
tion (NDE) in which large volumes of data are collected in
batches over a period of time, and new defect types may
become available in subsequent databases. The algorithm,
named Learn++, takes advantage of synergistic general-
ization performance of an ensemble of classifiers in which
each classifier is trained with a strategically chosen subset
of the training databases that subsequently become avail-
able. The ensemble of classifiers then is combined through
a weighted majority voting procedure. Learn++ is inde-
pendent of the specific classifier(s) comprising the ensem-
ble, and hence may be used with any supervised learning
algorithm. The voting procedure also allows Learn++ to
estimate the confidence in its own decision. We present the
algorithm and its promising results on two separate ultra-
sonic weld inspection applications.

I. Introduction

An increasing number of nondestructive evaluation
(NDE) applications resort to pattern recognition-

based automated-signal classification (ASC) systems for
distinguishing signals generated by potentially harmful de-
fects from those generated by benign discontinuities. The
ASC systems are particularly useful in:

• accurate, consistent, and objective interpretation of
ultrasonic, eddy current, magnetic flux leakage, acous-
tic emission, thermal or a variety of other NDE signals;

Manuscript received October 3, 2003; accepted April 23, 2004. This
material is based upon work supported by the National Science Foun-
dation under Grant No: ECS-0239090 for R. Polikar and Grant No:
ITR-0219699 for V. Honavar.

R. Polikar is with the Department of Electrical and Com-
puter Engineering, Rowan University, Glassboro, NJ 08028 (e-mail:
polikar@rowan.edu).

L. Udpa and S. Udpa are with the Department of Electrical and
Computer Engineering, Michigan State University, East Lansing, MI
48824.

V. Honavar is with the Department of Computer Science, Iowa
State University, Ames, IA 50011.

• applications calling for analysis of large volumes of
data; and/or

• applications in which human factors may introduce
significant errors.

Such NDE applications are numerous, including but are
not limited to, defect identification in natural gas trans-
mission pipelines [1], [2], aircraft engine and wheel compo-
nents [3]–[5], nuclear power plant pipings and tubings [6],
[7], artificial heart valves, highway bridge decks [8], optical
components such as lenses of high-energy laser generators
[9], or concrete sewer pipelines [10] just to name a few.

A rich collection of classification algorithms has been
developed for a broad range of NDE applications. However,
the success of all such algorithms depends heavily on the
availability of an adequate and representative set of train-
ing examples, whose acquisition is often very expensive
and time consuming. Consequently, it is not uncommon for
the entire data to become available in small batches over
a period of time. Furthermore, new defect types or other
discontinuities may be discovered in subsequent data col-
lection episodes. In such settings, it is necessary to update
a previously trained classifier in an incremental fashion to
accommodate new data (and new classes, if applicable)
without compromising classification performance on pre-
ceding data. The ability of a classifier to learn under these
constraints is known as incremental learning or cumula-
tive learning. Formally, incremental learning assumes that
the previously seen data are no longer available, and cu-
mulative learning assumes that all data are cumulatively
available. In general, however, the terms cumulative and
incremental learning are often used interchangeably.

Scenarios requiring incremental learning arise often in
NDE applications. For example, in nuclear power plants,
ultrasonic and eddy current data are collected in batches
from various tubings or pipings during different outage
periods in which new types of defect or nondefect indi-
cations may be discovered in aging components in sub-
sequent inspections. The ASC systems developed using
previously collected databases then would become inad-
equate in successfully identifying new types of indications.
Furthermore, even if no additional defect types are added
to the database, certain applications may inherently need
an ASC system capable of incremental learning. Gas trans-
mission pipeline inspection is a good example. The network
in the United States consists of over 2 million kilometers of

0885–3010/$20.00 c© 2004 IEEE

polikar et al.: learn++ and identification of nde signals 991

gas pipelines, which are typically inspected by using mag-
netic flux leakage (MFL) techniques, generating 10 GB of
data for every 100 km of pipeline [2]. The sheer volume of
data generated in such an inspection inevitably requires an
incremental learning algorithm, even if the entire data are
available all at once. This is because current algorithms
running on commercially available computers are simply
not capable of analyzing such immense volumes of data at
once due to memory and processor limitations.

Another issue that is of interest in using the ASC sys-
tems is the confidence of such systems in their own de-
cisions. This issue is of particular interest to the NDE
community [11] because ASC systems can make mistakes,
by either missing an existing defect or incorrectly classi-
fying a benign indication as a defect (false alarm). Both
types of mistakes have dire consequences; missing defects
can cause unpredicted and possibly catastrophic failure of
the material, and a false alarm can cause unnecessary and
premature part replacement, resulting in serious economic
loss. An ASC system that can estimate its own confidence
would be able to flag those cases in which the classification
may be incorrect, so that such cases then can be further
analyzed. Against this background, an algorithm that can:

• learn from new data without requiring access to pre-
viously used data,

• retain the formerly acquired knowledge,
• accommodate new classes, and
• estimate the confidence in its own classification

would be of significant interest in a number of NDE ap-
plications. In this paper, we present the Learn++ algo-
rithm that satisfies these criteria by generating an ensem-
ble of simple classifiers for each additional database, which
are then combined using a weighted majority voting algo-
rithm. An overview of incremental learning as well as en-
semble approaches will be provided. Learn++ is then for-
mally introduced along with suitable modifications and im-
provements for this work. We present the promising clas-
sification results and associated confidences estimated by
Learn++ in incrementally learning ultrasonic weld inspec-
tion data for two different NDE applications.

Although the theoretical development of such an algo-
rithm is more suitable, and therefore reserved for a journal
on pattern recognition or knowledge management [12], the
authors feel that this algorithm may be of specific interest
to the audience of this journal as well as to the general
NDE community. This is true in part because the algo-
rithm was originally developed in response to the needs
of two separate NDE problems on ultrasonic weld inspec-
tion for defect identification, but more importantly due to
countless number of other related applications that may
benefit from this algorithm.

II. Background

A. Incremental Learning

A learning algorithm is considered incremental if it can
learn additional information from new data without having

access to previously available data. This requires that the
knowledge formerly acquired from previous data should
be retained while new information is being learned, which
raises the so-called stability-plasticity dilemma [13]; some
information may have to be lost to learn new information,
as learning new information will tend to overwrite formerly
acquired knowledge. Thus, a completely stable classifier
can preserve existing knowledge but cannot accommodate
new information, but a completely plastic classifier can
learn new information but cannot retain prior knowledge.
The problem is further complicated when additional data
introduce new classes. The challenge then is to design an
algorithm that can acquire a maximum amount of new
information with a minimum loss of prior knowledge by
establishing a delicate balance between stability and plas-
ticity.

