Constructive learning: Inducing grammars and neural networks

by

Rajesh Girish Parekh

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Major Professor: Vasant G. Honavar

lowa State University
Ames, lowa
1998

Copyright (© Rajesh Girish Parekh, 1998. All rights reserved.

ii

Graduate College
lowa State University

This is to certify that the Doctoral dissertation of

Rajesh Girish Parekh

has met the dissertation requirements of lowa State University

Committee Member

Committee Member

Committee Member

Committee Member

Major Professor

For the Major Program

For the Graduate College

iii

Dedication

To my parents Smt. Usha Parekh and Shri Girish Parekh.

iv

TABLE OF CONTENTS

Dedication . . . v v v v v et e
ACKNOWLEDGEMEN TS & . i i it i e e e e e e e e e e e e e e e e e e e
ABST R ACT . . ot et e

1 INTRODUCTION . i it it e e e e et e e e e s e e e e e e e e e e
1.1 Overview of the Dissertation
1.1.1 Inductive Learning of DFA o oo

1.1.2 Constructive Neural Network Learning

PART 1 LEARNING DETERMINISTIC FINITE AUTOMATA

2 INTRODUCTION TO REGULAR GRAMMAR INFERENCE
2.1 Representation Classes of Regular Grammars
2.2 Exact Identification of DFAo oo
2.3 Incremental Learning of DFA o oL
2.4 Approximate Identification of DFA
2.5 Overview of Research Results

2.5.1 Exactly Learning DFA using a Version Space based Approach
2.5.2 Polynomial Time Incremental Learning of DFA

2.5.3 Learning DFA from Simple Examples
3 PRELIMINARIESt it e e e e e i e e it e e

3.1 Strings and Sets of Strings

3.2 Formal Language Grammars

iii

12

13

14

14

15

16

3.3 Deterministic Finite State Automata 0L, 18
3.3.1 Canonical DFA 19
3.3.2 Prefix Tree Automaton 20
3.3.3 Quotient FSA 20
3.3.4 Sub-automaton Lo e 21
3.3.5 Structurally Complete Sample 0. 22
3.3.6 Live Complete Sample oo 22
3.3.7 Characteristic Sample o o o oL 23

4 A VERSION SPACE BASED APPROACH TO LEARNING DFA ... 25

4.1 Introduction L L e 25
4.2 Lattice of Finite State Automata Specified by S* 26
4.3 Version Space Representation of the Lattice Q. 28
4.4 Query Aided Bi-Directional Search of the Lattice 29
4.5 Proof of Correctness L 32
4.6 Discussion L e e e e e e 37

5 AN INCREMENTAL ALGORITHM FOR LEARNING DFA FROM

LABELED EXAMPLES AND MEMBERSHIP QUERIES 40
5.1 Introduction L 40
5.2 The ID Algorithm L 42
521 Example 45

5.3 IID - An Incremental Extension of ID o0, 45
53.1 Example 46
5.3.2 Correctness Proof 48
5.3.3 Complexity Analysis L 51

5.4 DISCUSSION . . . v v v v v e e e e e e e e e e e e e e 51
6 LEARNING DFA FROM SIMPLE EXAMPLES 55
6.1 Introduction L 55

6.2 Preliminaries o e e e e e 57

vi

6.2.1 PAC Learningof DFA 57
6.2.2 Kolmogorov Complexity 00 58
6.2.3 Universal Distribution 00000 59

6.3 The RPNI Algorithm 60
6.4 Learning Simple DFA under the Simple PAC model 65
6.5 Learning DFA under the PACS model 69
6.6 Relating the PACS Model with other Learning Models 75
6.6.1 Polynomial Identifiability from Characteristic Samples 75
6.6.2 Polynomial Teachability of Concept Classes 76

6.7 DiSCusSsion Lo e e e e e e 78
PART II CONSTRUCTIVE NEURAL NETWORKS 81
7 INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS 82
7.1 A Brief History o 83
7.2 TaXOnomy . . . v v v v v vt e e e e e e e e e e e e e e 84
7.2.1 Neuron Properties 84
7.2.2 Network Architecture Lo 85
7.2.3 Learning Algorithms 87
7.2.4 Applications 89

7.3 Threshold Logic Units 89
7.3.1 Pocket Algorithm with Ratchet Modification 91
7.3.2 Thermal Perceptron Learning Algorithm 92
7.3.3 Barycentric Correction Procedure 92
7.3.4 Multiclass Discrimination o000 93

7.4 Multi-Layer Networks 0. 94
7.4.1 Backpropagation Learning Algorithm 95
7.4.2 Constructive Learning Algorithms 96

7.5 Overview of Research Results 98

vii

7.5.1 Multi-Category Real-Valued Pattern Classification 98
7.5.2 Network Pruning 99

7.5.3 Constructive Theory Refinement in Knowledge Based Neural Networks 100

8 CONSTRUCTIVE NEURAL NETWORK LEARNING ALGORITHMS

FOR MULTI-CATEGORY REAL-VALUED PATTERN CLASSIFICA-

TION . . o e e e e e e e e e e e e 102
8.1 Introduction L 102
8.1.1 Multi-Category Pattern Classification 105
8.1.2 Real-Valued Attributes 106
8.1.3 Notation. e 107
8.2 Tower Algorithm 109
8.2.1 Convergence Proof 109
8.3 Pyramid Algorithm L 114
8.3.1 Convergence Proof 114
8.4 Upstart Algorithm L 115
8.4.1 Convergence Proof 120
8.5 Perceptron Cascade Algorithm 123
8.5.1 Convergence Proof 124
8.6 Tiling Algorithm 127
8.6.1 Convergence Proof 127
8.7 Sequential Learning Algorithm 0. 137
8.7.1 Convergence Proof 137
8.8 Constructive Learning Algorithms in Practice 141
8.8.1 Datasets L e 143
8.8.2 Training Methodology L. 143
8.8.3 Convergence Properties 144
8.84 Network Size 148

8.8.5 Generalization Performance 148

10

11

viii

8.8.6 Training Speed 149

8.9 Summary and Discussiono Lo 150

PRUNING STRATEGIES FOR THE MTILING CONSTRUCTIVE LEARN-

ING ALGORITHM ot e e e e e e e s e e e e e e e e e 155
9.1 Introduction L 155
9.2 Pruning Strategies 157

9.2.1 Pruning in MTiling Networks 157

9.2.2 Pruning Cost e 159
9.3 Experimental Results L 161
9.4 DISCUSSION v v v i e e e e e e e e e e e 166

CONSTRUCTIVE THEORY REFINEMENT IN KNOWLEDGE BASED

NEURAL NETWORKS e e et e e e i e e e 170
10.1 Introduction L oL e e 170
10.2 Related Work L o 173
10.3 Constructive Knowledge Based Neural Network Learning Algorithms 176
10.3.1 Embedding the Domain Theory in a Neural Network 176
10.3.2 Refining the Knowledge Rules 177
10.4 Experimental Results o o 184
10.4.1 Human Genome Project Datasets. 185
10.4.2 Financial Advisor Dataset oL 186
10.5 Discussion Lo e e 187
SUMMARYY . . . o e e e e e e e e e e e e e e e 191
11.1 Contributions e 192
11.1.1 Version Space Approach to Learning DFA 192
11.1.2 Incremental Interactive Algorithm for Learning DFA 192
11.1.3 Learning DFA from Simple Examples 193

11.1.4 Provably Correct Constructive Neural Network Learning Algorithms . . 193

11.1.5 Pruning Strategies in MTiling Constructive Neural Networks 193

ix

11.1.6 Constructive Theory Refinement in Knowledge Based Neural Networks
11.2 Future Work o o o o
11.2.1 Implications of Learning from Simple Examples
11.2.2 Modeling the Behavior of Intelligent Autonomous Agents
11.2.3 Knowledge Extraction from Constructive Neural Networks
11.2.4 Constructive Neural Networks in a Lifelong Learning Framework

11.2.5 Characterization of the Bias of Constructive Neural Networks

APPENDIX A CONVERGENCE OF CONSTRUCTIVE LEARNING AL-

GORITHMS ON NORMALIZED DATASETS oo

APPENDIX B ADDITIONAL EXPERIMENTS WITH CONSTRUCTIVE

LEARNING ALGORITHMS ittt it v i ii v

BIBLIOGRAPHYt e e e e e i i e e e e

Table 4.1

Table 5.1
Table 5.2

Table 5.3

Table 6.1

Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6
Table 8.7
Table 8.8
Table 8.9

Table 9.1
Table 9.2

Table 9.3

Table 10.1
Table 10.2

Table 10.3

LIST OF TABLES

Version Space Search. o o o000 36
Execution of ID.. L 45
Execution of HD (k=0).. 46
Execution of ID (k=1).. 48
Sample Run of the RPNI Algorithm. 64
Performance of the Constructive Algorithms on the r5 Dataset. 145
Performance of the Constructive Algorithms on the 3¢ Dataset. 145
Performance of the Constructive Algorithms on the ion Dataset.. . . . 145
Performance of the Constructive Algorithms on the iris Dataset. . . . 146
Performance of the Constructive Algorithms on the seg Dataset. 146
Performance of the Constructive Algorithms on the wine Dataset. . . . 147
WTA Output Strategy on the iris Dataset. 147
WTA Output Strategy on the seg Dataset. 147
Single Layer Training using the thermal perceptron algorithm. 149
Results of Pruning using the thermal perceptron algorithm.. 162
Results of Pruning using the barycentric correction procedure. 165

Comparing the Pruning Performance of Two TLU Training Algorithms. 166

Experiments with the Ribosome Dataset. 185
Experiments with the Promoters Dataset. 185

Financial Advisor Rule Base (Tiling-Pyramid). 187

Table 10.4

Table B.1
Table B.2
Table B.3
Table B.4
Table B.5
Table B.6
Table B.7
Table B.8
Table B.9

xi

Financial Advisor Rule Base (HDE). 187
Datasets. e 203
Experiments with the MPyramid Algorithm.. 206
Experiments with the MCascade Algorithm. 207
Experiments with the MTiling Algorithm. 208
Experiments with the Tiling-Pyramid Algorithm. 209
Experiments with the Tiling-Cascade Algorithm. 210
Experiments with the perceptron Algorithm. 211
Cross-validation Experiments on the sonar Dataset. 213

Cross-validation Experiments on the pima-s Dataset. 213

Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7

Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4

xii

LIST OF FIGURES

Deterministic Finite State Automaton. 19
Prefix Tree Automaton. 20
Quotient Automaton. 21
Sub-Automaton.. Lo 22
Target DFA. o e 26
PTA Corresponding to ST ={abb}., 27
Lattice Q. o e 27
Bidirectional Search of Q.o o o oo 29
Version Space Search Algorithm. 31
Algorithm for Generalizing a Partition me S. 33
Algorithm for Specializing a Partition 7, € G. 33
Target DFA A. oo 42
Algorithm ID. e 44
Algorithm IID. 47
Model M; of the Target DFA. 48
RPNI Algorithm. o o 62
Target DFA A, 63
Prefix Tree Automaton., 63

M5 Obtained by Fusing Blocks Containing the States 1 and 0 of 7 and

the Corresponding Myz. oL 63

Figure 6.5

Figure 6.6
Figure 6.7

Figure 6.8

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4

Figure 7.5

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13
Figure 8.14
Figure 8.15
Figure 8.16

Figure 8.17

xiii

M5 (same as Mj;) Obtained by Fusing Blocks Containing the States 2

and Oof m. oL 64
A Probably Exact Algorithm for Learning Simple DFA. 69
A Probably Exact Algorithm for Learning DFA. 73
A PAC Algorithm for Learning DFA. 74
A Neuron. e 85
Strictly Feed Forward Network. 87
OR Dataset.. o 90
XOR Dataset. 91
Cascade Correlation Network. 98
MTower Algorithm. 110
MTower Network. o 110
Weight Setting for the Output Neuron L; of the MTower Network. 111
MPyramid Algorithm. L. 115
MPyramid Network. o oo 116
Weight Setting for the Output Neuron L; of the MPyramid Network. . 116
MUpstart Algorithm. L 118
MUpstart Network. o o 119
Weight Setting for the Output Neuron L; of the MUpstart Network. 121
MCascade Algorithm. 0 o oo 124
MCascade Network. L oo 125
Weight Setting for the Output Neuron L; of the MCascade Network. . 126
MTiling Algorithm. o o 128
MTiling Network. 129
Weight Setting for the Output Neuron L; of the MTiling Network. 132
MSequential Algorithm. 138
MSequential Network. oo oo 139

Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4

Figure 9.5

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7

Figure 10.8

Figure B.1

Figure B.2

xXiv

Dead Neurons. e 159
Correlated Neurons. o o o e 160
Redundant Neurons. oo 160
Comparing the Network Size with and without Pruning. 163
Comparing the Generalization with and without Pruning. 164
Knowledge Based Neural Network. 173
Constructive Learning in Knowledge Based Networks.. 174
AND-OR Graph Representation of Knowledge Rules. 178
Neural Network Implementation of Knowledge Rules. 178
TLU Implementing an If-Then Propositional Rule. 179
Financial Advisor Rule Base., 179

Embedding the Financial Advisor Domain Theory in a Neural Network. 180

Block Diagram of a Hybrid Constructive Network. 183

Learning Curve of the MTiling Algorithm (pima-s Dataset). 214

Learning Curve of the MTiling Algorithm (3¢ Dataset). 215

XV

ACKNOWLEDGEMENTS

At the outset, I express my heart-felt gratitude to my advisor Dr. Vasant Honavar for
his encouragement and guidance all through these years. He has been a profound influence
in molding my career. He has not only inspired me to pursue several challenging problems in
machine learning but also encouraged me to establish my personal views and opinions about
the research I undertook. He has been exemplary in all the three roles of a research advisor,
teacher, and teaching assistant supervisor. I thank him for being accessible always, giving a
patient ear to all my half-baked ideas, providing invaluable feedback on my work, and going
out of his way to offer me reassurance and candid advice every so often when I have found
myself dejected or confused. The research funding he provided enabled me to focus exclusively
on my dissertation research. Most importantly, he has been a good friend all along.

I would like to thank Dr. Jack Lutz for introducing me to Kolmogorov Complezity and
related topics which have played a central role in my work on learning DFA from simple
examples. I thoroughly enjoyed each of the three courses I took with Jack. His influence on
me as a model teacher and researcher is immeasurable. I am indebted to him for leading by
example and teaching me several lessons in personal and professional ethics.

I enjoyed very much the discussions I had with Dr. Giora Slutzki on grammar inference.
His frank critique and insightful comments enabled me to improve my work considerably. 1
thank Dr. Johnny Wong, Dr. Tom Barta, and Dr. Sarah Nusser for being on my committee.
The Operating Systems course | took with Dr. Wong is among the most exciting courses I have
taken at lowa State. My interaction with Dr. Tom Barta and Dr. Sarah Nusser has also been
very fruitful.

I owe a lot to my colleagues from the Al research group. Some of my most pleasant

xvi

memories are in working jointly with Jihoon Yang on the constructive algorithms project. The
research results described in chapters 8 and 9 are part of joint work with Jihoon. In Jihoon 1
have found not only an able research partner but also a caring and considerate friend. Karthik
Balakrishnan is also a good friend. Together, Jihoon and Karthik have ever so often lifted my
flagging spirits and urged me to keep pursuing my goals. Codrin Nichitiu collaborated with
me on the design and development of the incremental regular grammar inference algorithm
presented in chapter 5 of this dissertation. He showed tremendous enthusiasm at a time when
almost every idea we explored seemed to be leading to a dead-end. 1 enjoyed working with
Carl Pecinovsky who helped in writing code for the I1D algorithm and Jeremy Ludwig who
designed the GUI for our constructive neural networks toolbox.

I am especially thankful to my closest friends Radhika Woodruff, Arun Narayanan, and
Ravi Godbole for without their affection and unfailing support, life in Ames would just not have
been the same. Thanks to Radhika also for carefully proof reading portions of this dissertation.
To my current room-mates Raghu and Venky, I owe special gratitude. With their constant
humor and jokes they have so often showed me the lighter side of life. Being with them is
always a lot of fun. I hold Rajeev Thakur and Kishore Dhara in high esteem and have always
counted on them for giving me frank advice. I am extremely lucky to have several wonderful
friends and well-wishers both in Ames and in Mumbai. My sincere thanks to each of my friends
whom I will not be able to mention individually.

I am grateful to Dr. Arthur Oldehoeft and the faculty and staff of the Computer Science
Department at lowa State University for the wonderful time I had during my graduate student
career. | thank Mrs. and Mr. Tomlinson and Dr. Oldehoeft for giving me the opportunity
to teach CS 103. Teaching CS 103 has been a great experience. | would like to thank the
computer science office staff for all their assistance. In particular, the exuberance of Judy
Kubera, Trish Stauble, Lynn Bremer and now Melaine Eckhart has made my interaction with
them a very pleasant one. I am indebted to my current managers Mr. Gary Kerr and Mr. Tom
Warden at Allstate Research and Planning Center for the patience they showed as I worked

towards completing my dissertation.

xvil

Above all, thanks to my parents for it is only because of their constant encouragement,

loving support, innumerable sacrifices, and abundant blessings that I have reached this far in

life.

xviil

ABSTRACT

This dissertation focuses on two important areas of machine learning research — regular
grammar inference and constructive neural network learning algorithms.

Regular grammar inference is the process of learning a target regular grammar or equiva-
lently a deterministic finite state automaton (DFA) from labeled examples. We focus on the
design of efficient algorithms for learning DFA where the learner is provided with a represen-
tative set of examples for the target concept and additionally might be guided by a teacher
who answers membership queries. DFA learning algorithms typically map a given structurally
complete set of examples to a lattice of finite state automata. Explicit enumeration of this
lattice is practically infeasible. We propose a framework for implicitly representing the lattice
as a version space and design a provably correct search algorithm for identifying the target
DFA. Incremental or online learning algorithms are important in scenarios where all the train-
ing examples might not be available to the learner at the start. We develop a provably correct
polynomial time incremental algorithm for learning DFA from labeled examples and mem-
bership queries. PAC learnability of DFA under restricted classes of distributions is an open
research problem. We solve this problem by proving that DFA are efficiently PAC learnable
under the class of simple distributions.

Constructive neural network learning algorithms offer an interesting approach for incre-
mental construction of near minimal neural network architectures for pattern classification and
inductive knowledge acquisition. The existing constructive learning algorithms were designed
for two category pattern classification and assumed that the patterns have binary (or bipolar)
valued attributes. We propose a framework for extending constructive learning algorithms to

handle multiple output classes and real-valued attributes. Further, with carefully designed

Xix

experimental studies we attempt to characterize the inductive bias of these algorithms. Owing
to the limited training time and the inherent representational bias, these algorithms tend to
construct networks with redundant elements. We develop pruning strategies for elimination of
redundant neurons in M7Tiling based constructive networks. Experimental results show that
pruning brings about a modest to significant reduction in network size. Finally, we demon-
strate the applicability of constructive learning algorithms in the area of connectionist theory

refinement.

1 INTRODUCTION

The ability to learn is one of the central characteristics of intelligent entities. Machine
Learning concerns the design and analysis of computational processes that learn from expe-
rience [Hon94, Lan95, RN95, Mit97]. A typical machine learning system is characterized by
its ability to interact with its environment, observe the effects of its own actions, and improve
its performance over time. Inductive learning or learning from examples is perhaps the most
widely studied framework in the field of machine learning. The success of any intelligent sys-
tem is based on the availability of adequate knowledge. Knowledge engineering which refers
to the task of translating expert knowledge into a form that is accessible to an intelligent sys-
tem is tedious and often prohibitively expensive. Inductive learning provides a framework for
acquiring the necessary knowledge from examples alone and is useful in situations where the
available expert knowledge is scarce or it is hard to encode the expert knowledge in the form
of rules. Inductive learning systems have been successfully used in a variety of application
domains including autonomously steering a vehicle on public highways [Pom89], automatically
learning users’ preferences and assisting them in coping with the information overload [Mae95],
and discovering interesting new rules from large databases [FFPSS96].

The goal of a typical inductive learning system is to construct a concise model that correctly
explains the observed examples. We specifically study inductive learning systems for pattern
classification tasks where the system learns to classify examples into one of M output categories
(where M > 2). Formally, an example is an ordered pair (z,c(z)) where z is a description
of an instance in a suitably chosen instance language and c(z) is the class label assigned to
the instance. For example, in pattern classification systems z is typically a vector of attribute

values. A concept ¢ is a function that assigns the appropriate class label to an instance z.

Inductive learning involves identifying a description ¢ of an unknown concept ¢ from a set
of labeled examples S = {(z1,¢(z1)), (z2,c(22)),...(zn,c(Xn))}. The description é (also
called the hypothesis) of the target concept ¢ must ideally satisfy the following properties: ¢
must be a good approzimation of ¢ in the sense that it should make very few errors (if at
all) in predicting formerly unseen instances z, it must be a concise description of ¢, and it
must be easily comprehensible in the sense that human beings can understand the rationale
behind decisions made by é. Often these goals are conflicting in the sense that the most concise
description of the target might not necessarily be easily comprehensible and similarly, an easily
understandable description of the concept might not be a very good approximation. Inductive
learning systems must therefore attempt to strike a suitable balance between these potentially
conflicting goals.

A crucial decision in the design of efficient inductive learning systems involves the choice
of an appropriate language for describing the learned hypothesis. A restrictive choice of the
hypothesis language severely limits the types of concepts that can be successfully learned. The
set of all legally representable hypotheses in the chosen hypothesis language is called the hy-
pothesis class. Thus, the hypothesis language must be expressive enough so that the hypothesis
class includes at least the representations of all concepts that are of interest to the system.
For example, the hypothesis class of regular grammars is restrictive in the sense that it cannot
represent concepts describing palindromes (which require an advanced representation such as
context free grammars). The choice of a suitable hypothesis class alone does not guarantee
that the inductive learning system will be able to learn the target concept (or a suitable ap-
proximation of it) efficiently. The learning system must have the ability to efficiently search
the space of candidate hypotheses and identify a suitable hypothesis based on the examples it
is provided. Although on one hand, a highly expressive hypothesis class can obviously repre-
sent complex concept descriptions, it can also make it computationally infeasible (sometimes
even impossible) to identify a suitable hypothesis from the space of candidate hypotheses. If
in the above example the hypothesis class is chosen to be the set of unrestricted grammars

then clearly the concepts describing palindromes can be suitably represented by the hypothe-

sis class. However, decision problems such as whether or not a string is in the language of an
unrestricted grammar are unsolvable [HU79, Mar91]. Owing to such inherent difficulties there
exists no algorithm for identifying a suitable hypothesis for the concept describing palindromes
in the space of unrestricted grammars.

To make learning tractable, practical inductive learning systems have several biases built
into them [Mit80, Mit97]. A language bias enables the system to focus on only one suitably
chosen hypothesis description language. A strong language bias thus restricts the hypothesis
class that would be considered by the system. For example, the language bias of perceptrons
limits them to a hypothesis class of linear discriminant functions [MP69]. Since the size of the
chosen hypothesis class could be very large or even infinite, a search bias is designed to specify
how the system would search the elements of the class to determine a suitable hypothesis
and which hypothesis it would prefer among a set of suitable hypotheses. For example, most
inductive learning algorithms initially try to fit simple hypotheses to the training data and

then progressively explore more complex ones.

1.1 Overview of the Dissertation

We present this dissertation in two parts: Part 1 describes the design and analysis of effi-
cient algorithms for learning regular grammars and part 2 studies constructive neural network

learning algorithms for pattern classification and inductive knowledge acquisition.

e Reqular grammar inference is the process of learning rules of a target regular grammar
from a set of labeled examples. The regular grammar inference problem is equivalently
posed as one of learning a deterministic finite state automaton (DFA) corresponding to
the target regular grammar. In this case, the language bias is chosen to restrict the
hypothesis class to deterministic finite state automata. We attempt to design efficient

algorithms that exploit appropriate search biases for learning DFA.

e Constructive neural network learning algorithms offer an incremental approach for the
construction of near-minimal networks of threshold logic units (TLUs) for tasks such

as pattern classification and inductive knowledge acquisition. In this case, we consider

a language bias that restricts the hypothesis class to the class of networks of TLUs.
Constructive neural network learning algorithms employ a search bias of parsimonious
representation and attempt to find compact networks (in terms of the number of neurons)
that correctly classify all the training examples and at the same time generalize well on

formerly unseen examples.

1.1.1 Inductive Learning of DFA

A grammar is defined as a set of rules for generating valid sentences of a particular lan-
guage. Grammar inference is the process of learning a target grammar from a set of la-
beled examples [BF72, FB75, MQ86, Lan95]. It finds applications in syntactic pattern recogni-
tion [Fu82], intelligent autonomous agents [CM96], and language acquisition [FLSW90]. Regu-
lar grammars represent the simplest class in the Chomsky hierarchy of formal language gram-
mars [Cho56, HU79] and describe the class of languages (regular languages) that can be gen-
erated (and recognized) by DFA. Since regular grammars represent a widely used subset of
formal grammars, considerable research has focused on regular grammar inference (or equiv-
alently, identification of the corresponding DFA). An understanding of the issues and pitfalls
of learning regular grammars might provide insights into the problem of learning more general
classes of grammars such as context free grammars.

The problem of learning the target DFA from an arbitrary set of labeled examples is known
to be hard to solve [Gol78]. Efficient algorithms for learning DFA assume that some additional
information is available to the learner. The learner might be provided with a representative
set of labeled examples. Further, the availability of a knowledgeable teacher might facilitate
learning by allowing the learner to pose queries about the target DFA. This in effect provides
the learning system with additional and possibly more powerful biases that make learning
tractable. We explore the learnability of DFA under the various learning biases obtained by
restricting the set of labeled examples to include a structurally complete set (see chapter 4), a
live complete set (see chapter 5), and a set of simple representative examples for the target DFA

(see chapter 6). With this goal in mind, we attempt to design efficient learning algorithms that

in polynomial time output a hypothesis that is either exactly equivalent to the target or a good
approximation of the target. A hypothesis is said to be equivalent to the target iff it makes no
errors while predicting examples and counterexamples of the target. A good approximation
of the target is one that guarantees an upper bound on the probability of errors made while
predicting the examples and counterexamples of the target. We discuss some specific problems
in the area of DFA learning and outline our solutions in chapter 2. Chapter 3 introduces
some preliminary concepts. Chapter 4 presents a version space based learning algorithm for
exactly learning the target DFA from a structurally complete set of examples and membership
queries. Chapter 5 describes a polynomial time incremental learning algorithm for exactly
learning the target DFA from labeled examples and membership queries. Chapter 6 analyzes
the problem of learning DFA from simple examples and shows that DFA are approximately
learnable under the probably approzimately correct (PAC) model of learning when the class of

probability distributions is restricted to the class of simple distributions.

1.1.2 Constructive Neural Network Learning

Artificial Neural Networks (ANN) are massively parallel systems of simple processing units
that are interconnected via trainable connection weights. ANN have been successfully used in
the design of pattern classification, function approximation, and knowledge acquisition systems.
A variety of neural network architectures exist in the literature. These differ chiefly in terms of
the choice of the mathematical functions implemented by the individual neurons (processing
units), the network topology (fixed or dynamic), the network architecture (number of layers
and neurons), the network interconnections (connectivity among the existing neurons), and
the training methodology (one-shot or iterative) [Day90, Gal93, MMR97]. Traditional ANN
algorithms such as backpropagation [RHWS86], although successful on several pattern classifica-
tion tasks, suffer from drawbacks such as restriction to an a-priori fixed network topology, use
of the expensive gradient descent based error backpropagation training rule, and susceptibility
to local minima.

Constructive (or generative) neural network learning algorithms offer an attractive frame-

work for automatic construction of near-minimal networks for pattern classification and in-
ductive knowledge acquisition systems [Hon90, HU93, Gal93]. Most constructive learning
algorithms are based on simple TLUs that implement a hard-limiting function of their inputs.
These algorithms start out by training a single TLU using some variant of the perceptron
learning rule [Rosb8]. If the TLU is not successful in correctly classifying all the training
patterns then an additional TLU (or a group of TLUs) is added and trained to correct some
of the errors made by the network. Constructive learning algorithms incorporate the bias of
parsimonious or compact networks (in terms of the number of neurons) in their search for an
appropriate network topology for the given pattern classification task. Smaller networks are
preferred to more complex networks for reasons such as: simpler digital hardware implementa-
tion, ease of extracting knowledge rules from the trained network, potential for matching the
intrinsic complexity of the given classification task, and capability for superior generalization.
In addition, theoretical results on learnability have shown that certain concept classes can
be efficiently learned provided the hypothesis space is restricted to a set of compact repre-
sentations [Nat91, KV94]. Constructive learning algorithms also provide guaranteed conver-
gence (under certain assumptions) to zero classification errors on any finite non-contradictory
data set, facility for trading off certain performance measures such as guaranteed convergence
and training time versus others such as robust generalization capability, and approaches for
incorporation of problem specific domain knowledge into the initial network configuration.
Chapter 7 outlines some interesting issues and problems in constructive neural network learn-
ing algorithms. Chapter 8 presents provably correct extensions of several constructive neural
network learning algorithms to handle multiple (M > 2) output classes and real-valued pat-
tern attributes. Chapter 9 designs techniques for incorporating pruning in constructive neural
network algorithms. Chapter 10 analyzes a framework for constructive theory refinement in
knowledge based artificial neural networks.

Finally, we conclude in chapter 11 with a summary of the research contributions of this

dissertation and highlight some interesting directions for future research.

PART 1

LEARNING DETERMINISTIC FINITE AUTOMATA

2 INTRODUCTION TO REGULAR GRAMMAR INFERENCE

Regular Grammar Inference [BF72, FB75, MQ86, Lan95, PH98a] is defined as the process
of learning the rules of a target regular grammar from a set of labeled examples. More formally,
it is defined as follows: Given a finite non-empty set of positive examples and possibly a finite
non-empty set of negative examples corresponding to an unknown regular grammar (called the
target grammar) determine a grammar that is equivalent to the target grammar. The class
of regular grammars is the simplest in the Chomsky hierarchy of formal language grammars.
Their simplicity and ease of understanding makes them a widely used class of grammars for
modeling several practical grammar inference tasks. Regular grammar inference has been
applied in fields such as syntactic pattern recognition, intelligent autonomous agents, language
acquisition, computational biology, speech recognition, and the like (see [GT78, Fu82, MQ86,
FLSWO90, CM96]). Regular grammar inference is a difficult problem to solve. It has been
actively investigated for over two decades. While there do exist several practically useful
heuristic solutions to the problem, we have not yet discovered an efficient general algorithm
for learning the target regular grammar. On the other hand, negative results abound in the
literature. Under the standard complexity theoretic assumption P # N P, it is known that no
efficient algorithm exists for exactly learning a target regular grammar from an arbitrary set of
labeled examples [Gol78]. Further, it has also been demonstrated that approximate learning of
DFA under the PAC learning model is a hard problem [PW89, KV89]. These challenges make
the regular grammar inference problem an attractive one. An understanding of the issues and
pitfalls of learning regular grammars might provide insights into the problem of learning more
general classes of grammars in the formal language hierarchy.

In what follows, we will attempt to briefly outline the key results to date in regular grammar

inference. We will discuss the different models of learning under which this problem has been
attacked and the solutions or negative results that have resulted from these. Finally, we will

provide an overview of the results of our research in this area.

2.1 Representation Classes of Regular Grammars

An important question in the regular grammar inference problem concerns the choice of
the representation of the target grammar i.e., the selection of an appropriate language bias.
Deterministic finite state automata (DFA), non-deterministic finite state automata (NFA),
and regular expressions (REX) are equivalent representations for regular grammars. DFA are
perhaps the simplest to understand and can be pictorially depicted using state transition dia-
grams. More importantly, decision problems such as the equivalence of two DFFA, minimization
of a DFA, determining if the language of a DFA is a superset/subset of the language of an-
other, and such can be solved using efficient (i.e., polynomial time) algorithms [HU79, Mar91].
Thus, DFA is the popular representation choice for regular grammars in the area of regular
grammar inference. The regular grammar inference problem is formulated equivalently as one
of identifying a DFA corresponding to the target regular grammar from a given set of labeled

examples.

2.2 Exact Identification of DFA

Exact learning of the target DFA from an arbitrary presentation of labeled examples is a
hard problem. Gold showed that the problem of identifying the minimum state DFA consistent
with a presentation S comprising of a finite non-empty set of positive examples St and possibly
a finite non-empty set of negative examples S~ is N P-hard [Gol78]. Under the standard
complezity theoretic assumption P # NP, Pitt and Warmuth showed that there exists no
polynomial time algorithm which when presented with a set of labeled examples corresponding
to a DFA with N states is guaranteed to produce a DFA that is at most polynomially larger
than the target DFA [PW83].

Efficient learning algorithms for exact identification of DFA assume that some additional

10

information is provided to the learner. Trakhtenbrot and Barzdin described a polynomial time
algorithm for constructing the smallest DFA consistent with a complete labeled sample i.e., a
sample that includes all strings up to a particular length and the corresponding label that
states whether the string is accepted by the target DFA or not [TB73]. Thus, their algorithm
computes, in polynomial time, the smallest DFA that correctly accepts all the positive examples
and correctly rejects all the negative examples of the complete labeled sample. However,
Angluin showed that even if a vanishingly small fraction of the strings from the complete
labeled sample is missing then the problem of finding the smallest consistent DFA is NP-
hard [Ang78]. Oncina and Garcia recently proposed the regular positive and negative inference
(RPNI) algorithm that in polynomial time identifies a DFA consistent with a given sample
S [0G92]. Further, if S'is a superset of a characteristic set for the target DFA (see section 3.3.7)
then the DFA output by the RPNI algorithm is guaranteed to be equivalent to the target [OG92,
Dup96b].

A set of labeled examples that satisfy certain properties is one form of additional infor-
mation that makes the DFA learning problem tractable. Additionally, one may assume the
existence of a knowledgeable teacher who responds to queries posed by the learner. Pao and
Carr proposed a framework for learning the target DFA from a structurally complete set of
positive examples that in essence describes all the transitions and the accepting states of the
target DA (see section 3.3.5) [PC78]. Additionally, their algorithm assumes the availability
of a knowledgeable teacher capable of answering membership queries. Their algorithm maps
the structurally complete set of examples to an ordered lattice of finite state automata (FSA)*.
This lattice is guaranteed to contain the target DFA. The algorithm searches for the target
DFA with the help of membership queries. A membership query is posed to ask the teacher
whether an example string belongs to the language of the target DFA or not. Under this
framework, the target DFA is shown to be exactly identifiable [PC78].

Angluin showed that given a live complete set of examples that contains a representative

string for each live state of the target DFA (see section 3.3.6) and a knowledgeable teacher

!Note that a FSA is either a DFA or a NFA

11

to answer membership queries it is possible to exactly learn the target DFA [Ang81]. Later,
Angluin refined this idea to design an algorithm L* that infers the target DFA with the help
of a minimally adequate teacher [Ang87]. A minimally adequate teacher (MAT) is one who
is knowledgeable about the target concept and is able to answer the learner’s queries. The
L* algorithm allows the learner to pose two types of queries viz. membership and equivalence
queries. Unlike the above approaches, the L* algorithm does not search the lattice of FSA.
Instead it constructs a hypothesis DFA by posing membership queries to the teacher. Once an
appropriate hypothesis is constructed, the learner poses an equivalence query to the teacher
to inquire whether the current hypothesis is equivalent to the target DFA or not. If the
hypothesis is indeed equivalent to the target the algorithm outputs the hypothesis and halts.
Otherwise, the teacher provides a counterexample. The learner modifies the hypothesis using
the counterexample and additional membership queries and poses another equivalence query.
This interaction between the learner and the teacher continues until the teacher’s answer to
an equivalence query is yes. This algorithm runs in polynomial time and is guaranteed to
converge to the target.

The L* algorithm tacitly assumes that the learner has the capacity to reset the DFA to
the start state before posing each membership query. This assumption might not be realistic
in certain situations. For example, consider a robot trying to explore its environment. This
environment may be modeled as a finite state automaton with the different states corresponding
to the different situations the robot might find itself in and the transitions corresponding to
the different actions taken by the robot in each situation. Once the robot has made a sequence
of moves it might find itself in a particular state (say facing an obstacle). However, the robot
has no way of knowing where it started from or of retracing its steps to the start state. The
robot has to continue from its current state and explore the environment further. Rivest and
Schapire proposed a learning method based on homing sequences [RS93]. Assuming that each
state of the DFA has an output (the output could simply be 1 for accepting state and 0 for
non-accepting state), a homing sequence is defined as a sentence (string) whose output always

uniquely identifies the final state the DFA is in even if we do not know where the DFA started

12

from. Rivest and Schapire’s algorithm runs N copies of the L* algorithm in parallel (one copy
for each of the N states of the target DFA) to overcome the limitation that the start state is

unknown.

2.3 Incremental Learning of DFA

All the DFA learning algorithms discussed thus far require that the labeled training exam-
ples be available to the learner in advance. In many practical learning scenarios, the entire
training set might not be available at the start. Instead, a sequence of examples is provided
intermittently and the learner is required to construct an approximation of the target DFA
based on the examples it has seen until then. In such scenarios, an online or incremental
model of learning that is guaranteed to eventually converge to the target DFA in the limit is
of interest. In the online learning framework the learner constructs a consistent hypothesis
based on the initially provided set of examples. When additional examples become available,
the learner must incrementally modify the current hypothesis to make it consistent with the
new examples without having to re-start from scratch. Ideally, an online framework should
be designed such that the learner does not have to store the examples it sees during learning.
The current hypothesis along with the next labeled example should be sufficient to guarantee
that the modified hypothesis is consistent with the new example as well as all the examples
seen previously.

Dupont proposed an incremental version of the RPNI algorithm for regular grammar in-
ference [Dup96a]. This algorithm is also based on the idea of a lattice of finite state automata
constructed from a set of positive examples. It uses information from a set of negative exam-
ples to guide the ordered search through the lattice and is guaranteed to converge to the target
DFA when the set of examples seen by the learner include a characteristic set (see section 3.3.7)
for the target DFA as a subset. The algorithm runs in time that is polynomial in the sum
of lengths of the training examples. However, it requires storage of all the examples that are
seen by the learner during training to ensure that each time the representation of the target is

modified, it stays consistent with all the previous examples.

13

Porat and Feldman have proposed an incremental algorithm for inference of regular gram-
mars from a complete ordered sample (one that includes all the strings over the alphabet of
the DFA up to a certain length) [PF91]. The algorithm maintains a current hypothesis that is
consistent with all the examples seen thus far. If this hypothesis is inconsistent with the next
labeled example then it is modified appropriately to ensure consistency with the new example
and also with all the previous examples. It is guaranteed to converge in the limit provided
the examples appear in strict lexicographic order. Further, it works with only a finite working
storage which is an advantage over the incremental extension of the RPNT algorithm. However,
it requires strict lexicographic order of presentation of examples which may not be feasible in
some practical learning situations. Also, it requires a consistency check with all the previous

examples each time the current representation of the target is modified.

2.4 Approximate Identification of DFA

Valiant’s distribution independent model of learning (also called the PAC model) [Val84]
is widely used for approximate learning of concept classes. When adapted to the problem of
learning DFA, the goal of a PAC learning algorithm is to obtain in polynomial time, with
high probability, a DFA that is a good approximation of the target DFA. Even approximate
learnability of DFFA was proven to be a hard problem. Pitt and Warmuth showed that the
problem of polynomially approximate predictability of the class of DFA is hard [PW89]. Us-
ing prediction preserving reductions they showed that if DFA are polynomially approximately
predictable then so are other known hard to predict concept classes such as boolean formulas.
Kearns and Valiant showed that an efficient algorithm for learning DFA would entail efficient
algorithms for solving problems such as breaking the RSA cryptosystem, factoring Blum inte-
gers, and detecting quadratic residues [KV89]. Under cryptographic assumptions it is known
that these problems are known to be hard to solve. Thus, they showed that DFA learning is
a hard problem.

The PAC model’s requirement of learnability under all conceivable distributions is often

considered too stringent for practical learning scenarios. Several researchers have explored the

14

PAC learnability of concepts under some known distributions such as the uniform distribution
or under some restricted families of distributions such as product distributions. It has been
shown that several concept classes are efficiently PAC learnable under restricted classes of
distributions while their learnability under the distribution free model is not known. Pitt’s
seminal paper surveyed several approaches to approximate learning of DFFA and identified the
following open research problem: “Are DFA PAC-identifiable if examples are drawn from the
uniform distribution or some other known simple distribution? 7 [Pit89]. Using a variant of
Trakhtenbrot and Barzdin’s algorithm, Lang empirically demonstrated that random DFA are
approximately learnable from a sparse uniform sample [Lan92]. However, no theoretical results
on PAC learnability of DFA were derived and exact identification of the target DFA was not

possible even in the average case with a randomly drawn training sample.

2.5 Overview of Research Results

Asis evident from the above discussion, the problem of learning DIFA from labeled examples
is computationally hard. The problem is made tractable when the learner is provided with some
sort of a representative sample and is perhaps allowed access to a teacher who answers queries.
We were inspired by the challenge posed by the DIFA learning problem and have attempted to
address some of the difficulties and the open research problems outlined by researchers in the

field.