The typical procedure followed in practice for learning
new information from additional data involves discarding
the existing classifier and retraining a new classifier us-
ing all data that have been accumulated thus far. How-
ever, this approach does not conform to the definition of
incremental learning, as it causes all previously acquired
knowledge to be lost, a phenomenon known as catastrophic
forgetting (or interference) [14], [15]. Not conforming to
the incremental learning definition aside, this approach
is undesirable if retraining is computationally or finan-
cially costly, but more importantly it is unfeasible for pro-
hibitively large databases or when the original dataset is
lost, corrupted, discarded, or otherwise unavailable. Both
scenarios are common in practice; many applications, such
as gas transmission pipeline analysis, generate massive
amounts of data that renders the use of entire data at
once impossible. Furthermore, unavailability of prior data
is also common in databases of restricted or confidential
access, such as in medical and military applications in gen-
eral, and the Electric Power Research Institute’s (EPRI)
NDE Level 3 inspector examination data in particular.

Therefore, several alternative approaches to incremen-
tal learning have been developed, including online learning
algorithms that learn one instance at a time [16], [17], and
partial memory and boundary analysis algorithms that
memorize a carefully selected subset of extreme examples
that lie along the decision boundaries [18]–[22]. However,
such algorithms have limited applicability for realworld
NDE problems due to restrictions on classifier type, num-
ber of classes that can be learned, or the amount of data
that can be analyzed.

In some studies, incremental learning involves con-
trolled modification of classifier weights [23], [24], or incre-
mentally growing/pruning of classifier architecture [25]–
[28]. This approach evaluates current performance of the
classifier and adjusts the classifier architecture if and when
the present architecture is not sufficient to represent the
decision boundary being learned. One of the most success-
ful implementations of this approach is ARTMAP [29].
However, ARTMAP has its own drawbacks, such as clus-
ter proliferation, sensitivity of the performance to the se-
lection of the algorithm parameters, to the noise levels in

992 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004

the training data, or to the order in which training data
are presented. Various approaches have been suggested to
overcome such difficulties [30]–[32], along with new algo-
rithms, such as growing neural gas networks [33] and cell
structures [34], [35]. A theoretical framework for the de-
sign and analysis of incremental learning algorithms is pre-
sented in [36].

B. Ensemble of Classifiers

Learn++, the proposed incremental learning algorithm,
is based on the ensemble of classifiers approach. Ensemble
approaches typically aim at improving the classifier accu-
racy on a complex classification problem through a divide-
and-conquer approach. In essence, a group of simple classi-
fiers is generated typically from bootstrapped, jackknifed,
or bagged replicas of the training data (or by changing
other parameters of the classifier), which then are com-
bined through a classifier combination scheme, such as the
weighted majority voting [37]. The ensemble generally is
formed from weak classifiers to take advantage of their so-
called instability [38]. This instability promotes diversity
in the classifiers by forcing them to construct sufficiently
different decision boundaries (classification rules) for mi-
nor modifications in their training datasets, which in turn
causes each classifier to make different errors on any given
instance. A strategic combination of these classifiers then
eliminates the individual errors, generating a strong clas-
sifier. Formal definitions of weak and strong classifiers can
be found in [39].

Learn++ is in part inspired by the AdaBoost (adap-
tive boosting) algorithm, one of the most successful im-
plementations of the ensemble approach. Boosting creates
a strong learner that can achieve an arbitrarily low er-
ror rate by combining a group of weak learners that can
do barely better than random guessing [40], [41]. Ensem-
ble approaches have drawn much interest and hence have
been well researched. Such approaches, include but are not
limited to, Wolpert’s stacked generalization [42], and Jor-
dan’s hierarchical mixture of experts (HME) model [43],
as well as Schapire’s AdaBoost. Excellent reviews of vari-
ous methods for combining classifiers can be found in [44],
[45], and an overall review of the ensemble approaches can
be found in [46]–[49].

Research in ensemble systems has predominantly con-
centrated on improving the generalization performance in
complex problems. Feasibility of ensemble classifiers in in-
cremental learning, however, has been largely unexplored.
Learn++ was developed to close this gap by exploring the
prospect of using an ensemble systems approach specifi-
cally for incremental learning [12].

III. Learn++ as an Ensemble Approach for

Incremental Learning

A. The Learn++ Algorithm

In essence, Learn++ generates a set of classifiers
(henceforth hypotheses) and combines them through

weighted majority voting of the classes predicted by the
individual hypotheses. The hypotheses are obtained by
training a base classifier, typically a weak learner, using
instances drawn from iteratively updated distributions of
the training database. The distribution update rule used
by Learn++ is strategically designed to accommodate ad-
ditional datasets, in particular those featuring new classes.
Each classifier added to the ensemble is trained using a set
of examples drawn from a weighted distribution that gives
higher weights to examples misclassified by the previous
ensemble. The Learn++ algorithm is explained in detail
below, and a block diagram appears in Fig. 1.

For each database Dk, k = 1, . . . ,K that becomes avail-
able, the inputs to Learn++ are labeled training data
Sk = {(xi, yi) | i = 1, . . . ,mk} where xi and yi are train-
ing instances and their correct classes, respectively; a
weak-learning algorithm BaseClassifier; and an integer Tk,
the maximum number of classifiers to be generated. For
brevity we will drop the subscript k from all other internal
variables. BaseClassifier can be any supervised algorithm
that achieves at least 50% correct classification on Sk af-
ter being trained on a subset of Sk. This is a fairly mild
requirement. In fact, for a two-class problem, this is the
least that can be expected from a classifier.

At each iteration t, Learn++ first initializes a distri-
bution Dt, by normalizing a set of weights, wt, assigned
to instances based on their individual classification by the
current ensemble (Step 1):

Dt = wt

/ m∑
i=1

wt(i). (1)

Learn++ then dichotomizes Sk by drawing a training
subset TRt and a test subset TEt according to Dt (Step
2). Unless there is prior reason to choose otherwise, Dt
is initially set to be uniform, giving equal probability to
each instance to be selected into TR1. Learn++ then calls
BaseClassifier to generate the tth classifier, hypothesis ht

(Step 3). The error of ht is computed on Sk = TRt +
TEt by adding the distribution weights of all misclassified
instances (Step 4):

εt =
∑

i:ht(xi)�=yi

Dt(i) =
mk∑
i=1

Dt(i) [|ht(xi) �= yi|] ,
(2)

where [|•|] is 1 if the predicate is true, and 0 otherwise.
If εt > 1/2, the current ht is discarded and a new ht is
generated from a fresh set of TRt and TEt. If εt < 1/2,
then the normalized error βt is computed as:

βt = εt

/
(1 − εt), 0 < βt < 1. (3)

All hypotheses generated in the previous t iterations
then are combined using weighted majority voting (Step
5) to construct the composite hypothesis Ht:

Ht = arg max
y∈Y

∑
t:ht(x)=y

log
1
βt

. (4)

polikar et al.: learn++ and identification of nde signals 993

Fig. 1. The block diagram of the Learn++ algorithm for each database Sk that becomes available.

Ht decides on the class that receives the highest total
vote from individual hypotheses. This voting is less than
democratic, however, as voting weights are based on the
normalized errors βt: hypotheses with lower normalized er-
rors are given larger weights, so that the classes predicted
by hypotheses with proven track records are weighted more
heavily. The composite error Et made by Ht then is com-
puted as the sum of distribution weights of instances mis-
classified by Ht (Step 6) as:

Et =
∑

i:Ht(xi)�=yi

Dt(i) =
mk∑
i=1

Dt(i) [|Ht(xi) �= yi|] .
(5)

If Et > 1/2, a new ht is generated using a new training
subset. Otherwise, the composite normalized error is com-
puted as:

Bt = Et

/
(1 − Et), 0 < Bt < 1. (6)

The weights wt(i) then are updated to be used in com-
puting the next distribution Dt+1, which in turn is used
in selecting the next training and testing subsets, TRt+1
and TEt+1, respectively. The following distribution update
rule then allows Learn++ to learn incrementally (Step 7):

wt+1(i) = wt(i) × B
1−[|Ht(xi)�=yi|]
t

= wt(i) ×
{

Bt, if Ht(xi) = yi,

1, otherwise
,

(7)

According to this rule, weights of instances correctly
classified by the composite hypothesis Ht are reduced
(since 0 < Bt < 1), and the weights of misclassified in-
stances are kept unchanged. After normalization (in Step
1 of iteration t + 1), the probability of correctly classified
instances being chosen into TRt+1 is reduced, and those of
misclassified ones are effectively increased. Readers famil-
iar with AdaBoost will notice the additional steps of cre-
ation of the composite hypothesis Ht in Learn++ as one

of the main differences between the two algorithms. Ad-
aBoost uses the previously created hypothesis ht to update
the weights, and Learn++ uses Ht and its performance on
weight update. The focus of AdaBoost is only indirectly
based on the performance of the ensemble, but more di-
rectly on the performance of the previously generated sin-
gle hypothesis ht; and Learn++ focuses on instances that
are difficult to classify—instances that have not yet been
properly learned—by the entire ensemble generated thus
far. This is precisely what allows Learn++ to learn in-
crementally, especially when additional classes are intro-
duced in the new data; concentrate on newly introduced
instances, particularly those coming from previously un-
seen classes, as these are precisely the instances that have
not been learned yet by the ensemble, and hence most dif-
ficult to classify.

After Tk hypotheses are generated for each database
Dk, the final hypothesis Hfinal is obtained by combining
all hypotheses that have been generated thus far using
the weighted majority-voting rule (Step 8), which chooses
the class that receives the highest total vote among all
classifiers:

Hfinal(x) = arg max
y∈Y

K∑
k=1

∑
t:ht(x)=y

log
1
βt

,

t = 1, 2, · · · , Tk.

(8)

B. Dynamically Updating Voting Weights

We note that in the previously described algorithm, vot-
ing weights are determined—and fixed prior to testing—
based on individual performances of hypotheses on their
own training data subset. This weight-assigning rule does
make sense, and indeed works quite well in practice [12].
However, because each classifier is trained only on a small
subset of the entire training data, good performance on
one subset does not ensure similar performance on field

994 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004

data. Therefore, a rule that dynamically estimates which
hypotheses are likely to correctly classify each unlabeled
field data and gives higher voting weights to those hy-
potheses should give better performance.

Statistical distance metrics, such as Mahalanobis dis-
tance, can be used to determine the distance of the un-
known instance to the datasets used to train individual
classifiers. Classifiers trained with datasets closer to the
unknown instance then can be given larger weights. Note
that this approach does not require the (previously used)
training data to be saved but only the mean and covariance
matrices, which are typically much smaller in size than the
original data.

In this work, class-specific Mahalanobis distance is in-
troduced as a modification to the original Learn++ vot-
ing weights. We first define TRtc as a subset of TRt (the
training data used during the tth iteration), where TRtc

includes only those instances of TRt that belong to class
c, that is:

TRtc = {xi | xi ∈ TRt & yi = c} � TRt =
C⋃

c=1

TRtc,
(9)

where C is the total number of classes. We define the class-
specific Mahalanobis distance of an unknown instance x to
class-c training instances of tth classifier as:

Mtc = (x − mtc)
T C−1

tc (x − mtc) ,

c = 1, 2, · · · , C,
(10)

where mtc is the mean of TRtc, and Ctc is the covariance
matrix of TRtc. The Mahalanobis distance-based weight
MWt of the tth hypothesis then can be obtained as (or as
a function of):

MWt =
1

min (Mtc)
, c = 1, 2, · · · , C. (11)

Eq. (10) and (11) find the minimum Mahalanobis dis-
tance between instance x and each one of the C data sub-
sets TRtc, and assigns the Mahalanobis weight of the tth

hypothesis as the reciprocal of this minimum Mahalanobis
distance. Note that the class-specific Mahalanobis distance
is dependent on the particular instance that is being classi-
fied. Therefore, this procedure updates the voting weights
for each incoming test data instance, and hence provides
a dynamic weight update rule.

The Mahalanobis distance metric implicitly assumes
that the data is drawn from a Gaussian distribution, which
in general may not be the case. However, in our empirical
analysis of the algorithm on two different NDE datasets,
Mahalanobis distance-based voting weights provided bet-
ter results than voting weights based on the hypothesis
performance on training data subsets.

C. Estimating the Confidence of Learn++ Classification

An additional benefit of the Learn++ algorithm is that
the inherent voting mechanism hints at a simple procedure

for determining the confidence of the algorithm in its own
decision, particularly when the new data does not con-
tain new classes. Intuitively, a vast majority of hypotheses
agreeing on a given instance can be interpreted as the al-
gorithm having more confidence in its own decision, com-
pared to a decision made by a mere majority. Let us as-
sume that a total of T hypotheses are generated in K
training sessions for a C-class problem. For any given in-
stance x, the final classification is class c, if the total vote
class c receives:

ξc =
∑

t:ht(x)=c

Ψt, t = 1, · · · , T ; c = 1, · · · , C,
(12)

is maximum, where Ψt denotes the voting weight of the
tth hypothesis ht, whether we use static weights or dy-
namically updated voting weights. Normalizing the votes
received by each class:

γc = ξc

/ C∑
c=1

ξc, (13)

allows us to interpret γc as a measure of confidence on
a 0 to 1 scale. We note that γc values do not represent
the accuracy of the results, nor are they formally related
to the statistical definition of confidence intervals deter-
mined through hypothesis testing. The γc merely repre-
sents a measure of the confidence of the algorithm in its
own decision. However, under a reasonable set of assump-
tions, γc can be interpreted as the probability that the in-
put pattern belongs to class c [50]. Keeping this in mind,
we can heuristically define the following confidence ranges:
0.9 < γc < 0.6 very low, 0.6 < γc < 0.7 low, 0.7 < γc < 0.8
medium, 0.8 < γc < 0.9 high, and 0.9 < γc < 1 very
high confidence. This procedure can flag the misclassified
instances by assigning them lower confidence. As will be
discussed in Section IV, this procedure produced promis-
ing and noteworthy trends and outcomes. A theoretical
framework on how combining classifiers improve classifi-
cation confidence can be found in [51].