2.5.1 Exactly Learning DFA using a Version Space based Approach

Pao and Carr’s algorithm maps the structurally complete set of examples to an ordered
lattice of finite state automata which constitutes the hypothesis space. The lattice is guaranteed
to contain a representation of the target DFFA and the goal of the learning algorithm is to search
the lattice for the target DFA using membership queries. Their algorithm explicitly enumerates
the entire lattice. The size of the lattice is prohibitively large even when the structurally
complete set contains only a few short strings. Thus, explicit enumeration of the hypothesis

space is not practical. We propose the use of a version space for compactly representing

15

the hypothesis space [PH93, PH96]. The version space implicitly represents the entire lattice
using two sets of DFA called § and G respectively. § is initialized to the most special DFA
called the prefiz tree automaton obtained from the structurally complete set of examples. G
is initialized to the most general DFA that accepts all strings over a pre-specified alphabet.
These two sets together capture the entire lattice implicitly. An efficient bidirectional search
strategy is employed to locate the target DFA in the lattice. Query strings are generated by
comparing two DFA (one from each of § and G) for equivalence. The teacher’s response to the
membership queries is used to prune the hypothesis space. Elements of the set § that do not
accept positive examples are progressively generalized by state merging. Similarly, elements of
the set G that accept negative examples are progressively specialized by state splitting. The
set S (G) becomes progressively more general (special) and the algorithm eventually converges
when § and G are exactly the same and contain equivalent DFA. We discuss this algorithm

and give its correctness proof in chapter 4.

2.5.2 Polynomial Time Incremental Learning of DFA

In chapter 5 we study an approach for online learning of DFA using labeled examples
and membership queries. The new algorithm [7D (incremental ID) extends Angluin’s ID
algorithm to an incremental framework. The learning algorithm is intermittently provided with
labeled examples and has access to a knowledgeable teacher capable of answering membership
queries. Based on the observed examples and the teacher’s responses to membership queries,
the learner constructs a hypothesis DFA. This DFA is guaranteed to be consistent with all
observed examples. When an additional example is provided, the learner determines if the
new example is consistent with the current hypothesis in which case no further action is
required. If however, the new example is not consistent with the current hypothesis then the
learner incrementally modifies the hypothesis suitably to encompass the information provided
by the new example. In the limit this algorithm is guaranteed to converge to a minimum state
DFA corresponding to the target DFA. We describe this algorithm, prove its convergence, and

analyze its time and space complexities in chapter 5.

16

2.5.3 Learning DFA from Simple Examples

In chapter 6 we address the issue of PAC learning of DFA. PAC learning of DFA is known
to be a hard problem [PW89, KV89]. An interesting open research question (due to [Pit89])
is whether DFA can be learned approximately under restricted classes of distributions. Li
and Vitanyi proposed a model for PAC learning with simple examples wherein the examples
are drawn according to the Solomonoff-Levin universal distribution (universal distribution).
This model is referred to as the simple PAC learning model. They showed that learnability
under the universal distribution implies learnability under a broad class distributions known as
simple distributions provided the examples are drawn according to the universal distribution.
Thus, this model is quite general. Recently, this learning model was extended to a framework
where a teacher might intelligently choose examples based on the knowledge of the target
concept [DDGY6]. This is called the PAC learning with simple examples (PACS learning)
model.

We answer the above open research question in the affirmative by proving that DFA are
efficiently learnable from simple examples. In particular, by using the RPNI algorithm for
learning DFA and the universal distribution m for drawing a labeled sample at random we show
that the class of simple DFA (see section 6.4) is learnable under the simple PAC learning model.
Further, we demonstrate that it is possible to efficiently learn the entire class of DFA under the
PACS learning model [PH97]. Finally, we show the applicability of the PACS learning model
in a more general setting by proving that all concept classes that are polynomially identifiable
from characteristic samples according to Gold’s model and semi-polynomially T/L teachable
according to Goldman and Mathias’ model are also probably exactly learnable under the PACS

model.

17

3 PRELIMINARIES

In this chapter we introduce the basic definitions and notation used throughout part 1 of
the thesis. Readers who are familiar with the concepts of finite state automata may choose to

go over to the next chapter and refer to this chapter whenever some notation is unclear.

3.1 Strings and Sets of Strings

Let ¥ be a finite set of symbols called the alphabet. A concatenation of symbols from
3. represents a string a. X* denotes the set of all possible strings over . Let «, 3,7 be
strings in ¥* and |a| be the length of the string a. X is a special string called the null
string and has length 0. A language L is a subset of ¥*. Given a string a = v, g € ¥*
is the prefiz of a and v € ¥* is the suffiz of a. Let Pref(a) denote the set of all prefixes
of . The set Pref(L) = {a | af € L} is the set of prefizes of the language L. The set
L, = {p | af € L} is the set of tails of @ in L. The standard order of strings over the
alphabet X is denoted by <. The enumeration of strings over ¥ = {a, b} in standard order
is A\, a,b,aa,ab,ba,bb,aaa, ... The set of short prefizes S,(L) of a language L is defined as
Sp(L) = {a € Pref(L) | Ap € ¥* such that L, = Lg and 3 < a}. The kernel N(L) of a
language L is defined as N (L) = {A}U{aa | a € S,(L),a € ¥,aa € Pref(L)}. Let S\Sy and
S1 @ S, denote the set difference and the symmetric difference respectively of the sets S; and

Ss.

3.2 Formal Language Grammars

A formal language grammar G is a 4-tuple G = (Vn,Vr, P, S) where Vi is the set of

non-terminals, Vr is the set of terminals, P is the set of production rules for generating valid

18

sentences of the language, and S € Vy is a special symbol called the start symbol. The
production rules are of the form @ — [where «, 8 are strings belonging to (Vx U Vr)* and
« contains at least one non-terminal symbol. Valid strings of the language are sequences of
terminal symbols Vr and are obtained by repeatedly applying the production rules as shown
below. The language L(() is the set of all strings generated by the grammar.

Different classes of formal grammars are obtained by placing different restrictions on the
types of production rules. A Regular Grammar (G) is a finite set of rewrite (production) rules
of the form A — aB or A — b where A and B are non-terminals and a and b are terminals.
Consider the regular grammar G where Vy = {S, A, B}, Vr = {a,b},and P ={S — 5,5 —
aA,A — aB,A — a,B — aA}. Example strings generated by this grammar include b
(obtained by applying the rule 1), aa (obtained by applying the rules 2 and 4 in that order),

aaaa (obtained by applying the rules 2, 3, 5, and 4 in that order), and so on.

3.3 Deterministic Finite State Automata

Finite State Automata (FSA) are recognizing devices for regular grammars. A deterministic
finite state automaton (DFA) is a quintuple A = (Q, §, %, qo, F') where,) is a finite set of states,
3 is the finite alphabet, ¢g € Q) is the start state, F' C) is the set of accepting states, and ¢ is
the transition function: @ X ¥ — Q. A state dop € Q) such that Va € X, §(do, a) = dg is called
a dead state. If there exists a state ¢ € @) such that (¢, a) is not defined for some @ € ¥ then
the transition function is said to be incompletely specified. It may be fully specified by adding
transitions of the form §(q, @) = dp when 6(q, a) is undefined. The extension of § to handle input
strings is denoted by 6* and is defined as follows: §*(¢,A) = ¢ and §*(q, ax) = §*(8(q, a), @)
for g € @, a € ¥ and a € ¥*. The set of all strings accepted by A is its language, L(A).
L(A) ={a|0*(qo,) € F'}. The language accepted by a DIA is called a regular language.

A non-deterministic finite automaton (NFA) is defined just like the DFA except that the
transition function § defines a mapping from Q x ¥ — 2¢. NFA and DFA are equivalent in
their representation power in that for any NFA A’ there exists a DFA A such that L(A/) =

L(A). In general, a finite state automaton (FSA) refers to either a DFA or a NFA.

19

FSA are represented using state transition diagrams. The start state gg is indicated by
the symbol > attached to it. Accepting states are denoted using concentric circles. The state
transition §(¢;, a) = ¢; for any letter @ € X is depicted by an arrow labeled by the letter a from
the state ¢; to the state ¢;. I'ig. 3.1 shows the state transition diagram for a sample DFA. This

DFA corresponds to the regular grammar G described in section 3.2 in that L(A) = L(G).

Figure 3.1 Deterministic Finite State Automaton.

A labeled example (o, ¢(e)) for A is such that o € ¥* and c(a) = + if @ € L(A) (ie., a
is a positive example) or ¢(a) = — if o« € L(A) (i.e., o is a negative example). Thus, (a, —),
(b,+), (aa,+), (aaab,—), and (aaaa,+) are labeled examples for the DFA of Fig. 3.1. ST will
be used to denote a set of positive examples of A i.e., ST C L(A). Similarly, S~ will be used
to denote a set of negative examples of A i.e., ST C ¥*\L(A). A sample S will be defined as
S =StUS~. Ais consistent with a sample S if it accepts all the positive examples (i.e., all

examples in ST) and rejects all negative examples (i.e., all examples in S7).

3.3.1 Canonical DFA

Given any FSA A’, there exists a minimum state DFA (also called the canonical DFA) A,
such that L(A) = L(A"). Without loss of generality, we will assume that the target DFA being
learned is a canonical DFA. Let N denote the number of states of A. It can be shown that
any canonical DFA has at most one dead state. One can define a standard encoding of DFA

as binary strings such that any DFA with NV states is encoded as a binary string of length
O(NlIgN).

20

3.3.2 Prefix Tree Automaton

Given a set ST of positive examples, let PT A(S*) denote the prefiz tree acceptor for ST.
PTA(S*) is a DFA that contains a path from the start state to an accepting state for each
string in ST modulo common prefixes. Clearly, L(PTA(ST)) = S*. Learning algorithms such
as the RPNI (see section 6.3) require the states of the PTA to be numbered in standard order. If
we consider the set Pref(S™) of prefixes of the set St then each state of the PTA corresponds
to a unique element in the set Pref(S™T) i.e., for each state ¢; of the PTA there exists exactly
one string a; in the set Pref(S*) such that 6*(go, ;) = ¢; and vice-versa. The strings of
Pref(ST) are sorted in standard order < and each state ¢; is numbered by the position of its
corresponding string «; in the sorted list. The PT A for the set ST = {b, aa, aaaa} is shown in

Fig. 3.2. Note that its states are numbered in standard order.

@@ -@E)
b

Figure 3.2 Prefix Tree Automaton.

3.3.3 Quotient FSA

Given a FFSA A, consider a partition m on the set of states ¢) of A. Assume that the

dead state dy and its associated transitions are ignored. Define # = {By, Bs, ..., By} where
k
k< N and forl <i <k B; C Q. Further, U B; =). The block of the partition 7 to

i=1
which a state ¢ € @ belongs is denoted by B(q, 7). We define the quotient automaton (or

equivalently derived automaton) A, = (Qr, 0,2, B(qo, 7), I;) obtained by merging the states
of A that belong to the same block of the partition 7 as follows: @, = {B(q,7) | ¢ € Q}
is the set of states. Essentially, each block of the partition 7 corresponds to a state in Q.
F. = {B(q,7) | ¢ € F} is the set of accepting states. §, : Q, x ¥ —3 297 is the transition

function such that VB(¢;, 7), B(¢j,) € Qr, Va € X, B(q;, 7) = 6, (B(¢;, 7), a) iff ¢;, q; € Q and

21

¢; = 0(¢;,a). Note that a quotient automaton of a DFA might be a NFA and vice-versa. For
example, the quotient automaton corresponding to the partition 7 = {{Qo, @1}, {Q2},{@s}}
of the set of states of the DFA in Fig. 3.1 is shown in Fig. 3.3.

The set of all quotient automata obtained by systematically merging the states of A rep-
resents a lattice of FSA [PC78]. This lattice is ordered by the grammar cover relation <.
Given two partitions m; = {B;,, By,,..., B;, } and m; = {B;,, Bj,, ..., B;, } of the states of A,
we say that m; covers m; (written m; < 7;) if |m;| = |7;| — 1 and for some j; < j1,jm < Jk,
i = m;\{Bj,, Bj,,} U{Bj, UB;,, . }. The transitive closure of < is denoted by <. By convention
we will represent the quotient FSA corresponding to a partition m; by M;. We say that 7; < m;
iff L(M;) C L(M;). 1t is easy to see that the language of the quotient automaton in Fig. 3.3
is a superset of the language of the DFA in Fig. 3.1. Further, given a canonical DFA A and

a set ST that is structurally complete with respect to A (see section 3.3.5), the lattice Q(S)

derived from PT'A(S™) is guaranteed to contain A [PC78, PH93, DMV94].

a
a

N
(8o (&)

b

Figure 3.3 Quotient Automaton.

3.3.4 Sub-automaton

A sub-automaton A, for a DFA A (ignoring its dead state dg and its associated transitions)
is a quintuple A, = (Qz, 0z, 2, qo,) where Q, C @, qo € Qu, I, C I, and 6, is defined as
follows: V¢;,q; € Q, and a € ¥, 6,(¢;,a) = ¢; = 8(¢;, @) = ¢;. An example sub-automaton
of the DFA in Fig. 3.1 is shown in Fig. 3.4.

The interested reader is referred to [HU79, LP81, Mar91] for a detailed description of the

theory of finite state automata, regular grammars, and languages.

22

Figure 3.4 Sub-Automaton.

3.3.5 Structurally Complete Sample

Given a regular grammar (7, a structurally complete set of examples St is one that covers
each production rule of G at least once. In other words, ST is a structurally complete set of
examples with respect to GG if each production rule of GG is used at least once in generating the
strings of ST. Equivalently, if A is a canonical DFA corresponding to the regular grammar G
then the set ST is said to be structurally complete with respect to A if ST covers each transition
of A (except the transitions associated with the dead state dy) and uses every element of the
set of final states of A as an accepting state [PC78, PH93, DMV94]. More formally, St is

structurally complete with respect to A if it satisfies the following two properties:

1. Va €3, ¢i,q; € Q—{do}, if 8(¢i,a) = ¢; is a transition of A then Ja € ST where a =

Bay B,y € ¥* such that §*(qo,) = ¢; and 8*(q;,v) € F
2. V% € F7 da S S+ such that (S*(qO’O{) = q;

It can be verified that the set St = {b, aa, aaaa} is structurally complete with respect to the
DFA in Fig. 3.1. Note that in general the structurally complete set is not unique for a given
DFA. Further, any set of positive examples of the DFA A that includes a structurally complete

set of examples with respect to A as a subset is also structurally complete.

3.3.6 Live Complete Sample

A state ¢; of a DFA A is live if there exist strings o and § such that a8 € L(A), §*(q, @) =
¢, and §*(q;, B) € F. A state that is not live is called dead. As stated earlier, a canonical DFA
can have at most one dead state and we use dy to denote this dead state. Given A, a finite set

of strings P is said to be live complete if for every live state ¢; of A there exists a string o € P

23

such that 6*(qo, o) = ¢; [Ang81]. For example, P = {)\,a,b,aa} is a live complete set for the
DFA in Fig. 3.1. Any superset of a live complete set is also live complete. In order to have a
representation for the start state of A we assume that the string A is part of any live complete
set. The set P' = PU {do} represents all the states of A. To account for the state transitions,

define a function f: P’ x ¥ — ¥* U {dy} as follows:

f(d‘07 (l) = dO

flaya) = aa

Note that f(a,a) denotes the state reached upon reading an input letter @ € 3 from the
state represented by the string v € ¥*. We will let 7" = P’ U {f(a,a)|(a,a) € P x ¥} and
T =T'\{dg}. Thus, given the live complete set P = {), a, b, aa} corresponding to the DFA in

Fig. 3.1 we obtain the set T = {\, a, b, aa, ab, ba, bb, aaa, aab}.

3.3.7 Characteristic Sample

Consider a regular grammar G with the corresponding canonical acceptor A. Let L de-
note the language of GG (and equivalently the language of A). A sample S = ST U S~ is
said to be characteristic with respect to a regular language L if it satisfies the following two

conditions [OG92]:
1. Va € N(L), if @ € L then a € ST else 33 € ¥* such that af € S*

2. Ya € S,(L),V3 € N(L), if L, # Lgthen 3y € X* such that (ay € St and By €

S~)or (By € ST and ay € S7)

Intuitively, S,(L), the set of short prefixes of L is a live complete set with respect to A
in that for each live state ¢ € @, there is a string o € S,(L) such that 6*(¢o,a) = ¢. The
kernel N (L) includes the set of short prefixes as a subset. Thus, N(L) is also a live complete
set with respect to A. Further, N(L) covers every transition between each pair of live states
of A. i.e., for all live states ¢;,¢; € Q, for all « € X, if §(¢;, @) = ¢; then there exists a string

g € N(L) such that § = aae and §*(qo,®) = ¢;. Thus, condition 1 above which identifies

24

a suitably defined suffix § € ¥* for each string @ € N (L) such that the augmented string
af € L, implies structural completeness with respect to A. Condition 2 implies that for any
two distinct states of A there is a suffix v that would correctly distinguish them. In other
words, for any ¢;,¢; € @ where ¢; # ¢;, 3y € ¥* such that §*(¢;,v) € F and §*(¢;,7v) € F
or vice-versa. Given the language L corresponding to the DFA A in Fig. 3.1, the set of short
prefixes is S,(L) = {A, a,b,aa} and the kernel is N(L) = {A,a,b,aa,aaa}. 1t can be easily
verified that the set S = ST U S~ where ST = {b,aa,acaa} and S~ = {\,a,aaa,baa} is a

characteristic sample for L.

25

4 A VERSION SPACE BASED APPROACH TO LEARNING DFA

4.1 Introduction

In this chapter we describe a version space approach to learning the target DFA. We will
assume that the learner is provided with a structurally complete set of examples and is allowed
access to a knowledgeable teacher who answers membership queries. The problem of learning
the target DFA under this framework was originally studied by Pao and Carr [PC78]. Their
algorithm maps the structurally complete set of examples to a lattice of finite state automata.
The lattice represents the entire search space and is guaranteed to contain a representation
of the target DFA'. The learner uses membership queries to search the lattice for the target.

Though provably correct their approach has the following limitations:

1. The entire lattice is enumerated explicitly. The size of the lattice grows exponentially
in the sum of the lengths of the strings provided in the structurally complete set (see
section 4.2). Even for small structurally complete sets it is practically infeasible to

explicitly enumerate each element of the lattice.

2. Membership queries are generated by comparing two finite state automata (from the
lattice) for equivalence. Some of the elements in the lattice represent NFA. Pao and
Carr’s algorithm requires that NFA be converted to equivalent DFA and then used for
generating the query string. However, the algorithm for converting NFA to DFA has

exponential time complexity in the worst case [HU79].

"Note that Pao and Carr define a structurally complete set as one that covers all the transitions of the
target DFA. However, the correct definition of structural completeness states that each production rule of the
target grammar must be covered by at least one string in the structurally complete set. This requires that
each transition and each accepting state of the target DFA must be covered by the strings in the structurally

complete set [PH93, DMV94, PH96].

26

We present an improved learning algorithm based on the version space representation of
the lattice of FSA [PH93, PH96]. The version space implicitly represents the entire lattice
using two sets of FSA called § and G respectively. The operations on the version space take
time polynomial in the size of the § and G sets. The efficiency of the algorithm thus relies
on the fact that the size of these sets at any time is substantially smaller than the size of the
entire lattice. The proposed algorithm uses an efficient bidirectional search strategy inspired
by Mitchell’s version space algorithm [Mit82]. Further, we formulate the search procedure such
that the problem of converting NFA to DFA is totally avoided. Thus, our approach overcomes
both the limitations encountered in Pao and Carr’s algorithm.

The rest of this chapter is organized as follows: Section 4.2 explains the mapping of the given
structurally complete set to a lattice of FSA. Section 4.3 outlines the implicit representation of
this lattice in the form of a version space. Section 4.4 describes the query aided bidirectional
search of the lattice. Section 4.5 proves the correctness of this algorithm. Finally, section 4.6

concludes with a discussion of the algorithm’s merits and demerits.

4.2 Lattice of Finite State Automata Specified by S

Given a structurally complete set of examples ST, the learner constructs a prefix tree au-
tomaton (PTA) that accepts exactly the strings in ST. For example, consider that the DFA
in Fig. 4.1 is the target DFA. It is easy to verify that the set ST = {abb} is structurally com-
plete with respect to the target DFA. Fig. 4.2 shows the corresponding prefix tree automaton
PTA(ST).

Figure 4.1 Target DFA.

27

Figure 4.2 PTA Corresponding to ST = {abb}.

The set of all partitions of the set of states of PT'A(S™) forms a lattice . Fig. 4.3 shows
the lattice € constructed from the PTA in Fig. 4.2 2. Each partition corresponds to a quotient
automaton (as described in section 3.3.3) of PTA(ST). By definition, the language of each

quotient automaton is a superset of L(PTA(ST)).

11 12 13

23| D332 |32 [3D3]D] DD [T D5

EEIRINIE

Figure 4.3 Lattice 2.

The lattice is partially ordered by the grammar covers relation (see section 3.3.3). By
the grammar covers property we know that if a partition m; covers a partition m; then the
corresponding FSA M; and M; are such that L(M;) C L(M;). The fact that a partition m;
covers a partition 7; (i.e., 7; < ;) is depicted in Fig. 4.3 by an arrow from 7; to m;. If 7; < 7m;
then m; is said to be an immediate specialization of m; and correspondingly =; is said to be

an immediate generalization of 7;. The minimal generalization of a partition 7; is defined

2Note that the individual partitions of the set of states of PTA(S+) are denoted as Pg,Pq,... in Fig. 4.3
and are referred to as mo, 71,... in the text.

28

as the set of all immediate generalizations of 7; i.e., {my|7r; < m}. Similarly, the minimal
specialization of a partition 7; is defined as the set of all immediate specializations of 7; i.e.,
{mk|mr < m;}. In general, if 7; < m; then 7; is said to be more special than or equal to (MSE)
m; and correspondingly 7; is said to be more general than or equal to (MGE) 7;. The MSE
(MGE) test can be performed efficiently by simply examining the two partitions m; and =;. If
m; and 7; are two partitions with corresponding F'SA M; and M; then by virtue of the grammar
covers relation 7; < m; if f L(M;) C L(M;).

The grammar covers property is used to prune the search space by eliminating candidate
FSA that do not correspond to the target. Suppose it is determined that the F'SA M; corre-
sponding to the partition 7; accepts a negative example. Clearly, M; cannot be the target.
Further, all FSA M where m; < 7 will also accept the same negative example and hence
can be eliminated from consideration. Similarly, if it is determined that the FSA M, corre-
sponding to a partition m; does not accept a positive example then clearly M; cannot be the
target. Further, all FSA M} where 7, < m; will also fail to accept the same positive example

and hence can be eliminated from consideration.

4.3 Version Space Representation of the Lattice ()

The total number of partitions contained in a lattice (£2) obtained from a PTA with m states
is F,, = mz_:l (m N 1) E; where Fy = 1. Clearly, explicit enumeration of € is not feasible even
for modeﬁ;‘g)ely large values of m. We propose an implicit representation of €2 using a version
space © = [S§,G] where § represents the most special partitions and G represents the most
general partitions of €2 that are consistent with the data gathered by the learner at any time.

S is initialized to {mp} where 7 is the most special element of Q (i.e., g is the partition
representing the PT'A(S™T). G is initialized to {rg,,_, } where 7, _, is the most general element
of Q (i.e., mg,,_, is the partition representing the DFA obtained by merging all the states of
PTA(ST) into a single block). Note that F,, is the total number of partitions in the lattice €.
Since the entire lattice can be enumerated by listing the set of quotient FSA of PT'A(S™) (i.e.,

by systematically merging the states of PTA(ST)) it is clear that © implicitly represents the

29

entire lattice 2. Asthe search progresses, the elements of § are made progressively more general
and those of G are made progressively more special. Fig. 4.4 depicts a typical bidirectional
search of the lattice. In order to guarantee convergence to the target DFFA the version space

must satisfy the following properties at all times [Mit82]:

1. The elements of & must be maximally special in the sense that Vm; € S, Ar; € S
such that m; < m;. Analogously, the elements of ¢ must be maximally general i.e.,

Vrr € G, Am € G such that m; < 7.

2. Every element in § must have a corresponding more general element in G and vice-
versa. i.e., Vm; € §, dr; € G such that 7; < 7; and similarly, Y7 € G, Im €

S such that m; < 7.

3. The elements of § and G are consistent with all the examples observed by the learner. If
S+ and S~ represent the set of positive and negative examples observed by the learner
at any time then each partition 7 belonging to § or G must be such that M} accepts

every example in S+ and rejects every example in S,

Universal DFA

Set of general automata

Target DFA
Set of specific automata

PTA(S)

Figure 4.4 Bidirectional Search of €.

4.4 Query Aided Bi-Directional Search of the Lattice

The lattice © is implicitly represented by © = [§,G]. S is initialized to {mg} and G is

initialized to {7g,,—1}. © implicitly represents the entire lattice. The search for the target

30

DFA now proceeds with the help of membership queries that are posed to the teacher.

The version space search for the target DIFA is described in Fig. 4.5. At each step, a
partition m; from § and a partition 7; from G are picked and their corresponding automata
M; and M; are compared for equivalence. If M; # M; then there exists a string y such that
y € L(M;) but y ¢ L(M;) or vice-versa (in which case the roles of M; and M; are simply
reversed). In other words, if M; # M; then there exists a string y € L(M;) & L(M;). If we
denote the 'SA M; and Mj respectively by (Q;,d;, %, qo,, I5) and (Q;,4;,%, qo,, I';) then the
shortest string belonging to the difference automaton M; — M; = (Qq, 84, %, qo,, Fy) where
Qa = Qi X Q;, 64((¢iyq;),a) = (0i(q:i,a),0;(q;,a)) for all ¢; € Q;, ¢; € Q;, and a € X,
qo, = (q0;5qo0,), and Fy = {(¢;,¢;) | @ € F; and q; € Q;\F}} is selected as the query string
y. The teacher’s response to the query “y € L(A)?” (where A is the target DFA) determines
whether y is a positive example or a negative example. The version space is modified based
on the teacher’s response and the elements of § and G are made progressively more general
and more special respectively. Specifically, when y is a positive example, partitions m; € G
such that M; rejects y are eliminated from G. Further, partitions 7; € § where M; rejects y
are generalized i.e., replaced by a set of partitions that are MGE 7; and whose corresponding
FSA accept y. The procedure Generalize shown in Fig. 4.6 shows how a partition 7; whose
corresponding F'SA rejects a positive example is generalized. The operations on © when y is
a negative example are analogous. The procedure Specialize shown in Fig. 4.7 shows how a
partition m; whose corresponding FSA accepts a negative example is specialized.

The version space algorithm (shown in Fig. 4.5) maintains two additional sets of partitions
S~ and GT toimprove the efficiency of the search. S~ contains partitions belonging to S whose
corresponding FSA were found to accept negative examples. Prior to adding any partition (say
m;) to § it is determined whether there is some 73, € S~ such that 7, < m;. If this is the case
then by the grammar covers property we know that M; would accept a negative example and
hence 7; need not be considered any further. Similarly, G* contains partitions from G whose
corresponding 'SA were found to reject a positive examples.

A partition of § whose corresponding DFA does not accept a positive example y is gen-

31

Algorithm: Version-Space-Search

Input: A structurally complete set ST and a teacher capable of answering
membership queries.
Output: A DFA equivalent to the canonical representation of the target DFA A

begin
1) Construct PTA(ST)
2) Initialize S = {mo}, ¢ = {7g,,—1},and ST = GT = ¢
3) while (there exists 7; € § and 7; € G such that M; #Z M;) do
Generate the shortest string y € L(M;) & L(M;)
Pose the membership query “y € L(A)?”
it (y € L(4))
then
for (each m;, € G such that y ¢ L(My)) do
G =G\{m}
Gt=Gtu {ﬂ'k}
if (3m € S such that y ¢ L(M;))
then perform Generalize(7;,y,S,G,S7)

end if
else
for (each m; € § such that y € L(M;)) do
S =3S\{m}
ST=S"U {71'[}

if (3dry € G such that y € L(My))

then perform Specialize(ry,y,S,G, G")

end if

end if
4) if (S=¢orG=29)

then return error
else return M; corresponding to the smallest partition 7; € §
end if

end

Figure 4.5 Version Space Search Algorithm.

32

eralized by the procedure Generalize (shown in Fig. 4.6) whose execution is described as

follows:
1. Initially m; is deleted from §.
2. The set of immediate generalizations (G} of the partition m; is computed.

3. The set G is processed as follows: Partitions that are MGE some partition already
in § are removed for they violate the version space property that the set § should be
maximally special. Partitions that do not have a corresponding more general partition
in G are removed for they violate the version space property that each partition in S
must be MSE than some partition in G. Partitions that are MGE some partition in S~

are removed as explained earlier.
4. § is augmented with the remaining partitions in Gj.

5. Partitionsin & whose corresponding I'SA are either NFA or do not accept y are recursively

generalized.

The termination of this recursive generalization procedure is easy to guarantee. Note
that Mg, _1 corresponding to the partition 7g, _; is the universal DFA and hence accepts any
positive example. In the worst case a sequence of generalizations of a partition m; is guaranteed
to terminate with 75, 1. Thus, at the end of the recursive generalization it is guaranteed that
all the partitions in set § will represent DFA and further, the DFA corresponding to each
partition will accept the positive example y.

A partition of G whose corresponding DFA accepts a negative example is specialized as
described by the procedure Specialize in Fig 4.7. The operations in Specialize are analogous

to those described in the procedure Generalize.

4.5 Proof of Correctness

Let the target DFA be represented by A. The correctness of the algorithm follows from

the following two theorems.

33

Procedure Generalize (7,y,S5,G,57)

begin
1) Delete m; from S
2) Let G be the set of immediate generalizations of m
3) for (each partition 7, € GG}) do
if ((3 7, € S such that 7, MGE 7,) or
(A, € G such that 7, MSE 7,) or
(3 m, € S~ such that 7, MGE m,))
then remove 7, from G
end if
4) §=8UG;
5) if (Im, € S such that M, is a NFA or y ¢ L(M;))
then perform Generalize (7,,y,S,G,S7)
end if
6) returnS

Figure 4.6 Algorithm for Generalizing a Partition m; € S.

Procedure Specialize (7;,y,S,G,G™)

begin
1) Delete 7 from G
2) Let Sy be the set of immediate specializations of mj
3) for (each partition 7, € S;) do
if ((3 7, € G such that 7, MSE 7,) or
(Am, €S such that 7, MGE 7,) or
(Ir, € GT such that 7, MSE =,))
then remove 7, from S
end if
4) G=GUS;
5) if (37, € G such that M, is a NFA or y € L(M,))
then perform Specialize (7,,y,S,G,G™)
end if
6) return G

Figure 4.7 Algorithm for Specializing a Partition 7 € G.

34

Theorem 4.1 The lattice 2 constructed from a structurally complete set of examples with

respect to the target DFA A is guaranteed to contain a partition w4 such that My is exactly A.

Proof:
The proof of this theorem is originally due to Pao and Carr [PC78] and has been reworked in

[PH93]. It was also independently proven by Miclet (see [DMV94]). O

Theorem 4.2 The following invariance condition holds at all times during the execution of

the algorithm.

dng € G and 3dr, € S such that m, < T4 L 73

Proof:

We prove this theorem by induction.

Base Case:

Initially, S = mp and G = 7, _1. Therefore, the hypothesis space © = [S, G] implicitly includes
a representation of the entire lattice 2. Further, by construction, each partition 7; € € is such
that mo < m; K 7g,,—1. Theorem 4.1 guarantees that 74 € Q. Thus, the invariance condition
holds if we set mg to 7, and 7g,,_1 to 7g.

Induction Hypothesis:

Assume that the invariance condition holds just before processing a membership query.
Induction Proof:

We prove that the invariance condition continues to hold after processing the membership

query. If the query string y is a positive example:

1. Any 7 € G such that M} rejects y is removed. No such 7 could be w5 or else, since
w4 < 7wg, by the grammar covers property A would also reject the positive example y

which is a contradiction.

2. Consider that the designated partition m, is such that M, rejects y. m, will thus be
generalized. We now show that the modification of & in the procedure Generalize

(shown in Fig. 4.6) does not violate the invariance.

35

(a) Step 1 deletes 7, from S.

(b) Step 2 computes GG,, the set of minimum generalizations of m,. Since, initially
To < T4, it is clear that there will be at least one partition 7, (where 7, < 7;)
such that 7, € 7, € m4. So, 7, can take over the role of 7w, which was deleted in

step 1.

(c) Step 3 removes elements from 7, that do not satisfy one (or more) of the version
space properties. First, those partitions of G, that are MGE some partition in S
are removed. Clearly, if 7, is removed then the partition 7, in & where 7, < 7,
can take over as the new w,. Partitions in (7, that are not MSE some partition
in G are removed. We have established above that 7, < 74. Further, from the
invariance we know that there exists mg € G such that 74 < 7g. Thus, 7, < 7g
and hence none of the partitions thus removed could correspond to 7,. Finally, 7,
cannot be MGE any partition 7, € S~ or else by the grammar covers property both

M, and M4 would accept the negative example accepted by M,..

(d) Next, § is augmented with the remaining partitions in GG,. Thus, § contains a
partition 7, <€ w4. If 7, is such that M, does not accept the positive example y
or M, is a NFA then Generalize is invoked recursively and 7, generalized further.
We know that 7, € m4. There is a sequence of one or more generalizations m, <
Moy = Moy =S Moy ... = m4. Clearly, M4 itself would accept the positive example y
and is a DFA. Thus, the sequence of recursive generalizations would definitely yield
a partition 7., (which could be 74 itself) where 7, would take over the role of 7,

to satisfy the invariance.

At the end of the procedure, the modified set § contains a partition 7, < m4. Further, there
is a partition mg € G such that m4 < mg. This proves that the invariance continues to hold
after a positive example y is processed.

The arguments for the case when y is a negative example are analogous to those presented

above. This proves that the invariance holds at all times. a

36

Theorem 4.1 guarantees the existence of the target partition in the lattice. Theorem 4.2
shows that at each step during the search process the target partition is implicitly maintained
in the search space represented by the current states of § and G respectively. The algorithm
terminates when § and G each contain the same set equivalent FSA. At this time, by virtue
of the invariance condition of theorem 4.2 7, = 74 = 73 and the algorithm correctly identifies

the target partition.

Example

Consider the DFA A in Fig. 4.1. ST = {abb} is a structurally complete set with respect to
A. PTA(ST) is depicted in Fig. 4.2. The corresponding lattice is shown in Fig. 4.3. The
version space is initialized to © =[S, G] where § = {mo} and G = {m14}. The execution of the

version space search is summarized in Table 4.1.

Table 4.1 Version Space Search.

Step (C] M; =M; 7 | Queryy Modified ©
1 | S=A{mo}; G ={ma} | Mo Z Mis | A € L(A) | S = {m3}; G = {714}
2 | S={ms};G={mu} | Ms#£ My |a g L(A) | §={ms};G = {mo}
3 | S=Am};G={mo} | MsF My | beL(A) | §={m}; G ={mo}

In the first step, Mg (the PTA) and M4 (the universal DFA) are compared for equivalence.
My # M4 and y = X is the shortest string belonging to L(My) & L(M;4). Since A € L(A),
A is a positive example. y € L(Ma) so G does not change. Since, y ¢ L(My), the procedure
Generalize is invoked with partition m9. The generalization of 7y proceeds as shown in
Fig. 4.6. mg is removed from & thereby making & = ¢. The set of immediate generalizations of
mo is Go = {71, 72, ..., me}. No partition in G is MGE some partition in S because S is empty.
All partitions in (G are MSE 714 € G. No partition in Gy is MGE some partition in S~ because
S~ is empty at this point. After performing & = SUGy we get & = {7y, 72, ..., Tg}. Since M,
does not accept y = A, my is generalized by invoking the procedure Generalize recursively.
Continuing with the execution of Generalize we can see that S = {73} is eventually returned

by the procedure. This completes step 1 of Table 4.1.

37

In step 2, M3 and My4 are compared for equivalence. M3 #Z Mj4 and y = a is the query
generated. Since y is a negative example 714 is specialized (as described in Fig. 4.7) resulting
in G = {mg9}. The final step compares M3 with My and poses the query y = b to the teacher.
Since y is a positive example 73 is generalized resulting in § = {mg}. At this time, § = G and
the partitions in § and G are equivalent to each other. The search terminates returning My as

the inferred DFA. It is easy to see that Mg is indeed the target DFA shown in Fig. 4.1.

4.6 Discussion

We have presented a provably correct method for inference of a target DFA from a struc-
turally complete set of examples and membership queries. The version space is a compact
representation of the lattice of candidate FSA. It implicitly represents all elements of the hy-
pothesis space that are consistent with data observed by the learner. An efficient bidirectional
search strategy is used to identify the target DFA. Our algorithm has the following advantages

when compared to the approach suggested by Pao and Carr [PC78]:

1. Implicit representation of the hypothesis space.
Pao and Carr’s algorithm explicitly constructs the entire lattice €2. Even for moderately
small structurally complete sets of examples the size of the lattice is prohibitively large

for explicit enumeration.

2. Restricting the search to DFA alone.
Pao and Carr’s approach allows the search to consider both DFA and NFA as candidate
solutions to the inference problem and requires that a NFA be converted to a fully
specified DI'A before comparing it for equivalence with another FSA. The process of
converting a NIFA to an equivalent DFA has exponential time complexity in the worst
case [HU79]. Our method restricts the search to DFFA alone thereby circumventing the

problem.

3. Partial inference using the version space.

The properties of the version space allow the algorithm to make partial inferences even

38

before the algorithm has converged to the target DFA. If an example y is accepted by
all the FSA belonging to the set & then y can be unambiguously classified as a positive
example. Similarly, an example y that is rejected by all FSA in G can be unambiguously
classified as a negative example. The explicit enumeration of the hypothesis space as in
Pao and Carr’s algorithm does not permit the learner to make such partial inferences
without actually testing whether or not each FFSA in the hypothesis space accepts the

example.

VanLehn and Ball [VB87] have proposed a version space based approach to learning context
free grammars from a set of positive and negative examples. Their algorithm returns a set
of grammars consistent with the given sample set. Their algorithm is also based on a lattice
of partitions. The version space is represented by a triple [ST,S™,G] where ST and S~ are
sets of positive and negative examples respectively and G is the set of generalizations. The
learner is required to store all the examples seen earlier for future reference. By restricting our
approach to inference of regular grammars the version space is finite and compactly represented
by [8,G]. Our algorithm does not store the previous examples and is guaranteed to converge
to the desired target instead of a set of candidate solutions as is the case for VanLehn and
Ball’s method.

The dense inter-connectivity among the lattice elements poses a limitation for our al-
gorithm. FEach partition in the lattice can be realized by generalizing (specializing) several
different partitions. For example, in Fig. 4.3, mg can be obtained as a result of generalizing
partitions mg, w9, w3, and mg. Thus, it is likely that several partitions will be generated and
evaluated multiple times during the search which makes this approach inefficient. A trivial
upper bound on the number of membership queries required in the version space based search
is exponential in the number of states of PTA(S*). It is difficult to perform an analysis of
the average case performance of the algorithm. Angluin proposed an algorithm (7D) to infer
the target grammar from a live complete set of examples (which can be constructed from a
structurally complete set) using a polynomial number of membership queries [Ang81]. Our

approach offers an alternative to the I'D procedure when a structurally complete set of sam-

39

ples is available. However, given the limitations of our algorithm in terms of the worst case
performance it is clear that the I'D algorithm is preferable to our method for learning the
target DFA from a structurally complete set of examples and membership queries.

It is of interest to see if a more efficient search strategy that guarantees a polynomial worst
case bound on the number of membership queries can be designed for our version space based
learning framework. This search could perhaps generate more informative queries or possibly
use the results of a polynomial number of queries posed simultaneously to speed up learning.
An extension of the proposed approach for learning regular tree and attributed grammars [Fu82]

also merits further investigation.

40

5 AN INCREMENTAL ALGORITHM FOR LEARNING DFA FROM
LABELED EXAMPLES AND MEMBERSHIP QUERIES

5.1 Introduction

In chapter 4 we studied a version space based approach for learning the target DFA from a
structurally complete set of examples and membership queries. Angluin’s /D algorithm presents
a framework for learning the target DFA from a live complete set of examples (see section 3.3.6)
and membership queries [Ang81]. In many practical learning scenarios, a structurally complete
set or a live complete set might not be available to the learner at the outset. Instead, a sequence
of labeled examples is provided intermittently and the learner is required to construct an
approximation of the target DFA based on the examples and the queries answered by the
teacher. In such scenarios, an online or incremental model of learning that is guaranteed to
eventually converge to the target DFA in the limit is of interest.

An incremental extension of the version space based learning algorithm of chapter 4 was
described in [PH96]. The algorithm assumes that positive examples needed to construct a
structurally complete set are intermittently presented to the learner. The learner constructs
an initial version space representation of the lattice from the set of positive examples Sg
available to it at the start. The version space is denoted by ©¢ = [So, Go]. So is structurally
complete with respect to a sub-automaton Ag of the target. Using an argument similar to
that in Theorem 4.1 it can be showed that ©g is guaranteed to contain a representation of Ag.
A bidirectional version space search strategy based on membership queries is used to search
the lattice for Ag. In order to guarantee that the representation of Ag is always implicitly
contained in Og, the modification of the sets Sy and Gy must be based on safe membership

queries as explained below. The search is continued until no further elimination of elements of

41

Oy is possible using safe queries. When an additional positive example is provided the current
version space 0; is extended using a technique called incremental version space merging [Hir90]
to give the modified version space ©;11. The set S;11 = S; U {s}, where s is the new positive
example provided to the learner, is guaranteed to be structurally complete with respect to
a sub-automaton A;y; of the target DFA. The incremental version space merging ensures
that ©;41 implicitly contains a representation of A;y;. The bidirectional search continues in
the augmented space ©;41 using safe queries. This alternate lattice expansion and candidate
elimination continues until a point when the set Sy is structurally complete with respect to
the target DFA. The current version space Oy is then searched by treating all queries as safe
queries (just as in the standard version space based algorithm).

The version space O; is guaranteed to contain a representation of a sub-automaton A; of
A. By definition, L(A4;) C L(A). A negative example of A is clearly also a negative example
of A;. However, the same is not true of a positive example of A. In order to ensure that
the representation of A; is not eliminated from ©;, the incremental algorithm requires that
a query string that is a positive example of A is deemed unsafe if its length is greater than
that of all examples in the set S;. Further, the algorithm requires that strings belonging
to the structurally complete set be provided in increasing order by length. Thus, given a
bound on the number of states of A, the learner can determine when the set of examples Sy, is
structurally complete with respect to A. At this point, the version space © is guaranteed to
contain a representation of A and no further lattice expansions would be required. All queries
can then be treated as safe queries. The algorithm is guaranteed to converge to the target.
However, it has the following drawbacks. The algorithm requires that the strings belonging to
the structurally complete set be provided in increasing order by length. The learner must be
given a bound on the number of states of the target DFA or must be explicitly signaled when
it has seen a structurally complete set of examples. Further, this algorithm shares the same
limitations in terms of worst case number of queries as the non-incremental one.

In this chapter we present an extension of ID to an incremental setting. The proposed

algorithm [71D (incremental /D) is a polynomial time interactive algorithm for learning the

42

Figure 5.1 Target DFA A.

target DFA from labeled examples and membership queries [PNH97]. [IID overcomes the
limitations of the version space based incremental algorithm in that it runs in polynomial time
and does not require either the knowledge of a bound on the number of states of the target
DFA or the presentation of examples in increasing order by length.

Section 5.2 briefly reviews the ID algorithm. The interested reader is referred to [Ang81]
for a complete description of the algorithm and its correctness proof. Section 5.3 describes I1D
together with its correctness proof and an analysis of its time and space complexities. Sec-
tion 5.4 concludes with a brief discussion of how I1D relates with other incremental algorithms

for learning the target DFA.

5.2 The ID Algorithm

In order to keep the discussion in this chapter self-contained we will briefly review some
pertinent definitions and the ID algorithm. Let A denote the target DFA. A live complete set
for A is a set of strings such that for every live state ¢; of A there is a string « in P such
that 6*(go, @) = ¢;. Thus, if we consider the DFA in Fig. 5.1 to be the target DFA A, then
P = {\ a,b,aa} is a live complete set for A. The set P' = P U {dy} represents all the states
of the target DFA including the dead state dp.

The function f: P’ x ¥ — ©* U {do} essentially represents the transitions going out of
each state of the target DIFA. By definition f(do, @) = dy which states that all transitions out of

the dead state must be self-loops. f(a, a) = aa specifies the destination state of a transition,

43

on a letter @ € X, out of the state represented by the string a. Thus, the set T =P U
{f(a,a)|(a,a) € P x Y} collectively represents the set of all states and the destination states
of each transition of the target DFA. Given a live complete set P = {, a, b, aa} corresponding
to A the set T = {do, \,a,b,aa,ab,ba,bb, aaa,aab}. The set T is defined as T = T/\{d.o}.

ID constructs a partition of the set 7" such that the elements of 7" that represent the same
state of A are grouped together in the same block of the partition. In the process a set of
distinguishing suffixes V' is constructed such that no two distinct states of A have the same
behavior on all strings in V' i.e., for any two distinct states ¢; and ¢; of A there exists a string
a € V such that §(¢;, @) € I’ and 6(q;,) ¢ F or vice-versa. When the set V' has i elements,
define function E; : T' —s 2V as follows Ei(do) = ¢ and E;(a) = {v;|lv; € V,0< j < t,av; €
L(A)}. Fi(a)is asubset of L(A),, the set of tails of the string avin L(A). Fig. 5.2 describes the
algorithm in detail. Step 1 performs the initialization. The set Ty represents a trivial partition
with all elements belonging to a single block. The first distinguishing suffix vy considered is A.
The function Fy which is computed in step 2 partitions 7" into two blocks, representing the
accepting and non-accepting states of A respectively. Step 3 refines the individual blocks of the
partition of 7" based on the behavior of the elements on the distinguishing suffixes vg, vy, ..., v;.
Intuitively, if two elements of T", say « and 3, have the same behavior on the current set V
(i.e., Fi(a) = E;(p)) then o and § appear to represent the same state of the target DIFA.
However, if the transitions out of the states represented by F;(«) and E;(8) on some letter
of the alphabet lead to different states (i.e., F;(f(«,a)) # F;(f(5,a)) for some a € ¥) then
clearly, a and 3 cannot correspond to the same state in the target DFA. A distinguishing suffix
v;4+1 is constructed to refine the partition of T' such that o and § appear in separate blocks
of the partition. Step 3 terminates when the set V' contains a distinguishing suffix for each

pair of elements in 7" that represent non-equivalent states of A. Step 4, finally constructs the

hypothesis DFA M.

44

Algorithm: ID

Input: A live complete set P and a teacher to answer membership queries.
Output: A DFA M equivalent to the target DFA A.

begin
1) /] Perform initialization
i=0,0=\V={\,T=PU{f(a,b) | (a,b) € Px X} and T' =T U {dy}
2) // Construct function Fy for vg = A
Eo(do) = &
Va € T pose the membership query “a € L(A)?”
if the teacher’s response is yes
then Fy(a) = {\}
else Fy(a) = ¢
end if
3) // Refine the partition of the set T’
while (Jo, 5 € P and b € T such that
Fi(a) = Fi(B) but Fi(f(a,b) £ F:(F(5,1)))
do
Let v € Ei(f(a, b)) ® E;(f(8,0))
Vig1 = by
V=VU{vptandi=i+1
Va € T pose the membership query “av; € L(A)?”
if the teacher’s response is yes
then F;(a) = E;_q(a) U {v;}
else F;(a) = F;_1(a)
end if
end while
4) // Construct the representation of the DFA M
The states of M are the sets E;(a), where « € T
The initial state go is the set E;(X)
The accepting states are the sets E;(«) where a € T and X € E;(«)
The transitions of M are defined as follows:
Vo€ P'
if Ei(a) =¢
then add self loops on the state F;(«) for all b € X
else Vb € ¥ set the transition §(£;(«a),b) = E;(f(a, b))
end if

end

Figure 5.2 Algorithm ID.

45

5.2.1 Example

We now demonstrate the use of ID to learn the target DFA in Fig. 5.1. P = {\,a,b,aa}isa
live complete set and 7" = {do, A\, a,b,aa,ab,ba,bb,aaa, aab}. Table 5.1 shows the computation
of E;(a) for the strings a € T". The leftmost column lists the elements « of the set 7". Each
successive column represents the function F; corresponding to the string v; (indicated in the

second row of the table).

Table 5.1 Execution of ID.

i 0 1 2 3
v; A b a aa
E(do) ¢ ¢ o) ¢
E(}) ¢ | {b} | {b} | {b,aa}
E(a) ¢ | ¢ |{a}| {a}
E®) | {A | {A [{A] A
Efaa) || {A} | {2} | {2} | {A aa}
E(ab) | ¢ | ¢ | ¢ ¢
E(ba) | ¢ | ¢ | ¢ ¢
E®d) || ¢ | & | ¢ ¢
Elaaa) | ¢ | ¢ |{a} | {a}
Elaab) | ¢ | ¢ | ¢ ¢

Note that the DFA returned by the procedure is exactly the DFA in Fig. 5.1. The number of

membership queries posed by the learner is at most O(|X|-N:|P|). Further, the time and space

complexities of the algorithm are polynomial in |X|, N, and |P| [Ang81].

5.3 IID - An Incremental Extension of ID

We now present an incremental version of the ID algorithm. As stated earlier, this algorithm
does not require that the live complete set of examples be available to the learner at the start.
Instead the learner is intermittently presented with labeled examples. The learner constructs
a model of the target DFA based on the examples it has seen and gradually refines it as new
examples become available. Our learning model assumes the availability of a teacher to answer
membership queries. Let M; denote the DFA that corresponds to the learner’s current model

after observing ¢ examples. Initially, Mp is a null automaton with only one state (the dead

46

state) and it rejects every string in X*. Clearly, every negative example encountered by the
learner at this point is consistent with My. Without loss of generality we assume that the
first example seen by the learner is a positive example. When the first positive example, «, is
seen My is modified to accept the positive example. With each additional observed example,
o, it is determined whether « is consistent with M; in which case My4+1 = M;. Otherwise
M, is suitably modified such that « is consistent with the resulting DFA, My4q. A detailed

description of the algorithm appears in Fig. 5.3.

5.3.1 Example

We now demonstrate how the incremental algorithm learns the target DFA of Fig. 5.1. The
learner starts with a model My equivalent to the null DFA accepting no strings. Suppose the
example (b, +) is encountered. The following actions are taken. %y = {A, b} and Py = {dg, \, b},
To = {X, a,b,ba,bb}, and T, = {dy, X, a, b, ba, bb}. The computation of the functions F; is shown

in Table 5.2. At this point the learner constructs a model M; of the target DFA (Fig. 5.4).

Table 5.2 Execution of IID (k = 0).

®
{b}
¢

——
o o > o o|>lo
—

{7
¢
¢

Suppose the next example observed by the learner is (a,—). Since, M; correctly re-
jects a, My = M; and the learner waits for additional examples. Let (aa,+) be the next
observed example. Since aa ¢ L(M;) the learner takes the following steps to update Mj.
Py = {\a,b,aa}, Pll = {do, A\, a,b,aa}, Ty = {\ a,b,aa,ab,ba,bb, aaa,aab}, and Tll = {do, A,
a,b,aa,ab, ba,bb, aaa, aab}. The function F; is extended to cover the new elements belonging
to T1\Tp. The resulting computation of the various F;’s is depicted in Table 5.3.

The revised model of the target DFA (Ms) is exactly the DFA we are trying to learn

47

Algorithm: ITD

Input: A stream of labeled examples and a teacher to answer membership queries.
Output: A DFA M; consistent with all ¢ examples observed by the learner.

begin

1) /] Perform initialization
i=0,k=0,t=0,Pr=¢,Tpr=0¢,V=0¢
Initialize M; to the null DFA

2) // Process the first positive example
Wait for a positive example (a,+)
Py = Pref(a) and Py = Py U {do}
To = PoU{f(e,b)|(a,b) € Py x X} and Ty = Ty U {do}
vo=Aand V = {vg}
Eo(do) = 6
Vo € Ty pose the membership query “a € L(A)

27

if the teacher’s response is yes
then Fy(a) = {A}
else Fy(a) = ¢
end if
3) // Refine the partition of the set T]; (step 3 of Fig. 5.2)
4) // Construct the current representation M, of the target DFA (step 4 of Fig. 5.2)
5) /] Process a new labeled example
Wait for a new example (a, c(a))
if o is consistent with M,
then
My = My
t=t+1
goto step 5
else
Pry1 = Py U Pref(a) and P];_I_l = Pry1 U{dp}
Tit1 =T U Pref(a) U{f(a,b)|(a,b) € (Pry1\FPr) X X} and Tl;-H = Try1 U{do}
Voo € Tiy1\T fill in the entries for E;(a) by posing membership queries:
Ei(a) = {v;|0 < j <i,av; € L(A)}
k=k+1
t=t+1
goto step 3
end if

end

Figure 5.3 Algorithm IID.

Figure 5.4 Model M, of the Target DFA.

Table 5.3 Execution of /D (k =1).

i 1 2 3
v; b a aa
E(do) ¢ ¢ ¢
E(A) | {6} | {6} | {b,aa}
E(@) | ¢ |{a} | {a}
E®) | A [{AF] A
E(ba) || ¢ | ¢ ¢
E@®b) || ¢ | ¢ ¢
E(aa) || {2} | {A} | {A aa}
E(ab) | ¢ | ¢ ¢
E(aaa) || ¢ |{a} | {a}
Elaab) | ¢ | ¢ ¢

(Fig. 5.1). Note also that at this time the set P is live complete with respect to the target
DFA.

5.3.2 Correctness Proof

The correctness of 11D is a direct consequence of the following two theorems.

Theorem 5.1 IID converges to a canonical representation of the target DFA when the set Py

includes a live complete set for the target as a subset.

Proof:
Consider an execution of ID given a live complete set P;. First we demonstrate that the

execution of ID can be made to track that of [/D in that the set V generated during the

49

execution of both the algorithms is the same and hence Yo € T} the values E;(a) are the same.
We prove this claim by induction.

Base Case:

Both ID and IID start with vg = A. At kK = 0, IID has the set Fy C P, available to it. Clearly,
for all strings o, 3 € Py such that Eo(a) = Eo(8) but Eo(f(a,b)) # Eo(f(5,b)) in the case
of IID it is also the case that the same strings o, 3 € P} for ID such that Ey(a) = Ey(3) but
FEo(f(a, b)) # Eo(f(8,b)). Assume that one such pair «, 3 is selected by both ID and IID. The
string v € Eo(f(a, b)) & Eo(f(8,b)) can only be A. Thus, the string vy = by is the same for
both the executions.

Induction Hypothesis:

Assume that after observing ¢ examples, at some value of £ (0 < k < [), when P, C P is
available to 1D, the sequence of strings vg,vy,...,v; and Ya € Tj the values F;(«) are the
same for the executions of both ID and IID.

Induction Proof:

We now show that the same string v;41 is the generated by both ID and [ID. Following the
reasoning presented in the base case, and given the induction hypothesis, we can state that
for all strings a, 8 € Py such that E;(a) = E;(3) but E;(f(a,b)) # E:(f(5,b)) in the case of
IID it is also the case that the same strings «, 8 € P, for ID such that F;(a) = E;(3) but
Ei(F(a,5)) # Ei(F(8,5).

Assume that one such pair «, 3 is selected by both executions. By the induction hypothesis
Ei(f(a,0)®E(f(5,b))is identical for both. Thus, given that the same string v € F;(f(a, b))®
E;(f(B,b)) is selected, the string v;41 = by is identical for both executions. When the live
complete set P is available to IID, Ya € T; the values of F;(«) are exactly the same as the
corresponding values of F;(«) for ID.

Given a live complete set of examples, ID outputs a canonical representation of the target
DFA A [Ang81]. From above we know that at £ = [the current model (M;) of the target
automaton maintained by I1D is identical to one arrived at by ID. Thus, we have proved that

IID converges to a canonical representation of the target DFA. |

50

Theorem 5.2 At any time during the execution of 11D, all the t examples observed by the

learner are consistent with My, the current representation of the target.

Proof:

Consider an example « that is not consistent with M;. IID modifies M; and constructs M;4q
a new representation of the target. From step 5 in Fig. 5.3 we see that o € Py4q and hence
a € Tyy1. E; is extended to all elements of Tp41\7%x. Thus, A € E;(a) if o is a positive
example of A and A € F;(«) if a is a negative example of A. My is constructed from E; for
some j > 1. Since, I;(a) C Ej(a) it is clear that a will be accepted (rejected) by My if it
a positive (negative) example of A. We now show that all strings u that were consistent with
M, are also consistent with M;44.

The set {F;(8) | V8 € Tk} represents the set of states of M; as shown in step 4 of the
algorithm (see Fig. 5.3). Thus, for any string u € ¥* and a state ¢ of M; there is a corresponding
string 3 € Ty such that §*(qo,t) = 0*(qo,3) = q. We say that p is consistent with M,
if either p is a positive example of A and A € F;(§) or u is a negative example of A and
A ¢ F;(8). Now assume that the algorithm observes a string o that is not consistent with
M;. Ty is modified to T4y and the function F; is extended to the elements of Tyyi\T%.
The algorithm then proceeds to refine the partition of Tyy; by generating the distinguishing
suffixes v;41,viy2,...,v; and constructing the functions E;yq, Fito,..., F;. Consider that
there exists a string v € Ty4q such that Ey(8) = Ei(y) but Eipq(8) # Eigi(y) for some [
where i <1 < j—1. Clearly, Ei41(8) @ Ei+1(v) = vig1. Further, vj41 # X because vg = A is
already chosen as the first distinguishing suffix. Thus, A € Fi411(8) & Ei+1(7). The string u
that originally corresponded to the state represented by 8 would now correspond either to the
state represented by (3 or to the state represented by +. Further A will either belong to both
FEi41(B) and FEiyq(7y) or to neither depending on whether A was a member of both Fj(3) and
Ei(v) or not. Continuing with the argument we can see that there is some string k € Tjy1
where k = 8 or E;(8) & E;(k) C {vi41,Vit2,...,v;} such that p corresponds to s in that
(qo,) = 0(qo, k) = ¢ for some state ¢ in M;yq. Further, since A € E;(k) iff A € E;(8) or

equivalently A € E;(k) iff A € F;(8) we see that p is consistent with M;yq,. This proves that

51

all strings that were consistent with M; continue to be consistent with M; ;.]

5.3.3 Complexity Analysis

Assume that at some k = [the set P} includes a live complete set for the target DFA A as
a subset. FFrom the correctness proof of the algorithm, the current representation of the target
M; is equivalent to the target A.

The size of T is at most |X| - |P| + 1. Also, the size of V' is no more than N (the
number of states of A). Thus, the total number of membership queries posed by the learner
is O(|X| - |P| - N). Searching for a pair of strings «, § to distinguish two states in the current
representation of the target takes time that is O(T?). Thus, the incremental algorithm runs
in time polynomial in N, |X|, and |FP|. Since the size of 1} is at most |X|- ||+ 1 and the size

of V is no more than N the space complexity of the algorithm is O(|X] - |F] - N).

5.4 Discussion

Incremental or online learning algorithms play an important role in situations where all the
training examples are not available to the learner at the start. We have proposed an incremental
version of the ID algorithm for identifying the target DFA from a set of labeled examples and
membership queries. The algorithm is guaranteed to converge to the target DFA and has
polynomial time and space complexities. One practical application of incremental learning of
DFA is in modeling the behavior of intelligent autonomous agents [CM96]. The behavior of
agents such as robots can be modeled using a DFA. Incremental approaches to learning DFA
provide these agents with a framework to learn from experience in unfamiliar environments.
Given its efficiency and guaranteed consistency with all examples, our algorithm can provide
an effective tool for agent learning, especially in an interactive setting.

The L* algorithm for learning the target DFA is based on membership and equivalence
queries [Ang87]. The equivalence queries can be replaced by a polynomial number of calls
to an oracle that supplies labeled examples to give an efficient PAC algorithm for learning

DFA from labeled examples and membership queries. The I1D algorithm differs from L* in

52

the following respects: IID is guaranteed to learn the target DFA exactly and it uses only
labeled examples and membership queries whereas L* makes use of equivalence queries in
addition to labeled examples and membership queries to guarantee exact learning of the target
DFA. In contrast, the PAC version of L* only guarantees that the target would be learned
probabilistically i.e., with a very high probability, the DFA output by the algorithm would
make very low error (when compared to the target).

Two prominent incremental algorithms for learning DFA are due to Porat and Feld-
man [PF91] and Dupont [Dup96a] respectively. Porat and Feldman’s algorithm learns the
target DI'A in the limit from a complete ordered sample. A complete ordered sample includes
all the strings in ¥* in strict lexicographic order. The algorithm uses only finite working stor-
age. At each step the algorithm tests the next labeled example for consistency with its current
hypothesis. The current hypothesis is modified if necessary to ensure that it is consistent with
the example. Each modification of the hypothesis requires a consistency check with all the
previous examples seen by the algorithm. The algorithm is guaranteed to converge to the
target DFA in the limit.

The regular positive and negative inference (RPNI) is a polynomial time algorithm for
learning a DFA that is consistent with a given set of positive and negative examples [OG92]
(see section 6.3 for more information). The algorithm maps the set of positive examples to
a lattice of finite state automata and uses the information from the set of negative examples
to conduct an ordered search through the lattice. The algorithm is guaranteed to return
a DFA that is consistent with the given set of examples. Further, if the set of examples
provided to the learner includes a characteristic set of examples (see section 3.3.7) as a subset
then the algorithm is guaranteed to return a canonical representation of the target DFA.
RPNI2 extends the RPNI algorithm to an incremental setting where the characteristic set
of examples might not be available to the learner at the start [Dup96a]. The operation of
RPNI2 is summarized as follows: The initially available set of positive examples is mapped to
a lattice of FSA. An ordered search of the lattice is conducted using the initial set of negative

examples. The learner maintains a current hypothesis that is consistent with all the examples

53

it has observed thus far. The lattice is incrementally extended when a new positive example
becomes available. A new curent hypothesis is then found in the augmented search space.
New negative examples require a modification of the current hypothesis to ensure that it is
consistent with the example. Further, a consistency check is required to make sure that the
revised hypothesis stays consistent with all previously seen negative examples. The algorithm
runs in time that is polynomial in the sum of lengths of the positive and negative examples
and is guaranteed to converge to the target DFA in the limit when the set of examples seen
by the learner includes a characteristic set corresponding to the target DFA as a subset.

11D differs from Porat and Feldman’s algorithm and RPNI2 mainly in the fact that IID
assumes the availability of a knowledgeable teacher to answer membership queries whereas
the latter two algorithms use only labeled examples. Unlike RPNI2, IID does not require
the learner to store all the examples. Only those examples that are inconsistent with the
current representation of the target are required to be stored by the learner. Unlike Porat
and Feldman’s algorithm, ITD does not require any specific ordering of the labeled examples.
Furthermore, the incremental modification of the learner’s representation of the target DFA is
guaranteed to be consistent with all the examples observed by the learner until then and no
explicit consistency check is required.

The learner’s reliance on the teacher to provide accurate responses to membership queries
poses a potential limitation in applications where a reliable teacher is not available. We are
exploring the possibility of learning in an environment where the learner does not have access
to a teacher. The algorithms due to Dupont [Dup96a] and Porat & Feldman [PF91] operate
in this framework. Some open problems include whether the limitations of these algorithms
(e.g., the need to store all the examples, the requirement of complete lexicographic ordering
of examples, etc.) can be overcome without sacrificing efficiency and guaranteed convergence
to the target. Porat and Feldman proved a strong negative result stating that there exists no
algorithm which operating with finite working storage can incrementally learn the target DFA
from an arbitrary presentation. In this context, it is of interest to explore alternative models of

learning that relax the convergence criterion (for example, allow approximate learning of the

54

target within a given error bound), provide for some additional hints to the learning algorithm
(like a bound on the number of states of the target DIFA), or include a helpful teacher that

carefully guides the learner (perhaps by providing simple examples first).

55

6 LEARNING DFA FROM SIMPLE EXAMPLES

6.1 Introduction

As we have seen thus far, exact learning of the target DFA from an arbitrary set of la-
beled examples is a hard problem. This problem is made more tractable when the learner is
provided with examples that satisfy certain properties such as structural completeness or live
completeness and possibly is allowed access to a knowledgeable teacher capable of answering
queries. In chapter 5 we addressed incremental methods for learning the target DFA which
are extremely useful in scenarios where the entire training set might not be available to the
learner at the start. Incremental algorithms are guaranteed to converge to the target DFA in
the limit. However, these approaches have certain restrictions. RPNI2 requires the learner to
store all the examples [Dup96a], Porat and Feldman’s algorithm mandates a complete ordered
presentation of the labeled examples [PF91], and the IID algorithm described in chapter 5 is
based on the availability of a knowledgeable teacher to answer membership queries [PNH97].

It is thus natural to ask whether DIFA can be learned approximately. Valiant’s distribution-
independent model of learning, also called the probably approzimately correct (PAC) learning
model [Val84], is a widely used framework for approximate learning of concept classes. PAC
learning models natural learning in that it is fast (learning takes place in polynomial time)
and it suffices to learn approximately [KV94]. When adapted to the problem of learning DFA,
the goal of a PAC learning algorithm is to obtain in polynomial time, with high probability,
a DFA that is approximately correct when compared to the target DFA. We define PAC
learning of DFA more formally in section 6.2. Angluin’s L* algorithm [Ang87] that learns DFA
in polynomial time using membership and equivalence queries can be recast under the PAC

framework to learn by posing membership queries alone. However, the approximate learnability

56

of DFA from labeled examples alone remains a hard problem [PW89, KV89].

The PAC model’s requirement of learnability under all conceivable distributions is often
considered too stringent. Pitt’s seminal paper identified the following open research problem:
“Are DFA’s PAC-identifiable if examples are drawn from the uniform distribution, or some
other known simple distribution?” [Pit89]. Several efforts have been made to study the learn-
ability of concept classes under restricted classes of distributions. Li and Vitanyi proposed a
model for PAC learning with simple examples called the simple PAC model wherein the class
of distributions is restricted to simple distributions (see section 6.4). Denis et al proposed
a model of learning from simple examples where a knowledgeable teacher might choose the
examples based on the knowledge of the target concept [DDG96]. This model is known as
the PACS learning model. In this chapter, we present a method for efficient PAC learning of
DFA from simple examples thereby answering Pitt’s open research question in the affirmative.
More specifically, we will prove that the class of simple DFA (see section 6.4) is learnable under
the simple PAC model and the entire class of DFFA is learnable under the PACS model. Fur-
ther, we demonstrate how the model of learning from simple examples naturally extends the
model of learning concepts from representative examples [Gol78] and the polynomial teachability
model [GM93] to a probabilistic framework.

This chapter is organized as follows: Section 6.2 briefly introduces some of the concepts that
are used in the results described in this chapter. This includes a discussion of the PAC learning
model, Kolmogorov complexity, and the universal distribution. Section 6.3 reviews the RPNI
algorithm for learning DFA. Section 6.4 discusses the PAC learnability of the class of simple
DFA under the simple PAC learning model. Section 6.5 demonstrates the PAC learnability of
the entire class of DFA under the PACS learning model. Section 6.6 analyzes the PACS model
in relation with other models for concept learning. Section 6.7 concludes with a summary of

our contributions and discussion of several intersting directions for future research.

57

6.2 Preliminaries

In this section we present a brief overview of some of the important concepts that are
used in the results described later in this chapter. Specifically, we discuss PAC learning in the

context of learning DFA, Kolmogorov complexity, and the universal distribution.

6.2.1 PAC Learning of DFA

Let X denote the sample space defined as the set of all strings 3*. Let x C X’ denote a con-
cept. For our purpose, z is a regular language. We identify the concept with the corresponding
DFA and denote the class of all DFA as the concept class C. The representation R that assigns
a name to each DFA in C is defined as a function R : C — {0,1}*. R is the set of standard
encodings of the DFA in C (see section 3.3.1). Assume that there is an unknown and arbitrary
but fixed distribution D according to which the examples of the target concept are drawn. In
the context of learning DFA, D is restricted to a probability distribution on strings of ¥* of

length at most m.

Definition 6.1 (due to [Pit89)])

DFAs are PAC-identifiable iff there exists a (possibly randomized) algorithm A such that on
input of any parameters ¢ and &, for any DFA M of size N, for any number m, and for any
probability distribution D on strings of X* of length at most m, if A obtains labeled examples
of M generated according to the distribution D, then A produces a DFA M’ such that with
probability at least 1 — 6, the probability (with respect to distribution D) of the set {a | a €
L(M)@® L(M')} is at most e. The run time of A (and hence the number of randomly generated

examples obtained by A) is required to be polynomial in N, m, 1/¢, 1/6, and |X|.

If the learning algorithm A produces a DFA M’ such that with probability at least 1 — 4,
M’ is equivalent to M i.e., the probability (with respect to distribution D) of the set {a | o €
L(M) @ L(M')} is exactly 0 then A is said to be a probably exact learning algorithm for the

class of DFA and the class of DFA is said to be probably exactly learnable by the algorithm A.

58

6.2.2 Kolmogorov Complexity

Note that the definition of PAC learning requires that the concept class (in this case
the class of DFA) must be learnable under any arbitrary (but fixed) probability distribution.
This requirement is often considered too stringent in practical learning scenarios where it is
not unreasonable to assume that a learner is first provided with simple and representative
examples of the target concept. Intuitively, when we teach a child the rules of multiplication
we are more likely to first give simple examples like 3 x 4 than examples like 1377 x 428. A
representative set of examples is one that would enable the learner to identify the target concept
exactly. For example, the characteristic set of a DFA would constitute a suitable representative
set. The question now is whether we can formalize what simple examples mean. Kolmogorov
complexity provides a machine independent notion of simplicity of objects. Intuitively, the
Kolmogorov complexity of an object (represented by a binary string «) is the length of the
shortest binary program that computes a. Objects that have regularity in their structure
(i.e., objects that can be easily compressed) have low Kolmogorov complexity. For example,
consider the string s; = 010101...01 = (01)°°°. On a particular machine M, a program to
compute this string would be “Print 01 500 times”. On the other hand consider a totally
random string s; = 110011010...00111 where |s3| = 500. Unlike sy, it is not possible to
compress the string s; which means that a program to compute s; on M would be “Print
1100111010000 ... 00111 i.e., the program would have to explicitly specify the string s;. The
length of the program that computes s; is shorter than that of the program that computes s;.
Thus, we could argue that s; has lower Kolmogorov complexity than sy with respect to the
machine M.

We will consider the prefiz version of the Kolmogorov complexity that is measured with
respect to prefix Turing machines and denoted by K. Consider a prefix Turing machine that
implements the partial recursive function ¢ : {0, 1}* partil {0,1}*. For any string o € {0, 1}*,
the Kolmogorov complexity of a relative to ¢ is defined as Ky(a) = min{|n| | ¢(7) = a} where
7 € {0,1}"is a program input to the Turing machine. Prefix Turing machines can be effectively

enumerated and there exists a Universal Turing Machine (U) capable of simulating every prefix

59

Turing machine. Assume that the universal Turing machine implements the partial function
1. The Optimality Theorem for Kolmogorov Complexity guarantees that for any prefix Turing
machine ¢ there exists a constant ¢4 such that for any string o, Ky(a) < Ky(a) + cy. Note
that we use the name of the Turing Machine (say M) and the partial function it implements
(say ¢) interchangeably i.e., Ky(a) = Kpy(a). Further, by the Invariance Theorem it can be
shown that for any two universal Turing machines ¢; and 1t there is a constant n € A/ (where
N is the set of natural numbers) such that for all strings «, |Ky, (o) — Ky,(«)| < n. Thus,
we can fix a single universal Turing machine U and denote K(a) = Ky(a). Note that there
exists a Turing machine that computes the identity function x : {0,1}* — {0,1}* where
X(o) = a Va. Thus, it can be shown that the Kolmogorov complexity of an object is bounded
by its length i.e., K(a) < |a| 4+ K(]a|) + n where 7 is a constant independent of «.

Suppose that some additional information in the form of a string § is available to the
Turing machine ¢. The conditional Kolmogorov complexity of any object a given f is defined
as Ky(a | B) = min{|r| | ¢({m,)) = a} where 7 € {0,1}* is a program and (z,y) is
a standard pairing function'. Note that the conditional Kolmogorov complexity does not
charge for the extra information § that is available to ¢ along with the program =. Fixing
a single universal Turing machine U we denote the conditional Kolmogorov complexity of o
by K(«a|8) = Ky(a|f). It can be shown that K(a|3) < K(a)+ n where 7 is a constant

independent of a.

6.2.3 Universal Distribution

The set of programs for a string « relative to a Turing machine M is defined as PROG (o) =
{m | M(7) = a}. The algorithmic probability of « relative to M is defined as mps(a) =
Pr(PROG). The algorithmic probability of a with respect to the universal Turing ma-
chine U is denoted as my(a) = m(a). m is known as the Solomonoff-Levin distribution.
It is the universal enumerable probability distribution, in that, it multiplicatively dominates

all enumerable probability distributions. Thus, for any enumerable probability distribution

"Define {(z,y) = bd(2)0ly where bd is the bit doubling function defined as bd(0) = 00, bd(1) = 11, and
bd(azr) = aabd(z),a € {0, 1}.

60

P there is a constant ¢ € A such that for all strings a, ¢ m(a) > P(a). The Coding
Theorem due independently to Schnorr, Levin, and Chaitin [LV93, LV97] states that Jn €
N such that Yo mps(a) < 27=K(2) [ntuitively this means that if there are several pro-
grams for a string o on some machine M then there is a short program for a on the uni-
versal Turning machine (i.e., @ has a low Kolmogorov complexity). By optimality of m it
can be shown that: 35 € A, such that Vo € {0,1}*, 27K < m(a) < 277K, We see
that the universal distribution m assigns higher probability to simple objects (objects with
low Kolmogorov complexity). Given a string r € ¥* the universal distribution based on
the knowledge of r, m,, is defined as is defined as m, (o) = /\TQ_K(QV) where A, is a con-
stant such that A, 3", 5. 2750 = 1 (ie., A, > 1) [DDGY6]. Further, m, is such that
2~ K(lr) < m,(a) < 277K () where 5 is a constant.

The interested reader is referred to [LV93, LV97] for a thorough treatment of Kolmogorov

complexity, universal distribution, and related topics.

6.3 The RPNI Algorithm

The regular positive and negative inference (RPNI) algorithm [OG92] is a polynomial time
algorithm for identification of a DFA consistent with a given set S = S* U S™. Further, if the
sample is a characteristic set for the target DA then the algorithm is guaranteed to return a
canonical representation of the target DFA. Our description of the RPNI algorithm is based
on the explanation given in [Dup96a].

A labeled sample S = ST U S~ is provided as input to the algorithm. It constructs a prefix
tree automaton PTA(ST) and numbers its states in the standard order (see section 3.3.2).
Then it performs an ordered search in the space of partitions of the set of states of PTA(S™T)
under the control of the set of negative examples S~. The partition, mg, corresponding to
the automaton PTA(SY) itself is {{0},{1},...,{N — 1}} where N is the number of states
of the PTA. Note that N < |[S¥*|| where |[ST]|| is the sum of the lengths of the strings in
S*. My, = PI'A(S™T) is consistent with all the training examples and is treated as the initial

hypothesis. The current hypothesis is is denoted by M, and the corresponding partition is

61

denoted by «.

The algorithm is outlined in Fig. 6.1. The nested for loop refines the partition = by
merging the states of PTA(S™) in order. At each step, a partition 7 is obtained from the
partition m by merging the two blocks that contain the states ¢ and j respectively. The
function derive obtains the quotient automaton M3, corresponding to the partition 7. M;
might be a NFA in which case the function deterministic_merge determinizes it by recursively
merging the states that cause non-determinism. For example, if ¢;, ¢;, and g are states of
M such that for some symbol a € X, 6(¢;, @) = {¢;, ¢} then the states ¢; and ¢; are merged
together. This recursive merging of states can go on for at most N — 1 steps and the resulting
automaton Mj is guaranteed to be a DFA [Dup96a]. Note that since # < 7 we know by the
grammar covers relation that if M5 accepts a negative example in S~ then so would M;. The
function, consistent(Mz,S™) returns True if M; is consistent with all examples in S~ and
False otherwise. If a partition 7 is found such that the corresponding DFA M; is consistent
with S~ then M; replaces M, as the current hypothesis.

Let ||ST|| and ||S™]|| denote the sums of the lengths of examples in S* and S~ respectively.
PTA(St) has O(||ST]||) states. The nested for loop of the algorithm performs O(]|S*]]?)
state merges. Further, each time two blocks of the partition = are merged, the routine
deterministic_merge in the worst case would cause O(||ST||) state mergings and the func-
tion consistent that checks for the consistency of the derived DFA with the negative exam-
ples would incur a cost of O(||S™||). Hence the time complexity of the RPNI algorithm is
O((IS* 1+ 1151 - IS,

Example

We demonstrate the execution of the RPNI algorithm on the task of learning the DFA
in Fig. 3.1. Note that for convenience we have shown the target DFA in Fig. 6.2 without
the dead state dy and its associated transitions. Assume that a sample S = ST U .S~ where

St = {b,aa,aaaa} and S~ = {A, a, aaa, baa}. It can be easily verified that S is a characteristic

sample for the target DFA (see section 3.3.7). The FSA M = PT A(S™) is depicted in Fig. 6.3

62

Algorithm RPNI

Input: A sample S=STUS~
Output: A DFA compatible with S

begin
// Initialization
m=m={{0},{1},...,{N —1}}
M, = PTA(S™)
// Perform state merging
fori=1to N -1
forj=0toi—1
/] Merge the block of © containing state i with the block containing state j
= 7\{B(i,), BU,)} U {B(i, ™) U BG, 7))
// Obtain the quotient automaton Mz
M5 = derive(M, 7)
// Determinize the quotient automaton (if necessary) by state merging
7 = determistic_merge(M3)
/] Does M reject all strings in S™%
if consistent(M;,S™)
then
// Treat M; as the current hypothesis
M, = M;
T=7
break
end if
end for
end for
return M,
end

Figure 6.1 RPNI Algorithm.

63

Figure 6.2 Target DFA A.

where the states are numbered in the standard order. The initial partition is 7 = 7y =

{103, {1}, 423, {3}, {4}, {5} }-

@0)
b

Figure 6.3 Prefix Tree Automaton.

The algorithm attempts to merge the blocks containing states 1 and 0 of the partition
7w. The quotient FSA M; and the FSA M; obtained after invoking deterministic_merge are
shown in Fig. 6.4. The DFA M; accepts the negative example A € S~. Thus, the current

partition m remains unchanged.

a
@)@ @
b

Figure 6.4 M5 Obtained by Fusing Blocks Containing the States 1 and 0
of m and the Corresponding M;.

64

Next the algorithm merges the blocks containing states 2 and 0 of the partition 7. The quo-
tient FSA M; is depicted in Fig. 6.5. Since M is a DFA| the procedure deterministic_merge
returns the same automaton i.e., Mz = Mz. M; accepts the negative example A € S~ and

hence the partition © remains unchanged.

&e@ 0@

Figure 6.5 M5 (same as M;) Obtained by Fusing Blocks Containing the
States 2 and 0 of 7.

Table 6.1 lists the different partitions & obtained by fusing the blocks of g, the partitions
7 obtained by deterministicmerge of 7, and the negative example (belonging to S7), if any,
that is accepted by the quotient FSA M. The partitions marked x denote the partition 7 for
which M, is consistent with all examples in S~ and hence is the current hypothesis. It is easy
to see that the DFA corresponding to the partition = = {{0}, {1,4},{2},{3,5}} is exactly the

target DFA we are trying to learn (Fig. 6.2).

Table 6.1 Sample Run of the RPNI Algorithm.

Partition 7 Partition 7 Negative Example

{{0, 1}, {2}, {3}, {4}, {5}} {{0,1,3,4,5},{2}} a
{{0, 2}, {1}, {3}, {4}, {5}} | {{0,2},{1},{3}, {4}, {5}} A
{{0}, {1, 2}, {3}, {4}, {5} } | {{0},{1,2},{3}, {4}, {5}} a
{{0, 3}, {1}, {2}, {4}, {5}} | {{0,3},{1,4}, {2}, {5}} A
{0}, {13}, {2}, {4}, {5}} | {{0},{1,3,4,5},{2}} a
{0}, {1},{2,3}, {4}, {5} } | {{0}, {1}, {2, 3}, {4}, {5}} baa
{04}, {1}, {2}, {3}, {5}} | {{0,4},{1,5}, {2}, {3}} a
{0}, {1, 4}, {2}, {3}, {5}} | {{0}, {1, 4}, {2}, {3,5}}" —

{{0,3,5},{1,4},{2}} {{0,3,5},{1,4},{2}} A

{{03},{1,3,4,5},{2}} {{03},{1,3,4,5},{2}} a
{0}, {1,4},{2,3,5}} {03}, {1,4},{2,3,5}} baa
{10}, {1,4}, {2}, {3,5}} | {{0},{1,4},{2},{3,5}}" —
{{0},{1,3,4,5},{2}} {{0},{1,3,4,5},{2}} a

65

6.4 Learning Simple DFA under the Simple PAC model

Li and Vitanyi proposed the simple PAC learning model where the class of probability
distributions is restricted to simple distributions [LV91]. A distribution is simple if it is multi-
plicatively dominated by some enumerable distribution. All computable distributions including
the distributions that we commonly use in statistics such as the uniform distribution, normal
distribution, geometric distribution, and Poisson distribution are simple. Simple distributions
thus include a broad range of distributions. Further, the simple distribution independent learn-
ing theorem due to Li and Vitanyi says that that a concept class is learnable under universal
distribution m iff it is learnable under the entire class of simple distributions provided the
training examples are drawn according to the universal distribution [LV91]. Thus, the simple
PAC learning model is sufficiently general. Concept classes such as log n-term DNF and simple
k-reversible DFA are learnable under the simple PAC model whereas their PAC learnability in
the standard sense is unknown [LV91]. We show that the class of simple DFA is polynomially
learnable under the simple PAC learning model.