IV. Results

The original Learn++ algorithm (with static voting
weights) was evaluated on a number of real world and
benchmark databases, and Learn++ was able to learn
the new information from the new data, even when new
classes were introduced with subsequent databases. The
results of these experiments with the static voting weights
can be found in [12], [52], [53] for various other bench-
mark and real world databases. For this work, we devel-
oped and evaluated the modified Learn++ algorithm with
dynamically updated voting weights, on a three-class and
a four-class ultrasonic weld inspection problem. For both
applications, the task was identifying the type of defects
or discontinuities in or around the welding region from ul-
trasonic A-scans. In each case, the algorithm was trained
incrementally in three training sessions in which Learn++

polikar et al.: learn++ and identification of nde signals 995

Fig. 2. Ultrasonic testing of nuclear power plant pipes.

was provided with a new database in each session. In the
three-class problem, no new classes were introduced with
new data, but an additional class was introduced with each
database in the four-class problem.

A. Results on the Three-Class Problem

Welding regions often are susceptible to various kinds
of defects due to imperfections introduced into the ma-
terial during the welding process. In nuclear power plant
pipes, for example, such defects manifest themselves in the
form of intergranular stress corrosion crackings (IGSCC),
usually in an area immediately neighboring the welding
region, known as the heat-affected zone. Such cracks can
be detected by using ultrasonic (or eddy current) tech-
niques. However, also in the vicinity of this zone, there are
often other type of reflectors or discontinuities, including
counterbores and weld roots, which are considered as geo-
metric reflectors. Counterbores and weldroots do not pose
any threat to the structural integrity of the pipe; how-
ever, they often generate signals that are very similar to
those generated by cracks, making the defect identification
a very challenging task. The cross section in Fig. 2 con-
ceptually illustrates the ultrasonic testing procedure using
1 MHz ultrasonic pulse-echo contact transducers, used to
generate the first database analyzed in this study. Fig. 3
illustrates typical signals from each type of reflector.

The goal of the classification algorithm is the identifi-
cation of three different types of indicators, namely, crack,
counterbore, and weld root from the ultrasonic A-scans.
Three training databases S1 ∼ S3 of 300 A-scans each, and
a validation database, TEST, of 487 A-scans were acquired
from the above described system. Discrete wavelet trans-
form (DWT) coefficients were computed for each 256-point
A-scan to be used as feature vectors. During each of the
three training sessions, only one of the training databases
was made available to the algorithm to test the incremental
learning capability of Learn++. The weak BaseClassifier
was a single hidden layer MLP of 30 nodes, with a rela-
tively large mean square error goal of 0.1. We emphasize
that any supervised classifier can be used as a weak learner
by keeping its architecture small and its error goal high,
with respect to the complexity of the classification prob-
lem. In this application, each weak MLP—used as a base
classifier—obtained around 65% classification performance
on its own training data.

Fig. 3. Sample signals from (a) crack, (b) counterbore, and (c) weld
root.

TABLE I
Classification Performance of Learn++ on the Three-Class

Weld Inspection Database.

TS1 (6) TS2 (10) TS3 (14)

S1 95.70% 95% 94.30%
S2 — 95% 95.30%
S3 — — 95.10%

TEST 81.90% 91.70% 95.60%

Table I presents the results in which rows indicate
the classification performance of Learn++ on each of the
databases after each training session (TSk, k = 1, 2, 3).
The numbers in parentheses indicate the number of weak
classifiers generated in each training session. Originally, Tk

was set to 20 for each database. The generalization perfor-
mance typically reaches a plateau after a certain number of
classifiers; therefore, those late classifiers not contributing
much to the performance were later removed, truncating
the cardinality of the ensemble to the number of classifiers
indicated in Table I. A more accurate way of determining
the precise number of classifiers is typically to use an ad-
ditional validation set, if available, to determine when the
algorithm should be stopped.

The first three rows indicate the performance of the
algorithm on each training set Sk after the kth training
session was completed, whereas the last row provides the
generalization performance of the algorithm on the TEST
dataset after each session. We note that the performance
on the validation dataset TEST improved steadily as new
databases were introduced, demonstrating the incremen-
tal learning ability of the algorithm. Also, the algorithm
was able to maintain its classification performance on the
previous datasets after training with additional datasets.
This shows that previously acquired knowledge was not
lost.

996 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004

As a comparison, the classification performance of a
single strong learner with two hidden layers of 30 and 7
nodes, respectively, and an error goal of 0.0005 was also
about 95%, although the entire training database (900 in-
stances) was used to train this classifier. Therefore, we
conclude that Learn++, by only seeing a fraction of the
training database at a time in an incremental fashion, can
perform as good as (if not better than) a strong learner
that is trained with the entire data at once.

The algorithm’s confidence in each decision was com-
puted as described earlier. Table II lists a representative
subset of the classification results and confidence levels
on the validation dataset after each training session. A
number of interesting observations can be made from Ta-
ble II, which is divided into four sections. The first section
shows those instances that were originally misclassified af-
ter the first training session but were correctly classified
after subsequent sessions. There were 66 such cases (out of
487 in the TEST dataset). Many of these were originally
misclassified with rather strong confidences. During the
next two training sessions, however, not only their clas-
sifications were corrected but also the confidence on the
classification improved as well.

The second section of Table II shows those cases con-
sistently classified correctly, but on which the confidence
steadily improved with training. A majority of the in-
stances (396 out of 487) belonged to this case. These cases
demonstrate that seeing additional data improves the con-
fidence of the algorithm in its own decision, when the
decision is indeed correct. This is a very satisfying out-
come, as we would intuitively expect improved confidence
with additional training. The third section shows exam-
ples of those cases that were still misclassified at the end
of three training sessions, but the classification confidence
decreased with additional training. In these cases (a to-
tal of 21 such instances), the confidence was very high
after the first training session and decreased to very low
after the third training session. These cases demonstrate
that, with additional training, the algorithm can deter-
mine those cases in which it is making an error. This is
also a very satisfying outcome as the algorithm can flag
those instances that it is probably making an error by as-
signing a low confidence to their classification. The fourth
section shows the only four instances in which the algo-
rithm either increased its confidence in misclassification
or decreased its confidence in correct classification. Such
cases are undesired outcomes that are considered as iso-
lated instances (noisy samples or outliers) because there
were only four such cases in the entire database.