A DFA with low Kolmogorov complexity is called a simple DFA. More specifically, a DFA
A with N states and a standard encoding (or canonical representation) r is simple if K(A) =
O(lg N). For example, a DFA which accepts all strings of length N is a simple DFA. Note
however that this DFFA contains a path for every string of length N and hence it has a path of
Kolmogorov complexity N. In general, simple DFA might actually have very random paths.
We saw in section 6.2.2 that a natural learning scenario would typically involve learning from
a simple and representative set of examples for the target concept. We adopt Kolmogorov
complexity as a measure of simplicity and define simple examples as those with low Kolmogorov
complexity i.e., with Kolmogorov complexity O(lg N). Further, a characteristic set for the DFA
A can be treated as its representative set.

We demonstrate that for every simple DFA there exists a characteristic set of simple ex-

amples S..

Lemma 6.1 For any N state simple DFA (with Kolmogorov complexity O(lg N)) there exists

a characteristic set of simple examples S. such that the length of each string in this set is at

66

most 2N — 1.

Proof:
Consider the following enumeration of a characteristic set of examples for a DFA A = (Q, 4,

¥, qo, F) with N states?.

1. Fix an enumeration of the shortest paths (in standard order) from the state g to each
state in @) except the dead state. This is the set of short prefixes of A. There are at most

N such paths and each path is of length at most N — 1.

2. Fix an enumeration of paths that includes each path identified above and its extension
by each letter of the alphabet ¥. From the paths just enumerated retain only those that
do not lead to a dead state of A. This represents the kernel of A. There are at most

N(|¥] + 1) such paths and each path is of length at most N.
3. Let the characteristic set be denoted by S. =S+ U S .

(a) For each string « identified in step 2 above, determine the first suffix § in the
standard enumeration of strings such that af € L(A). Since |a| < N, and 3 is the
shortest suffix in the standard order it is clear that |af| < 2N — 1. Each such af

is a member of St.

(b) For each pair of strings (a,) in order where « is a string identified in step 1, 5 is a
string identified in step 2, and a and f lead to different states of A, determine the
first suffix v in the standard enumeration of strings such that ay € L(A) and 3v ¢
L(A) or vice versa. Since |a] < N —1, || < N, and 7 is the shortest distinguishing
suffix for the states represented by a and 3 it is clear that |avy|,|By| < 2N —1. The
accepted string from among ay and (v is a member of ST and the rejected string

is a member of 5.

Trivial upper bounds on the sizes of SF and S; are [SH| < N%(|Z] + 1) + N(]2)),
|S7| < N%(JX|+1) = N. Thus, |S.| = O(N?). Further, the length of each string in S, is

less than 2N — 1.

2This enumeration strategy applies to any DFA and is not restricted to simple DFA alone.

67

The strings in S, can be ordered in some way such that individual strings are identified by an
index of length at most lg(3|X|N?) bits. There exists a Turing machine M that implements the
above algorithm for constructing the set S.. M can take as input an encoding of a simple DFA
of length O(lg N) bits and an index of length lg(3]|3|N?) bits and output the corresponding

string « belonging to S.. Thus, Yo € S,

K(a) < kilgN+1g(3|2|N?)
I((OJ) S kl lg N + kz 1gN

= O(lgN) (6.1)
This proves the lemma. O

Lemma 6.2 Suppose a sample S is drawn according tom. For0 < é < 1, if |S| = O(Nklg(%))

then with probability greater than 1 — &, S, C S where k is a constant.

Proof:
From lemma 6.1 we know that Yo € S., K(a) = O(lgN). Further, |S.| = O(N?%). By
definition, m(a) > 2-K(2) Thus, m(a) > 27118V o equivalently m(a) > N~ where & is

a constant.

Pr(a € S, is not sampled in one random draw) < (1 - N~")
Pr(o € S, is not sampled in |S| random draws) < (1 — N~F1)lsl
Pr(some a € S, is not sampled in |S| random draws) < [S.|(1— N~F1)/5l

kaN?(1 — N~F)IS]

IA

since |S.| = O(N?)

Pr(S.Z S) < kyN%(1— N~F)lsl
We want this probability to be less than §.

koN2(1— N~FISE < 5

T

kyN2(e=N7")ISI

INA

dsincel —z <e”

68

In(ky) + In(N?) — NS < 1In(é)
S| > N’“(ln(%)—kln(l@g)—|—1n(N2))
= O(NMIg(5))

1
= O(Nklg(g)) where £ replaces k;

Thus, Pr(S. C S) >1-34. O

We now prove that the class of simple DFA is polynomially learnable under m.

Theorem 6.1 For all N, the class CSN of simple DFA whose canonical representations have

at most N states is probably exactly learnable under the simple PAC model.

Proof:

Let A be a simple DFA with at most N states. Let S. be a characteristic sample of A
enumerated as described in lemma 6.1 above. Recall, that the examples in S, are simple (i.e.,
each example has Kolmogorov complexity O(lg N)). Now consider the algorithm 4, in Fig. 6.6

that draws a sample S with the following properties.

1. § = STUS™ is a set of positive and negative examples corresponding to the target DFA
A.

2. The examples in S are drawn at random according to the distribution m.
3. [S|=O(N*lg(3)).

Lemma 6.1 showed that for every simple DFA A there exists a characteristic set of simple
examples S. where the length of each example in S, is < 2N — 1. Lemma 6.2 showed that if a
labeled sample S of size O(N*Ig(%+)) is randomly drawn according to m then with probability
greater than 1 -4, S, C S. The RPNI algorithm is guaranteed to return a canonical represen-
tation of the target DFA A if the set of examples S provided is a superset of a characteristic
set S.. Since the size of S is polynomial in N and 1/§ and the length of each string in S is
restricted to 2N — 1, the RPNI algorithm, and thus the algorithm 4; can be implemented

to run in time polynomial in N and 1/§. Thus, with probability greater than 1 — §, A; is

69

Algorithm A;

Input: N,0<§<1
Output: A DFA M

begin
Randomly draw a labeled sample S according to m
Retain only those examples in S that have length at most 2V — 1
M = RPNI(S)

return M

end

Figure 6.6 A Probably Exact Algorithm for Learning Simple DFA.

guaranteed to return a canonical representation of the target DFA A. This proves that the

<N

class of simple DFA whose canonical representations have at most N states is exactly

learnable with probability greater than 1 — § under the simple PAC learning model. a

6.5 Learning DFA under the PACS model

In section 6.4 we proved that the class of simple DFA is learnable under the simple PAC
model where the underlying distribution is restricted to the universal distribution m. Denis et
al proposed the PACS learning model for learning from simple examples where a teacher might
use knowledge of the target concept in selecting representative examples [DDG96]. Under this
model, examples with low conditional Kolmogorov complexity given a representation r of the
target concept are called simple examples. Specifically, for a concept with representation r,
the set ST, ={a| K(a|r) < plg(|r])} (where p is a constant) is the set of simple examples for

r

sim rep 15 Used to denote a set of simple and representative examples of

the concept. Further, S
r. The PACS model restricts the underlying distribution to m,. Formally, the probability of
drawing an example « for a target concept with representation r is given as m, (o) = A2~ Klalr)
where A, is a constant. Representative examples for the target concept are those that enable the
learner to exactly learn the target. As explained earlier, the characteristic set corresponding

to a DFA can be treated as a representative set for the DFA. The Occam’s Razor theorem

proved by Denis et al states that if there exists a representative set of simple examples for each

70

concept in a concept class then the concept class is PACS learnable [DDG96].
We now demonstrate that the class of DFA is efficiently learnable under the PACS model.

Lemma 6.3 proves that for any DFA A with standard encoding r there exists a characteristic

r

set of simple examples S¢,,, ..

Lemma 6.3 For any N state DFA with standard encoding r (|r| = O(N Ig(N))), there ezists
a characteristic set of simple examples (denoted by S’) such that each string of this set

stm,rep

is of length at most 2N — 1.

Proof:

Given a DFA A = (Q,4,%, qo, I'), it is possible to enumerate a characteristic set of examples
S, for A as described in lemma 6.1 such that |S.| = O(N?) and each example of S, is of length
at most 2N — 1. Individual strings in S. can be identified by specifying an index of length at
most Ig(3]|%|N?) bits. There exists a Turing machine M that implements the above algorithm
for constructing the set S.. Given the knowledge of the target concept r, M can take as input

an index of length lg(3|3|N?) bits and output the corresponding string belonging to S.. Thus

Ya € S,
K(alr) < lg(3|%|N?)
< plg(|r]) where u is a constant
We define the set S. to be the characteristic set of simple examples Sg,, . ., for the DFA A.
This proves the lemma. O

Lemma 6.4 (Due to [DDGI6])
Suppose that a sample S is drawn according to m,. For an integer | > |r|, and 0 < § < 1, if

|S| = O(l“lg(%)) then with probability greater than 1 — 6§, ST. C S.

stm
Proof:

Claim 6.1 YVa € Si; , m,(a) > [7#

stm)

71

2—]&"(047“)

v

m, (o)

2—#1g|7’|

vV
=
|
=

v
I
=

Claim 6.2 |S[, | <2[*

s1m

|5

stm

IN

[{a € {0,137 | K(alr) < plg(|r])}]
[{a € {0,1}" | K(afr) < plg(1)}]

{6 € {0, 1} [18] < ulg(D)}|

9ulg(l)+1

VAN VAN

INA

20

INA

Claim 6.3 If|S| = O(I*1g(3)) then Pr(S7, CS)>1-4¢

Pr(a € S7;,, is not sampled in one random draw) < (1—-1[7*)

(claim 6.1)

Pr(a € S;;,, is not sampled in |S| random draws) < (1-— l—u)lsl

Pr(some a € S7; is not sampled in |S| random draws) < 20#(1 — =)l

(claim 6.2)

Pr(ST,. ¢ 8) < 2041 -1

stm

We would like this probability to be less than §.

2t (1 -1 < 5
2 (e S < 5, since 1—z < e
In(2) + In(l*) = [S|I™* < In(5)
S| = 1" (In(2) + In(l*) + In(1/6))
S| > O"1g(1/4))

72

Thus, Pr(SL,, CS)>1-4§ O

stm

Corollary 6.1 Suppose that a sample S is drawn according to m,.. For an integer | > |r|, and

0<6<1,if|S|=0("1g(1/6)) then with probability greater than 1 — 6, S, CS.

stm,rep

Proof:

Follows immediately from Lemma 6.3 since Sg;, ..., C S5, O

We now prove that the class of DFA is polynomially learnable under m,..

Theorem 6.2 For all N, the class CSN of DFA whose canonical representations have at most

N states is probably exactly learnable under the PACS model.

Proof:

Let A be a canonical DFA with at most N states and r be its standard encoding. We define

r

sim rep 10 be the characteristic sample of A enumerated as

the simple representative sample S

r

sim,rep 15 at most

described in lemma 6.3 above. Recall that the length of each example in S

2N — 1. Now consider the algorithm 45 that draws a sample S with the following properties

1. S =S5%tUS~ is a set of positive and negative examples corresponding to the target DFA
A

2. The examples in S are drawn at random according to the distribution m,
3. 1S =0(" 1g(3))

Lemma 6.3 showed that for every DFA A there exists a characteristic set of simple examples

T,.
stm,rep

such that the length of each example in 57 is < 2N — 1. Corollary 6.1 showed

sim,rep
that if a labeled sample S of size O(I*1g(})) is randomly drawn according to m, then with
probability greater than 1 — 4, Sg,. .., € S. The RPNI algorithm is guaranteed to return
a canonical representation of the target DFA A if the set of examples S is a superset of a
characteristic set for A. Since the size of S is polynomial in N and 1/ and the length of each
string in S is restricted to 2N — 1, the RPNI algorithm, and thus the algorithm Ay can be

implemented to run in time polynomial in N and 1/§. Thus, with probability greater than

73

Algorithm A,

Input: N,0<§<1
Output: A DFA M

begin
Randomly draw a labeled sample S according to m,
Retain only those examples in S that have length at most 2V — 1
M = RPNI(S)
return(M)
end

Figure 6.7 A Probably Exact Algorithm for Learning DFA.

1 — 4, As is guaranteed to return a canonical DFA equivalent to the target A. This proves
that the class CSV of DFA whose canonical representations have at most N states is exactly
learnable with probability greater than 1 — 4. O

Since the number of states of the target DFA (N) might not be known in advance we
present a PAC learning algorithm A3 that iterates over successively larger guesses of N. At
each step the algorithm draws a random sample according to m,, applies the RPNI algorithm
to construct a DFA, and tests the DFA using a randomly drawn test sample. If the DFA is
consistent with the test sample then the algorithm outputs the DFA and halts. Otherwise the

algorithm continues with the next guess for V.

Theorem 6.3 The concept class C of DFA is learnable in polynomial time under the PACS

model.

Proof: Fig. 6.8 shows the PAC learning algorithm for DFA.

In algorithm A3 the polynomial p is defined such that a sample S of size p(N, %) contains
the characteristic set of simple examples S¢;,, .., with probability greater than 1—4. It follows
from corollary 6.1 that p(XV, %) = O(I* 1g(1/4)) will satisfy this constraint. The polynomial ¢
is defined as ¢(,1, 1) = 1[2In(i + 1) + In(})].

Consider the execution of the algorithm As. At any step ¢ where 7 > N, the set S will

include the characteristic set of simple examples S¢; . . with probability greater than 14 (as

74

Algorithm A3

Input: ¢,§6
Output: A DFA M

begin
1) i=1, EX=¢,p(0,1/6)=0
2) repeat
Draw p(i,1/8) — p(i — 1,1/6) examples according to m,
Add the examples just drawn to the set KX
Let S be the subset of examples in /X of length at most 2¢ — 1
M = RPNI(S)
Draw ¢(7,1/¢,1/8) examples according to m, and call this set T’
if consistent(M,T)
then Output M and halt
elsei1=14+1
end if
until eternity
end

Figure 6.8 A PAC Algorithm for Learning DFA.

proved in lemma 6.4). In this case the RPNI algorithm will return a DFA M that is equivalent
to the target A and hence M will be consistent with the test sample T'. Thus, with probability
at least 1 — §, the algorithm will halt and correctly output the target DFA.

Consider the probability that the algorithm halts at some step ¢ and returns a DFA M

with an error greater than e.

Pr(M and A are consistent on some o) < 1 —¢

Pr(M and A are consistent on all a € T) < (1 —¢)/7!

< (1- 6)%[2]n(i+1)+ln(%)]

< e~ 2D+ ()] gince 1 — 2 Se’
. 8
= (’L + 1)2

The probability that the algorithm halts at step ¢ and returns a DFA with error greater

o0

than ¢ is at most Z
: 2

=1 (l + 1)

shown that with probability greater than 1—§ the algorithm returns a DFA with error at most

which can be shown to be strictly less than §. Thus, we have

75

€. Further, the running time of the algorithm is polynomial in N, |¥|, %, %, and m (where m

is the length of the longest test example seen by the algorithm). Thus, the class of DFA is
efficiently PAC learnable under the PACS model. a

6.6 Relating the PACS Model with other Learning Models

In this section we analyze the PACS model in relation with Gold’s model of polynomial
identifiability from characteristic samples [Gol78] and Goldman and Mathias’ polynomial teach-
ability model [GM93] and explain how the PACS learning model naturally extends these two
models to a probabilistic framework. In the discussion that follows we will let C be a concept

class and R be the set of representations of the concepts in C (see section 6.2.1).

6.6.1 Polynomial Identifiability from Characteristic Samples

Gold’s model for polynomial identifiability of concept classes from characteristic samples
is based on the availability of a polynomial sized characteristic sample for any concept in the
concept class and an algorithm which when given a superset of a characteristic set is guaranteed

to return, in polynomial time, a representation of the target concept.

Definition 6.2 (due to [Hig96])
C is polynomially identifiable from characteristic samples iff there exist two polynomials p ()

and pz() and an algorithm A such that

1. Given any sample S = ST US™ of labeled examples, A returns in time py (||ST||+(]S7]|)

a representation r € R of a concept ¢ € C such that ¢ is consistent with S.

2. For every concept ¢ € C with corresponding representation r € R there exists a charac-
teristic sample S. = ST U S such that ||ST||+ ||S7|| = p2(|r|) and if A is provided with
a sample S = ST US™ where ST C S* and S C S~ then A returns a representation r’

of a concept ¢ that is equivalent to c.

Using the above definition Gold’s result can be restated as follows:

76

Theorem 6.4 (due to Gold [Gol78])

The class of DFA is polynomially identifiable from characteristic samples.

The problem of identifying a minimum state DEFA that is consistent with an arbitrary
labeled sample S = St U S~ is known to be NP-complete [Gol78]. This result does not
contradict the one in theorem 6.4 because the characteristic set is not any arbitrary set of
examples but a special set that enables the learning algorithm to correctly infer the target

concept in polynomial time (see the RPNI algorithm in section 6.3).

6.6.2 Polynomial Teachability of Concept Classes

Goldman and Mathias developed a teacher-student based model for efficient learning of
target concepts [GM93]. Their model takes into account the quantity of information that a
good teacher must provide to the student (or learner) during learning. An additional player
called the adversary is introduced in this model to ensure that there is no collusion whereby
the teacher gives the student an encoding of the target concept. A typical teaching session

proceeds as follows:
1. The adversary selects a target concept and gives it to the teacher.
2. The teacher computes a set of examples called the teaching set.

3. The adversary adds correctly labeled examples to the teaching set with the goal of com-

plicating the learner’s task.
4. The learner computes a hypothesis from the augmented teaching set.

Under this model, a concept class for which the computations of both the teacher and
the learner takes polynomial time and the learner always learns the target concept is called
polynomially T/L teachable. Without the restrictive assumption that teacher’s computations
be performed in polynomial time, the concept class is said to be semi-polynomially T/L teach-
able. Goldman and Mathias prove that this model avoids collusion [GM93]. When this model

is adapted to the framework of learning DIFA the length of the examples seen by the learner

77

must be included as a parameter in the model. In the context of learning DFA the number of
examples is infinite (it includes the entire set ¥*) and further the lengths of these examples
grow unboundedly. A scenario in which the teacher constructs a very small teaching set whose
examples are unreasonably long is clearly undesirable and must be avoided. This is explained

more formally in the following definition.

Definition 6.3 (due to [Hig96])

A concept class C is semi-polynomially T/L teachable iff there exist polynomials pi(), p2(),
and p3(), a teacher T, and a learner L, such that for any adversary ADV and any concept ¢
with representation r that is selected by ADV , after the following teaching session the learner

returns the representation v of a concept ¢ that is equivalent to c.

1. ADV givesr toT.

2. T computes a teaching set S of size at most p1(|r|) such that each example in the teaching

set has length at most pa(|r|).

3. ADV adds correctly labeled examples to this set, with the goal of complicating the learner’s

task.
4. The learner uses the augmented set S to compute a hypothesis r' in time ps(]|S]])-

Note that from Gold’s result (theorem 6.4) it follows that DFA are semi-polynomially
T/L teachable. Further, we demonstrated in lemma 6.1 that for any DFA there exists a
procedure to enumerate a characteristic set corresponding to that DFA. This procedure can be
implemented in polynomial time thereby proving a stronger result that DFA are polynomially
T/L teachable. Colin de la Higuera proved that the model for polynomial identification from
characteristic samples and the model for polynomial teachability are equivalent to each other.
More specifically, by identifying the characteristic set with the teaching sample it was shown
that a concept class is polynomially identifiable from characteristic samples iff it is semi-
polynomially T /L teachable [Hig96].

We now show how the PACS model for learning from simple examples extends the above

two models to a probabilistic setting.

78

Lemma 6.5 Let ¢ € C be a concept with corresponding representation r € R. If there exists a
characteristic sample S, for ¢ and a polynomial py() such that S. can be computed from r and
||Sc|| = p1(|r|) then each example in S. is simple in the sense that Vo € S., K (a|r) < plg(|r|)

where 1 is a constant.

Proof:

Fix an ordering of the elements of S, and define an index to identify the individual elements.
Since ||S¢|| = p1(|r|) an index that is lg(p1(|r])) = wlg(|r|) bits long is sufficient to uniquely
identify each element of S.%. Since S. can be computed from r we can state that there
exists a Turing machine which given r reads as input an index of length plg(|r|) and outputs
the corresponding string of S.. Thus, Va € S., K(«a|r) < plg(|r|) where u is a constant
independent of a. O

Let us designate the characteristic set of simple examples S, identified above to be the set

r

sim rep 10T the concept c represented by r. Lemma 6.4 and

of simple representative examples S

corollary 6.1 together show that for an integer [> |r| and 0 < § < 1 if a sample S of size

|S| = O(1*1g(3)) is drawn at random according to m, then with probability greater than 1—4,
" cs.

stm,rep

Theorem 6.5 If a concept class is polynomially identifiable from characteristic samples or
equivalently semi-polynomially T/L teachable then it is probably exactly learnable under the

PACS model.

Proof:

The proof follows directly from the results of lemma 6.5, lemma 6.4, and corollary 6.1. a

6.7 Discussion

The problem of exactly learning the target DFFA from an arbitrary set of labeled examples

and the problem of approximating the target DFA from labeled examples under Valiant’s PAC

FNote that if the sum of the lengths of the examples belonging to a set is k then clearly, the number of
examples in that set is at most &k + 1.

79

learning framework are both known to be hard problems. Thus, the question as to whether
DFA are efficiently learnable under some restricted yet fairly general and practically useful
classes of distributions was clearly of interest. In this chapter, we have answered this question
in the affirmative by providing a framework for efficient PAC learning of DFA from simple
examples.

In particular, we have demonstrated that the class of simple DFA is polynomially learnable
under the universal distribution m. Further, the class of DFA is shown to be learnable under
the universal distribution m, where a benign teacher might use the knowledge of the target
concept to draw representative examples of the target. When an upper bound on the number
of states of the target DFA is unknown, the algorithm for learning DFA under m, can be
used iteratively to efficiently PAC learn the concept class of DFAs for any desired error and
confidence parameters. Finally, we have shown the applicability of the PACS learning model
in a more general setting by proving that all concept classes that are polynomially identifiable
from characteristic samples according to Gold’s model and semi-polynomially T/L teachable
according to Goldman and Mathias’ model are also probably exactly learnable under the PACS
model.

The class of simple distributions includes a large variety of probability distributions (such
as all computable distributions). Li and Vitanyf have shown that a concept class is efficiently
learnable under the universal distribution if and only if it is efficiently learnable under each sim-
ple distribution provided the sampling is done according to the universal distribution [LV91].
This raises the possibility of using sampling under the universal distribution to learn under
all computable distributions. However, the universal distribution is not computable. Whether
one can instead get by with a polynomially computable approximation of the universal dis-
tribution remains an open question. It is known that the universal distribution for the class
of polynomially-time bounded simple distributions is computable in exponential time [LV91].
This opens up a number of interesting possibilities for learning under simple distributions.
In a recent paper Denis and Gilleron have proposed a new model of learning under helpful

distributions [DGI7]. A helpful distribution is one in which examples belonging to the charac-

80

teristic set for the concept (if there exists one) are assigned non-zero probability. A systematic
characterization of the class of helpful distributions would perhaps give us a more practical
framework for learning from simple examples.

A related question of interest has to do with the nature of environments that can be
modeled by simple distributions. In particular, if Kolmogorov complexity is an appropriate
measure of the intrinsic complexity of objects in nature and if nature (or the teacher) has a
propensity for simplicity, then it stands to reason that the examples presented to the learner by
the environment are likely to be generated by a simple distribution. Against this background,
empirical evaluation of the performance of the proposed algorithms using examples that come
from natural domains is clearly of interest.

In the RPNI2 learning algorithm for incremental learning of the target DFA the learner
maintains a hypothesis that is consistent with all labeled examples seen thus far and modifies it
whenever a new inconsistent example is observed [Dup96a]. The convergence of this algorithm
relies on the fact that sooner or later, the set of labeled examples seen by the learner will include
a characteristic set. If in fact the stream of examples provided to the learner is drawn according
to a simple distribution, our results show that in an incremental setting the characteristic set
would be made available relatively early (during learning) with a sufficiently high probability
and hence the algorithm will converge quickly to the desired target.

Some of the negative results in approximate identification of DFA are derived by showing
that an efficient algorithm for learning DFA would entail algorithms for solving known hard
problems such as learning boolean formulae [PW88] and breaking the RSA cryptosystem [KV89].
It would be interesting to explore the implications of our results on efficient learning of DFA

from simple examples on these problems.

81

PART 11

CONSTRUCTIVE NEURAL NETWORKS

82

7 INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) are biologically inspired models of computation. ANN
(also referred to simply as neural networks) are networks of elementary processing units that
are interconnected by trainable connections. Each processing unit (or neuron) computes an
elementary function of its inputs. The connections among neurons are responsible for transmit-
ting signals between the neurons. Each connection has an associated strength or weight which
prescribes the magnitude by which it amplifies or suppresses the signals it carries. ANN are
typically represented using weighted directed graphs. The nodes of the graph correspond to the
neurons, the edges refer to the connections, and the weights on the edges indicate the strengths
of the corresponding connections. Each neuron performs its computation locally on the inputs
it receives from the neurons to which it is connected. These computations are independent of
each other. Thus, ANN have a potential for massive parallelism and fault tolerance.

Artificial neural networks can be trained to learn tasks such as pattern classification, pattern
matching and associative memories, function approximation, optimization, and the like. Learn-
ing in ANN involves training the connection weights. A neural network learning algorithm is
a systematic procedure for setting or updating the weights. Learning in ANN draws from the
analogy with biological neural networks (animal brains) which we know are not “hard-wired”
but instead capable of learning with experience. Typical learning scenarios involve a set of pro-
totypical patterns called the training set. A pattern is a description of an object and is usually
represented by a vector of attributes values. Connection weights are modified based on the
network’s response to each pattern in the training set and the direct or indirect feedback given
to the network by the environment. It should be noted that although much of the terminology

in ANN is inspired by their biological counterparts it would be incorrect to claim that ANN

83

are models of the animal brain. As suggested by the results of several biological experiments,
there seems to be a vast difference in the computations modeled by the ANN and the actual
physical and chemical processes that occur in the brain. The simplifying assumptions made
in the ANN models have led researchers to question their biological plausibility. Further, the
capabilities of the current ANN are considerably limited as compared to capabilities of the

brain.

7.1 A Brief History

The history of ANN traces back to McCulloch and Pitts” mathematical model of a biolog-
ical neuron [MP43]. Perhaps the earliest learning algorithm which is still widely used is the
Hebbian learning rule [Heb49]. It states that connection weights between neurons that are si-
multaneously on or simultaneously off on similar inputs are reinforced. Rosenblatt proposed a
simple iterative strategy called the perceptron learning rule for training the weights of threshold
neurons [Ros58]. The perceptron algorithm attempts to find a separating linear hyperplane
that partitions the pattern space into two half-planes. It acts as a binary classifier giving an
output of 1 for patterns on one side of the hyperplane and and output of -1 for patterns on the
other side. The simplicity of this rule was also its nemesis. Minsky and Pappert demonstrated
the limits of the single perceptrons [MP69]. In particular, they showed that there are certain
datasets (such as the XOR) that cannot be separated by a linear hyperplane. The perceptron
algorithm obviously fails in these situations. It thus became clear that single neurons were
incapable of learning all classification tasks and some form of internal representation (hidden
neurons) would be required to correctly learn these tasks.

Several researchers actively searched for suitable training algorithms for multi-layer net-
works of neurons. Early learning algorithms for training such networks were proposed indepen-
dently by Dreyfus [Dre62], Bryson and Ho [BH69], and Werbos [Wer74]. These algorithms use
a gradient descent approach for training the multi-layer networks of neurons. The backprop-
agation learning algorithm proposed by Rumelhart et al [RHWS86] made the gradient decent

based approach popular in the neural networks community. The success of the backpropaga-

84

tion algorithm rekindled the excitement among researchers and led to fervent activity in both
the theory and applications of neural networks. The widespread interest in ANN is evident
from the number of conferences and journals that are dedicated exclusively to this field and
the variety of practical applications in which ANN are used. In the past decade since the pub-
lication of the backpropagation algorithm, several hundred neural network learning algorithms

(either new or variants of the existing algorithms) have appeared in the literature.

7.2 Taxonomy

We describe a taxonomy of the different neural network approaches based on the properties
of the individual neurons, the architecture and topology of the neural network, the character-

istics of the learning algorithm, and the application domain.

7.2.1 Neuron Properties

A neuron comprises of N input connections (typically outputs of other neurons) and a
single output (see Fig. 7.1). Associated with each input connection is a trainable weight that
scales the input signals. Neurons typically have an additional input connection called the bias
or the threshold whose input signal is held constant at 1 and connection strength is denoted by
. It is assumed that all the input signals arrive at the same instant of time and remain active
at least until the neuron has computed its activation. The key feature of each neuron is its
activation function (i.e., the mathematical function it implements). Typically, the activation is
a function of the weighted sum of the inputs of the neuron. If the input signals to the neuron are
designated by zg,z1,...,2zxy and the correspondj&{ng weights are designated by wq,wq,..., wN
then the neuron’s net input is given as net = szxz The neuron’s output is computed as
o = f(net). Note that the bias input zg (whose é(:)gresponding weight is wg = #) is permanently
set to 1.

Neurons are distinguished by the activation functions they implement. The following are

some typical activation functions described in ANN literature:

85
Threshold ////’“\\\\
WO f
X0 -
/ %
w2/ W3\ W

Input

Figure 7.1 A Neuron.

Linear function

f(net) = net

Threshold function

aif net < c
f(net) =
bif net > ¢

Ramp function
a if net < c
f(net) =< bif net > d
a-+ %ﬂcg’_—al otherwise

Sigmoid function

1
f(net) = = where 3 is a scaling constant .
e
e (Gaussian function
1 _l(ﬂet—,u)2
f(net) = 5 e 2" o where p is the mean and o is the standard deviation.
o

7.2.2 Network Architecture

The different neurons in the network together with their interconnections determine the

network’s architecture or topology. In a typical neural network, a subset of the neurons is

86

designated as the input neurons, another subset of the neurons (not including the input neu-
rons) is designated as the output neurons, and the remaining neurons (if any) are the hidden
neurons. The input neurons have a single input connection and implement a linear activation
function. Patterns are input to the network through the input neurons. The number of input
neurons is equal to the total number of attributes of the training patterns. The choice of the
number of hidden and output neurons and their activation functions depends on the learning
algorithm and the task for which the network is being trained. For example, in classification
tasks that involve assigning input patterns to one of several output categories, the number
of output neurons is chosen equal to the number of output categories with one neuron per
output category and the threshold activation function is chosen for each output neuron. On
the other hand, in the case of function approximation tasks where the network is trained to
model an unknown target function of several variables (the input attributes), a single out-
put neuron implementing either the linear or the sigmoid activation function is used. Most
practical applications require the neural network to have a non-empty set of hidden neurons.
However, it is generally not possible to determine the optimal number of hidden neurons for
any given task. This depends critically on the inherent complexity of the task and the number
of training examples available. A common rule-of-thumb in neural networks is to choose the
number of hidden units to be one-half of the total number of input and output units. Another
approach adopted by constructive neural network learning algorithms (see chapter 8) is to allow
the learning algorithm to dynamically determine the appropriate number of hidden neurons
during training.

The most general neural network topology is the fully connected topology where each neuron
is connected to every other neuron. This architecture is seldom used in practice since it has a
large number of free parameters (n? connection weights and n thresholds for a network with n
neurons). Besides, in practice, it is hardly ever the case that each neuron in the network has a
direct influence on every other neuron. Typical neural network topologies are special cases of
the fully connected network. For most practical applications it helps to organize the neurons

in layers. Thus, a neural network is said to comprise of a single input layer, a single output

87

layer, and zero or more hidden layers. If the interconnections among the neurons are such that
the input layer neurons are connected only to the neurons of the first hidden layer, the first
hidden layer neurons are connected to the neurons of the second hidden layer, and so on with
the final hidden layer neurons connected only to the neurons of output layer then the network
is said to be a strictly feed forward network. An example of such a network is shown in Fig. 7.2.
If the neurons in each layer are connected to neurons in any layer above the current layer then
this type of network is called a general feed forward network. Finally, if the interconnections
among the neurons form cyclic paths then the network is called a recurrent neural network.

Network Output

Output Layer

Hidden Layer 2

Hidden Layer 1

Input Layer

x1 X2 x3 x4
Input Pattern

Figure 7.2 Strictly Feed Forward Network.

7.2.3 Learning Algorithms

A learning algorithm specifies how the network’s connection weights and the thresholds are
updated. The following three weight update strategies are prominently used in neural network

learning algorithms:

88

e Correlation Learning: 1t is based on the Hebbian learning rule [Heb49] which states that
the strength of the connection between two neurons must be gradually reinforced when

the neurons have similar outputs in response to similar inputs.

o Competitive Learning: When an input pattern is presented to the network the neurons
engage in a competitive process that involves self-excitation and mutual inhibition until
a single neuron emerges as the winner (i.e., the neuron has the highest output magnitude
among all neurons). The strength of the connections between the input nodes and the
winner are boosted to increase the likelihood that the winner continues to win in future
on similar patterns. This results in the development of networks where each neuron
specializes on subsets of training patterns that share similar characteristics. Kohonen’s
self organizing maps (SOM) [Koh88] and Carpenter and Grossberg’s adaptive resonance
theory networks (ART) [CG88] are examples of neural networks that use competitive

learning.

e Feedback Learning: Here the weights of the network are modified based on the feedback
received by the learner from its environment. In supervised learning schemes the feedback
is available instantly. For example, in pattern classification applications a comparison of
the network’s output with the desired output for an input pattern enables the learner
to determine whether or not it has correctly classified that input pattern. The goal of
the learning algorithm is typically to modify the network’s weights so as to minimize an
objective function such as sum squared error over the entire training set, the total number
of misclassifications, etc. In certain learning scenarios the environment’s feedback might
not be available instantly. Here the learner receives a delayed reward or punishment,
perhaps at the end of the task. This is reinforcement learning where the learner’s goal is
to assign appropriate credit or blame to the intermediate steps it took to complete the
assigned task (after which it received a reward or punishment). This would enable the
learner to determine an appropriate sequence of steps that would maximize its reward.

@-learning is a widely used algorithm for reinforcement learning [Wat89, WD92].

89

7.2.4 Applications

ANN have been successfully applied to problems in the areas of pattern classification, clus-
tering, vector quantization, pattern association, function approximation, optimization, control,
and search [Day90, Gal93, MMRO97]. In this dissertation we focus exclusively on the use of
neural networks for pattern classification. Pattern classification involves assigning patterns to
one of several a-priori fixed classes. In typical classification tasks a set of training examples
together with the corresponding class label is made available to the learner. It is the goal of the
learner (in this case the neural network learning algorithm) to train a suitable neural network
to learn a mapping from the input patterns to the output classes. The trained neural network

can then be used to classify formerly unseen patterns.

7.3 Threshold Logic Units

A single threshold logic unit (TLU, also known as perceptron) can be trained to classify
a set of input patterns into one of two classes. A TLU is an elementary processing unit that
computes the threshold (hard-limiting) function of the weighted sum of its inputs. Assuming
that the patterns are drawn from an N-dimensional Euclidean space, the output O?, of a TLU

with weight vector W = (wq, wy, ..., wy), in response to a pattern X? = (zf,zf,...,z%) is

OF = 1ifW-XP>0

= —1 otherwise

A TLU that implements the bipolar hard-limiting function (i.e., the TLU’s outputs are
1 and —1) is called a bipolar TLLU as against the TLU that implements the binary hard-
limiting function (with outputs 1 and 0) which is referred to as a binary TLU. Unless explicitly
stated otherwise, we will work with bipolar TLUs. A TLU implements a (/N — 1)-dimensional
hyperplane given by W - X = 0 which partitions the N-dimensional Euclidean pattern space
defined by the coordinates z1, - - -, zy into two regions (or two classes). Given a set of ezamples
S = StUS™ where ST = {(XP,C?)|C? = 1} and S~ = {(X?,C?)|C? = —1} (C? is the

desired output for the input pattern X?), it is the goal of a TLU training algorithm to attempt

90

to find a weight vector W such that ¥X? € St, W.X? >0 and VX? € S, W-X? < 0. If
such a weight vector (W) exists for the pattern set S then S is said to be linearly separable.
Consider the OR pattern set S = {[(-1 — 1), —1],[(-1 1), 1],[(1 = 1), 1],[(1 1), 1]}. This
pattern set is linearly separable and a separating hyperplane defined by the weight vector
W = [1 1 1] is shown in Fig. 7.3. Note that the first component of the weight vector is the

threshold term.

X2
(-111) (111)
| |

X1

(-1,-1) (1,-1)
] |

X1+X2+1=0

Figure 7.3 OR Dataset.

Several iterative algorithms are available for finding such a W, if one exists [Ros58, MP69,

Nil65, DH73]. Most of these are variants of the perceptron weight update rule:

W « W + 5(C? — OP)XP? where > 0 is the learning rate

The perceptron weight update rule is guaranteed to find a separating hyperplane if one
exists. However, since a TLU can implement only a linear hyperplane in the pattern space it
will be unable to correctly separate pattern classes that are not linearly separable. The XOR
pattern set shown in Fig. 7.4 is an example of non-linearly separable dataset.

In the case of non-linearly separable datasets, the perceptron algorithm behaves poorly i.e.,
the classification accuracy on the training set can fluctuate wildly from one training epoch to
next. Several modifications to the perceptron weight update rule e.g., pocket algorithm with
ratchet modification [Gal90], thermal perceptron algorithm [Fre90a, Fre92], Loss minimization
algorithm [Hry92], and the barycentric correction procedure [Pou95] are proposed to find a

reasonably good weight vector that correctly classifies a large fraction of the training set

91

X2
(-1,1) A (1,1)
] T [
(0,0)
-~ X1
(-1,-1) (1,-1)
° T u

Figure 7.4 XOR Dataset.

S when S is not linearly separable and to converge to zero classification errors when S is
linearly separable. Siu et al have established the necessary and sufficient conditions for a
training set S to be non-linearly separable [SRK95]. They have also shown that the problem of
identifying a largest linearly separable subset S, of S is NP-complete. It is widely conjectured
that no polynomial time algorithms exist for NP-complete problems [GJ79]. Thus, we rely
on heuristic algorithms (such as the pocket algorithm with ratchet modification) to correctly
classify as large a subset of training patterns as possible within the given constraints like
limited training time. We briefly summarize the pocket algorithm with ratchet modification,
the thermal perceptron algorithm , and the barycentric correction procedure. The interested
reader is referred to [YPH98a] for a detailed description of these algorithms and an empirical

comparison of their performance on several artificial and real world datasets.

7.3.1 Pocket Algorithm with Ratchet Modification

The pocket algorithm with ratchet modification essentially uses the perceptron weight up-
date rule. To improve the performance on non-linearly separable datasets the algorithm main-
tains an additional weight vector W, 1.; which records the best weight setting encountered
during training. The best weight setting is defined as one which results in the minimum classi-
fication error over the set of training patterns. Each time a weight W that correctly classifies
a larger fraction of training samples as compared to the current pocket weight W, .; is en-

countered, Wi is replaced by W. Given enough training time, the algorithm is guaranteed

92

to find a weight setting Wyocker that will correctly classify as large a subset of the training set

as possible [Gal90, Gal93].

7.3.2 Thermal Perceptron Learning Algorithm

The rationale behind the thermal perceptron algorithm [Fre90a] is to control the weight
updates during learning and prevent drastic weight changes in response to patterns that might
be outliers. The standard perceptron algorithm treats all misclassifications the same irrespec-
tive of the magnitude of the error. This can cause severe fluctuations in the classification rate
for non-linearly separable datasets. To stabilize learning, a damping factor is introduced in

the weight update equation:
1
W W+ UT(DP — O7)XPe~ /T where ¢ is the net input and T is the temperature

T is set to an initial value Ty at the start of learning and gradually annealed to 0 as the
training progresses. Since the exponent effectively decays the learning rate, the probability
of undoing previous work is reduced with time. In effect, the algorithm behaves like the
perceptron algorithm at the start and avoids any large weight changes towards the end of
training. Note that the performance of this algorithm is heavily dependent on the initial
temperature. This difficulty can be overcome to a significant extent if at the end of each epoch
the initial temperature Tp is set to the average net input over that particular epoch [Bur94].
Training is performed for a fixed maximum number of epochs where an epoch is defined as
|S| presentations of randomly chosen patterns from the training set S (|S| is the number of

patterns in the training set).

7.3.3 Barycentric Correction Procedure

The barycentric correction procedure is an efficient algorithm for training a single TLU.
It features separate methods for computing the weights and the threshold of the TLU. The
training patterns belonging to the two classes are separated into two sets ST and S~ respec-
tively. Each pattern is associated with a weighting coefficient which is initially set to 1. The

weight vector W = (wy, ..., wy) is determined as the difference between the barycenters of

93

the patterns belonging to the two classes. The barycenter of a set of patterns is defined as
a weighted mean of the patterns where each pattern is scalar multiplied by its corresponding
weighting coefficient. The threshold # is then chosen to optimize the classification accuracy
in the sense that if the pattern set is linearly separable, the threshold will be set to a value
such that the resulting weight vector W = (wg, w1, ..., wy) will be a separating hyperplane
for the two classes. However, if the pattern set is not linearly separable then the threshold
will be selected to maximize the classification accuracy. Like the pocket algorithm with ratchet
modification, the barycentric correction procedure also maintains a pocket weight W, 1.¢ to
record the best classification accuracy obtained during training. At the end of the epoch, the
weighting coefficients of the patterns that are still misclassified are boosted up by a positive
weighting modification. Intuitively, this causes the misclassified patterns of the two classes to
be weighted more heavily in the future computation of the barycenters. Training is performed
for a prespecified number of epochs at the end of which the best weight vector represented by

W ocket is returned.

7.3.4 Multiclass Discrimination

A single TLU is suitable for two category pattern classification tasks. Several practical real
world problems involve classification of the given data into M (M > 2) output categories. A
layer of M TLUs can be used to solve a M category classification task. A pattern is said to
belong to class 7 if the #¥* TLU outputs 1 and all the other TLUs output —1. If more than one
TLU outputs 1 or if none of the TLUs output 1 then the pattern is treated as misclassified.

The group of M TLUs can be trained by independent training or as a winner-take-all (WTA)
group. In independent training, the M TLUs are trained independently and in parallel. The
it" TLU is trained to output 1 for patterns belonging to class i and —1 for all other patterns.
However, independent training does not take into account the inter-relationships among the
different pattern classes. In practical classification tasks the class assignment is crisp in that
a pattern assigned to class ¢ cannot possibly belong to any other class as well. The WTA

training strategy exploits this fact and gears the weight changes so that the i** TLU has the

94

highest net input among the group of M TLUs in response to a pattern belonging to class .
The winner (i.e., the neuron with the highest net input) is assigned an output of 1 while all
other neurons are assigned outputs of —1. In the event of a tie for the highest net input all
neurons are assigned outputs of —1. This is described more formally as follows: Let X? be a
pattern and C? = [C],C%, ..., C,] be its desired output. Further, let OF = [0}, 0%,...,0%,]
denote the output of the M TLUs in response to X? and let W1, W, ..., Wj; be the current
weight vectors of the M TLUs. OP is computed as follows: If 35 € {1,..., M} such that
W, -XP > W, -XPVi#j, then O?: land OF = -1, Vi # j. If 351, 52,.. ., Jk € {1,..., M}
such that W;, - X? =W, -XP =...=W, -X?and W,, - X? > W, -XPVi ¢ {j1,72,..., 7k}
then O? =—1,Yj €1,...,M. In the event of a classification error (i.e., when CP # OP) the
weight vector W; of each TLU i for which C¥ # OY can be modified using the perceptron weight
update rule (or one of its variants). WTA training offers a potential advantage over independent
training in that pattern classes that are only pairwise separable from each other can be correctly
classified using WTA training while in independent training only pattern classes that are

independently separable from all the other classes can be correctly classified [Gal93].

7.4 Multi-Layer Networks

A single layer of TLUs is incapable of correctly classifying pattern sets that are not linearly
separable. In these situations, multi-layer networks that allow some internal representation
in the form of hidden neurons are needed to learn the non-linear decision boundary required
to correctly classify all training examples. A direct extension of the perceptron learning rule
to multi-layer networks of TLUs is not easy to realize. We will study constructive learning
algorithms that dynamically add neurons during training and train them using the perceptron
learning rule (or its variants) in chapter 8. The backpropagation learning algorithm is a sys-
tematic procedure for training multi-layer feed forward networks. We briefly summarize the

backpropagation algorithm below.

95

7.4.1 Backpropagation Learning Algorithm

The backpropagation algorithm is an iterative gradient descent based technique for learning
in feed forward networks. The goal of backpropagation training is to minimize a suitably
chosen objective function. In order to perform a gradient descent it is mandatory that the
chosen objective function be a differentiable function. A typical objective function is the mean
squared error over the set of training patterns. Gradient descent is performed iteratively. Each
iteration involves a two phase weight update process. In the forward phase the patterns are
presented to the network and the network’s output in response to the pattern is determined.
The error of the network is the difference between the target output for the pattern and the
network’s output. This enables the learner to compute the mean squared error over all the
patterns in the training set. In the backward pass the error is propagated back through the
network and the network’s weights are modified in a direction that corresponds to the negative
gradient of the error measure. This iterative weight update procedure is continued until the
objective function encounters a local minimum. It should be noted that since the gradient
term involves computation of the derivative of the neuron’s output activation it is necessary
that the individual neurons implement a differentiable activation function. Backpropagation
networks thus cannot use threshold neurons. Instead they use neurons implementing the
sigmoid activation function. The interested reader is referred to [RHWS86] or any popular
textbook on neural network learning (such as [Day90, Gal93, MMR97]) for a derivation of the
backpropagation weight update rule.

The backpropagation algorithm and its extensions have been successfully used in several
practical applications. However, the backpropagation like training algorithms suffer from the

following important drawbacks:

e A-priori fixed network topology. The number of hidden layers and the number of neurons
in each hidden layer must be fixed ahead of time. As explained earlier this poses a serious
problem since there is no efficient way of determining the optimal network topology for
a particular task. In backpropagation learning the network topology is either selected in

an ad-hoc manner or by trial-and-error.

96

e Expensive error backward propagation. The procedure of updating weights by error
backward propagation is computationally expensive and requires extensive fine tuning of
parameters such as the learning rate and the momentum term to obtain a satisfactory

performance.

e Though these methods are based on the mathematically well-founded principle of error
minimization by gradient descent, they are susceptible to local minima which prevent

the network from converging to the desired solution.

7.4.2 Constructive Learning Algorithms

Constructive (or generative) neural network learning algorithms offer an attractive frame-
work for automatic construction of near-minimal networks for pattern classification and in-
ductive knowledge acquisition systems [Hon90, HU93, Gal93]. Most constructive learning
algorithms are based on simple threshold logic units (TLUs) that implement a hard-limiting
function of their inputs. These algorithms start out by training a single TLU (using some
variant of the perceptron learning rule [Ros58]) to learn to classify the set of training patterns.
If the unit is not successful in correctly classifying all patterns, an additional TLU (or a group
of TLUs) is added and trained to correct some of the errors made by the network. These
algorithms incorporate a bias of parsimonious (or compact) networks (in terms of the num-
ber of neurons and neuron interconnections) in their search for an appropriate neural network
for the given pattern classification task. Parsimonious or compact networks are preferred to
more complex networks for reasons such as: simpler digital hardware implementation, ease
of extracting knowledge rules from the trained network, potential for matching the intrin-
sic complexity of the given classification task, and capability for superior generalization. In
addition, theoretical results on learnability have shown that certain concept classes can be
efficiently learned provided the hypothesis space is restricted to a set of compact representa-
tions [Nat91, KV94]. Constructive learning algorithms offer the following advantages over the

conventional backpropagation style learning algorithms:

e They obviate the need for an ad-hoc, a-priori choice of the network topology. Instead,

97

an appropriate network topology is dynamically determined during training. Thus, these

algorithms have the potential for generating a near minimal network for the given task.

e They provide guaranteed convergence to zero classification errors on any finite, non-

contradictory data set (under certain assumptions).

e They use elementary threshold neurons that are trained using the simple perceptron style

weight update rules.

e No extensive parameter fine tuning is involved. A fixed learning rate of 1 is typically

gives satisfactory performance across a variety of datasets.

e They provide a natural framework for incorporation of problem specific domain knowl-

edge into the initial network configuration.

The cascade correlation learning algorithm due to Fahlman and Lebiere [F1.90] differs from
other constructive neural network learning algorithms in that it is based on gradient ascent
training of neurons that implement a continuous differentiable activation function such as the
sigmoid. As the name suggests, cascade correlation features cascade architecture development
and correlation based training. The network starts with a single input layer and a single output
layer. The cascade architecture development involves successively adding new hidden layers
to the network. Each hidden layer comprises of a single neuron which is connected to all the
neurons in the input layer and to all the previously added hidden neurons. The input weights
of each newly added neuron are trained using gradient ascent to maximize the correlation of
its output with the residual error in the network. Once the hidden neuron is trained it is
connected to the neuron(s) in the output layer, the output layer weights are retrained. Fig. 7.5
shows the various stages in the execution of the cascade correlation algorithm. The solid lines
indicate the network’s weights that are being trained and the dotted lines indicate the weights
that remain frozen.

Fahlman and Lebiere propose using the Quickprop learning algorithm [Fah88] to accelerate
the learning process. The algorithm’s performance can be further improved by training a

pool of 4 or 8 neurons each time a new hidden neuron is to be added and selecting from

98

Output node Output node Output node

@,

A \ Hidden
node 2
Hidden
node Hidden
node 1

O O OO

Input Nodes Input Nodes Input Nodes

Figure 7.5 Cascade Correlation Network.

this pool a neuron that maximizes the correlation with the network’s residual error. For
an experimental study of the cascade correlation algorithm see [YH98]. Though the cascade
correlation algorithm is considerably faster than the backpropagation algorithm, it still uses
an expensive weight update scheme. In this dissertation we will focus on constructive neural
network learning algorithms that use threshold logic units and simple perceptron style weight

update rules.

7.5 Overview of Research Results

7.5.1 Multi-Category Real-Valued Pattern Classification

A number of algorithms that incrementally construct networks of threshold neurons for
2-category pattern classification tasks have been proposed in the literature. These include,
among others, the tower, pyramid [Gal90], tiling [MN89], upstart [Fre90b], perceptron cas-
cade [Bur94], and sequential [MGR90]. With the exception of the upstart and the perceptron
cascade algorithms all the constructive learning algorithms require the input attributes to be
either binary or bipolar valued.

Pattern classification tasks often require assigning patterns to one of M (M > 2) classes.

99

Although in principle an M-category classification task can be reduced to an equivalent set of
M 2-category classification tasks (each with its own training set constructed from the given
M-category training set), a better approach might be one that takes into account the inter-
relationships between the M output classes. Additionally, practical classification tasks often
involve patterns with real-valued attributes. The extensions of constructive learning algo-
rithms to handle patterns with real-valued attributes have only been studied only for the
upstart [ST91] and the perceptron cascade [Bur94] algorithms.

For each of the constructive learning algorithms mentioned above we have designed provably
correct extensions to handle tasks involving multiple output categories and real-valued pat-
tern attributes (see [PYH95, YPH96, PYH97b, PYH97a]). The convergence proofs for these
algorithms outline a general framework for proving the convergence of constructive learning al-
gorithms. Experiments on several artificial and real world datasets have demonstrated the prac-
tical applicability of these constructive learning algorithms. On most datasets the algorithms
converged to fairly compact networks (in terms of the number of neurons) with zero training
errors and demonstrated reasonably good generalization accuracy on the test set. Addition-
ally, the influence of several other factors such as the TLU weight training algorithm (pocket
algorithm with ratchet modification, thermal perceptron algorithm , or barycentric correction
procedure), the output computation strategy (independent or WTA), and preprocessing of the
dataset (normalization) on the performance of the constructive learning algorithms was borne
out by the experiments we performed. We discuss the multi-category real-valued constructive
learning algorithms along with their theoretical proofs of convergence and experimental results

in chapter 8.

7.5.2 Network Pruning

Constructive neural network learning algorithms strive to attain parsimonious network
topologies. However, in order to achieve a near-minimal network architecture, it is required
that each added neuron be able to classify as large a subset of its training patterns as possible.

Since the TLU weight training algorithm is only allowed limited training time, often the added

100

TLU might not satisfy this requirement. Further, the training of individual TLUs is based on
local information in the sense that during training the weights of the remainder of the network
are frozen. These factors might result in the construction of larger networks than is actually
necessary for the given task.

Other things being equal, smaller (more compact) networks are desirable because of lower
classification cost; potentially superior generalization performance; and transparency of the
acquired knowledge in applications which involve extraction of rules from trained networks.
Network pruning involves elimination of connection elements (i.e., weights or neurons) that
are deemed unnecessary in that their elimination does not degrade the network’s performance.
In [PYH97c| we described the application of three simple neuron pruning strategies to the
MTiling networks. Experimental results demonstrate a significant reduction in the network size
without compromising the network’s convergence properties or the generalization performance.

We present these network pruning strategies in chapter 9.

7.5.3 Constructive Theory Refinement in Knowledge Based Neural Networks

Inductive learning systems attempt to learn a concept description from a sequence of labeled
examples. The presence of domain specific knowledge (i.e., domain theories or knowledge about
the concept being learned) can potentially enhance the performance of the inductive learning
system both in terms of training speed and generalization ability. However, in practice the
domain theory is often incomplete and even inaccurate. Inductive learning systems that use
information from training examples to modify an existing domain theory by either augmenting
it with new knowledge or by refining the existing knowledge are called theory refinement
systems.

Neural network based systems for theory refinement typically operate by first embedding
the knowledge rules into an appropriate initial neural network topology. This domain knowl-
edge is then refined by training the neural network on a set of labeled examples. Constructive
learning algorithms lend themselves well to the design of knowledge based neural networks for

theory refinement. New rules can be incorporated and inaccuracies in the existing rules (if

101

any) can be corrected by dynamically adding new neurons to the neural network represent-
ing the domain theory. In chapter 10 we describe a constructive learning based approach to
connectionist theory refinement [PH98b]. Specifically, we use a novel hybrid Tiling-Pyramid
algorithm to augment the original network topology. The hybrid learning algorithm efficiently
combines an adaptive vector quantization scheme based on the MTiling algorithm with the
existing constructive learning algorithms to overcome some of the practical limitations of the
constructive learning algorithms that prevent them from converging to zero training errors (see

section 10.3.2 for more details).

102

8 CONSTRUCTIVE NEURAL NETWORK LEARNING ALGORITHMS
FOR MULTI-CATEGORY REAL-VALUED PATTERN
CLASSIFICATION

8.1 Introduction

Constructive (or generative) learning algorithms offer an attractive approach for incremen-
tal construction of potentially near-minimal neural network architectures for pattern classi-
fication tasks. These algorithms help overcome the need for ad-hoc and often inappropriate
choice of network topology in the use of algorithms that search for a suitable weight setting in
an a-priori fixed network architecture. The focus of this chapter is on learning algorithms that
incrementally construct networks of threshold logic units (see chapter 7) to correctly classify
a given (typically non-linearly separable) pattern set. Some of the motivations for studying

such algorithms [Hon90, HU93] include:

e Limitations of learning by weight modification alone within an a-priori fired network
topology: Weight modification algorithms typically search for a solution weight vector
that satisfies some desired performance criterion (e.g., classification error). In order
for this approach to be successful, such a solution must lie within the weight-space
being searched, and the search procedure employed must in fact, be able to locate it.
This means that unless the user has adequate problem specific knowledge that could be
brought to bear upon the task of choosing an appropriate network topology, the process
is reduced to one of trial and error. Constructive algorithms can potentially offer a way
around this problem by extending the search for a solution, in a controlled fashion, to

the space of network topologies.

103

o Complexity of the network should match the intrinsic complezity of the classification task:
It is desirable that a learning algorithm construct networks whose complexity (in terms of
relevant criteria such as number of nodes, number of links, connectivity, etc.) is commen-
surate with the intrinsic complexity of the classification task (implicitly specified by the
training data). Smaller networks yield efficient hardware implementations. Everything
else being equal, the more compact the network, the more likely it is to exhibit better
generalization properties. Constructive algorithms can potentially discover near-minimal

networks for correct classification of a given dataset.

e Fstimation of expected case complexity of pattern classification tasks: Many pattern clas-
sification tasks are known to be computationally hard. However, little is known about
the expected case complexity of classification tasks that are encountered and success-
fully solved by living systems. This is primarily due to the difficulty in mathematically
characterizing the properties of such problem instances. Constructive algorithms, if suc-
cessful, can provide useful empirical estimates of the expected case complexity of real

world pattern classification tasks.

o Trade-offs among performance measures: Different constructive learning algorithms offer
natural means of trading off certain performance measures (like learning time) against

others (like network size and generalization accuracy).

e Incorporation of prior knowledge: Constructive algorithms provide a natural framework
for incorporating problem specific knowledge into the initial network configuration and
augmenting the network to encompass additional information from the new examples

seen.

A number of algorithms that incrementally construct networks of threshold neurons for 2-
category pattern classification tasks have been proposed in the literature. These include the
tower, pyramid [Gal90], tiling [MNS89], upstart [Fre90b], perceptron cascade [Bur94], and

sequential [MGR90]. With the exception of the sequential learning algorithm, constructive

104

learning algorithms are based on the idea of transforming the task of determining the necessary

network topology and weights to two subtasks:

e Incremental addition of one or more threshold neurons to the network when the existing

network topology fails to achieve the desired classification accuracy on the training set.

e Training the added threshold neuron(s) using some variant of the perceptron training

algorithm.

In the case of the sequential learning algorithm, hidden neurons are added and trained by
an appropriate weight training rule to exclude as many patterns belonging to the same class as
possible from the currently unexcluded patterns. The constructive algorithms differ in terms of
their choices regarding: restrictions on input representation (e.g., binary, bipolar, or real-valued
inputs); when to add a neuron; where to add a neuron; connectivity of the added neuron; weight
initialization for the added neuron; how to train the added neuron (or a subnetwork affected
by the addition); and so on. The interested reader is referred to [CPYT95] for an analysis (in
geometrical terms) of the decision boundaries generated by some of these constructive learning
algorithms. Each of these algorithms can be shown to converge to networks which yield zero
classification errors on any given training set wherein the patterns belong to one of two output
classes (i.e., 2-category classification). The convergence proof is based on the ability of the TLU
weight training algorithm to find a weight setting for each newly added neuron(s) such that
the number of pattern misclassifications is reduced by at least one each time a neuron (or a set
of neurons) is added and trained and the network’s outputs are recomputed. The convergence
proof of the sequential learning algorithm is based on the ability of the TLU weight training
algorithm to exclude at least one formerly unexcluded pattern from the training set each time
a new hidden neuron is trained. We will refer to such a TLU weight training algorithm as
A and assume that it will correspond to an appropriate choice depending on the constructive
algorithm being considered. In practice, the performance of the constructive algorithm depends
partly on the choice of A and its ability to find weight settings that reduce the total number
of misclassifications (or to exclude at least one formerly unexcluded pattern from the training

set) each time new neurons are added to the network and trained. Some possible choices

105

for A when the desired task is to maximize classification accuracy are the pocket algorithm
with ratchet modification, the thermal perceptron algorithm , and the barycentric correction
procedure. A variant of the barycentric correction procedure can be used to efficiently exclude

patterns as desired by the sequential learning algorithm [Pou95].

8.1.1 Multi-Category Pattern Classification

Pattern classification tasks often require assigning patterns to one of M (M > 2) classes.
Although in principle, an M-category classification task can be reduced to an equivalent set
of M 2-category classification tasks, a better approach might be one that takes into account
the inter-relationships between the M output classes. For instance, the knowledge of the
membership of a pattern X? in category W; can be used by the learning algorithm to effectively
rule out its membership in a different category W; (j # i) and any internal representations
learned in inducing the structure of W; can therefore be exploited in inducing the structure of
some other category U; (j # 7). In the case of most constructive learning algorithms, extensions
to multiple output classes have not been explored. In other cases, only some preliminary ideas
(not supported by detailed theoretical or experimental analysis) for possible multi-category
extensions of 2-category algorithms are available in the literature. A preliminary analysis of
the extension of constructive learning algorithms to handle multi-category classification tasks
is presented in [PYHO95].

For pattern sets that involve multiple output classes, training can be performed either in-
dependently or by means of the winner-take-all (WTA) strategy. In the former, each output
neuron is trained independently of the others using one of the TLU weight training algorithms
mentioned earlier. The fact that the membership of a pattern in one class precludes its mem-
bership in all the other class can be exploited to compute the outputs using the WTA strategy
wherein, for any pattern, the output neuron with the highest net input is assigned an output
of 1 and all other neurons are assigned outputs of —1. In the case of a tie for the highest
net input all neurons are assigned an output of —1, thereby rendering the pattern incorrectly

classified. The WTA strategy succeeds in correctly classifying patterns belonging to multi-

106

ple output classes that are only pairwise separable from each other whereas the traditional
method of computing the output of each neuron independently succeeds in correctly classify-
ing all patterns only if the patterns belong to classes that are independently separable from
each other [Gal93]. It is thus of interest to apply the WTA strategy for computing the out-
puts in constructive learning algorithms. For details on the adaptation of the TLU training
algorithms to the WTA strategy see [YPH98a]. In this chapter we present the multi-category

versions of the popular constructive learning algorithms.

8.1.2 Real-Valued Attributes

Practical classification tasks often involve patterns with real-valued attributes. The TLU
weight training algorithms like the pocket algorithm with ratchet modification, thermal per-
ceptron algorithm , and barycentric correction procedure are able to handle patterns with real-
valued attributes. The original constructive learning algorithms were designed specifically to
work with binary (or bipolar) valued pattern attributes. One way to deal with real-valued
attributes is to use a quantization scheme to map the real-valued attributes to an equivalent
representation of discrete valued vectors. The original constructive learning algorithm can then
be applied using the quantized representations of the pattern vectors. Several quantization al-
gorithms have been proposed in the literature [DKS95, YH96]. We will study a novel adaptive
vector quantization technique in chapter 10.

Extensions of constructive learning algorithms to handle patterns with real-valued at-
tributes have only been studied for the upstart and perceptron cascade algorithms (see [ST91,
Bur94]). In this chapter, we present a general framework for the design of constructive learning
algorithms that are capable of handling real-valued attributes. In order to guarantee conver-
gence to zero classification errors on datasets with real-valued pattern attributes algorithms
such as tower, pyramid, upstart, and perceptron cascade require a preprocessing of the dataset.
Although the tiling and the sequential algorithms do not need the projection of the pattern
set to guarantee convergence, such a projection would not hamper the convergence properties

of these two algorithms. The following two forms of preprocessing techniques are commonly

107
used:

e Projection
Individual patterns are projected onto a parabolic surface by appending an additional
attribute to each pattern. This attribute takes on a value equal to the sum of squares
of the values of all the attributes of the pattern Thus, a pattern X? = {X7,..., XX} is
projected to a parabolic surface by augmenting an attribute X?V-I—l = %(Xf)Q to give
the projected pattern X? = {X7?, .. o X3 Xyt -

e Normalization
Individual patterns are normalized by dividing each attribute of the pattern by the
square root of the sum of the squares of the individual attributes. Thus, a pattern
XP = {X7,..., XX} is normalized by dividing each attribute of X? by (g:(Xf)Z)l/z.

i=1
Each normalized pattern thus has a euclidian norm of 1.

8.1.3 Notation

The following notation is used in the description of the algorithms and their convergence
proofs:
Output categories: Wy, Wy, ..., Uy,
Number of pattern attributes: N
Number of output neurons (equal to the number of categories): M*.
Input layer index: [
Indices for other layers (hidden and output): 1,2, --- L
Number of neurons in layer A: Uy
Indexing of neurons in layer A: Ay, Aq, ..., Ay,
Threshold (or bias) of neuron 7 in layer A: Wy, o

Connection weight between neuron 7 in layer A and neuron j in layer B: Wy, p,

Pattern p: XP = < X7,..., X5 > where X! € R for all ¢

"Note that for two category classification a single output neuron with outputs 1 and —1 respectively for the
two classes will suffice.

108

Augmented pattern p: XP = < XJ, X7,..., X >, X§ =1 for all p,
and X! € R for all
Projected pattern p: XP = < XF, XP .. X X >
XJpV+1 = fV:O(sz)Q
Net input of neuron A; in response to pattern X?: "i]
Target output for pattern XP: C? = < C7,C%,...,CY; >,
C? =1if X? € ¥; and C? = —1 otherwise
Layer A’s output in response to the pattern X?: Of), = < 0511705127 .. .,Oik > where k = Uy
Number of patterns incorrectly classified at layer A: ey

A pattern is said to be correctly classified at layer A when C? = O’. Define a function
sgn: R — {—1,1} as sgn(z) = —1if 2 < 0 and sgn(z) = 1if 2 > 0. Note that bipolar TLUs
implement the sgn function. As is standard in neural networks literature we will assume that
the input layer neurons are linear neurons with a single input (whose weight is set to 1). Thus,
for an N-dimensional pattern set the input layer would have N linear neurons (one for each
attribute of the pattern vector). The patterns are input to the neural network through the
these neurons. Similarly, for projected pattern sets the input layer would have N + 1 linear
neurons. Layers 1 through L have threshold neurons. In the following figures (for example,
see Fig. 8.2) the threshold (or bias) of each TLU is depicted by a separate arrow attached to
the respective TLU.

Against this background, the focus of this chapter is on provably convergent multi-category
learning algorithms for construction of networks of threshold neurons for pattern classifica-
tion tasks with real-valued attributes. These results are based on the work described earlier
in [PYH95, YPH96, PYH97b, PYH97a]. The remainder of this chapter is organized as follows:
Sections 8.2 through 8.7 explore the multi-category versions of the tower, pyramid, upstart,
perceptron cascade, tiling and sequential learning algorithms respectively. In each case, conver-
gence to zero classification errors is established for both the independent and the WTA output
strategies. Note that in the following discussion we have assumed that the preprocessing of

the dataset where necessary is performed by projecting each pattern to a parabolic surface

109

as explained in section 8.1.2. In appendix A we show how the convergence proofs (presented
in sections 8.2 through 8.7) can be modified to deal with datasets having normalized pattern
vectors. Section 8.8 presents preliminary results of experiments involving several artificial and
real world classification tasks. Section 8.9 concludes with a summary and a discussion of future

research directions.

8.2 Tower Algorithm

The 2-category tower algorithm [Gal90] constructs a tower of TLUs. The bottom-most
neuron receives inputs from each of the N input neurons. The tower is built by successively
adding neurons to the network and training them using A until the desired classification
accuracy is achieved. Each newly added neuron receives input from each of the N input
neurons and the output of the neuron immediately below itself and takes over the role of the
network’s output.

To handle patterns with real-valued attributes it is necessary to consider the projection of
the patterns onto a parabolic surface. The extension of the 2-category tower algorithm to deal
with multiple (M) output categories is accomplished by simply adding M neurons each time
a new layer is added to the tower. Each neuron in the newly added layer (which then serves
as the network’s output layer) receives inputs from the N + 1 input neurons as well as the M
neurons in the preceding layer. This algorithm is described in Fig. 8.1 and the resulting tower

network is shown in Fig. 8.2.

8.2.1 Convergence Proof

Theorem 8.1 There exists a weight setting for neurons in the newly added layer L of the
multi-category tower network such that the number of patterns misclassified by the network
with L layers is less than the number of patterns misclassified prior to the addition of the L"

layer (i.e., VL > 1, er, < er,—1).

Proof:
N) N
Define k = maXZ(XZP — X1)2. For each pattern X?, define ¢, as 0 < ¢, < min Z(Xf—Xf)z.

g P,qFED *

=1 =1

110

Algorithm: MTower (Multi-Category Real-Valued Tower Algorithm)

Input: A training set S
Output: A trained fower network

begin
1) Set the current output layer index L =10
2) repeat
// Construct a new output layer and train it
a. L=L+1
b. Add M output neurons to the network at layer L
c. Connect each newly added neuron to all the input neurons and
to each neuron in the preceding layer L — 1, if one exists
d. Train the weights of the newly added neurons using the algorithm A
(Note that all other weights of the network remain frozen)

until (current_accuracy > DESIRED_ACCURACY or L > MAX_LAYFRS)

end

Figure 8.1 MTower Algorithm.

Output Layer: M neurons

Hidden Layer 1: M neurons

Input Layer: N + 1 neurons

Figure 8.2 MTower Network.

111

It is clear that 0 < ¢, < & for all patterns XP. Assume that a pattern X? was not correctly
classified at layer L—1 (i.e., C* # O} _,). Consider the output neuron L; (j =1...M) shown

in Fig. 8.3 with the following weight setting.

N
Wio = Clr+e— Y (XD)?)
=1
WLJ,L' = QCfXZp fori=1...N
W/LJJNH = —Cf
Wi, -1, = &
Wi, -1, = 0fork=1...M,k#j (8.1)
N
p P2
G (ke T (X))
bias Lj
p Pl
2x]| 2%y | - of « o
1 - N N#L 1 j - M

Input Layer Connections Connectionsto Layer L-1

Figure 8.3 Weight Setting for the Output Neuron L; of the MTower Net-
work.

For the pattern X? the net input n7 = of neuron L; is:
J

N+1 M
ny, = Wro+ > Wi, XP+Y Wi, 11,07,
=1 =1
N N N
= Clr+e— Y (X)) +207 Y (X)) = CF Y (X)) +rOT_,
=1 =1 =1
= Cj(r+¢)+r07_y, (8.2)

If Y= -0}, :

P _ P
nr, = Cjep

112
01, = syn(ng)

= C’? since €, > 0

Cr =07

ng, = (264+6)C7
o, = syniat,)

_ P
= (] since K,¢, > 0

Thus we have shown that the pattern X? is corrected at layer L. Now consider a pattern

X1 £ X?.
N+1 M
i, = Wio+ 2 Wi XP+ Y Wi, 1-.07
i=1 N i=1 N N
— Clrt o SOEND) 4207 S XD (XT) — O S (X 4 k0%,
i=1 Nz:1 i=1
= Cl(k+¢) + k0, = C7 Y [(XD)? = 2(X])(X]) + (X])7]
v
= Cl(k+e)+r07_y —CT[> (X7 = X[)7]
i=1 N
= Clr+e¢—)+ HO%_lj where ¢ = Z(sz - X7)% note € > &
=1
= /@/C’f + KO%_IJ where Kk + ¢, — € =« (8.3)
01, = sgn(ng)

7
= 01 since & K
L-1, <

Thus, for all patterns X4 # X?, the outputs produced at layers L and L — 1 are identical.
We have shown the existence of a weight setting that is guaranteed to yield a reduction in the
number of misclassified patterns whenever a new layer is added to the tower network. We rely
on the TLU weight training algorithm A to find such a weight setting. Since the training set

is finite in size, eventual convergence to zero errors is guaranteed. O

113

8.2.1.1 WTA Output Strategy

We now show that even if the output of the tower network is computed according to the
WTA strategy, the weights for the output neurons in layer L given in equation (8.1) will ensure
that the number of misclassifications is reduced by at least one.

Assume that the output vector OF _, for the misclassified pattern X7 is such that Oi_lﬁ =1
and O%_lk = —1,Vk=1...M,k # 3; whereas the target output C? is such that C¥ = 1 and
Cl=-1,¥l=1...M,l#~, and v # §.

From equation (8.2) the net input for the neuron L; is:
ni] = Clr+¢)+ ini_lj

The net inputs for the output neurons L., Lg, and L; where j = 1...M;j # v,5 # 3 are

given by

niy = Clr+e)+ /@O%_lv
n]iﬁ = Chlr+e) + I{O%_lﬁ
ni] = C’f(/{ +¢) + /{Oi_lj

= —25k-¢

Since the net input of neuron L., is higher than that of every other neuron in the output layer,
we see that by the WTA strategy O%7 =1 and Oi] = —1, Vj # ~. Thus pattern X7 is
correctly classified at layer L. Consider that as a result of a tie for the highest net input the
output in response to pattern X? at layer L — 1 is Oi_lj =-1,Vj=1...M. It is easy to see
that given the weight setting for neurons in layer L, X? would still be correctly classified at
layer L.

Consider the pattern X #* XP? that is correctly classified at layer L — 1 (i.e., O} _, = C9).

From equation (8.3), the net input for neuron Lj; is:

n%] = CP(H—I—GP—€/)—|—HO%_1]

J

114

Since, Kk + €, — € < K, it is easy to see that the neuron L., such that O%_l7 = 1 has the
highest net input among all output neurons irrespective of the value assumed by CT. Thus,
07 = 0] _, = C1 ie, the classification of previously correctly classified patterns remains
unchanged.

We have thus proved the convergence of the tower algorithm when the outputs are com-

puted according to the WTA strategy.

8.3 Pyramid Algorithm

The 2-category pyramid algorithm [Gal90] constructs a network in a manner similar to the
tower algorithm, except that each newly added neuron receives input from each of the NV input
neurons as well as the outputs of all the neurons in each of the preceding layers. The newly
added neuron becomes the output of the network. As in the case of the tower algorithm, the
extension of the 2-category pyramid algorithm to handle M output categories and real-valued
pattern attributes is quite straightforward. Each pattern is modified by appending the extra
attribute (X]%H). Each newly added layer of M neurons receives inputs from the N + 1
input neurons and from each neuron in each of the previously added layers. The algorithm is

described in Fig. 8.4 and the resulting pyramid network is shown in Fig. 8.5.

8.3.1 Convergence Proof

Theorem 8.2 There exists a weight setting for neurons in the newly added layer L of the
multi-category pyramid network such that the number of patterns misclassified by the network
with L layers is less than the number of patterns misclassified prior to the addition of the L'

layer (i.e., VL > 1, er, < er—_1).

Proof:
N) N
Define £ = max Y _(XF—X?)?. For each pattern X?, define ¢, as 0 < ¢, < Hli;l > (XP- X2
pq pa#p £
=1 =1

It is clear that 0 < ¢, < & for all patterns XP. Assume that a pattern XP was not correctly

classified at layer L —1 (i.e., C? # OF). Consider the output neuron L; (=1...M) shown

115

Algorithm: MPyramid (Multi-Category Real-Valued Pyramid Algorithm)

Input: A training set S
Output: A trained pyramid network

begin
1) Set the current output layer index L =0
2) repeat
// Construct a new output layer and train it
a. L=L+1
b. Add M output neurons to the network at layer L
c. Connect each newly added neuron to all the input neurons and
to each neuron in each of the preceding layers, if there exist any.
d. Train the weights of the newly added neurons using the algorithm A
(Note that all other weights of the network remain frozen)
until (current_accuracy > DESIRED_ACCURACY or L > MAX_LAYFERS)

end

Figure 8.4 MPyramid Algorithm.

in Fig. 8.6 with the following weight setting.

N
Wio = Clr+e - (XD)?)
Wr, 1, = QC?)XZP forizll...N
Wi = —Cf
IVLJ,L—ik = 0Ofori=2...L—1,and k=1...M
Wi, -1, = &

Wi, -1, = O0fork=1...M,k#j

(8.4)

This choice of weights for the output layer L reduces the multi-category pyramid network to

a multi-category tower network. The convergence proof (for both the independent and WTA

output strategies) follows directly from the convergence proof of the tower algorithm.

8.4 Upstart Algorithm

a

The 2-category upstart algorithm [Fre90b] constructs a binary tree of threshold neurons.

A simple extension of this idea to deal with M output categories would be to construct M

116

Output Layer: M neurons

-0 0 =

- --->|nput Layer Connections

" 7> Hidden Layers: M neurons

Individual connection
between two neurons

— Group connection -

Full connectivity between

the two blocks connected
Figure 8.5 MPyramid Network.
N
P P2
C (k+85- 5 (X))
bias Lj
o 2P| - ¢ o « .
C:) Xy 1N J Connections to
LayersL-2...1
1 - N N+1 1 j M

Input Layer Connections Connectionsto Layer L-1

Figure 8.6 Weight Setting for the Output Neuron L; of the MPyramid
Network.

117

independent binary trees (one for each output class). This approach fails to exploit the inter-
relationships that might exist between the different outputs. We therefore follow an alternative
approach using a single hidden layer instead of a binary tree [Fre90b]. Since the original upstart
algorithm was designed for binary valued patterns and used binary TLUs, we will present our
extension of this algorithm to M classes under the same binary valued framework?. Again, to
handle patterns with real-valued attributes we consider the projection of the pattern vectors?.

The extension of the upstart algorithm to handle multiple output categories is described
as follows*. First, an output layer of M neurons is trained using the algorithm A. If all the
patterns are correctly classified, the procedure terminates without the addition of any hidden
neurons. If that is not the case, an output neuron Lj that makes at least one error in the
sense C} # Oik on some pattern XP is identified. Depending on whether the neuron k is
wrongly-on (i.e., C} = 0,07 = 1) or wrongly-off (i.e., C} = 1,07 = 0) more often on the
training patterns, a wrongly-on corrector daughter (X) or a wrongly-off corrector daughter
(V) is added to the hidden layer and trained to correct for some of the errors made by neuron
Lj. For each pattern X7 in the training set, the target outputs (C% and C}) for the X and

Y daughters are determined as follows:
o If CY =0and O =0 then C% =0, Cy = 0.
o If CY =0and Of =1 then % =1, Cy =0.
o If CY =1 and Of =0then % =0, Cy =1.
o If CY =1and O =1 then Cy =0, Cy =0.

The daughter is trained using the algorithm A. It is then connected to each neuron in the
output layer and the output weights are retrained. This algorithm is described in Fig. 8.7 and

the resulting upstart network is shown in Fig. 8.8.

2The modification to handle bipolar valued patterns is straightforward with the only change being that
instead of adding a X daughter or a Y daughter, a pair of X and Y daughters must be added at each time.

9An extension of the upstart algorithm to handle patterns with real-valued attributes using stereographic
projection was originally proposed in [ST91].

*An earlier version of this algorithm appeared in [PYH97b].

118

Algorithm MUpstart (Multi-Category Real-Valued Upstart Algorithm)

Input: A training set S
Output: A trained upstart network

begin
1) Train a single layer network with M output neurons using the algorithm A
2) Let L = 2 designate the above layer (it is the network’s output layer)
and H = 0 be the number of hidden neurons
3) while (current_accuracy < DESIRED_ACCURACY and
H < MAX_HIDDEN_NEURONS) do
a. Randomly pick a neuron L; among the output neurons that make at least one error
. Depending on whether L is wrongly-off or wrongly-on more often determine
whether a X or a Y daughter is required
. Increment H and add the daughter neuron to the hidden layer L — 1
. Connect the new daughter neuron to the input neurons

o

. Determine the training set for the daughter neuron
Train the daughter neuron using the algorithm A

o o o0

. Connect the daughter neuron to all the output neurons and
retrain the weights associated with the output neurons
end while
end

Figure 8.7 MUpstart Algorithm.

119

= Q = Q """""" = Q Output Layer: M neurons

90 90 ,,,,,, . »Q %Q Single Hidden Layer

"> Current daughter

Q Q ,,,,,,,,,,,,,,,,,,,, Q Input Layer: N+1 neurons

E—— Individual connection between two neurons

Previously ...
added daughters

9 Group connection - full connectivity between the two blocks connected

Figure 8.8 MUpstart Network.

120

8.4.1 Convergence Proof

Theorem 8.3 There exists a weight setting for the X daughter neuron and the output neurons
of the multi-category upstart network such that the number of patterns misclassified by the
network after the addition of the X daughter and the retraining of the output weights is less

than the number of patterns misclassified prior to that.

Proof:

Assume that at some time during the training there is at least one pattern that is not correctly
classified at the output layer L of M neurons®. Thus far, the hidden layer comprises of Ur_;
daughter neurons. Assume also that an output neuron Lj (1 < k& < M) is wrongly-on for a
trainij\r}g pattern X (i.e., it produces an output of 1 when the desired output is in fact 0). Let
A> E abs(Wr, 0 + Zi\f:ﬁl Wi, 1, X7+ Ek "Wi, - 1,07 1) (i.e., Ais greater than the sum
of thje:;bsolute values of the net inputs of all the neurons in the output layer L in response to
the pattern Xp). A X daughter neuron is added to the hidden layer and trained so as to correct
the classification of X? at the output layer. The daughter neuron is trained to output 1 for
pattern Xp, and to output 0 for all other patterns. Next the newly added daughter neuron is

connected to all output neurons and the output weights are retrained. Consider the following

weight setting for the X daughter neuron shown in Fig. 8.9.

N
Wxo = — > (XD)*
Wxy = 2X/fori=1...N
WXJN-H = -1 (8'5)
For pattern Xr:
N+1
nk = Wxot+ Y, Wxp X
k=1
N N
= Z (XD + Z XDXE =D (XP)?
=1 k=1 k=1
=0
O% = 1 by definition of the binary threshold function

5In the case of the multi-category upstart algorithm where only two layers — the output layer and the hidden
layer are constructed, the output layer index is I, = 2 and the hidden layer index is . — 1 = 1.

121

Input Layer Connections

W, . .
Lj L-1g Lj L1y 4

v Uit p p
Connections to 2 X3 2XN| 1

previous daughters
1o N N+1

Input Layer Connections

Figure 8.9 Weight Setting for the Output Neuron L; of the MUpstart Net-
work.

For any other pattern X1 # X7

N+1
nf = Wxo+ Y Wx X/
k=1
N N N
= XD YD 2xEx] - Y (X))
k=1 k=1 k=1
N
k=1
< 0
O% = 0 by definition of the binary threshold function

Consider the following weight setting for connections between each output layer neuron

and the newly trained X daughter (also shown in Fig. 8.9).

7

Wi, x = 2(CP -0})A

O%J is the original output of neuron L; in the output layer in response to the pattern X,

(before adding the X daughter neuron). Let us consider the output of each neuron L; in the

122

output layer in response to pattern X? after adding the X daughter neuron.