B. Results on a Four-Class Problem Introducing
New Classes

The second database had four types of defects, namely,
crack, porosity, slag, and lack of fusion (LOF), all of which
appeared in the welding region. Among these, cracks and
LOFs pose the most serious threat as they eventually can
cause structural damages if remedial actions are not taken.

Fig. 4. Ultrasonic weld inspection for identification of cracks, poros-
ity, slag, and LOF.

Fig. 4 conceptually illustrates the testing procedure for
this application in which the goal of the classification al-
gorithm is the identification of four different types of de-
fects from the discrete wavelet transform coefficients of the
ultrasonic A-scans. A total of 156 C-scans were obtained,
each consisting over 12,000 A-scans.

Of the C-scans, 106 were randomly selected to be used
for training, and 50 were selected to be used for valida-
tion. From the C-scans reserved for training, 2200 A-scans,
each 512-points long, were randomly selected for training
and 800 were selected for testing (from regions of interest;
see Figs. 5–7). The DWT coefficients were computed for
each A-scan to be used as feature vectors. The training in-
stances were further divided into three subsets to simulate
three different databases that become available at different
times. Furthermore, additional classes were added to sub-
sequent datasets to test the incremental learning ability
of the algorithm on new classes. Table III shows the dis-
tribution of the instances in various datasets, and Fig. 8
illustrates typical signals from these four classes.

As seen in Table III, the first training dataset S1 had in-
stances only from crack and LOF, but S2 and S3 added in-
stances from slag and porosities, respectively. The 800 test
signals were never shown to the algorithm during training.
The weak learner used to generate individual hypotheses
was a single hidden layer MLP with 50 hidden layer nodes.
The mean square error goals of all MLPs were preset to a
value of 0.02 to prevent overfitting and to ensure a weak
learning algorithm.

Results summarized in Table IV indicate that Learn++
was able to correctly classify 99.2% of training instances
in S1, but only 57% of the test instances by combining 8
hypotheses. This performance is not surprising as S1 had
instances only from two classes, but TEST had instances
from all four classes. After the next training session, using
instances only from S2, the algorithm was able to correctly
classify 89.2% of instances in S1 and 86.5% of instances in
S2. The performance on TEST dataset improved to 70.5%.
After the final training session using instances from S3, the
algorithm correctly classified 88.2%, 88.1%, and 91.2% of
instances in S1, S2, and S3, respectively. The classifica-
tion performance on TEST dataset increased to 83.8%,
demonstrating the incremental learning capability of the
Learn++ algorithm.

As a performance comparison, the same database also
was used to train and test a single strong learner. Among
various architectures tried, a 149 × 40 × 12 × 4 two hid-

polikar et al.: learn++ and identification of nde signals 997

TABLE II
Sample Confidences on the TEST Dataset for Each Training Session.

Training session 1 Training session 2 Training session 3
Instance No. True Class Class Confidence Class Confidence Class Confidence

Misclassification Corrected with Improved Confidence (66 such cases)

25 Crack Cbore 0.69 Crack 0.91 Crack 0.96
144 Crack Cbore 0.54 Crack 0.86 Crack 0.91
177 Cbore Crack 0.81 Crack 0.55 Cbore 0.71
267 Cbore Crack 0.52 Cbore 0.86 Cbore 0.96
308 Root Cbore 0.69 Root 0.47 Root 0.87
354 Root Crack 0.87 Crack 0.64 Root 0.79
438 Crack Cbore 0.57 Crack 0.76 Crack 0.92

Improved Confidence in Correct Classification (396 such cases)

67 Cbore Cbore 0.66 Cbore 0.94 Cbore 0.96
313 Crack Crack 0.6 Crack 0.73 Crack 0.88
321 Cbore Cbore 0.47 Cbore 0.87 Cbore 0.93
404 Root Root 0.59 Root 0.73 Root 0.96

Reduced Confidence in Misclassification (21 such cases)

261 Crack Cbore 1 Cbore 1 Cbore 0.54
440 Cbore Root 1 Root 0.85 Root 0.66
456 Cbore Root 0.65 Cbore 0.52 Crack 0.55

Utterly Confused Classifier (4 such cases)

3 Root Root 0.49 Crack 0.55 Crack 0.59
45 Crack Crack 0.78 Crack 0.61 Crack 0.53
78 Cbore Crack 0.67 Cbore 0.52 Crack 0.56
93 Root Root 0.94 Crack 0.58 Crack 0.58

Fig. 5. Original C-scan and Learn++ classification, correct class: Crack.

Fig. 6. Original C-scan and Learn++ classification, correct class: LOF.

998 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004

Fig. 7. Original C-scan and Learn++ classification, correct class: Porosity.

Fig. 8. Typical A-scans (a) crack, (b) LOF, (c) slag, (d) porosity.

TABLE III
Distribution of Weld Inspection Signals.

Crack LOF Slag Porosity

S1 300 300 0 0
S2 150 300 150 0
S3 200 250 250 300

TEST 200 300 200 100

den layer MLP with an error goal of 0.001 provided the
best test performance, which was about 75%. The origi-
nal Learn++ algorithm that did not used dynamically up-
dated voting weights also was evaluated on this database,
and its performance was found to be less than 80% after
a similar three session training procedure that introduced
third and fourth classes in second and third training ses-
sions [52].

Finally, Learn++ was tested on the entire set of C-scan
images. On each C-scan, a previously identified rectangular
region was selected and classified by Learn++, creating a
classification image of the selected rectangular region. Me-
dian filtering then was applied to the classification image
to remove isolated pixels, producing the final classification
image. The final C-scan classification was determined ac-
cording to a simple majority of its individual A-scan classi-
fications. Figs. 5–7 illustrate examples of raw C-scans and
their respective classification images. Table V presents the

TABLE IV
Classification Performance of Learn++ on the Four-Class

Problem.

Inc. Train→ Training 1 Training 2 Training 3
↓ Dataset (8) (27) (43)

S1 99.20% 89.20% 88.20%
S2 — 86.50% 88.10%
S3 — — 96.40%

TEST 57.00% 70.50% 83.80%

classification performance of Learn++ compared to that
of the strong learner trained on the entire training dataset.