N+1 Uy
= Wi+ ; Wi, . XP+ kz_:l Wi, 1-1,07 1, +2(C] = OF)A0%
N+1 Uy
= Wro+ > Wr,n XD+ Y Wi, 120,07, +2(C7 = 07)A(1) (8.6)
=1 k=1

By the definition of A we know that

N+1 Ur_1
A < m];LX[WLWO—I— SN WrnXP+ > Wi, 21,0741 < A (8.7)
=1 k=1

o If C’f = Oi] we see that the net input for neuron L; remains the same as that before

adding the daughter neuron and hence the output remains the same i.e., C’?.

o If C? = 0 and O] = 1, the net input for neuron L; is nj < A —2A. Since A > 0, the
J J

new output of L; is 0 which is C?.

o If C’f =1 and Oi] = 0, the net input for neuron j is ni] > —A 4 2A. Since A > 0, the

new output of L; is 1 which is C?.

Thus, the pattern X? is corrected by the addition of the X daughter neuron. Consider any

other pattern X4. We know that O% = 0.

N+1 Ur_4
ni = Wi o+ 2_; Wi, . X!+ kz_jl Wr, 11,07 _,, +2(C - O)AO%
N+1 Uy
= WLJ70 + Z WLJvliXZg + Z WLJvL_lkO%—lk (88)

We see that the X daughter neuron’s contribution to the output neurons in the case of any
patterns other than X? is zero. Thus, the net input of each neuron in the output layer remains
the same as it was before the addition of the daughter neuron and hence the outputs for
patterns other than X? remain unchanged.

A similar proof can be presented for the case when a wrongly-off corrector (i.e., a Y
daughter) is added to the hidden layer. Thus, we see that the addition of a daughter neuron
ensures that the number of misclassified patterns is reduced by at least one. Since the number
of patterns in the training set is finite, the number of errors is guaranteed to eventually become

Zero. O

123

8.4.1.1 WTA Output Strategy

The mapping of the convergence proof for the upstart algorithm to the case when the
output neurons are trained using the WTA strategy is straightforward. In response to the
pattern Xp, for which a wrongly-off corrector X is trained, the net input of neuron L; is
calculated as in equation (8.6). Given this and equation (8.7), it is easy to see that the neuron
L; for which C';) = 1 has the maximum net input among all output neurons and hence pattern
X? is correctly classified.

For any other pattern X4 #* Xp, the net input of all the output neurons is exactly the same
as the net input prior to training the new X daughter neuron (see equation (8.8)). Thus, the
classification of pattern X4 remains unchanged. This proves the convergence of the upstart

algorithm when the outputs are computed according to the WTA strategy.

8.5 Perceptron Cascade Algorithm

The perceptron cascade algorithm [Bur94] draws on the ideas used in the upstart algorithm
and constructs a neural network that is topologically similar to the one built by the cascade
correlation algorithm [I'1.90] (see chapter 7). However, unlike the cascade correlation algorithm
the perceptron cascade algorithm uses TLUs. Initially an output neuron is trained using the
algorithm A. If the output neuron does not correctly classify the training set, a daughter
neuron (wrongly-on or wrongly-off as desired) is added and trained to correct some of the
errors. The perceptron cascade algorithm differs from the upstart algorithm in that each newly
added daughter neuron receives inputs from each of the previously added daughter neurons. As
shown in Fig. 8.11 each daughter neuron is added to a new hidden layer during the construction
of the perceptron cascade network. The targets for the daughter are determined exactly as in
the case of the upstart network.

The extension of the perceptron cascade algorithm to handle M output classes is relatively
straight forward. First, an output layer of M neurons is trained. If all the patterns are correctly
classified, the procedure terminates without the addition of any hidden neurons. If that is not

the case, an output neuron Lj that makes at least one error in the sense that C} # Oik is

124

Algorithm MCascade (Multi-Category Real-Valued Perceptron Cascade Algorithm)

Input: A training set S
Output: A trained perceptron cascade network

begin
1) Train a single layer network with M output neurons using the algorithm A
2) Designate the above layer to be the output layer L and
let the number of hidden layers H be 0
3) while (current_accuracy < DESIRED_ACCURACY and
H < MAX_HIDDEN_NEURONS) do
a. Randomly pick a neuron L; among the output neurons that make at least one error
b. Depending on whether Lj is wrongly-off or wrongly-on more often
determine whether a X or a Y daughter is required
c. Increment H and add the daughter neuron to a new hidden layer
(Note that the new hidden layer appears immediately below the output layer)
d. Connect the newly added daughter neuron to the input neurons and
to all the previously added daughter neurons
e. Determine the training set for the daughter neuron
f. Train the daughter neuron using the algorithm A
g. Connect the daughter neuron to all the output neurons and
retrain the weights associated with the output neurons
end while

end

Figure 8.10 MCascade Algorithm.

identified and a daughter neuron (an X daughter if the neuron is wrongly-on more often or a
Y daughter if the neuron is wrongly-off more often) is added to a new hidden layer and trained
to correct some of the errors made by the output neurons. For each pattern X in the training
set, the target outputs for the daughter neuron are determined as described in the upstart
algorithm. The daughter receives its inputs from each of the input neurons and from each of
the previously added daughters. After the daughter neuron is trained it is connected to each
of the M output neurons and the output weights are retrained. The algorithm is described in

Fig. 8.10 and the resulting perceptron cascade network is depicted in Fig. 8.11.

8.5.1 Convergence Proof

Hidden Layer 1

125

Output Layer - M neurons 96 ~ Q

Hidden Layer 2

v

O

,,,,,, > Qutput Layer connections

,,,,, > Hidden Layer connections

—= Individual connection

® $ |— Group comection-

Full connectivity between
the blocks connected

O
@

O

Input Layer - N+1 neurons

Figure 8.11 MCascade Network.

126

Theorem 8.4 There exists a weight setting for the X daughter neuron and the output neurons
of the multi-category perceptron cascade network such that the number of patterns misclassified
by the network after the addition of the X daughter and the retraining of the output weights is

less than the number of patterns misclassified prior to that.

+1

1 N
Input Layer Connections

Wi 1, Wi Lag
1 L-1
Connections to
revious daughters i
P g 1. N N+1 Con_nectl onsto
inlayersl...L-1 previous daughters

Input Layer Connections
=&y inlayersl...L-1

Figure 8.12 Weight Setting for the Output Neuron L; of the MCascade
Network.

Proof:

The perceptron cascade algorithm is similar to the upstart algorithm except that each newly
added daughter neuron is connected to all the previously added daughter neurons in addition
to all the input neurons. If we set the weights connecting the new daughter neuron to all
the previous daughter neurons to zero (see Fig. 8.12), the perceptron cascade algorithm would
behave exactly as the upstart algorithm. The convergence proof for the perceptron cascade
algorithm (both in the case of the independent and WTA output strategies) thus follows

directly from the proof of the upstart algorithm. a

127

8.6 Tiling Algorithm

The tiling algorithm [MN89] constructs a strictly layered network of threshold neurons.
The bottom-most layer receives inputs from each of the N input neurons. The neurons in
each subsequent layer receive inputs from those in the layer immediately below itself. Each
layer maintains a master neuron. The network construction procedure ensures that the master
neuron in a given layer correctly classifies more patterns than the master neuron of the previous
layer. Each layer maintains a (possibly empty) set of ancillary neurons that are added and
trained to ensure a faithful representation of the training patterns. The faithfulness criterion
states that no two training examples belonging to different classes should produce identical
output at any given layer. Faithfulness is clearly a necessary condition for convergence in
strictly layered networks [MN89].

The proposed extension to multiple output classes involves constructing layers with M
master neurons (one for each of the output classes)®. Unlike the other algorithms seen before,
it is not necessary to preprocess the dataset using projection or normalization. Sets of one or
more ancillary neurons are trained at a time in an attempt to make the current layer faithful.

The algorithm is described in Fig. 8.13 and a sample tiling network is shown in Fig. 8.14.

8.6.1 Convergence Proof

The convergence of the multi-category tiling algorithm is proved in two parts: first we
show that it is possible to obtain a faithful representation of the training set (with real-valued
attributes) at the first hidden layer. We then show that with each additional layer the number
of classification errors is reduced by at least one.

In the tiling algorithm each hidden layer contains M master neurons plus K (K > 0)
ancillary neurons that are trained to achieve a faithful representation of the patterns in the
layer. Let S be a subset of the training set S such that for each pattern X? belonging to
S the outputs OF,0%,...,0%,, are exactly the same. We designate this output vector

< 07,0%,...,0%, > as a prototype II? =< 7y, 75, ..., 7y p > 7 = £l foralli =

% An earlier version of this algorithm appeared in [YPH96].

128

Algorithm MTiling (Multi-Category Real-Valued Tiling Algorithm)

Input: A training set S
Output: A trained #iling network

begin
1) Train a single layer network with M output neurons using the algorithm A
(Note that these M neurons are designated as the master neurons)
2) Let L = 1 denote the number of layers in the network
3) while (current_accuracy < DESIRED_ACCURACY and L < MAX_LAY FRS) do
a. while (layer L is not faithful) do
/] Make the current layer faithful
Let Op, be the set of outputs of layer L for the patternsin S
For each v € Op, let S, C S be the set of patterns that produced output v
and let vy be the number of output classes to which the patterns in S, belong
// If vp > 1 then the output vector v is unfaithful
Randomly pick a v for which v, > 1
Add v, ancillary neurons to the layer L
Train the ancillary neurons using the algorithm A
to separate the patterns in S,
end while
b. L=L+1
c. Add M master neurons to the new output layer L
d. Connect the neurons in layer L to all neurons in layer L — 1
e. Train the layer L on the patterns of S using the algorithm A
end while
end

Figure 8.13 MTiling Algorithm.

129

Output Layer: M neurons

Hidden Layer 2:
M + k2 neurons

Hidden Layer 1:

M + k1 neurons

Input Layer: N neurons

Ancillary neurons

o

Figure 8.14 MTiling Network.

Input / Master neurons

O

130

1...(M+ K). If all the patterns of S belong to exactly one class (i.e., they have the same de-
sired output) then the prototype IT? is a faithful representation of the patterns in S. Further,
if <7l,7h,. ..., 7y >=<C],Cy,...,Ch; > (i.e., the observed output for the patterns is the

same as the desired output) then the patterns in S are said to be correctly classified.

Theorem 8.5 For any finite non-contradictory dataset it is possible to train a layer of thresh-
old neurons such that the outputs of these neurons provide a faithful representation of the entire

training set.

Proof:

Consider a training set S comprising of N-dimensional pattern vectors. Assume that the M
master neurons are unsuccessful in correctly classifying all the patterns and that all patterns
are assigned to the same output class. Thus, the representation of the set S is unfaithful.
We now show that it is possible to add ancillary neurons (with appropriately set weights)
that would result in a faithful representation of S for this layer of threshold neurons. Let
W = {Wy, Wy, ..., Wy} designate the weight vector of a single TLU 7.

If there exists a pattern X? belonging to the convez hull” of the set S such that for some
attribute ¢ (1 = 1,...,N) |XP| > | X/| for all X? € S and X7 # X? then with a weight setting
W ={-(XP)?20,...,0,X",0,...,0} (ie., all weights except Wy and W, set to 0), T’ will output
1 for X? and —1 for all other patterns.

If however, the set S is such that there is a tie for the highest value of each attribute then
the above method for excluding a single pattern will not work. In this case, there must exist a
pattern X? in the convex hull of S that dominates all others in the sense that for each attribute
i, X! > X! for all X? in S. Clearly, X? - X? > X? .X4. The weights for T can be set to
W = {- SN, (X% X?,...X%}. With this weight setting T will output 1 for X? and —1 for
all other patterns.

Thus, the output of the layer in response to the pattern X? is made faithful. Note that

this output is distinct from the outputs for all the other patterns in the entire training set S.

"The convex hull for a set of points Q is the smallest convex polygon P such that each point in @ lies either
on the boundary of P or in its interior. The interested reader is referred to [CLLR91] for a detailed description
of convex hulls and related topics in computational geometry.

131

In effect, the pattern X? has been ezcluded from the remaining patterns in the training set.
Similarly, using additional TLUs (up to |S| TLUs in all) it can be shown that the outputs of
the neurons in the layer provide a faithful representation of the entire training set S. a

Of course, in practice, by training a groups of one or more ancillary neurons using the
algorithm A it is possible to attain a faithful representation of the input pattern set at the

first hidden layer using far fewer TLUs as compared to the number of training patterns.

Theorem 8.6 There exists a weight setting for the master neurons of the newly added layer
L in the multi-category tiling network such that the number of patterns misclassified by the
network with L layers is less than the number of patterns misclassified prior to the addition of

the L'* layer (i.e., YL > 1, ef, < er_1).

Proof:

Consider a prototype II? for which the master neurons in layer L — 1 do not yield the correct
output. ie., < wy, 75, ..., 75, > # < C7,C5,...,C}; >. The following weight setting for the
master neuron L; (j = 1...M) shown in Fig. 8.3 results in the correct classification of the
prototype IIP. Also, this weight setting ensures that the outputs of all other prototypes I1?
for which the master neurons of layer L — 1 produce correct outputs (i.e., < 7, 73,..., 73, >

=<1, Cy,...,C4 >), are unchanged.

Wio = 2C7

7

Wp, -1, = C??T]Zz fork=1...Up_1,k#7

Wi, -1, = U, (8.9)
For the prototype ITP:
Ur_1
ng, = Wi+ > Wi, 1,70
k=1
Ur_1
= QC§)+UL_17T§)—I— Z Cfﬂ'iﬂ'z
k=1,k#j

= 2057 + UL_lﬂ';? + (UL—I — 1)0;7

= Urparmi+ (U1 +1)CY (8.10)

132

Connectionsto Layer L-1

Figure 8.15 Weight Setting for the Output Neuron L; of the MTiling Net-
work.

Op, = sgn(ny))

For the prototype IT? (as described above) where IT? £ TI?:

Ur_1
nqL] = W0+ Z Wi, L-1,7}
k=1
Uy
= 207+ Upan?+ Y Wi, 11,7}
k=1,
Uy
= 2004+ Upari+ Y, Cimprl (8.11)
k=1,
CASE I
nl #nf and mf = 7 for 1 <k < Up_1,k #j.
For example,
l J
—~~ ~~
I = <-1,+1,—-1,...,+1,...,—-1,—-1,...,+1 >
M K
l J
—~~ —~~
M = < 1,371, ~1,..., =1, =1, —1,..., +1>
M K

Since 7¢ is correctly classified at layer L — 1 whereas 7? is not, 71'? = Cf (this follows from the

133

a_ . p p_ . p
fact that 7} = —77 and C7 = —n7).
Ur_1
n%] = QC’f—I—UL_lﬂ'?—I— Z C’fﬁﬁﬂ'z (from equation 8.11)
———

= 20;7 + (/vL_171';z + (UL—I — 1)05)

= Upam] + (Up—1 + 1)C7

= (2Ur-1 + l)ﬁj since 71'? = C’f
01, = sgn(ng)

— q
_7r]

CASE 1I:
m] #£a] forsome [, 1 << Up_y,l#jand 7] =7 forall k, 1 <k <Up_y,k#j,k#I

For example,

] {
o —
P = <—1,-1,-1,.., F e =1, =1, 2T 1 >
M K
J l
~~ —~~
M = <—1,-1,1, 00, Tl =1, =1, T 41 >
M K
Ur_1
In this case) Clmpml < (Up—1 = 3)C7
———
Ur_1
n%] = QCf—I—UL_ﬂr?—}— Z C’fﬂ'iﬂ'z from equation 8.11
——
< 20? + UL—lﬂ'? + (Up-1 — 3)05?
< (Up—r = DO+ Upam!
01, = sgn(ny)

= 7} since U,_y7] dominates (Uz—; — 1)C7¥

Once again we rely on the algorithm A to find the appropriate weight setting. With the
above weights the previously incorrectly classified prototype II” would be corrected and all
other prototypes that were correctly classified would remain unaffected. This reduces the

number of incorrect prototypes by at least one (i.e., er, < er_1). Since the training set is

134

finite, the number of prototypes must be finite, and with a sufficient number of layers the tiling

algorithm would eventually converge to zero classification errors. |

8.6.1.1 WTA Output Strategy

For the incorrectly classified prototype II? described earlier assume that 7rg =1,1<p <M
and Vj =1...M,j # g 77 = —1. Clearly, C§ = ~1 and 3y 1 < v < M,vy # [3 such that
CP = 1. Given the weight settings for the master neurons in layer L in equation (8.9), the net

input of neuron L; in response to the prototype II” as given in equation (8.10) is

n%ﬂ = UL_lﬂ'? + (UL—I + 1)C§
nzzw = UL—I(_1)+ (UL—I —I_]‘)(]‘)
= 1
n%ﬁ = UL_l(l) + (UL—I + 1)(_1)
= —1lwherel << M,p#7~
nf = Upa(=1)+ (U + 1) (=1) for k=1... M,k # v,k # 3

= 2U;1—-1

The master neuron L. has the highest net input among all master neurons in layer L which
means that O%7 =1 and O%J =-1,Vj=1...M,j # v and C? = O%. Thus, the prototype
II? is now correctly classified.

Now consider the prototype II? that is correctly classified at layer L — 1 (as described
earlier). Since II? # II?, it is clear that 71'% =—1land Ja 1 < a < M,a# § such that 72 = 1.
The net input of the master neurons at layer L in response to the prototype II¢ as calculated

in equation (8.11) is
Uy
ng, = 207+ Upam)+ > Cimjn]
k=1 k]
CASE I: Assume that o = v (where CZ = 1). For example,

a=y
o’ = <-1,-1,-1,....41,...,-1,=1,...,+1 >

M K

135

a= Jé)
/-/l ~ -
7 = < —1,41,-1,...., = 1,0, =1, —1,...,+1>
M K

In this case (2M — Ur_; — 3) < [ZgLfk#a 7] < (Ur—1 — 3). The net input for the output

neuron L, is

"qLa = 20?4+ U7l +C7[Z TLh]

k=1k#a
Up_
= 2+ U () + M) D mpxf)
k=1k#a
> 24U +2M - Up_y -3
> oM —1

Similarly, the net input for any neuron j (other than «) in the output layer is given by

Up_
nqL] = 207+ Upami +C¥[Yo alaflforj=1...M,j#a
k=1,k%;
Ur_1
= 2(-1)+Upa(-D)+(=1[> wfmi]
k=1 kta
< 2-Up1+ (-1)(2M = Up_1 — 3)
< 1-2M

Since M > 3 we see that the net input of neuron L, is higher than the net input of any other
master neuron in the output layer. Thus, O%a =1 and O%J =—-1Vj=1...M,j # « which
means that C? = Of as desired.

CASE II: Assume a # v (where C? = 1). For example,

o AN
I = <-1,-1,-1,...,4+1,...,=1,...,—1,—-1,...,+1 >
M K
5y B8 o
e A~ A~
m = <-1,-1,-1,....,=1,...,+1,...,—1,—-1,...,+1 >
M K

In this case C1 =1, (2M —Ur_1 —3) < [Znglk?éa mrd] < (Up-1—3), and (2M —Ur_; —5) <

U
[ZkLllk#:'y mpmy) < (Un—1 = 5).

136

The net input for output neuron L, is

Ur_1
"qLa = 20+ U417l +C7[Z momi]
k=1 k#a
Ur_1
= 2(-1)+ U () +(=D[> mfr}]
k=1 k#a
> =24Ur_1 - 1(U1_1 — 3)
> 1

Similarly, the net input for the output neuron L, is

U1
n%v = 20 + U7l +C7 Z o]
k=1 kv
Ur_1
U () 1LY,]
k=1 kv
2-Up1+ (U1 —5)

IA

IA

-3

Finally, the net input of the output neuron L; where j # «, 7 # 7 is given by

Ur_1
n%] = 20;+UL—17T?+C§)[Z oy
k=1,k;
Ur_1
= 2(-D)+Upa (=) +(-1)[Y, =]
h=1,k;

< —2-Up - (2M —Up_; — 3)

< —2M+1

Again, since M > 3 we see that the net input of neuron L, is higher than the net input of any
other neuron in the output layer. Thus, O%a =1 and O%J =—-1Vj=1...M,j # o which
means that C? = O} as desired. We have shown that if the output of the master neurons is
computed according to the WTA strategy there is a weight setting for a newly added group of

master neurons which will reduce the number of misclassifications by at least one.

137

8.7 Sequential Learning Algorithm

The sequential learning algorithm [MGRO0] offers an alternative method for network con-
struction where instead of training neurons to correctly classify a maximal subset of the training
patterns, the idea is to train hidden neurons to sequentially exclude patterns belonging to one
class from the remaining patterns. When all the patterns in the training set have been thus
excluded, the internal representation of the patterns at the hidden layer is guaranteed to be
linearly separable. A single output layer where the neurons are connected to all the hidden
layer neurons can then be constructed to correctly classify all the patterns in the training set.
Recently, Poulard has shown that a variation of the barycentric correction procedure can be
used effectively in sequential learning to exclude as many patterns belonging to a single class
as possible [Pou95].

The extension of the sequential learning algorithm to multiple output categories follows
the same principles as the original version. Using a simple modification of the barycentric
correction procedure , hidden neurons can be trained to exclude patterns belonging to one of
the M classes from the remaining patterns. Once all the patterns in the training set have
been excluded by the hidden layer neurons, the output layer with M TLUs can be constructed
to correctly classify all patterns. As in the case of the tiling algorithm, it is not necessary
to perform preprocessing of the training patterns to prove the convergence for patterns with
real-valued attributes. The sequential learning algorithm is described in Fig. 8.16 and a sample

network constructed by sequential learning is shown in Fig. 8.17.

8.7.1 Convergence Proof

We prove the convergence of this algorithm in two parts. Firstly, we show that it is possible
to construct a hidden layer to sequentially exclude all patterns in the training set. Next we
show that if the weights of the output layer neurons are set as described in the algorithm (see

Fig. 8.16) then all the patterns in the training set are correctly classified.

138

Algorithm: MSequential (Multi-Category Real-Valued Sequential Learning Algorithm)

Input: A training set S
Output: A trained sequential network

begin
)i+ 1
2) Initialize S to the entire set of training patterns
3) while (S # ¢) do
a. Train a pool of M neurons using the barycentric correction procedure
(sequential learning version). Neuron k (k= 1,..., M) is trained to exclude
as many patterns belonging to Wy from the remaining patterns in S as possible
b. Pick the neuron (trained in the previous step) that excludes the largest
subset of patterns in S and designate it as neuron 7 in the hidden layer
c. Let E* be the set of patterns excluded by the hidden layer neuron i
d. S« S-F
e.1=1+1
end while
4) Construct the output layer with M neurons
Each output neuron is connected to all the neurons in the hidden layer

5) Set the weights for the output layer neurons as follows

W UL 1+1-k if neuron L — 1; excludes ¥;
Lj,L—1k —9UL—1+1-k Gtherwise
UL
Wr,o = Y Wi, -1, (8.12)
k=1

end

Figure 8.16 MSequential Algorithm.

139

Output Layer: M neurons

Single Hidden Layer

Input Layer: N neurons

Figure 8.17 MSequential Network.

8.7.1.1 Construction of the Hidden Layer

Given the training set S for the neuron i of the hidden layer, intuitively it is clear that
a weight setting exists for which one pattern belonging to the convex hull of the set S can
be excluded from the rest. The proof of theorem 8.5 can be used directly to show that it is
possible to construct a layer of threshold neurons that sequentially excludes patterns belonging

to any finite dataset.

8.7.1.2 Construction of the Output Layer

Consider that the hidden layer L — 1 with Up_; neurons is trained to sequentially exclude
all patterns. The output layer L with M neurons is constructed with each neuron connected to
all the Ur_; neurons in the hidden layer. Given that the weights of the output layer neurons
are set as described in the algorithm (see Fig. 8.16) we show that all patterns belonging to the

training set are correctly classified by the network.

Theorem 8.7 (Sequential Learning Theorem®)

The internal representation of the training patterns that are excluded sequentially by the neu-

8 A version of the sequential learning theorem for two category pattern classification was originally proposed

by [MGR90].

140

rons in the single hidden layer is linearly separable.

Proof:

Let X? be a pattern belonging to ¥; (1 < j < M) and excluded by neuron L — 13 (1 < k <
Ur—1). By construction, the hidden neurons L — 1y, L — 13,...L — 141 output —1, the neuron
L — 1; outputs 1, and the hidden neurons L — 1;44,..., Ly, _, output 1 or —1 in response to

pattern X?. The net input of the neuron L; is:

Ur_1
nﬁj = Wi o+ 12: Wi, .-1,07_4,
=1
Uy k—1 Up_1
= > Wi, + > Wino, (D) + Wi, o, (D) + > Wi, 1,07,
=1 =1 I=k+1
Ur_1 Ur_1
= Z Wi, n—1, +2Wr, 1, + Z Wi, 11,074,
{=k+1 I=k+1
> 2Wp, -1,
> 0
0, = snind)
_ (513

The net input of any other output neuron L; (¢ =1,...,M and ¢ # j) is

Ur_1
np, = W+ > Wi,p-1,07_,
=1
Ur_1 k—1 Up—1
= > Wi+ 2 Wrop—, (=) +Wr -, (D + Y Wi,,07_,
=1 =1 {=k+1
Uy Up_1
= > Wiy, +2Wron, + > Wi1-1,07
{=k+1 =k+1
UL_1 UL—l
= > Wiy, —2Wroo |+ Y, Wion1,07_; (since W, 11, < 0)
{=k+1 I=k+1
Ur_1
< 2 Z |VVL1‘7L—11|_2|WL¢7L—11€|
{=k+1
Up_1
< 0(since |WLi7L_1k| > Z |WL1‘7L—11|)
I=k+1

OL, = sgn(n,)

141

= -1 (8.14)

Thus the network correctly classifies X? as belonging to W;. Since each pattern is thus correctly
classified we have demonstrated that the internal representation of the training patterns that

are excluded sequentially by the neurons in the single hidden layer are linearly separable. O

8.7.1.3 WTA Output Strategy

In the case of the sequential learning algorithm, the weight assignment for the output
weights from equation (8.12) ensures that for a pattern X? belonging to W¥;, the net input
of output neuron (L;) is greater than 0 (see equation (8.13)) and the net input of all other
neurons (L;, i =1...M,7 # j) is less than 0 (see equation (8.14)). Thus, we see that pattern

XP is correctly classified even if the output is computed using the WTA strategy.

8.8 Constructive Learning Algorithms in Practice

The preceding discussion has focused on provably convergent constructive learning algo-
rithms to handle real-valued multi-category pattern classification problems. The algorithms
differ from one another chiefly in the criteria used to decide when and where to add a neu-
ron to an existing network, and the method used to train individual neurons. A systematic
experimental study of the constructive algorithms aimed at a thorough characterization of
their implicit inductive, representational, and search biases (that arise from the construction
procedures employed by the different algorithms) is beyond the scope of this chapter. Such a
study would entail, among other things, a careful experimental analysis of each constructive
algorithm for different choices of the single neuron training algorithm (e.g., pocket algorithm
with ratchet modification , thermal perceptron algorithm, barycentric correction procedure , and
perhaps other variants designed for synergy with specific network construction strategies) and
different output representations (e.g., independent output neurons versus WTA). We present
a more systematic comparison of the performance of different constructive learning algorithms

in appendix B. This is the subject of [PYH98]. In what follows, we explore some practical

142

issues that arise in the application of constructive learning algorithms and present the results

of a few experiments designed to address the following key issues.

1. The convergence proofs presented here rely on two factors: The ability of the network
construction strategy to connect a new neuron to an existing network so as to guarantee
the existence of weights that will enable the added neuron to improve the resulting
network’s classification accuracy and the TLU weight training algorithm’s ability to find
such a weight setting. Finding an optimal weight setting for each added neuron such that
the classification error is maximally reduced when the the data is non-separable is an
NP-hard problem [SRK95]. Thus, practical algorithms for training threshold neurons are
heuristic in nature. This makes it important to study the convergence of the proposed
constructive algorithms in practice. We trained constructive networks on several non-

linearly separable datasets that require highly nonlinear decision surfaces.

2. It is important to examine whether constructive algorithms yield in practice, networks
that are significantly smaller than would be the case if a new neuron is recruited to
memorize each pattern in the training set. A comparison of the size of the networks
generated by the algorithms with the number of patterns in the training set would at

least partially answer this question.

3. Regardless of the convergence of the constructive learning algorithms to zero classification
errors, a question of practical interest is the algorithms’ ability to improve generalization
on the test set as the network grows in size. One would expect over-fitting to set in
eventually as neurons continue to get added in an attempt to reduce the classification
error, but we wish to examine whether the addition of neurons improves generalization
before over-fitting sets in. Experiments were designed to examine the generalization

behavior of constructive algorithms on non-linearly separable datasets.

Another important issue, especially in the case of large pattern sets, is that of training time.

Since our experiments were not designed for optimal performance in terms of training time,

143

it is difficult to make a definitive statement comparing the training speeds of the different

algorithms. We have identified some important factors that address this issue.

8.8.1 Datasets

We have conducted several experiments with constructive learning algorithms using a va-
riety of artificial and real world datasets. A detailed specification of these datasets is given in
appendix B (see Table B.1). In this chapter we describe experiments with the 5 bit random
patterns (r5), three concentric circles (3¢), ionosphere (ion), segmentation (seg), iris (iris), wine
(wine), and sonar (sonar) datasets. Given that the seg and wine datasets involve attributes

with high magnitudes, we used normalized versions of these datasets in our experiments.

8.8.2 Training Methodology

Any of the three TLU weight training schemes can fit the role of A for the tower, pyramid,
tiling, upstart, and perceptron cascade algorithms. Initially, the thermal perceptron algorithm
was used for training weights of the individual TLUs. The weights of each neuron were ran-
domly initialized to values between —1 and +1. The number of training epochs was set to 500.
Each epoch involves presenting a set of [randomly drawn patterns from the training set where
[is the size of the training set. The initial temperature Ty was set to 1.0 and was dynamically
updated at the end of each epoch to match the average net input of the neuron(s) during
the entire epoch [Bur94]. 25 runs were conducted for each experimental set up. Training was
stopped if the network failed to converge to zero classification errors after adding either 100
hidden neurons in a given layer or after training a total of 25 hidden layers and that particu-
lar run was designated as a failure. Following the training step, the network’s generalization
performance was measured on a set of test patterns (if one was available).

For sequential learning, the variation of the barycentric correction procedure which is specif-
ically designed for exclusion of patterns can be used for training. Each hidden neuron was
trained for 500 epochs of the barycentric correction procedure with the initial weighting coef-

ficients set to random values between 1 and 3.

144

In the case of the upstart and perceptron cascade algorithms, some runs failed to converge
to zero classification errors. Upon closer scrutiny it was found that the training sets of the
daughter neurons had very few patterns with a target output of 1 (compared to the patterns
with a target output of 0). The thermal perceptron algorithm while trying to correctly classify
the largest subset of training patterns ended up assigning an output of 0 to all patterns. Thus
it failed to meet the requirements imposed on A in this case. This resulted in the added
daughter neuron’s failure to reduce the number of misclassified patterns by at least one and
in turn caused the upstart and the perceptron cascade algorithms to keep adding daughter
neurons without converging. To overcome this problem, a balancing of the training set for the
daughter neuron was performed as follows: The daughter neuron’s training set was balanced
by replicating the patterns having target output 1 sufficient number of times so that the
dataset has the same number of patterns with target 1 as with target 0. Given the tendency
of the thermal perceptron algorithm to find a set of weights that correctly classify a near-
maximal subset of its training set, it was now able to (with the modified training set) at least

approximately satisfy the requirements imposed on A.

8.8.3 Convergence Properties

Tables 8.1, 8.2, and 8.3 summarize the performance of the constructive algorithms on the
r5, 3¢ and ion datasets respectively. In each case, the networks were trained to attain 100%
classification accuracy on the training set and the network size (number of neurons excluding
the input neurons), training time (in seconds), and generalization accuracy (the fraction of the
test set that was correctly classified by the network) were recorded. These tables demonstrate
that the constructive algorithms are indeed capable of converging to zero classification errors
while generating sufficiently compact networks.

Certain constructive algorithms experienced difficulty in successfully classifying the entire
training set in the case of some datasets (e.g., iris and seg). In Tables 8.4 and 8.5 we describe
the results of those constructive algorithms that did manage to converge successfully to zero

classification errors on these training sets.

145

Table 8.1 Performance of the Constructive Algorithms on the r5 Dataset.

Algorithm | Network Size Time
Tower 11.034+0.73 10.904+0.95
Pyramid 10.5840.88 10.634+1.21
Upstart 10.6440.57 52.34+4.83
Cascade 9.7840.4 49.33+2.68
Tiling 14.954+1.17 9.4940.76
Sequential 10.9240.62 65.23+6.98

Table 8.2 Performance of the Constructive Algorithms on the 3¢ Dataset.

Algorithm | Network Training Test
Size Time Accuracy
Tower 6.00+0.00 134.96+1.52 99.7940.09

Pyramid 6.00+0.00 137.4343.36 99.74+0.23
Upstart 19.00+£15.53 | 1227.56+£774.52 | 99.03£0.76
Cascade 8.38+5.52 690.28+533.57 | 99.14+1.15
Tiling 45.60+7.76 561.44471.32 95.37£0.92
Sequential | 44.68+6.26 | 1550.90+1282.35 | 94.444+1.13

Owing to the inherent bias of the network construction strategy, there might be a particular
network construction strategies that are favorably disposed towards certain datasets. This fact
is evident from the table 8.4 where we see that only the tiling and sequential algorithms have
converged on the iris datasets and table 8.5 which shows that only the perceptron cascade,
tiling, and sequential algorithms have been successful on the seg dataset.

Projecting individual patterns on to a parabolic surface by appending an additional at-

tribute also causes some practical difficulties. Certain real world datasets have patterns with

Table 8.3 Performance of the Constructive Algorithms on the ion Dataset.

Algorithm | Network Training Test
Size Time Accuracy
Tower 5.684+1.65 | 97.94428.25 | 94.841.52
Pyramid | 5.0440.98 | 90.16+19.03 | 94.844+1.17
Upstart 3.0440.45 | 133.774+28.39 | 94.12+1.89
Cascade 3.2840.61 | 148.56+39.17 | 93.03+2.10
Tiling 8.76+1.48 | 86.994+9.43 | 89.64+3.46
Sequential | 5.0840.4 | 106.17£29.39 | 91.62+2.53

146

Table 8.4 Performance of the Constructive Algorithms on the iris Dataset.

Algorithm | Network | Training Test
Size Time Accuracy
Tiling 9.76+3.27 | 17.1942.16 | 96.08+1.35
Sequential 7.0+0.0 | 80.8426.24 | 90.3240.75

Table 8.5 Performance of the Constructive Algorithms on the seg Dataset.

Algorithm | Network Training Test
Size Time Accuracy
Cascade 20.96+2.72 | 490.67+106.98 | 74.434+2.15
Tiling 53.414+19.39 | 174.65+60.93 | 83.87+1.78
Sequential | 29.48+2.18 | 1156.724188.59 | 81.57+2.38

large magnitude attributes. Since the correctness proofs of the tower, pyramid, upstart, and
perceptron cascade algorithms require augmentation of the dataset with an additional attribute
representing the sum of squares of the individual attributes, this additional attribute is often
very large in magnitude. Such high magnitude attributes would cause an excruciating slow
down in the training of the constructive algorithms. One solution to this problem is to normal-
ize the patterns so that each pattern vector has a magnitude of 1. In appendix A we show how
the convergence proofs of the constructive algorithms can be modified to deal with normalized
pattern vectors.

In practice, the success of constructive learning algorithms is critically dependent on the
performance of the TLU weight training method (LA). The close interaction between the
network construction process and the training of individual TLUs is demonstrated by our
experiments with the wine dataset. When the thermal perceptron algorithm was used to play
the role of A none of the constructive learning algorithms were able to converge. Replacing
the thermal perceptron algorithm by the barycentric correction procedure produced entirely
different results with all except the pyramid algorithm converging to zero classification errors
fairly quickly. These results are summarized in Table 8.6.

Similarly, experiments with the sonar dataset revealed that a single TLU trained using

the pocket algorithm with ratchet modification could correctly classify the entire training set

147

Table 8.6 Performance of the Constructive Algorithms on the wine
Dataset.

Algorithm | Network Training Test
Size Time Accuracy
Tower 12.2440.83 56.384+5.66 | 92.76+1.72
Upstart 14.76+10.17 | 491.184+505.99 | 90.48+3.76
Cascade 16.36+3.9 | 557.974+190.84 | 89.52+5.67
Tiling 7.56+0.51 24.54+1.43 | 93.0443.67
Sequential 7.4+1.12 129.04429.71 | 93.2444.75

i.e., the dataset is linearly separable. Even after training a TLU for 1000 epochs using the
thermal perceptron algorithm and the barycentric correction procedure the separating weight
vector was not found.

Another important factor which affects convergence of the constructive algorithms in the
case of datasets with multiple output categories is the WTA training strategy. Tables 8.7
and 8.8 below summarize the performance of the constructive algorithms on the iris and
the seg datasets using the WTA output strategy. We observe that for the seg dataset the
upstart algorithm converges using the WTA output strategy whereas its convergence using the

independent output computation was not possible (see Table 8.5).

Table 8.7 WTA Output Strategy on the iris Dataset.

Algorithm | Network | Training Test
Size Time Accuracy
Tiling 8.0+0.0 | 29.1740.99 | 95.92+40.7
Sequential 7.0+£0.0 | 126.064+43.2 | 90.440.82

Table 8.8 WTA Output Strategy on the seg Dataset.

Algorithm | Network Training Test
Size Time Accuracy
Upstart 14.76+1.94 | 292.864+72.35 | 86.77+1.47
Cascade 13.884+1.13 | 269.124+44.26 | 86.79+1.52
Tiling 30.32+4.34 | 153.854+21.46 | 86.8141.25
Sequential | 30.16+3.2 | 1997.754+489.26 | 83.64+1.97

148

8.8.4 Network Size

A major motivation for exploring constructive learning algorithms is their ability to gener-
ate parsimonious networks. The convergence proofs for constructive algorithms are existence
proofs and are based on the ability of each added neuron to reduce the classification error by
at least one. A trivial network construction process of assigning one neuron per pattern would
achieve zero classification errors. In this case, neither the network size nor the generalization
performance of the resultant network would be satisfactory. We argue that in practice the
algorithms we have presented perform much better. A comparison of the average network
sizes (see Tables 8.1 — 8.8), in the cases where the networks generated actually converged to
zero training errors, to the total size of the training set (see Table B) demonstrates that the
networks generated were compact in the sense that the constructive algorithms did not simply
memorize the training patterns by assigning a single hidden node to classify each pattern.

The average network sizes generated for the seg dataset with and without the WTA output
strategy (see Tables 8.5 and 8.8 respectively) shows one case wherein the WTA output strategy

yields substantially smaller networks.

8.8.5 Generalization Performance

Although convergence and network size are important parameters of constructive algo-
rithms, generalization is a more meaningful yardstick for measuring their performance. A
single layer of TLUs when trained has a certain generalization ability. Of course, this single
layer of TL.Us cannot converge to zero classification errors in the case of non-linearly separable
training sets. A constructive algorithm can generate a network with zero classification errors
on non-linearly separable sets. However, in cases where the size of the training set is small
or there is noise in the training data the use of the constructive algorithm might result in
over-fitting. The added neurons might effectively memorize a few patterns misclassified by
the first layer of TLUs. When this happens, the generalization performance of the resulting
networks can be worse than that of the single layer network.

We trained a single layer of TLUs using the thermal perceptron algorithm on each of the

149

datasets mentioned in section 8.8.1. The following parameters were used in the simulation runs:
500 training epochs, initial temperature Ty = 1, adaptive re-scaling of T following each epoch,
random initial weights between [—1..1], and a learning rate = 1. We measured the total
time it took to train the TLUs for 500 epochs and recorded the training and test accuracies at
the end of 500 epochs. Table 8.9 describes the performance of a single layer of TLUs on the

different datasets.

Table 8.9 Single Layer Training using the thermal perceptron algorithm .

Dataset Training Training Test
Accuracy Time Accuracy
rH 56.37+2.54 | 3.26+0.08 —
5 (WTA) 75.78+1.18 | 4.26+0.05 —
3 circles 23.1149.76 | 102.404+2.00 | 22.26 + 9.48
3 circles (WTA) 44.86+4.13 | 126.70+1.86 | 42.46 + 4.20
Iris 78.36+0.95 8.1740.1 72.64+1.7
Iris (WTA) 99.040.0 11.940.17 98.040.0
Segmentation 82.5940.7 | 45.954+0.94 | 71.4440.67
Segmentation (WTA) | 94.31+0.57 | 50.46+0.84 | 87.39+0.42
lonosphere 95.4240.59 | 17.46+0.15 | 92.9941.93

A significant increase in generalization performance is observed for the 3¢ (see Table 8.2),
the iris (see Table 8.4), and the seg (see Table 8.5) datasets with independent training. The
performance on the ion dataset improved only marginally (see Table 8.3). When the WTA
training was employed the performance of the constructive algorithms on the iris and seg
datasets actually deteriorated (see Tables 8.7 and 8.8).

In summary, given adequate training data, constructive algorithms can yield relatively
compact networks that significantly outperform the single layer networks for the same task in
terms of generalization accuracy. However, in practice, it might be necessary to terminate the

network construction algorithm before over-fitting sets in.