The C-scans indicated with an unknown (Unk.) classifi-
cation in Table V refer to those cases in which an approxi-
mately equal number of A-scans in the selected region had
conflicting classifications.

V. Discussion and Cconclusions

We introduced Learn++, an incremental learning algo-
rithm for supervised neural networks that uses an ensemble
of classifiers for learning new data. The feasibility of the
approach has been validated on two real-world databases
of ultrasonic weld inspection signals. Learn++ shows very
promising results in learning new data, in both scenarios

polikar et al.: learn++ and identification of nde signals 999

TABLE V
Comparison of Learn++ and Strong Learner on C-scans of Weld Inspection Data.

No. of C-scans No. of C-scans
No. of C-scans missed/Unk. Classification No. of C-scans missed/Unk. Classification

(training) (training) performance (validation) (validation) performance

Strong learner 106 8/1 92.40% 50 11/2 77.10%
Learn++ 106 1/0 99.10% 50 7/4 84.80%

in which the new data may or may not include previously
unseen classes. Both of these scenarios occur commonly in
nondestructive testing; therefore, the algorithm can be of
benefit in a broad spectrum of NDE applications.

Although we have implemented Learn++ using MLPs
as base classifiers, the algorithm itself is independent on
the choice of a particular classification algorithm, and it is
able to work well on all supervised classifiers whose weak-
ness (instability) can be controlled. In particular, most su-
pervised neural network classifiers can be used as a base
classifier as their weakness can be easily controlled through
network size and/or error goal. Results demonstrating such
classifier independence on a number of other applications
were presented in [52].

The algorithm has additional desirable traits. It is in-
tuitive and simple to implement, and it is applicable to a
diverse set of NDE and other real world automated iden-
tification and characterization problems. It can be trained
very quickly, without falling into overfitting problems be-
cause using weak base classifiers avoids lengthy training
sessions that are mostly spent on fine tuning the deci-
sion boundary, which itself may be—and typically is—
influenced by noise. The algorithm also is capable of es-
timating its own confidence on individual classifications in
which it typically indicates high confidence on correctly
classified instances and low confidence on misclassified in-
stances after several training sessions. Furthermore, the
confidence on correctly classified instances tend to increase
and the confidence on misclassified instances tend to de-
crease as new data become available to the algorithm, a
very satisfying and comforting property.

The main drawback of Learn++ is the computational
burden due to the overhead added by computing multiple
hypotheses and saving all classifier parameters for these
hypotheses. Because each classifier is a weak learner, it
has fewer parameters than its strong counterpart; there-
fore, it can be trained much faster. However, because the
parameters of a large number of hypotheses may need to
be saved, its space complexity can be high, although ever
increasing storage capacities should reduce the significance
of this drawback. An additional overhead in using Maha-
lanobis distance-based voting weights is the computation
of inverse of covariance matrices. For most practical ap-
plications, the additional computational overhead is not
significant. For a very large number of features, however,
this may be rather costly, in which case the user needs to
weigh the added computational burden against the perfor-
mance improvement over the original version of Learn++.

Learn++ has two key components, both of which can be
improved. The first one is the selection of the subsequent
training dataset, which is determined by the distribution
update rule. This rule can be optimized to allow faster
learning and reduced computational complexity. A learn-
ing rate parameter, similar to that of gradient descent type
optimization algorithms, is being considered to control the
rate at which distribution weights are updated.

The second key component is the procedure by which
hypotheses are combined. We described two approaches
for Learn++ using weighted majority voting in which the
voting weights can be determined either by training data
performance of hypotheses, or dynamically through the
class-specific Mahalanobis distances. A combination of the
two may provide better overall performance. Furthermore,
a second level of classifier(s), similar to those used in the
hierarchical mixture of classifiers, may prove to be effective
in optimally identifying such weights. Work is currently
underway to address these issues.

We have shown how the inherent voting scheme can be
used to determine the confidence of the algorithm in its
own individual classifications on applications that do not
introduce new classes. Similar approaches are currently be-
ing investigated for estimating the true field performance
of the algorithm along with its confidence intervals, as
compared to those measures obtained through hypothesis
testing, even for those cases that do introduce new classes.

References

[1] J. Haueisen, J. R. Unger, T. Beuker, and M. E. Bellemann,
“Evaluation of inverse algorithms in the analysis of magnetic
flux leakage data,” IEEE Trans. Magn., vol. 38, pp. 1481–1488,
May 2002.

[2] M. Afzal and S. Udpa, “Advanced signal processing of magnetic
flux leakage data obtained from seamless gas pipeline,” NDT &
E Int., vol. 35, no. 7, pp. 449–457, 2002.

[3] K. Allweins, G. Gierelt, H. J. Krause, and M. Kreutzbruck, “De-
fect detection in thick aircraft samples based on HTS SQUID-
magnetometry and pattern recognition,” IEEE Trans. Appl. Su-
perconduct., vol. 13, pp. 809–814, June 2003.

[4] D. Donskoy, A. Sutin, and A. Ekimov, “Nonlinear acoustic in-
teraction on contact interfaces and its use for nondestructive
testing,” NDT & E Int., vol. 34, pp. 231–238, June 2001.

[5] E. A. Nawapak, L. Udpa, and J. Chao, “Morphological pro-
cessing for crack detection in eddy current images of jet engine
disks,” in Review of Progress in Quantitative Nondestructive
Evaluation. vol. 18, D. O. Thompson and D. E. Chimenti, Eds.
New York: Plenum, 1999, pp. 751–758.

[6] R. Polikar, L. Udpa, S. S. Udpa, and T. Taylor, “Frequency in-
variant classification of ultrasonic weld inspection signals,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 614–625,
May 1998.

1000 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, august 2004

[7] P. Ramuhalli, L. Udpa, and S. S. Udpa, “Automated signal clas-
sification systems for ultrasonic weld inspection signals,” Mater.
Eval., vol. 58, pp. 65–69, Jan. 2000.

[8] U. B. Halabe, A. Vasudevan, H. V. GangaRao, P. Klinkhachorn,
and G. L. Shives, “Nondestructive evaluation of fiber reinforced
polymer bridge decks using digital infrared imaging,” in Proc.
IEEE 35th Southeastern Symp. System Theory, Mar. 2003, pp.
372–375.

[9] A. W. Meyer and J. V. Candy, “Iterative processing of ultra-
sonic measurements to characterize flaws in critical optical com-
ponents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.
49, pp. 1124–1138, Aug. 2002.

[10] S. Mandayam, K. Jahan, and D. B. Cleary, “Ultrasound in-
spection of wastewater concrete pipelines—signal processing and
defect characterization,” in Review of Progress in Quantitative
Nondestructive Evaluation. vol. 20, D. O. Thompson, Ed. New
York: AIP Press, 2001, pp. 1210–1217.

[11] P. Ramuhalli, L. Udpa, and S. S. Udpa, “A signal classifica-
tion network that computes its own reliability,” in Review of
Progress in Quantitative Nondestructive Evaluation. vol. 18,
D. O. Thompson and D. E. Chimenti, Eds. New York: Plenum,
1999, pp. 857–864.

[12] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++:
An incremental learning algorithm for supervised neural net-
works,” IEEE Trans. Syst. Man and Cybernetics (C), vol. 31,
pp. 497–508, Nov. 2001.

[13] S. Grossberg, “Nonlinear neural networks: Principles, mecha-
nisms and architectures,” Neural Networks, vol. 1, pp. 17–61,
Jan. 1988.

[14] M. McCloskey and N. Cohen, “Catastrophic interference in con-
nectionist networks: The sequential learning problem,” in The
Psychology of Learning and Motivation. vol. 24, G. H. Bower,
Ed. San Diego: Academic, 1989, pp. 109–164.

[15] R. French, “Catastrophic forgetting in connectionist net-
works,” Trends Cognitive Sci., vol. 3, no. 4, 1999, pp. 128–135.

[16] D. P. Helmbold, S. Panizza, and M. K. Warmuth, “Direct and
indirect algorithms for on-line learning of disjunctions,” Theor.
Comput. Sci., vol. 284, pp. 109–142, 2002.

[17] S. Nieto-Sanchez, E. Triantaphyllou, J. Chen, and T. W. Liao,
“Incremental learning algorithm for constructing Boolean func-
tions from positive and negative examples,” Comput. Operations
Res., vol. 29, no. 12, pp. 1677–1700, 2002.

[18] S. Lange and G. Grieser, “On the power of incremental learn-
ing,” Theor. Comput. Sci., vol. 288, no. 2, pp. 277–307, 2002.

[19] M. A. Maloof and R. S. Michalski, “Incremental learning with
partial instance memory,” in Foundations of Intelligent Sys-
tems, Lecture Notes in Artificial Intelligence. vol. 2366, Berlin:
Springer-Verlag, 2002, pp. 16–26.

[20] J. Sancho, W. Pierson, B. Ulug, A. Figueiras-Visal, and S. Ahalt,
“Class separability estimation and incremental learning using
boundary methods,” Neurocomputing, vol. 35, pp. 3–26, 2000.

[21] S. Vijayakumar and H. Ogawa, “RKHS-based functional analy-
sis for exact incremental learning,” Neurocomputing, vol. 29, pp.
85–113, 1999.

[22] P. Mitra, C. A. Murthy, and S. K. Pal, “Data condensation
in large databases by incremental learning with support vector
machines,” Int. Conf. Pattern Recognition, 2000, pp. 708–711.

[23] L. Fu, H. H. Hsu, and J. C. Principe, “Incremental backpropa-
gation learning networks,” IEEE Trans. Neural Networks, vol.
7, no. 3, pp. 757–762, 1996.

[24] K. Yamaguchi, N. Yamaguchi, and N. Ishii, “An incremental
learning method with retrieving of interfered patterns,” IEEE
Trans. Neural Networks, vol. 10, no. 6, pp. 1351–1365, 1999.

[25] D. Obradovic, “On-line training of recurrent neural networks
with continuous topology adaptation,” IEEE Trans. Neural Net-
works, vol. 7, pp. 222–228, Jan. 1996.

[26] N. B. Karayiannis and G. W. Mi, “Growing radial basis neural
networks: Merging supervised and unsupervised learning with
network growth techniques,” IEEE Trans. Neural Networks, vol.
8, no. 6, pp. 1492–1506, 1997.

[27] J. Ghosh and A. C. Nag, “Knowledge enhancement and reuse
with radial basis function networks,” Proc. Int. Joint Conf. Neu-
ral Networks, 2002, pp. 1322–1327.

[28] R. Parekh, J. Yang, and V. Honavar, “Constructive neural net-
work learning algorithms for multi-category pattern classifica-
tion,” IEEE Tran. Neural Networks, vol. 11, no. 2, pp. 436–451,
2000.

[29] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds,
and D. B. Rosen, “ARTMAP: A neural network architecture
for incremental supervised learning of analog multidimensional
maps,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 698–713,
1992.

[30] J. R. Williamson, “Gaussian ARTMAP: A neural network for
fast incremental learning of noisy multidimensional maps,” Neu-
ral Networks, vol. 9, no. 5, pp. 881–897, 1996.

[31] F. H. Hamker, “Life-long learning cell structures—continuously
learning without catastrophic interference,” Neural Networks,
vol. 14, no. 4-5, pp. 551–573, 2000.

[32] G. C. Anagnostopoulos and M. Georgiopoulos, “Category re-
gions as new geometrical concepts in Fuzzy-ART and Fuzzy-
ARTMAP,” Neural Networks, vol. 15, no. 10, pp. 1205–1221,
2002.

[33] B. Fritzke, “A growing neural gas network learns topolo-
gies,” in Advances in Neural Information Processing Systems.
G. Tesauro, D. Touretzky, and T. Keen, Eds. Cambridge, MA:
MIT Press, 1995, pp. 625–632.

[34] D. Heinke and F. H. Hamker, “Comparing neural networks: A
benchmark on growing neural gas, growing cell structures, and
fuzzy ARTMAP,” IEEE Trans. Neural Networks, vol. 9, no. 6,
pp. 1279–1291, 1998.

[35] F. H. Hamker, “Life-long learning cell structures—Continuously
learning without catastrophic interference,” Neural Networks,
vol. 14, pp. 551–572, 2001.

[36] D. Caragea, A. Silvescu, and V. Honavar, “Analysis and syn-
thesis of agents that learn from distributed dynamic data
sources,” in Emerging Neural Architectures Based on Neuro-
science. S. Wermter, J. Austin, and D. Willshaw, Eds. ser. Lec-
ture Notes in Artificial Intelligence, vol. 2036, Berlin: Springer-
Verlag, 2001, pp. 547–559.

[37] N. Littlestone and M. Warmuth, “Weighted majority algo-
rithm,” Information Comput., vol. 108, pp. 212–261, 1994.

[38] T. G. Dietterich, “An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting
and randomization,” Mach. Learning, vol. 40, no. 2, pp. 1–19,
2000.

[39] M. J. Kearns and U. V. Vazirani, An Introduction to Computa-
tional Learning Theory. Cambridge, MA: MIT Press, 1994.

[40] Y. Freund and R. Schapire, “A decision theoretic generalization
of on-line learning and an application to boosting,” Comput.
Syst. Sci., vol. 57, no. 1, pp. 119–139, 1997.