8.8.6 Training Speed

The issue of network training time becomes critical for very large training sets. We have

measured the average training time for each dataset (see Tables 8.1 — 8.9). Below we discuss

150

some factors that affect the training time. We must point out that our simulation programs
did not contain any special optimization beyond the facilities provided by the compiler and
standard techniques for enhancing the run time performance of the programs.

A comparison of the average training time across different algorithms clearly shows that
the tower, pyramid , and tiling algorithms are able to learn relatively faster as compared to the
upstart , perceptron cascade, and sequential algorithms. This can be explained in terms of the
operational characteristics of the algorithms. The upstart and perceptron cascade algorithms
require re-training of the output weights after each daughter neuron is added and trained.
This computation is fairly time consuming especially since the fan in of the output neurons
increases with the addition of each new daughter. The sequential learning algorithm is limited
by the fact that the only suitable TLU weight training algorithm available to exclude patterns
belonging to a single class is a variant of the barycentric correction procedure. The multi-
category extension of this procedure involves running the two-category version for each of
the output classes which explains why the sequential learning algorithm learns very slowly
for pattern sets involving large number of output classes. Faster learning in the tower and
pyramid is attributed to the fact that each layer of the network is trained just once and the
weights are frozen. In the case of the tiling network, in addition to the fact that the neurons
are trained only once, the training set sizes for the ancillary neurons progressively decrease
as additional ancillary neurons get added. Since each neuron or group of neurons are trained
for 500 epochs irrespective of the training set size, smaller training sets obviously require less

training time than larger ones. The same advantage holds for sequential learning.

8.9 Summary and Discussion

Constructive algorithms offer an attractive approach for automated design of neural net-
works. In particular, they eliminate the need for ad hoc, and often inappropriate, a-priori
choice of network architecture; potentially provide a means of constructing networks whose
size (complexity) is commensurate with the complexity of the pattern classification task at

hand; and offer natural ways to incorporate prior knowledge (e.g., in the form of classification

151

rules, decision trees, etc.) to guide learning. In this chapter, we have focused on a family
of such algorithms that incrementally construct networks of threshold neurons. Although a
number of such algorithms have been proposed in the literature, most of them are limited to 2-
category pattern classification tasks with binary/bipolar valued input attributes. This chapter
extends several existing constructive learning algorithms to handle multi-category classification
for patterns having real-valued attributes. We have provided rigorous proofs of convergence to
zero classification errors on finite, non-contradictory training sets for each of the multi-category
algorithms proposed in this chapter. Our proof technique provides a sufficiently general frame-
work to prove the convergence of several different constructive algorithms. This strategy will be
useful in proving the convergence properties of constructive algorithms designed in the future.

The convergence of the proposed algorithm to zero classification errors was established by
showing that each modification of the network topology guarantees the existence of a weight
setting that would yield a classification error that is less than that provided by the network
before the modification and assuming a weight modification algorithm A that would find
such a weight setting. We do not have a rigorous proof that any of the graceful variants of
perceptron learning algorithms that can in practice, satisfy the requirements imposed on A,
let alone find an optimal (in some suitable well-defined sense of the term - e.g., so as to yield
minimal networks) set of weights. The design of suitable TLU training algorithms that (with
a high probability) satisfy the requirements imposed on A and are at least approximately
optimal remains an open research problem. Against this background, the primary purpose of
the experiments described in section 8.8 was to explore the actual performance of such multi-
category constructive learning algorithms on some non-linearly separable classification tasks if
we were to use a particular variant of perceptron learning for non-linearly separable datasets.
Detailed theoretical and experimental analysis of the performance of single threshold neuron
training algorithms is in progress [YPH98a]. We expect this analysis to lead to the design of
improved and possibly hybrid weight modification schemes that can dynamically adapt to the
situation faced by the particular constructive algorithm on a given dataset. For example, in

certain pattern configurations it might be appropriate to exclude as many patterns of one class

152

as possible whereas in other scenarios it might be better to correctly classify as large a subset
of the training patterns as possible.

Simulation results have demonstrated the usefulness of the constructive algorithms in clas-
sification tasks. Some of the issues addressed in the preceding sections set the stage for a
detailed evaluation of the design choices that affect the performance of the constructive learn-
ing algorithms and identify several avenues for further research. The impact of these issues
on the training efficiency (network size and training time) and the generalization ability merit

further investigation.

e A cross-validation based criterion for training constructive networks must be employed
wherein the training is stopped when the network’s generalization begins to deteriorate
after the addition of a new neuron (or a group of neurons). It is likely to generate compact
networks that exhibit good generalization properties with relatively little training as
opposed to the current stopping-criterion of zero classification errors which might lead

to over-fitting of the training set.

e Hybrid network training schemes that dynamically select an appropriate network con-
struction strategy, an appropriate TLU weight training algorithm, an appropriate output
computation strategy and such to obtain locally optimal performance at each step of the

classification task are likely to yield superior performance across a variety of datasets.

e Post-processing techniques such as pruning of networks eliminate nodes and connections
that do not adversely affect the network’s performance. Pruning can potentially overcome
the over-fitting problem by yielding more compact networks with superior generalization.
An application of neuron pruning techniques to the M7Tiling networks is described in

chapter 9.

e Various pre-processing techniques are responsible for transforming the training data in
a manner that might simplify the learning task. Among these we have already seen the
benefits of normalization. Another method of handling pattern sets with real-valued out-

puts is quantization of the training patterns. Preliminary results of applying quantization

153

are presented in [YH96]. In chapter 10 we describe a novel adaptive vector quantization

scheme based on the MTiling algorithm.

Constructive neural network learning algorithms provide a natural framework for incorpo-
rating domain specific prior knowledge in the network topology. This domain knowledge
can be refined and/or augmented by dynamically adding more neurons to the original
network. This framework for constructive theory refinement in knowledge based neural

networks is studied in chapter 10.

Each constructive algorithm has its own set of inductive and representational biases
implicit in the design choices that determine when and where a new neuron is added and
how it is trained. A systematic characterization of this bias would be useful in guiding

the design of constructive algorithms that exhibit improved performance.

The differences in the training time of the various constructive algorithms are striking.
This may be due, among other things, to the differences in their inductive and represen-
tational biases. However, it might be possible in some cases to optimize each algorithm

separately to reduce its training time.

It is often the case that the generalization performance of inductive learning algorithms
can be substantially improved by augmenting them with suitable algorithms for select-
ing a relevant subset of a much larger set of input attributes many of which might be
irrelevant or noisy. A variety of feature subset selection algorithms have been proposed
in the literature on pattern recognition [Rip96]. The effectiveness of genetic algorithms
for feature subset selection has been demonstrated by [YH97]. Against this background,
exploration of constructive learning algorithms augmented with suitable feature subset

selection techniques might be of interest.

The results of a more extensive experimental comparison of the different constructive
learning algorithms is presented in appendix B. Yang et al have recently proposed an
efficient inter-pattern distance based constructive learning algorithm DistAl [YPH98b].

Unlike the algorithms described in this chapter, DistAl does not use the perceptron style

154

iterative weight update procedure. Instead, it constructs spherical threshold neurons
whose weights are determined by the inter-pattern distances to sequentially exclude pat-
terns belonging to a single class from all others (as is the case in the sequential learning
algorithm). A comparison of the constructive learning algorithms proposed in this chap-
ter with the DistAl, the cascade correlation algorithm, and the backpropagation learning
algorithm would be useful in gaining a better understanding of the advantages and dis-

advantages of each approach.

Recent research has focussed on the use of neural networks for lifelong learning [Thr95]
where networks are trained to learn multiple classification tasks one after the other. A
goal of the multi-task learning system is to exploit (if possible) the prior knowledge
acquired while learning the earlier tasks to make the learning of the later and possibly
more difficult tasks easier. Constructive learning algorithms offer an interesting approach
for the use of domain knowledge to learn multiple classification tasks. A network that has
domain knowledge from the simpler task(s) built into its architecture (either by explicitly
setting the values for the connection weights or by training them) can form a building
block for a system that constructively learns more difficult tasks. The performance of

constructive learning algorithms in this setting of lifelong learning merits further study.

155

9 PRUNING STRATEGIES FOR THE MTILING CONSTRUCTIVE
LEARNING ALGORITHM

9.1 Introduction

Constructive neural network learning algorithms offer an interesting paradigm for incre-
mental construction of near-minimal architectures for pattern classification problems [Gal90,
Hon90, Gal93, HU93]. As we saw in chapter 8, constructive learning algorithms enjoy sev-
eral advantages over the traditional algorithms for learning in multi-layer feed-forward net-
works. Several constructive learning algorithms have been proposed in the literature — tower,
pyramid [Gal90], tiling [MN89], upstart [Fre90b], perceptron cascade [Bur94], and sequen-
tial [MGR90]. These algorithms differ from each other in the design choices viz. representa-
tion of input patterns (binary/bipolar valued or real-valued); when and where to add a new
TLU (or a group of TLUs); connectivity of the newly added neuron(s); algorithms for training
the TLUs; and the strategy for training the sub-network affected by the modification of the
network topology. These differences in design choices result in constructive learning algorithms
with different representational and inductive biases. Provably correct and practical extensions
of these algorithms to handle real-valued pattern attributes and multiple output categories
were described in chapter 8.

The success of a constructive learning algorithm depends partly on the algorithm used
to train the individual TLUs because the convergence to zero classification errors is based
on the fact that the TLU weight training algorithm can find a suitable weight setting such
that the total number of mis-classifications is reduced by at least one each time a new neuron
(or a group of neurons) is added to the network and trained. Algorithms such as the pocket

algorithm with ratchet modification [Gal90], the thermal perceptron algorithm [Fre92], and the

156

barycentric correction procedure [Pou95] are commonly used for training individual TLUs (or
groups of TLUs) in constructive learning algorithms. We denote such a suitable TLU training
algorithm by A.

Given a particular pattern classification task it is the goal of a neural network learning
algorithm to search the space of neural network architectures to determine an architecture
suitable for the task. An exhaustive search through the space of neural network architectures
is computationally infeasible. Constructive learning algorithms adopt a greedy strategy in
that each incrementally added neuron attempts to reduce as large a fraction of the network’s
residual classification error as possible. The training of individual TLUs is based on local
information in the sense that during training the weights of the remainder of the network are
frozen and the training set for these neurons is constructed with the objective of reducing
the residual classification error. Owing to the representation and inductive biases introduced
in the design choices incorporated in the constructive learning algorithm and the locality of
training, it is possible that the incrementally grown networks are larger than necessary for
the given classification task. Other things being equal, smaller (more compact) networks are
desirable because of lower classification cost; potentially superior generalization performance;
and transparency of the acquired knowledge in applications which involve extraction of rules
from trained networks. These reasons motivate the study of pruning techniques in constructive
learning algorithms.

Network pruning involves elimination of connection elements (i.e., weights or neurons) that
are deemed unnecessary in that their elimination does not degrade the network’s performance.
Pruning can be performed either after the entire network is trained or can be integrated into
the training process itself. In this chapter we study the application of pruning techniques to
MTiling, an extension of the tiling algorithm to handle real-valued pattern attributes and
multiple output classes (see section 8.6). The remainder of this chapter is organized as follows:
Section 9.2 describes three elementary pruning strategies for eliminating unwanted neurons
from a MTiling network. Section 9.3 presents the results of experiments with pruning using

several artificial and real-world datasets. Finally, section 9.4 concludes with an analysis of the

157

experiments with pruning and suggests directions for future research.

9.2 Pruning Strategies

An excellent survey of neural network pruning strategies appears in [Ree93]. It outlines two
types of pruning techniques for feed forward neural networks trained using the backpropagation
algorithm — sensitivity calculations and penalty terms. The former investigates the sensitivity
of the error function (or the objective function that is minimized) to the removal of a network
element. Elements with the least sensitivity are pruned. The second group of techniques
involves incorporating a penalty term in the error function which is minimized by the gradient
descent based learning algorithm. For example, incorporating a term proportional to the sum
of all the weight magnitudes in the error function favors solutions in which the individual
weights are small in magnitude. Weights that are nearly zero are not likely to influence the
output much and so can be pruned. In general, sensitivity based techniques modify the network
topology (i.e., remove redundant nodes and weights based on sensitivity calculations) whereas
the penalty term based methods modify the cost function so that the learning algorithm while
minimizing the cost function forces the irrelevant connection weights to be driven toward zero.
The group of constructive algorithms mentioned in section 9.1 does not explicitly define a cost
(error) function for minimization during training. Thus, it is not clear whether penalty term
based pruning techniques can be directly applied to these constructive learning algorithms. In

this chapter, we focus on the sensitivity based pruning of neurons in MTiling networks.

9.2.1 Pruning in MTiling Networks

Recall from section 8.6 that the MTiling network is a strictly layered network of TLUs.
Each layer has a group of M master neurons (where M is the number of output categories
specified in the pattern classification task) and a set of 0 or more ancillary neurons that are
trained to ensure that each layer attains a faithful output representation for all the patterns
in the dataset. The topmost layer of the network (see Fig. 8.14) is the output layer and it

contains only M master neurons.

158

The sensitivity of a neuron is defined as the error introduced in the network upon the
removal of the neuron. The error can be defined in a manner that is most suited to the
context. In the case of MTiling networks, since ancillary neurons are added and trained to
ensure faithfulness of current layer, we assign a sensitivity value of 0 to neurons whose removal
does not cause the layer to become unfaithful. More precisely, we define the sensitivity S(¢) of

a neuron 7 in a layer L immediately after the layer has been made faithful as follows:

S(i) = 1if eliminating 7 renders L unfaithful
S(i7) = 0 otherwise

In MTiling networks we integrate pruning with the training process and invoke the pruning
phase after each layer of the network is trained and made faithful. Since the master neurons of
each layer are the output neurons for that layer we assign a sensitivity of 1 to the master neurons
thereby preventing them from being pruned. The ancillary neurons are assigned sensitivity of
1 or 0 as described below. All the ancillary neurons that have sensitivity 0 are pruned from
the network. The training of the network is then continued with the addition of a new layer
with M master neurons.

Dead Neurons:

Ancillary neurons with exactly the same output (i.e., 1 or —1) for all patterns in the training
set are called dead neurons. As seen in Fig. 9.1, pruning dead neurons does not affect the
faithfulness of the current layer. Thus, dead neurons are assigned a sensitivity of 0.
Correlated Neurons:

Pairs of ancillary neurons that have either exactly the same or exactly the opposite output in
response to each pattern in the training set (i.e., the product of the outputs of the two neurons
is either 1 for all patterns or —1 for all patterns) are said to be correlated. As seen in Fig. 9.2,
the first two neurons have exactly opposite outputs on all training patterns and thus satisfy the
test for correlated neurons. One of these neurons can be safely pruned without affecting the
faithfulness of the current layer. Ancillary neurons are taken two at a time and their outputs
(for each pattern) are compared to determine if the neurons are correlated. One neuron from

the correlated pair is dropped as soon as it is identified and is not considered any further in the

159

Master Auxiliary
Neurons Neurons

O O 000

Dead neuron

Neuron Outputs

A #
S #1
IE I B
A S B I
U

Figure 9.1 Dead Neurons.

search for correlated neuron pairs. Note that in this case we only consider perfect correlation
among neurons i.e., neurons having exactly the same or exactly the opposite outputs on all
the patterns belonging to the training set.

Redundant Neurons:

Determination of redundant neurons involves dropping ancillary neurons one at a time and
comparing the remaining outputs for faithfulness. If the outputs are not faithful then the
dropped neuron is restored. Otherwise the dropped neuron is redundant and is assigned a
sensitivity S(¢2) = 0 (see Fig. 9.3). The redundant neuron is immediately pruned and the search
for redundant neurons is continued starting with the first ancillary neuron. This identification
and pruning of redundant neurons is continued until no further redundant neurons can be

identified.

9.2.2 Pruning Cost

The search for ancillary neurons with sensitivity S(7) = 0 incurs an additional cost. The
identification of neurons that are eventually pruned involves a comparison of the current layer’s

outputs in response to every training pattern. It should be noted that this output computation

160

Master Auxiliary
Neurons Neurons

- -1
-1 -1
-1 -1
-1 +1
i +1 -1

e e e e e

Figure 9.2 Correlated Neurons.

Master Auxiliary
Neurons Neurons

O 0000

Redundant neuron

Figure 9.3 Redundant Neurons.

161

is performed by the MTiling algorithm while checking for faithfulness of the current layer.
These output values can thus be made readily available to the pruning step. Let us now
analyze the cost involved in searching for the ancillary neurons with S () = 0.

Let k be the number of ancillary neurons in the current layer and |S| be the total number of
training patterns. The search for dead neurons involves comparing the output of each neuron
in response to each of the |S| training patterns. This step therefore takes O(k -|S|) time. The
identification of correlated neurons involves comparing the outputs of the neurons taken two
at a time. Each such comparison takes O(|S]|) time. Thus, the worst case time complexity for
the search for correlated neurons is O(k?-|S]). The process of determining redundant neurons
involves dropping the ancillary neurons one at a time and testing the outputs of the remaining
neurons for faithfulness. If a redundant neuron is found then it is immediately pruned and
the search for additional redundant neurons is started again from the first ancillary neuron.
Thus, in the worst case this search for redundant neurons makes O(k?) calls to the routine
that checks for faithfulness of the current layer. Checking for faithfulness takes O(k-|S]). This
means that the worst case time complexity for this final step is O(k3 - |S]). It must be noted
that the only operation involved in the above three search strategies is an equality comparison
of integers which in practice can be performed very efficiently. We see in section 9.3 that in
practical experiments the total time for pruning is a small fraction (about 10%) of the total

training time for the MTiling network.

9.3 Experimental Results

We have conducted several experiments with pruning using a variety of artificial and real-
world datasets. Specifically, we used the 3¢, 2sp, liver, seg, wdbc, and wine datasets. A detailed
specification of these datasets is given in Table B.1 (see appendix B).

We performed 10 runs of the MTiling algorithm on each of the above mentioned datasets
with and without pruning. Individual TLUs were trained using the thermal perceptron algo-
rithm for 500 epochs. The initial temperature T was set at 1.0, the learning rate n was set at

1, and initial weights of each TLU were initialized to random values in the range [—1..1]. The

162

winner-take-all (WTA) strategy was used to compute the outputs for datasets involving more
than two pattern classes. On each run the network was trained until it achieved zero classifi-
cation errors on the training set. If a test set was available for the dataset then the network’s
generalization performance was determined by measuring network’s classification accuracy on
the test set. For runs with network pruning the number of neurons pruned by each of the three
pruning strategies, the total time for pruning (in seconds), the network size (number of hidden
and output neurons), the total training time (in seconds), and the generalization performance
(classification accuracy on the test set) over the 10 runs were recorded. For runs without
network pruning the network size, the training time, and the generalization performance over
the 10 runs were recorded.

Table 9.1 reports the mean and standard deviation over 10 simulation runs of the number of
neurons pruned by each of the three pruning strategies dead neurons, correlated neurons, and
redundant neurons, the time expended on the pruning step in seconds and the total training
time in seconds for the MTiling algorithm. The results show that a majority of the neurons
pruned belong to the class of redundant neurons. Further, the total time spent in searching

for neurons with S(i) = 0 is a small fraction of the total training time in each case.

Table 9.1 Results of Pruning using the thermal perceptron algorithm.

Dataset Dead Correlated | Redundant Pruning Training
neurons neurons neurons Time Time
3c 0.1 +0.3 0.0+ 0.0 52+ 1.4 133.8 £ 22.9 | 856.3 + 94.3
2sp 22+ 1.6 0.6 +0.8 16.0 + 5.8 133+ 2.3 | 134.8+ 16.1
liver 0.0 £+ 0.0 0.1+0.3 5.5+ 3.1 724 1.7 156.8 + 23.3
seq 0.6 £ 0.5 0.0 £ 0.0 23+ 1.1 401 +£1.3 175.1 + 21.1
wdbe 59+ 4.6 0.0+ 0.0 7.4+ 4.0 23.21 £ 8.1 | 439.9 + 67.8
wine 154 4+ 14.0 4.8 +9.1 14.8 4 16.1 | 8.45 £+ 10.5 | 142.3 + 90.3

Fig. 9.4 compares the average final network size of the MTiling algorithm with and without
pruning. This demonstrates a modest to significant reduction in the size of the network with
pruning. The generalization performance of the network is not affected by pruning as can be
seen from Fig. 9.5.

On a few runs for the wdbc and the wine dataset the MTiling algorithm was unable to

Network Size

80

60

40

20

163

Pruning
-NoPruning
S F o g8 8
Al > S =
= = =
Dataset

Figure 9.4 Comparing the Network Size with and without Pruning.

Generalization

164

100

80

60

Pruning
40 - No Pruning

20

5

3C
liver
wine

wdbc

Dataset

Figure 9.5 Comparing the Generalization with and without Pruning.

165

attain a faithful representation of the patterns at a layer even after the addition of 100 an-
cillary neurons. These runs were considered as failures and were not included in the results
reported. We repeated the above experiments using the barycentric correction procedure in-
stead of the thermal perceptron algorithm for training the individual TLUs. Since the extension
of the barycentric correction procedure to WTA based output computation is extremely slow
(see [YPHO98a]) we performed these experiments using the independent output computation
strategy. These results are summarized in Table 9.2. In the case of the wdbc and the wine
datasets training using the barycentric correction procedure resulted in MTiling networks with
practically no redundancy as opposed to the case of the thermal perceptron algorithm where
a significant reduction in network size was attained as a result of pruning. The results of
pruning on the other datasets were comparable to those obtained when the thermal perceptron

algorithm was used for training TLUs.

Table 9.2 Results of Pruning using the barycentric correction procedure.

Dataset Dead Correlated | Redundant | Pruning Training
neurons neurons neurons time time

3c 0.0+00| 0.8+4+0.8 3.8+ 1.2 74.0 + 22.5 | 779.0 + 92.6
2sp 0.0+ 0.0| 0.0+ 0.80 7.4+ 3.1 93+1.2 | 131.84+17.3
liver 0.0+00| 0.0+0.0 1.4+ 0.8 2.5+ 08 | 186.2 4+ 29.5
seq 0.0+00| 0.0+0.0 2.0+ 0.9 2.6 +£08 | 167.4 4+ 27.9
wdbe 0.0+00| 0.0+1.0 0.7+ 0.0 20.6 + 3.1 89.4+ 1.5
wine 0.0+00| 0.0+0.0 0.0 £ 0.0 79+ 1.5 94.0 + 3.3

In Table 9.3 we present a comparison of the results of our experiments when the thermal
perceptron algorithm is used to train the individual TLUs versus when the barycentric cor-
rection procedure is used. It lists the mean and standard deviation of the total number of
neurons pruned (all the three strategies combined), the final network size, and the general-
ization accuracy on the test set (if one exists). These results are averaged over 10 simulation
runs. Table 9.3 provides no conclusive evidence as to whether using thermal perceptron algo-
rithm in MTiling networks is better than using barycentric correction procedure or vice-versa
since results for both network size and generalization accuracy (test accuracy) show that the

performance of the networks trained using thermal perceptron algorithm is superior on some

166

of the datasets whereas the performance of the networks trained using barycentric correction
procedure is superior on other datasets. On all (except the seg dataset) the number of neurons
pruned in networks trained using thermal perceptron algorithm is higher than that for networks
trained using barycentric correction procedure. This points to the fact that in general networks

trained using barycentric correction procedure tend to have much lesser redundancy.

Table 9.3 Comparing the Pruning Performance of Two TLU Training Al-

gorithms.
Thermal Barycentric
Dataset Perceptron Correction Procedure
Total Network Test Total Network Test

Pruned Size Accuracy || Pruned Size Accuracy
3c 53+ 1.5 |4034+3.0|95.7+0.7 ||46+1.4|349+29]| 96.7+£ 0.7

2sp 188 &£ 7.0 | 42.5 + 3.9 — 744+ 3.1 |46.6 &+ 3.5 —
liver 56 3.1 | 3684+47| 628+ 4.2 | 144+08|523+£59] 65.1+3.9
seq 294+ 1.1 | 31.04+4.1|875+1.2 |204+£09 |362+82]| 84.1+£1.5
wdbc 133 4+84 | 27.34+29 | 875+ 16 || 0.7+ 1.1|206+3.1]89.4+£1.5
wine 35.0+£386|21.0+3.7]91.4+£32|004+00] 79+£1.5 | 94.0+ 3.3

9.4 Discussion

Constructive neural network learning algorithms incrementally construct near minimal net-
works for pattern classification tasks. They employ a greedy search strategy in that each added
neuron attempts to reduce as large a fraction of the network’s residual classification error as
possible. However, owing to the inherent biases of the network construction scheme, the lim-
ited training time allowed for each newly added TLU, and the locality of training which results
from the fact that only the weights associated with the newly added TLU are trained whereas
the rest of weights are kept frozen, it is possible that the eventual network constructed is
larger than is actually necessary for the given classification task. Pruning techniques can be
used to eliminate unwanted network elements (connection weights and neurons). Two broad
categories of pruning strategies are the sensitivity based methods which estimate the sensitiv-
ity of a network element to the network’s error and eliminate it if it has very low sensitivity

and the penalty term methods which incorporate a penalty term in the error function that

167

forces unwanted connection elements to be driven to zero during training. Smaller (more com-
pact) networks have several advantages such as lower classification cost, potentially superior
generalization capability, and transparency of the acquired knowledge.

In this chapter we have designed three sensitivity based pruning strategies for eliminating
unwanted neurons from MTiling networks. These pruning strategies are integrated with the
network construction phase and are invoked after each layer is made faithful with respect to
the set of training patterns. In particular, these methods identify dead neurons whose output
is constant for the entire training set, correlated neurons whose outputs for each pattern are
exactly the same or exactly the opposite, and redundant neurons whose elimination does not
affect the faithfulness of the trained layer.

The experiments conducted on a variety of artificial and real-world datasets demonstrate
a moderate to significant reduction in the network size as a result of pruning. The total time
expended in identifying these unwanted neurons is roughly 10% of the total network training
time. This approach thus presents a natural trade-off between training time and network size.
We observed that the generalization performance of the networks with and without pruning
did not differ significantly. This might be attributed to the fact that the pruning methods
we studied simply eliminate the redundancy in the network. Other pruning strategies might
however significantly affect the network’s generalization performance.

The redundancy introduced in a MTiling network while learning to classify a particular
dataset might actually depend on the choice of the TLU training algorithm (as seen in the
results described in section 9.3). Specifically, we observed that MT'iling networks trained using
the thermal perceptron algorithm on the wdbc and the wine datasets contain a large number
of irrelevant neurons that are eventually pruned. However, networks trained using barycentric
correction procedure on the same datasets had very little or no redundancy. It is not clear
whether there exists a single TLU training algorithm which when used for training TLUs in
the MTiling network results in the construction of superior networks (in terms of network size
and generalization ability) on all datasets. In the absence of any prior knowledge about the

suitability of a particular TLU weight training algorithm for a given task it is advisable to

168

perform pruning to ensure that most of the redundancy in the network is eliminated. As we
have noted earlier, the pruning operation increases the total training time by only a marginal
amount.

Sensitivity based pruning of individual weights requires computing the network error after
removing each weight independently. This is computationally infeasible even for moderately
large networks. The characteristics of the MTiling algorithm can be used to identify dominating
connection weights as follows. Since the MTiling network is strictly layered and uses bipolar
TLUs (with outputs 1 or —1) in the hidden and output layers, the inputs for the TLUs in all
the layers of the network starting with the second hidden layer are guaranteed to be bipolar
valued (i.e., the inputs values can only be 1 or —1). Consider a TLU with the weight vector
W = {Wy, Wy,...,W,}. If this TLUs inputs are guaranteed to be bipolar valued, we say that
the connection weight W; is the dominating connection weight if | W; | > 377 ;.. | Wi |. Note
that if a TLU has a dominating connection weight then the output of the TLU is determined
solely by the input to this dominating connection and does not depend on the inputs to
the other connections. For example, if the input to the dominating connection is 1 and the
dominating weight W; is positive then it is easy to see that the output of the TLU will be 1
irrespective of the inputs to the other connections of the TLU. Thus, in the case of MTiling
networks, if any TLU in the second hidden layer (or above) contains a dominating connection
weight, then all connection weights except the dominating one for this TLU can be pruned.

The following are some interesting directions for further research:

e Design of more efficient pruning strategies for the MTiling networks that would poten-
tially improve the generalization performance of the networks. Techniques that prune
trained networks as well as those that integrate the network pruning with the training

process merit further investigation.

e Design of a strategy to compute or approximate the sensitivity of the connection weights
during the training itself might provide a more efficient method for pruning connection

weights.

169

e Development of appropriate pruning techniques for the other constructive learning algo-

rithms studied in chapter 8.

170

10 CONSTRUCTIVE THEORY REFINEMENT IN KNOWLEDGE
BASED NEURAL NETWORKS

10.1 Introduction

Inductive learning systems attempt to learn a concept description from a sequence of la-
beled examples. The constructive neural network learning algorithms described in chapter 8
are typical inductive learning systems. Such systems have performed well in several application
domains. However, these systems generalize from the labeled examples without knowing any-
thing about why some particular example was assigned a given class label. Further, it is well
known that the choice of the attributes to represent the examples can have a significant impact
on the performance of the learning system [Rip96]. The presence of domain specific knowledge
(domain theories) about the concept being learned can potentially enhance the performance
of the inductive learning system. Hybrid learning systems that effectively combine domain
knowledge with the inductive learning can potentially learn faster and generalize better than
those based purely on inductive learning (learning from labeled examples alone). In practice
the domain theory is often incomplete or even inaccurate. Inductive learning systems that use
information from training examples to modify an existing domain theory by either augment-
ing it with new knowledge or by refining the existing knowledge are called theory refinement
systems.

Theory refinement systems can be broadly classified into the following three categories:

e Purely symbolic approaches
These methods use symbolic inductive learning algorithms (such as decision tree in-
duction) for theory revision. Examples of such systems include RTLS [Gin90], EI-
THER [OM94], PTR [KFS94], and TGCI [DR95]. The EITHER system starts with the

171

given domain knowledge and a set of training examples. It divides the examples into two
subsets depending on whether or not the rules in the domain theory are able to correctly
classify them. It then uses the standard decision tree learning algorithm ID3 [Qui86]
to invent new rules that correctly classify some of the previously misclassified training

examples.

ILP based methods

Inductive Logic Programming (ILP) is an area of artificial intelligence research that com-
bines techniques from machine learning with logic programming [Mug92]. It uses com-
putational logic as the knowledge representation mechanism and extends the theory and
practice of logic to the inductive (rather than the traditional deductive) model of in-
ference. Theory refinement systems such as FOCL [PK92] and FORTE [RM95] use
first-order logic as the representation scheme in theory revision and thus are said to be-
long to the class of ILP based techniques. FORTE (First-Order Revision of Theories
from Examples) uses a hill-climbing search for refining first-order Horn-clause theories.
It tackles new challenges such as logic program debugging and qualitative modeling that
are presented by the first-order representation (and are beyond the reach of propositional
systems). It identifies possible errors in the theory and calls on a library of operators
to develop possible revisions. The best revision is implemented, and the process repeats

until no further revisions are possible.

Connectionist strategies

Neural network based systems for theory refinement typically operate by first embedding
the knowledge rules into an appropriate initial neural network topology. This domain
knowledge is then refined by training the neural network on a set of labeled examples.
Towell and Shavlik proposed the KBANN (knowledge based artificial neural network)
learning algorithm for connectionist theory refinement [TSN90, TS94]. Their rules-to-
network algorithm constructs an AND-OR graph representation of the initial domain
knowledge and translates this graph to an appropriate neural network topology. KBANN

then uses the standard backpropagation learning algorithm [RHWS86] to refine the do-

172

main knowledge. The approaches described by Fu [Fu89] and Katz [Kat89] are similar
to the KBANN algorithm. Unlike the symbolic and ILP based methods for theory re-
finement, the connectionist approaches require that the domain knowledge be translated
into an appropriate initial neural network topology. This additional step is of merit as it
allows KBANN to generalize better than systems that train from examples alone. In ex-
periments involving datasets from the Human Genome Project!, KBANN outperformed
symbolic theory refinement systems (such as EITHER) and other learning algorithms
such as backpropagation and 1D3 [TS94]. KBANN is limited by the fact that it does not
modify the network’s topology and theory refinement is conducted solely by updating
the connection weights. This prevents the incorporation of new rules and also restricts

the algorithm’s ability to compensate for inaccuracies in the domain theory.

As seen in chapter 8 constructive neural network learning algorithms offer an interesting
approach for dynamically constructing near-minimal networks for pattern classification tasks.
Further, constructive learning algorithms offer several advantages over the traditional back-
propagation style learning algorithms (see chapter 7). Constructive learning algorithms thus
lend themselves well to the design of knowledge based neural networks for theory refinement.
The domain theory can be translated into an initial network topology as in the case of the
KBANN algorithm. New rules can be incorporated and inaccuracies in the existing rules (if
any) can be corrected by dynamically adding new neurons to the network. These new neurons
can be trained using a sequence of labeled examples.

Against this background we discuss a constructive learning approach for theory refinement
in knowledge based neural networks. In section 10.2 we describe some related constructive
theory refinement systems and compare them with our proposed approach. In section 10.3
we outline the process of incorporating the domain theory into the initial network topology
and the constructive learning algorithm that is used to dynamically grow the knowledge based
network. Specifically, we discuss a new hybrid Tiling- Pyramid constructive learning algorithm

that uses an adaptive vector quantization based on the MTiling algorithm in conjunction with

"These datasets are available from the University of Wisconsin Madison WWW site at
(ftp://ftp.cs.wisc.edu/machine-learning /shavlik-group/datasets/).

173

the pyramid learning algorithm. In section 10.4 we present the results of our experiments with
the Financial Advisor Rule Base [1.S89, FO93] and two datasets from the Human Genome
Project (ribosome binding sites and DNA promoter sequences). We conclude in section 10.5

with a summary and outline some promising directions for future research.

10.2 Related Work

Fletcher and Obradovié¢ [FO93] designed a constructive learning method for dynamically
adding neurons to the initial knowledge based network. Their approach starts with an initial
network representing the domain theory and modifies this theory by training a single hidden
layer of TLUs using the labeled training data. The resultant network topology is depicted in
Fig. 10.1. Their method uses the hyperplane detection from ezamples (HDE) algorithm [BL91]
to construct the hidden layer. The HDE algorithm divides the feature space with hyperplanes.
Each hyperplane is constructed by randomly selecting two points that belong to different
output classes and localizing a suitable split between them. This process is repeated until a
fixed number of hyperplanes is constructed. Fletcher and Obradovié’s algorithm maps these
hyperplanes to a set of TLUs and then then trains the final output unit using the pocket
algorithm with ratchet modification algorithm [Gal90].

()
3
()

Output Unit

Domain

Theory Additional Units

Input Units

Figure 10.1 Knowledge Based Neural Network.

174

Our approach is similar to the one taken by Fletcher and Obradovié. Instead of construct-
ing a single hidden layer we allow the constructive learning algorithm to build a network of
one or more hidden layers (if necessary) above the initial network representing the domain
theory (see Fig. 10.2). This provides a more general framework for incorporating domain
knowledge into any constructive neural network learning algorithm. Since the performance of
various constructive learning algorithms often differs quite significantly for different datasets
(see chapter 8) it might be advantageous to have a scheme that allows the construction of an
appropriate network topology to augment the initial network instead of limiting the network

construction to a single hidden layer.

Constructive Learning
Neural Network

Domain
Theory

Input Units

Figure 10.2 Constructive Learning in Knowledge Based Networks.

RAPTURE is a system for refining domain theories that contains probabilistic rules rep-
resented in the certainty-factor format [MMO94]. It first translates the initial domain theory
to an appropriate neural network architecture and then refines the domain theory by using
backpropagation training on the network (just as in the case of KBANN). Further, it augments
the network topology by adding new neurons using the upstart learning algorithm [Fre90b].
Apart from the fact that RAPTURE is designed for probabilistic rule bases, it differs from
our approach of using a constructive learning algorithm to augment the initial network topol-

ogy in the following manner: RAPTURE uses backpropagation based training in addition to

175

constructive learning. It also explicitly adds links to the existing network based on ID3’s in-
formation gain heuristic. Our approach is simpler in that it just uses a constructive neural
network algorithm that adds TLUs to augment the initial network topology and trains them
using a perceptron style learning rule.

Opitz and Shavlik have extensively studied connectionist theory refinement systems that
overcome the fixed topology limitation of the KBANN algorithm [0S95, OS97]. They have
focussed on the design of systems that use abundant computational resources to yield theory
revision systems with improved generalization performance. The TopGen algorithm [0S95]
searches through the space of possible expansions of a KBANN network to determine the ex-
pansion that has the best generalization accuracy on the cross-validation set. More specifically,
the algorithm first translates the domain theory to a KBANN (using the rules-to-network al-
gorithm), trains the KBANN using backpropagation, and places the network on a queue of
candidate hypotheses. At each step, the algorithm picks the best network (in terms of classi-
fication accuracy on the cross-validation set) and explores possible ways of expanding it. New
networks are generated by strategically adding nodes at different locations within the best
network selected. These networks are trained and placed on the queue. The best network on
the queue after a prespecified number of epochs is returned.

The REGENT algorithm broadens the space of networks searched by TopGen by performing
a genetic search in the space of all neural network architectures [0S97]. REGENT first creates
a diversified population of networks from the initial KBANN. The network’s error on a cross-
validation set is selected as its measure of fitness. During each generation of the genetic
evolution a subset of the population is selected for reproduction. Application of the genetic
mutation and crossover operators results in the production of new candidate networks. The
genetic operators are specialized for connectionist theory refinement. Specifically, mutation
adds a node to the network using the TopGen algorithm and crossover attempts to maintain
the network’s rule structure. After each evolution, the network with the best fitness value
is reported as the current best hypothesis. Both TopGen and REGENT were evaluated on

datasets from the human genome project and found to perform better when compared with

176

the standard backpropagation or the KBANN algorithms.

Our approach is considerably simpler than both TopGen and REGENT. We construct
a single network of TLUs as against a population of networks constructed by TopGen and
REGENT. The impact of this is on the training time of knowledge based networks. TopGen and
REGENT have reportedly taken several days to search 500 networks and report the best [0S97].
On the other hand our approach requires only a few minutes of CPU time for training. Related
to this issue of training time is TopGen and REGENT’s use of the expensive backpropagation
style training as opposed to the simple perceptron type weight update rule used in our approach.
Further, the backpropagation algorithm might not be very effective in networks with a large
number layers as the propagated error tends to diffuse considerably from one layer to the next.
TopGen and REGENT allow weight changes even to the part of the network that incorporates
the original domain theory. There is a possibility that these weight changes would completely
alter the original rules embedded in the neural network. Our approach leaves the initial neural
network (representing the domain theory) unchanged. The domain theory revision is performed
by constructively adding new neurons to the network and training them. Leaving the original
domain theory intact might simplify the task of extracting refined knowledge from the trained
neural network as in this case the knowledge extraction routine will only be required to focus
on the newly added neurons. Additionally, the task of identifying which knowledge rules were
newly added and which ones were constructed to offset inaccuracies in the original domain

theory is simplified when the original theory is left intact.

10.3 Constructive Knowledge Based Neural Network Learning Algorithms

10.3.1 Embedding the Domain Theory in a Neural Network

We use a symbolic knowledge encoding procedure to translate the initial domain theory into
a network of TLUs. This procedure is based on the rules-to-networks algorithm of Towell and
Shavlik [TSN90, FO93]. It involves rewriting the knowledge rules into a format that highlights
the hierarchical structure of the domain theory. In particular, the disjuncts are expressed as a

set of rules that each have only one antecedent. This modified set of rules can be mapped to

177

an AND-OR graph which in turn can be directly translated into a network of TLUs.

For example, consider the following propositional rules of a domain theory:

A :— B,C,D

A :— D,-F

The rules are rewritten in the following format:

A - A
A - B,C,D
A - A"
A" - D,-E

The AND-OR graph corresponding to the modified set of rules is shown in Fig. 10.3. The
equivalent network of bipolar TLUs (with outputs 1 and —1) is shown in Fig. 10.4. Note that
the TLUs A" and A” implement the logical AND function and the TLU A implements the
logical OR function.

Further, the magnitudes of the connection weights can be set appropriately to satisfy
different rules as shown in Fig. 10.5. Note that this TLU implements the rule “if a —4b > 6
then c”.

Using the approach outlined above, the initial neural network topology corresponding to
the simple financial advisor rule base (due to [LS89]) of Fig. 10.6 is shown in Fig. 10.7. Each
TLU in the network computes a bipolar hardlimiting function (i.e., the TLU’s outputs are 1
and —1) of the weighted sum of its inputs. The neurons in the first hidden layer encode the
rules 6-9 of the rule base. The only TLU in the second hidden layer computes the logical and

function and encodes rule 4 and so on.

10.3.2 Refining the Knowledge Rules

A constructive neural network learning algorithm is used to augment the initial network

topology. For the purpose of our experiments with constructive theory refinement we have

178

A
Positive Negative
Conjunction Dependency Dependency

Figure 10.3 AND-OR Graph Representation of Knowledge Rules.

Figure 10.4 Neural Network Implementation of Knowledge Rules.

179

-6
C

1 4
A B

Figure 10.5 TLU Implementing an If-Then Propositional Rule.

if (sav_adeq and inc_adeq) then invest_stocks
if dep_sav_adeq then sav_adeq
if assets_hi then sav_adeq
if (dep-inc_adeq and earn_steady) then inc_adeq
if debt_lo then inc_adeq
if (sav > dep * 5000) then dep_sav_adeq
if (assets > income * 10) then assets_hi
if (income > 25000 4 dep * 4000) then dep_inc_adeq
)

if (debt_pmt < income * 0.3) then debt_lo

© 00~ O Tk W N

Figure 10.6 Financial Advisor Rule Base.

180

invest_stocks

-1.5
. 1 1 d
savings_adeq w eq
05 05
1
1
1
dep_sav adeq assets hi dep inc_adeq debt_lo
-25000 0
E—
1 -5000 1 1
savings assets dependents income earn_steady debt_pmt

Figure 10.7 Embedding the Financial Advisor Domain Theory in a Neural
Network.

181

used a novel hybrid algorithm that combines the features of the tiling [MN89] and the pyra-
mid [Gal90] learning algorithms.

In chapter 8 we described provably correct extensions of several constructive learning algo-
rithms to handle multiple output classes and patterns with real-valued attributes. In order to
correctly process patterns with real-valued attributes the algorithms such as tower, pyramid,
upstart , and perceptron cascade require a preprocessing of the dataset?. We explained the use
of projection and normalization as two preprocessing techniques. It was observed that despite
the data preprocessing the above algorithms were not converging to zero classification errors
on certain datasets. Upon further analysis we determined the practical limitations of both the
preprocessing techniques. Projection is achieved by appending an extra attribute whose value
is equal to the sum of the squares of the values of the attributes in the pattern. In practice,
this attribute tends to be very large and consequently hampers the progress of the TLU weight
training algorithm (such as the thermal perceptron algorithm) which is only allowed to train the
TLU for only a limited number of epochs. Normalization on the other hand tends to create the
patterns having very low magnitude attributes. This similarly affects the operation of the TLU
weight training algorithm. One alternative is to scale the high (or low) magnitude attributes
to an acceptable range (say between 0 and 1) and then perform the projection of the modified
dataset. Although scaling was observed to perform better we observed that simulation runs

with certain datasets still did not converge to zero classification errors (see appendix B).

10.3.2.1 Discretization

A third alternative for handling patterns with real-valued attributes is to use a discretiza-
tion (or quantization) algorithm to convert these patterns into equivalent bipolar or binary
valued representations. Discretization methods have been extensively studied in conjunction
with many different machine learning algorithms. A detailed survey of discretization algorithms
appears in [DKS95]. Yang and Honavar’s experiments with a simple randomized quantization

algorithm and an entropy based quantization algorithm (see [YH96]) demonstrated the effec-

?Note that the tiling and sequential learning algorithms do not require any such preprocessing.

182

tiveness of quantization in cutting down on the training time and improving the generalization
performance of single layer networks of TLUs. A majority of the discretization methods studied
in literature are feature based schemes in that they independently discretize each real-valued
feature of the input patterns. Vector Quantization on the other hand is a method of instance
based discretization. It partitions the N-dimensional instance space into connected regions
called Voronoi regions [OBS92] and represents each region using a discrete valued code book
vector. The learning vector quantizer (LVQ) algorithm is one method for performing vector
quantization [Koh89]. LVQ trains a single layer of k neurons each of which is assigned an
arbitrarily chosen class label. The parameter k is chosen heuristically. The weights of these
neurons are iteratively updated so that for each training pattern a single neuron whose as-
signed class label is the same as the training pattern’s class label is turned on while all the
other neurons remain off. The k-bit output vector produced in response to a pattern is treated
as the code book vector representation for that pattern.

We now describe an adaptive quantization algorithm that dynamically constructs an ap-
propriate sized layer of TLUs to perform vector quantization. Recall the operation of the
MTiling algorithm described in chapter 8. It trains a group of M master neurons (where M is
the number of output classes) using a perceptron style learning algorithm. Next it repeatedly
adds and trains ancillary neurons to the layer until a faithful representation of the training
patterns is obtained. A careful observation of this process shows that the MTiling algorithm
is actually performing vector quantization. The output of each TLU is either 1 or —1 and the
output vector (combined outputs of the M master neurons and the K ancillary neurons) can
be treated as a code book vector representation of the input pattern. Note that the quantized
outputs are a faithful representation of the training patterns which is an important feature
of any good quantization algorithm [YH96]. Thus, the MTiling algorithm can be used as an
efficient adaptive vector quantization algorithm. In particular, a single MTiling layer can be
constructed using the set of training patterns and the output of this layer in response to each
pattern can be treated as the quantized representation of that pattern. The quantized dataset

can then be used to train a tower, a pyramid, or any other constructive network.

183

Output
Constructive Neural Network
Learning Algorithm
MTiling Layer Quantizing
Module
X1 X2 X3 XN Inputs

Figure 10.8 Block Diagram of a Hybrid Constructive Network.

10.3.2.2 Hybrid Constructive Learning Algorithms

The MTiling based adaptive vector quantization method provides an interesting approach
for the design of hybrid constructive learning algorithms. Instead of using a separate MTiling
based quantization routine first and then using one of the constructive learning algorithms
on the quantized representation of the data we could combine these two steps into a single
hybrid constructive learning algorithm. The hybrid algorithm reads in a real-valued training
set and uses the MTiling algorithm to construct a single layer of TLUs that provide a faithful
representation of the training patterns. The constructive network is then built on top of the
MTiling layer. The block diagram of this hybrid constructive network is shown in Fig. 10.8. For
the purpose of our experiments with constructive theory refinement we used the hybrid Tiling-
Pyramid learning algorithm for connectionist theory refinement where a MPyramid network
is built on top of the MTiling layer. Similarly, the hybrid Tiling-Cascade learning algorithm
can be designed to construct a MCascade network on top of the MTiling layer.

We have conducted several experiments using the hybrid Tiling- Pyramid and the hybrid

Tiling-Cascade learning algorithms and have compared the performance of these with the

184

MPyramid, the MCascade, and MTiling algorithms described in chapter 8. We observed that
the two hybrid constructive learning algorithms were able to converge on several real world
datasets where the MPyramid and MCascade algorithms failed to converge. Further, the aver-
age size of the networks created by the hybrid algorithms was often significantly smaller than
the average size of the MTiling networks. A few representative results of these experiments

are summarized in appendix B.

10.4 Experimental Results

We report the results of experiments on the ribosome binding sites and the F. coli promoter
sequence datasets from the Human Genome Project and the financial advisor rule base. The
former two datasets comprise of an imperfect domain theory and a set of labeled examples.
In these domains the input is a short segment of DNA nucleotides and the goal is to learn to
predict whether these DNA segments contain an important site (such as a ribosome binding
site or a promoter) or not. The ribosome binding site dataset’s domain theory contains 17
rules. Additionally, there are 1877 labeled training examples. The promoter dataset contains
a set of 31 knowledge rules and 936 labeled training examples. The financial advisor rule
base is shown in Table 10.6. A set of 5500 labeled examples (500 for training and 5000 for
testing) were randomly generated as is the case for the experiments performed by Fletcher
and Obradovi¢ [FO93]. Each of the 5500 examples are correctly classified by the rules of the
financial advisor rule base.

We used the hybrid 7Tiling-Pyramid constructive learning algorithm (described in sec-
tion 10.3.2.2) to augment the initial domain knowledge. The hybrid network was trained
using the thermal perceptron algorithm [Fre92]. Each TLU was trained for 500 epochs with
the initial weights chosen randomly between in the range [—1..1], the learning rate n held
constant at 1 and the initial temperature Ty set to 1.0. The network was allowed to train to
zero classification errors and the network size and generalization accuracy on the test set were

recorded.

185

10.4.1 Human Genome Project Datasets

We performed ten-fold cross validation based training on the ribosome binding set and the
promoter datasets using exactly the same folds that were used in the experiments performed by
Opitz and Shavlik®. On each of the ten runs we first recorded the training and test accuracy of
the original network representing the domain theory. The domain theory was refined using the
hybrid Tiling- Pyramid algorithm to dynamically add new TLUs to the network. Training was
continued until the network attained 100% accuracy on the training set. The network size and
generalization accuracy were then measured. We report the average generalization accuracy
and the average network size (along with the standard deviations where available) over the ten

runs for the ribosome dataset in Table 10.1 and for the promoter dataset in Table 10.2.

Table 10.1 Experiments with the Ribosome Dataset.

Rules alone Tiling-Pyramid TopGen REGENT
Test % Test % Size Test % Size Test % Size
873+ 2.0 90.3 £ 1.8 | 23 £ 0.0 90.9 | 42.1+£9.3 91.8 | 70.1 £ 25.1

Table 10.2 Experiments with the Promoters Dataset.

Rules alone Tiling-Pyramid TopGen REGENT
Test % Test % Size Test % Size Test % Size
77.5 £ 5.0 96.3 £ 1.8 | 34 = 0.0 94.8 | 40.2 £ 3.3 95.8 | 74.9 £ 38.9

We see from the results described in the Tables 10.1 and 10.2 that the hybrid Tiling- Pyramid
based constructive theory refinement method generalizes well from the labeled examples. The
generalization performance of the refined domain theory (represented by the trained neural
network) is significantly better than that of the original set of rules. Further, our approach
compares favorably with TopGen and REGENT on both the datasets. In terms of general-
ization accuracy Tiling-Pyramid performs slightly worse than TopGen and REGENT on the
ribosome dataset and slightly better on the promoter dataset. Our approach trains a single

network as against a pool networks evaluated by TopGen and REGENT. As a result, our ex-

9These folds are available along with the dataset.

186

periments take only about 10 minutes of CPU time on the ribosome binding site dataset and
less than 2 minutes of CPU time on the promoter dataset. When compared with the training
times for TopGen and REGENT (which are reported to be several days of CPU time [OS97])
we see that our method offers a significant advantage over TopGen and REGENT. It must
be kept in mind of course that TopGen and REGENT were designed to take advantage of
the available computing resources and come up with hypotheses that have good generalization
performance. Further, a comparison of the number of hidden nodes in the resulting networks
constructed by the Tiling-Pyramid, TopGen, and REGENT shows that Tiling-Pyramid is able
to come up with considerably smaller networks as compared to TopGen and REGENT. The
advantages of smaller (more compact) networks have already been discussed in chapter 9 (see

section 9.1).

10.4.2 Financial Advisor Dataset

As described earlier the financial advisor dataset comprises of 5500 patterns that are gen-
erated at random to satisfy the rules described in Fig. 10.6. Incomplete domain knowledge
was modeled by pruning certain rules and their antecedents from the original rule base (as
described in [FO93]). For example, if sav_adeq was selected as the pruning point, then the
rules for sav_adeq, dep_sav_adeq, and assets_hi are eliminated from the rule base. In other
words rules 2, 3, 6, and 7 are pruned. Further, rule 1 is modified to read “if (inc_adeq) then
invest_stocks”. The initial network is constructed from this modified rule base and is then
augmented using constructive learning. Our experiments follow those performed by Fletcher
and Obradovi¢ [FO93]. In Table 10.3 we summarize the average generalization (on the 5000
test patterns) and the average network size over 25 runs for 6 different pruning points. The
generalization accuracy of the corresponding network prior to theory refinement (i.e., based on
rules alone) is also reported. In all except for the assets_hi rule we see a substantial increase
in generalization accuracy after theory refinement. Since the generalization accuracy of the
network without the assets_hi rule is already significantly high, constructive theory refinement

understandably does not improve the generalization any further. In Table 10.4 we present the

187

results for the experiments with HDE that were reported by Fletcher and Obradovi¢? [FO93].
These results demonstrate that the performance of the hybrid Tiling- Pyramid algorithm com-
pares favorably with that of the HDE algorithm on the financial advisor rule base in terms of

both the generalization accuracy and the final size of the trained network.

Table 10.3 Financial Advisor Rule Base (Tiling-Pyramid).

Pruning point Tiling-Pyramid Rules alone
Test % Size Test %
dep_sav_adeq 912+ 1.7 | 28.2+ 3.6 52.4
assets_hi 99.4+£0.2| 10+£ 0.0 99.5
dep_inc_adeq 943+ 1.5 | 21.0 £ 3.1 90.4
debt_lo 94.1 + 2.0 | 22.1 £ 4.0 81.2
sav_adeq 90.8 £ 15| 264+ 3.3 87.6
inc_adeq 83.8 £2.2|32.7+29 69.4

Table 10.4 Financial Advisor Rule Base (HDE).

Pruning point HDE Rules alone
Test % | Hidden Units Test %
Constructed
dep_sav_adeq 92.7 31 75.1
assets_hi 92.4 23 93.4
dep_inc_adeq 85.8 25 84.5
debt_lo 84.7 30 61.7
sav_adeq 92.2 19 90.9
inc_adeq 81.2 32 64.6

10.5 Discussion

Connectionist theory refinement systems have been extensively studied in the literature and
are found to perform well in several application domains. Most connectionist approaches to
theory refinement translate the initial domain theory into an appropriate neural network archi-
tecture and then refine this theory by training the network. The KBANN learning algorithm

is demonstrated to perform better than several other machine learning algorithms on domains

“Note that the standard deviations for the results with these experiments were not available.

188

such as the promoter and the splice-junction datasets [TSN90, TS94]. However, KBANN is
limited by the fact that it does not modify the network topology. The TopGen and REGENT
learning algorithms were designed to add new neurons to the KBANN network thereby extend-
ing the realm of network topologies considered by KBANN. TopGen heuristically determines
effective places in the network where new nodes might be added and REGENT uses a genetic
algorithm equipped with crossover and mutation operators (designed specifically for theory
refinement) to search the space of neural network architectures. These algorithms use the
available computing resources to search the space of network topologies in a bid to identify
an expansion of the KBANN that generalizes well on test data. Results of experiments with
TopGen and REGENT demonstrated a significant performance improvement over the standard
KBANN algorithm [0S95, OS97].

We have presented an approach for constructive learning in knowledge based neural net-
works. Our method embeds the original domain theory into an initial neural network and
then refines the theory by dynamically adding new TLUs to the network. This approach is
similar to the one taken by Fletcher and Obradovi¢ in their algorithm for connectionist theory
refinement [FO93]. The main difference being that our approach allows potentially any con-
structive neural network learning algorithm to be used for theory refinement whereas Fletcher
and Obradovi¢’s approach is based on the specific HDE learning algorithm for training a single
hidden layer of TLUs. In particular, the hybrid Tiling- Pyramid learning algorithm used in our
experiments gives satisfactory results.

Experimental results demonstrate that the hybrid Tiling- Pyramid algorithm compares fa-
vorably with the HDE algorithm on the financial advisor rule base in terms of both the gen-
eralization accuracy and the network size. Further, the generalization accuracies after theory
refinement exhibit a significant increase in performance when compared to the generalization
accuracy based on the imperfect domain theory alone. The algorithm’s generalization perfor-
mance on the ribosome binding site dataset is slightly worse and on the promoter dataset it
is slightly better when compared with the performance achieved by TopGen and REGENT.

However, the hybrid Tiling- Pyramid algorithm generates significantly smaller networks as com-

189

pared to both TopGen and REGENT. Finally, since the algorithm trains a single network as
opposed to a population of networks and since it uses a simple perceptron-style learning rule
instead of the more expensive backpropagation learning rule, the training time is significantly
lesser than the training times for TopGen and REGENT.

We now analyze some shortcomings of our approach and identify some interesting directions

for future research:

e Constructive neural network learning algorithms typically train the network until the
number of errors on the training set is reduced to zero. As was observed in the ex-
periments described in chapter 8, training the network until zero classification errors is
likely to result in over-fitting of the training data which in turn might hurt the gener-
alization performance of the network. It is of interest to study the performance of the
hybrid Tiling- Pyramid algorithm (and other constructive learning algorithms) when the
network’s generalization performance on a hold-out set of examples is used to determine

when to stop training.

e Our current framework does not allow any explicit changes to the original rules of the
domain theory. Instead theory refinement is performed indirectly by adding new rules
to over-ride the effects of the existing ones. In some scenarios it might be beneficial
to allow the theory refinement system to explicitly modify the original rules. TopGen
uses heuristics to determine effective places within the network where new neurons could
be added. RAPTURE uses the upstart algorithm to grow the existing network. The
upstart algorithm (see section 8.4) specifically trains daughter neurons to correct some
of the errors made by the existing neurons in the network. Design of a constructive
learning scheme that allows for direct modification of the existing domain theory and

also adds new knowledge rules is worth exploring in depth.

e Extraction of rules from the trained neural networks is an actively pursued area of re-
search and finds direct applicability in datamining. We have not yet explored approaches

for extracting the refined knowledge rules from the trained Tiling- Pyramid network. We

190

conjecture that our method for training constructive learning algorithms would make the
knowledge extraction task simpler. Our approach uses elementary TLUs whose opera-
tion can more easily be translated into rules than the sigmoid neurons typically used in
backpropagation type algorithms. Further, since the original rules are left uncorrupted
in our approach, the comprehensibility of rules extracted from the trained network is
likely to improve significantly. Of late there is significant interest in the study of efficient
techniques for knowledge extraction from trained neural networks. The interested reader

is referred to [TS93, Fu93, Cra96] for additional details.

The types of domain theory rules that can be incorporated into the network are limited
to propositional rules. Further, there is no mechanism for handling uncertainty in rules.
An extension of the knowledge based neural networks to handle rules based on first order
logic and to handle uncertainty by adjusting the weights of the individual connections

merits further investigation.

191

11 SUMMARY

In this dissertation we have addressed two important machine learning research problems:

1. Efficient methods for learning deterministic finite state automata from labeled examples.

2. Design and analysis of constructive neural network learning algorithms that dynamically
construct near-minimal networks of threshold logic units for applications such as pattern

classification and inductive knowledge acquisition.

DFA are recognizing devices for regular grammars which form the simplest class of gram-
mars in the Chomsky formal language hierarchy. The problem of learning DFA poses several
intriguing challenges and has been actively pursued for over two decades. It is well known
that DFA cannot be efficiently learned from arbitrary sets of labeled examples. Despite this,
a significant amount of research effort is dedicated to designing efficient heuristic algorithms,
establishing simpler (more helpful) models, and identifying promising new application areas
for DFA learning. Another important reason for extensive interest in this area is that the
experience gained from the various attempts to design efficient methods for learning DFA is
likely to yield useful insights about the learnability of other more expressive classes of gram-
mars (such as natural language grammars). The primary focus of part 1 of this dissertation
was on the design of efficient algorithms for learning DFFA where the learner has access to some
representative set of labeled examples. Additionally, the learner might also avail of the facility
of a knowledgeable teacher who guides the learning task by answering queries.

Constructive neural network learning algorithms offer an interesting approach for the in-
crementally generating near-minimal neural network architectures for a given task. They have
several advantages when compared with the more traditional approaches such as the backprop-

agation learning algorithm which searches for a suitable weight setting in an otherwise a-prior

192

fixed network topology. Specifically, constructive algorithms have potential for guaranteed
convergence to zero classification errors on any finite non-contradictory dataset, adaptively
determine both the network topology and the weight settings of the individual neurons of
the network, typically use only the elementary perceptron style learning rule, and provide a
natural framework for incorporation of domain specific prior knowledge. Thus, constructive
neural network learning algorithms are important tools in the design of automatic pattern
classification and inductive knowledge acquisition systems.

We summarize the contributions of this dissertation research in the areas of regular gram-
mar inference and constructive neural network algorithms and outline some promising direc-

tions for future research.

11.1 Contributions

11.1.1 Version Space Approach to Learning DFA

We have presented an approach for compactly representing the hypothesis space of can-
didate finite state automata using a version space. This representation overcomes the need
for explicitly enumerating the entire hypothesis space. A bidirectional version space candidate
elimination algorithm can search the hypothesis space using membership queries to identify

the target DFA.

11.1.2 Incremental Interactive Algorithm for Learning DFA

The IID is an incremental algorithm for learning the target DIFA from a set of labeled
examples and membership queries. Salient features of the [ID algorithm include guaranteed
convergence to the target DFA in the limit, polynomial worst case time and space complexities,
no requirement of storing all the examples encountered during learning, and no restriction of

any specific order of presentation of the training examples.

193

11.1.3 Learning DFA from Simple Examples

Efficient learning of DFA is one of the most challenging research problems in the field of
grammatical inference. It is known that both exact and approximate (in the PAC sense) iden-
tifiability of DFA is a hard problem. Pitt posed an open research problem that asked whether
DFA are approximately learnable under some specific distribution or groups of distributions.
We answered this problem in the affirmative by showing the learnability of DFA from simple
examples. Specifically, we have demonstrated that the class of simple DFA is efficiently PAC
learnable under the Solomonoff-Levin universal distribution. Additionally, if the labeled ex-
amples are drawn at random from the universal distribution where a knowledgeable teacher
might pick representative examples of the target concept then it is proved that the entire class
of DFA is efficiently PAC learnable. We have argued for the generality of the framework for
learning from simple examples (called the PACS model) by proving that any concept that is
learnable under Gold’s model for learning from characteristic samples or equivalently under

Goldman and Mathias’ polynomial teachability model is also learnable under the PACS model.

11.1.4 Provably Correct Constructive Neural Network Learning Algorithms

We have proposed a general framework for extending constructive neural network learn-
ing algorithms to domains that involve multi-category pattern classification and real-valued
pattern attributes. In particular, we have designed provably correct extensions of the tower,
pyramid , upstart, perceptron cascade, tiling, and sequential learning algorithms for handling
multiple output classes and real-valued pattern attributes. An experimental evaluation of the
performance of these algorithms on several artificial and real-world datasets demonstrated the
practical applicability of constructive learning algorithms as viable alternatives to the tradi-

tional methods such as backpropagation.

11.1.5 Pruning Strategies in MTiling Constructive Neural Networks

We have designed three efficient neuron pruning strategies to eliminate the redundancy in

MTiling networks or in any hybrid networks that use the M7Tiling algorithm. These pruning

194

strategies were able to achieve moderate to significant reduction in the network size without in
any way sacrificing the generalization performance of the network. An effective combination
of network growing strategies with pruning techniques for eliminating redundancies will move
constructive learning algorithms one step closer to the goal of designing the minimal network

topology for a given task.

11.1.6 Constructive Theory Refinement in Knowledge Based Neural Networks

We have developed a framework for incorporating domain specific prior knowledge in a neu-
ral network where the original domain theory is progressively refined by dynamically adding
TLUs to the network and training them. We have also designed a novel hybrid learning algo-
rithm that combines the features of the tiling and the pyramidconstructive learning algorithms.
The hybrid Tiling- Pyramid learning algorithm compares favorably with other algorithms for

connectionist theory refinement on several benchmark datasets.

11.2 Future Work

During the course of this dissertation research we have identified several interesting prob-
lems and avenues that merit further investigation. At the end of each chapter of this disserta-
tion we have mentioned the relevant open research areas. In this section we seek to highlight

some key future research directions.

11.2.1 Implications of Learning from Simple Examples

It is of interest to explore the applicability of the framework for learning from simple
examples for learning higher classes of formal language grammars such as context free gram-
mars. Very strong negative results in grammar inference were proved recently when it was
demonstrated that the classes of context free grammars, linear grammars, simple deterministic
grammars, and non-deterministic finite state automata are not learnable under Gold’s model
for polynomial identification from characteristic samples [Hig96]. We proved that any concept

learnable under Gold’s model is also learnable under the PACS model. The converse of this

195

theorem remains an open problem. If it turns out that the converse is not true then it would be
intersting to prove whether some or all of the above four concept classes that are not learnable
under Gold’s model can be learned under the PACS framework.

The universal distribution is not computable. The applicability of the PACS model under
some efficiently computable approximation of the universal distribution needs to be explored
further. A systematic characterization of the framework for learning under helpful distributions
(due to [DGI7]) might give us a more practical framework for learning from simple examples.

In applications such as natural language learning it is not inconceivable that a teacher
might provide simpler examples of the target concept first before providing the more complex
ones. It is worth comparing the notion of simplicity that is implicit in these scenarios with

Kolmogorov complexity that provides a measure of intrinsic complexity of an object.

11.2.2 Modeling the Behavior of Intelligent Autonomous Agents

Intelligent autonomous agents have been successfully applied in several domains such as
personalized e-mail filtering, news weeding, electronic commerce, etc. [Mae95]. It is of interest
to design a formal framework to model agent behavior. Regular grammars can be used to
capture the behavior of intelligent agents like robots navigating in a finite world. Incremental
regular grammar inference can provide a framework for these agents to learn from experience
in an unfamiliar environment. Algorithms such as IID can provide efficient tools for model-
ing agent behavior in an interactive setting (where an agent is allowed to pose queries). A
knowledgeable teacher might not always be available in all practical learning situations. Al-
gorithms that are able to learn efficiently in environments where no teacher is available are of

considerable interest.

11.2.3 Knowledge Extraction from Constructive Neural Networks

The field of knowledge discovery and data mining seeks to use machine learning techniques
to extract interesting rules from large databases [[FPSS96]. In these applications it is vital that

the learned model be comprehensible to a human. Neural network models have been shown

196

to have better generalization capability on several domains than some of the symbolic or rule
based machine learning approaches. Despite this, current data mining systems prefer to use
the more traditional symbolic or rule based approaches because the models they produce are
much more comprehensible. The task of extracting knowledge rules from a trained neural
network is thus of significant practical value. We conjecture that our method for training
constructive learning algorithms would make the knowledge extraction task simpler. We have
already demonstrated the feasibility of using constructive neural network learning algorithms
for theory refinement. It is worth exploring different methods for extracting the refined rules

from the trained neural networks.

11.2.4 Constructive Neural Networks in a Lifelong Learning Framework

Recent research has focussed on the use of neural networks for lifelong learning [Thr95]
where networks are trained to learn multiple classification tasks one after the other. It is
desirable to allow the network to exploit the knowledge acquired while learning one task to
simplify the learning of a related (possibly more complicated) task. Constructive learning
algorithms offer an interesting approach to the use of domain knowledge to learn multiple
classification tasks. A network that has domain knowledge from the simpler task(s) built into
its architecture (either by explicitly setting the values for the connection weights or by training
them) can form a building block for a system that constructively learns more difficult tasks.
The performance of constructive learning algorithms in this setting of lifelong learning merits

further study.

11.2.5 Characterization of the Bias of Constructive Neural Networks

It is well known that a suitably designed bias can greatly simplify the task of the learning
system. Each constructive algorithm has its own set of inductive and representational biases
implicit in the design choices that determine when and where a new neuron is added and
how it is trained. Towards this end, we have analyzed the performance of several different

constructive neural network learning algorithms on a variety of artificial and real-world datasets

197

and have identified some biases exploited by these learning algorithms. A more systematic
characterization of the inductive bias of these algorithms would be useful in guiding the design
of new or hybrid constructive learning algorithms that build smaller networks with better

generalization performance.

198

APPENDIX A CONVERGENCE OF CONSTRUCTIVE LEARNING
ALGORITHMS ON NORMALIZED DATASETS

In chapter 8 we have demonstrated the convergence of different constructive learning al-
gorithms for multi-category pattern classification of datasets that involve real-valued pattern
attributes. We assumed that the preprocessing of the dataset where necessary would be per-
formed by projecting each pattern to a parabolic surface. In this chapter we demonstrate the
convergence of the tower algorithm in the case where preprocessing involves normalizing the
patterns of the dataset. This involves a slight modification of the convergence proof discussed
in section 8.1. The convergence proofs of the pyramid, upstart, and the perceptron cascade

algorithms for the case of normalized input patterns can be worked out similarly.

Convergence Proof for the Tower Algorithm

Theorem A.1 There exists a weight setting for neurons in the newly added layer L in the
multi-category tower network such that the number of patterns misclassified by the tower with
L layers is less than the number of patterns misclassified prior to the addition of the L™ layer

(i.e., VL > 1, e, < er—1).

Proof:

N
Assume that all the patterns in the dataset are normalized. i.e., ¥p XP is such that (XZP)2 =

1=1
N N
1. Define k = maXZ(XZP — X1)?. For each pattern XP, define ¢, as 0 < ¢, < mi;l Z(Xf —
pq pa#p
=1 =1

XQ)Q. It is clear that 0 < ¢, < & for all patterns X?. Assume that a pattern X?” was not

k3

correctly classified at layer L — 1 of the tower network (i.e., C? # O%). Consider the

199

following weight setting for the neuron L;:

Wro = Cf(/i—l—ep—i(XZp)Q) -7
Wi, 1, = 207X? forizll...N
Wi, -1, = &
Wi, -1, = 0O0fork=1...M,k#j (A.1)

For the pattern X? the net input of neuron L; is:

N M
ni] = Wi o+ Z Wi, X7 + Z W, 1107y,
=1 =1
N N
= CP(r+e— Y (XD)Y) = CT 4202 Y (X)) + KOG,

N
= CJ(k+¢) +KO]_, since (X =1 (A.2)

=1
If C? = ~0}_, :
P _
ny, = Ciep
O%J = sgn(ni)

= C? since €, > 0

IfC? =0} _,

ng, = (264¢)C7
Or, = sgn(nf,)

—_ P
= C; since K,¢, > 0

Thus we have shown that the pattern XP? is corrected at layer L. Now consider a pattern

X7 # XP. Note that for normalized patterns —C% can be re-written as —C%? (32,2, (X/)?).

N M
n%J = Wi, o+ Z WLJJL'XZQ + Z Wi, JfliO%—li
=1 =1
N N
= CP(r+e— 3 (XD)?) = CT+2C7 Y (XD (X)) + KOF ;.

200

= Cl(r+e)+ RO, —C7 %[(szf —2(XD) (X)) + (X))
v
= Ol)+ 5O] Ly, — CHY (KT = XY
=1 .
= Clr+e¢—)+ /@O%_lj where ¢ = E(sz — X1)?; note € > &
=1
= /{lC? + /@O%_lj where K + ¢, — € =« (A.3)

01, = synlui,)

7
= 0O since K < K
L-1,

Thus, for all patterns X? # XP, the outputs produced at layers L and L — 1 are identical.
We have shown the existence of a weight setting that is guaranteed to yield a reduction in the
number of misclassified patterns whenever a new layer is added to the tower network. We rely
on the TLU weight training algorithm A to find such a weight setting. Since the training set

is finite in size, eventual convergence to zero training errors is guaranteed. O

WTA Output Strategy

We now show that even if the output of the tower network is computed according to the
WTA strategy, the weights for the output neurons in layer L given in equation A.1 will ensure
that the number of misclassifications is reduced by at least one. Assume that the output
vector OF ;| for the misclassified pattern X? is such that Oi_lﬁ =1 and O%_lk = -1, Vk =
1...M,k # (; whereas the target output CP is such that C¥ = 1 and Cl = -1, vVl =

1...M,l#~, and v # 5.

From equation (A.2) the net input for the neuron L; is:
ni] = Cl(r+¢)+ KZO%_IJ

The net inputs for the output neurons L., Lg, and L; where j = 1...M;j # v,7 # (3 are

given by:

201

= &

ng, = Chle+e)+rO7_,,
= —%

ng, = Cll+e6)+K07_,,

= —25k-¢

Since the net input of neuron L., is higher than that of every other neuron in the output layer,
we see that Oi7 =1 and O%j = —1, Vj # v. Thus pattern X? is correctly classified at layer L.
Even if the output in response to pattern X? at layer L—1 had been O%_lj =-1,Vj=1...M,
it is easy to see that given the weight setting for neurons in layer L, X? would be correctly
classified at layer L.

Consider the pattern X? XP that is correctly classified at layer L — 1 (i.e., O , = CY).

From equation (A.3), the net input for neuron L; is:
n%] = C’f(/@ + €, — e/) + 1@0%_1]

Since Kk + €, — € < K, it is easy to see that the neuron L. such that O%_l7 = 1 has the
highest net input among all output neurons irrespective of the value assumed by CT. With
this, O] = O} _, = C% Thus, the classification of previously correctly classified patterns
remains unchanged.

We have thus proved the convergence of the fower algorithm in the case of normalized

patterns when the outputs are computed according to the WTA strategy.

202

APPENDIX B ADDITIONAL EXPERIMENTS WITH
CONSTRUCTIVE LEARNING ALGORITHMS

In this appendix we describe the properties of the different datasets used in our experiments
and summarize the results of a more systematic experimental evaluation of the performance

of the different constructive learning algorithms.

Datasets

We have used an extensive cross section of artificial and real world datasets for our experi-
ments with constructive neural network learning algorithms. These datasets are available either
at the UCI Machine Learning Repository [MA94], the ELENA Classification Database [GD193],
the CMU Connectionist Benchmark!, or are artificial datasets generated by us at lowa State
University. Table B.1 summarizes the characteristics of the datasets. Train and Test denote
the size of the training and test sets respectively. Inputs indicates the total number of input
attributes, Qutputs represents the number of output classes, and Attributes describes the
type of input attributes of the patterns. In the 5 bit random dataset (r5), the 32 training
patterns are randomly assigned to one of three output classes. 5 such datasets representing
5 different random functions were generated. The concentric circles dataset (3c) considers
points belonging to three concentric circles centered at the origin and having radii 2, 4, and 6
respectively. Points in the two dimensional Euclidean space are assigned to one of three output
classes depending on the distance d(z,O) of the point z from the origin O: Vz, 0 < d(z,0) <
2=z € class1; 2<d(z,0)<4= 2z € class 2; and 4 < d(z,0) <6 = z € class 3.

1800 points are uniformly drawn at random from the two dimensional euclidian space and are

Yftp://ftp.cs.cmu.edu/afs/cs.cmu.edu/project /connect /bench/]

203

Table B.1 Datasets.

Dataset Train | Test | Inputs | Outputs | Attributes
7 bit parity (p7) 128 - 7 2 bipolar
8 bit parity (p8) 256 - 8 2 bipolar
9 bit parity (p9) 512 - 9 2 bipolar
5 bit random (r5) 32 - 5 3 bipolar
2 spirals (2sp) 194 - 2 2 real

3 concentric circles (3c¢) 900 900 2 3 real
balance (balance) 416 209 4 3 int
glass identification (glass) 142 72 9 6 real
ionosphere structure (ion) 234 117 34 2 real, int
image segmentation (seg) 210 | 2100 19 7 real, int
iris plant (iris) 100 50 4 3 real
liver (liver) 230 115 6 2 real, int
pima indians diabetes (pima) | 576 192 8 2 real, int
sonar (sonar) 104 104 60 2 real
vehicle silhouettes (vhcl) 846 - 18 4 int
wine recognition (wine) 120 58 13 3 real, int
wisconsin diagnostic 390 189 30 2 real
breast cancer (wdbc)

assigned an appropriate class label. All the other datasets used are standard machine learning

benchmarks.

Experimental Results

We have conducted extensive simulation runs to compare the performance of the construc-
tive neural network learning algorithms on a variety of datasets. During some initial simulation
runs we observed that the performance of the MPyramid and MCascade algorithms was com-
parable (or superior) to the performance of the MTower and M Upstart algorithms respectively.
Further, the training speed of the MSequential algorithm was found to be much slower than
that of any of the other algorithms. Based on these preliminary results we decided to re-
strict our attention to the MPyramid, MCascade, and MTiling algorithms alone. Further,
we observed that the MPyramid and MCascade algorithms did not converge to zero train-
ing errors on several real world datasets. Thus, we included the hybrid Tiling- Pyramid and

Tiling-Cascade algorithms (see chapter 10) in our experimental studies. We use the term MTil-

204

ing based algorithms to collectively refer to the MTiling algorithm and the Tiling- Pyramid
and Tiling-Cascade algorithms that use the MTiling based adaptive vector quantization of

real-valued attributes.

Data Preparation

We performed experiments using the datasets described in Table B.1. As noted in chapter 8
the MPyramid and MCascade algorithms require preprocessing of datasets that have real-
valued pattern attributes. We performed preprocessing by projecting each pattern onto a
parabolic surface (see section 8.1.2). Note that the MTiling based algorithms do not require
any such preprocessing. Certain real world datasets (for example vhel) have patterns with
large attribute values. The additional attribute computed while projecting these patterns to a
parabolic surface is thus extremely large in magnitude. This means that large weight changes
would be needed to correct for incorrectly classified patterns. Since each TLU is trained only
for a certain fixed number of epochs it is possible that large errors are not compensated for in
the limited training time that is allowed. Thus, for such datasets we performed preprocessing

as follows:

1. Scaling: The attributes having large magnitudes were scaled to values in the interval

[0, 1] as follows:

P_a
xf(—mwherelgiSN,ISp§|5| (B.1)
mZ"ma.r - :Cimin

Note that x;, . —a; . rtepresents the range of values of the i’ attribute. The projection

was then taken on this scaled dataset. The resulting dataset thus had N + 1 attributes.

2. Normalization: Each pattern vector was normalized to have a magnitude of 1 (see sec-

tion 8.1.2).

In the results reported below we indicate the scaled dataset by a suffix —s (e.g., vhels)
and a normalized dataset with a suffix —n (e.g., vheln). To keep the comparison with M Tiling

and the two hybrid learning algorithms fair we used the same scaled (without the projection)

205

and normalized datasets for the experiments with the MTiling, Tiling-Pyramid, and Tiling-

Cascade algorithms as well.

Training Methodology

We used the thermal perceptron algorithm for training individual TLUs. Each TLU was
trained for 500 epochs. The weights for each TLU were initialized to values in the range [—1..1].
The learning rate n was set to 1. The temperature Ty was initialized to 1 and was dynamically
updated at the end of each epoch to match the average net input of the neuron(s) during
the entire epoch [Bur94]. The pruning option (see chapter 9) was turned on in experiments
involving the MTiling, Tiling-Pyramid, and Tiling-Cascade algorithms. For the experiments
with the MCascade and Tiling-Cascade algorithms the training set computed for each daughter
neuron was balanced if necessary (see section 8.8.2).

We performed a ten-fold cross validation based training on all datasets except the parity
and the concentric circles. The combined dataset (including the training and test patterns if
any) was randomly divided into 10 equal parts. Ten simulation runs were conducted for each
algorithm. On each run, one of the ten parts of the dataset was held out as the test set and
the remaining nine parts were used for training. The network was trained until it converged to
zero training errors. The accuracy of the trained network on the test set was then measured.
Training was stopped if the network failed to converge to zero classification errors after adding
100 hidden neurons in a given layer or after training a total of 25 layers and that particular
run was designated as a failure?. The following results report the total number of failed runs
together with the average network size and the generalization accuracy over the successful
runs. 25 runs were used for each constructive learning algorithm in the experiments with the
parity and 3¢ datasets. One each run the network was trained until zero classification errors
on the training set and in the case of the 3c dataset the generalization accuracy of the trained
network was measured using the set of test patterns. The number of failed runs (if any) are

reported along with the average network size and the average generalization accuracy over the

2Failed runs were not included in the calculation of the averages.

206

Table B.2 Experiments with the MPyramid Algorithm.

Dataset | Failed | Network Test
Runs Size Accuracy
p7 0 4.1+ 0.3 -
p8 0 5.2 + 0.8 -
p9 0 5.0 &£ 0.2 -
2sp 6 15.5 £ 4.2 | 92.11 £+ 9.12
Jc 0 3.0+ 0.0 99.9 £+ 0.2
balance 10 - -
glass-s 10 - -
glass-n 10 - -
ion 0 5.3+ 1.6 89.1 £+ 2.6
iris 10 - -
liver-s 10 - -
liver-n 10 - -
pima-s 10 - -
pima-n 10 - -
sonar 0 58 £ 0.9 | 76.0 & 14.3
vhel-s 10 - -
vheln 10 - -
wdbc-s 9 18.0 £ 0.0 | 96.4 £+ 0.0
wdbc-n 10 - -
wine-s 10 - -
wine-n 10 - -

successful runs. Tables B.2, B.3, B.4, B.5, and B.6 summarize the results of our experiments
with the MPyramid, MCascade, MTiling, Tiling-Pyramid, and Tiling-Cascade algorithms
respectively.

To facilitate a comparison of the generalization performance of the constructive learning
algorithms with that of the single layer networks we trained single layer networks (using the
thermal perceptron algorithm) for each of the above datasets. These experiments used exactly
the same parameter settings as the experiments with the constructive learning algorithms.
In Table B.7 we report the average training and test accuracies achieved by the single layer

networks.

207

Table B.3 Experiments with the MCascade Algorithm.

Dataset | Failed | Network Test
Runs Size Accuracy
p7 0 48 +04 -
p8 0 5.0 £ 0.2 -
p9 0 5.6 £ 0.6 -
2sp 0 1294+ 26 | 8.3+ 7.1
Jc 0 3.0+ 0.0 | 99.9 £ 0.2
balance 5 2500+ 1.2 | 90.7 £ 1.4
glass-s 10 - -
glass-n 10 - -
ion 0 2.7+ 0.7 | 90.6 £ 7.5
iris 1 1294+ 4.6 | 94.1 +£ 7.8
liver-s 10 - -
liver-n 10 - -
pima-s 10 - -
pima-n 10 - -
sonar 0 3.8+ 0.4 | 76.5 + 10.6
vhel-s 10 - -
vheln 10 - -
wdbc-s 0 44+£08 | 96.8 & 2.2
wdbc-n 0 18.1 £ 1.9 | 89.1 + 4.1
wine-s 0 77+0.7 | 95.9+4