[41] R. Schapire, Y. Freund, P. Bartlett, and W. Lee, “Boosting the
margins: A new explanation for the effectiveness of voting meth-
ods,” Ann. Stat., vol. 26, no. 5, pp. 1651–1686, 1998.

[42] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol.
5, no. 2, pp. 241–259, 1992.

[43] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts
and the EM algorithm,” Neural Comput., vol. 6, no. 2, pp. 181–
214, 1994.

[44] C. Ji and S. Ma, “Performance and efficiency: Recent advances in
supervised learning,” Proc. IEEE, vol. 87, no. 9, pp. 1519–1535,
1999.

[45] T. G. Dietterich, “Machine learning research,” AI Magazine, vol.
18, no. 4, pp. 97–136, 1997.

[46] ——, “Ensemble methods in machine learning,” in Proc. 1st Int.
Workshop on Multiple Classifier Systems, 2000, pp. 1–15.

[47] T. K. Ho, “Data complexity analysis for classifier combina-
tion,” in Proc. 2nd Int. Workshop on Multiple Classifier Sys-
tems, LNCS, 2001, pp. 53–67.

[48] J. Ghosh, “Multiclassifier systems: Back to the future,” in Proc.
3rd Int. Workshop on Multiple Classifier Systems, 2002, pp. 1–
15.

[49] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern
recognition: A review,” IEEE Trans. Pattern Anal. Machine In-
tell., vol. 22, pp. 4–37, Jan. 2000.

[50] R. Duda, P. Hart, and D. Stork, Pattern Classification. New
York: Wiley, 2001.

[51] R. E. Schapire, Y. Freund, P. Bartlett, and W. Sun Lee, “Boost-
ing the margin: A new explanation for the effectiveness of voting
methods,” Ann. Stat., vol. 26, no. 5, pp. 1651–1686, 1998.

[52] R. Polikar, J. Byorick, S. Krause, A. Marino, and M. Moreton,
“Learn++: A classifier independent incremental learning algo-
rithm for supervised neural networks,” in Proc. Int. Joint Conf.
Neural Networks, 2002, pp. 1742–1747.

polikar et al.: learn++ and identification of nde signals 1001

[53] R. Polikar, “Algorithms for enhancing pattern separability, opti-
mum feature selection an incremental learning with applications
to gas sensing electronic nose systems,” Ph.D. dissertation, Iowa
State University, Ames, 2000.

Robi Polikar (S’92–M’01) received his B.S.
degree in electronics and communications en-
gineering from Istanbul Technical University,
Istanbul, Turkey, in 1993, M.S. and Ph.D. de-
grees, both co-majors in biomedical engineer-
ing and electrical engineering, from Iowa State
University, Ames, Iowa, in 1995 and in 2000,
respectively. He is currently an assistant pro-
fessor with the Department of Electrical and
Computer Engineering at Rowan University,
Glassboro, NJ.

His current research interests include sig-
nal processing, pattern recognition, neural systems, machine learn-
ing, and computational models of learning, with applications to
biomedical engineering and imaging, chemical sensing, nondestruc-
tive evaluation and testing. He also teaches upper level undergrad-
uate and graduate courses in wavelet theory, pattern recognition,
neural networks and biomedical systems and devices at Rowan Uni-
versity.

He is a member of IEEE, American Society for Engineering Edu-
cation (ASEE), Tau Beta Pi, and Eta Kappa Nu. His current work is
funded primarily through National Science Foundation (NSF)’s Ca-
reer program and National Institutes of Health (NIH)’s Collaborative
Research in Computational Neuroscience program.

Lalita Udpa (S’84–M’86–SM’92) received
her Ph.D. degree in electrical engineering from
Colorado State University, Fort Collins, CO,
in 1986. She joined the Department of Electri-
cal and Computer Engineering at Iowa State
University, Ames, Iowa, as an assistant pro-
fessor where she served from 1990–2001. Since
2002, she has been with Michigan State Uni-
versity, East Lansing, Michigan, where she is
currently a Professor in the Department of
Electrical and Computer Engineering.

Dr. Udpa works primarily in the broad ar-
eas of nondestructive evaluation (NDE), signal processing, and data
fusion. Her research interests also include development of compu-
tational models for the forward problem in electromagnetic NDE,
signal processing, pattern recognition, and learning algorithms for
NDE data.

Dr. Udpa is an associate technical editor of the American Soci-
ety of Nondestructive Testing Journals on Materials Evaluation and
Research Techniques in NDE.

Satish S. Udpa (S’82–M’82–SM’91–F’03)
began serving as the Chairperson of the De-
partment of Electrical and Computer Engi-
neering at Michigan State University, East
Lansing, Michigan, in August 2001. Prior to
coming to Michigan State, Dr. Udpa was the
Whitney Professor of Electrical and Com-
puter Engineering at Iowa State University,
Ames, Iowa, and Associate Chairperson for
Research and Graduate Studies.

Dr. Udpa received a B.Tech. degree in
electrical engineering and a Postgraduate

Diploma from J.N.T. University, Hyderabad, India. He earned his
master’s and doctoral degrees in electrical engineering from Colorado
State University, Fort Collins, CO.

He is a Fellow of the IEEE, a Fellow of the American Society for
Nondestructive Testing as well as a Fellow of the Indian Society for
Nondestructive Testing.

Dr. Udpa holds three patents and has published more than 180
journal articles, book chapters, and research reports. His research
interests include nondestructive evaluation, biomedical signal pro-
cessing, electromagnetics, signal and image processing, and pattern
recognition.

Vasant Honavar (S’84–M’90) received his
Ph.D. in computer science and cognitive sci-
ence from the University of Wisconsin, Madi-
son in 1990. He founded and directs the Artifi-
cial Intelligence Research Laboratory at Iowa
State University (ISU), Ames, Iowa, where he
is currently a professor of Computer Science
and Professor and Chair of the Graduate Pro-
gram in Bioinformatics and Computational
Biology. He is also a member of the Lawrence
E. Baker Center for Bioinformatics and Bio-
logical Statistics.

Dr. Honavar’s research and teaching interests include artificial
intelligence, machine learning, bioinformatics and computational bi-
ology, distributed intelligent information networks, intrusion detec-
tion, neural and evolutionary computing, and data mining.

He has published over 100 research articles in refereed journals,
conferences, and books, and has co-edited 6 books. He is a co-editor-
in-chief of the Journal of Cognitive Systems Research and a member
of the Editorial Board of the Machine Learning Journal. His research
is funded in part by National Science Foundation (NSF), NIH, the
Carver Foundation, and Pioneer Hi-Bred. Prof. Honavar is a member
of Association for Computing Machinery (ACM), American Associ-
ation for Artificial Intelligence (AAAI), IEEE, and the New York
Academy of Sciences.

	footer1:

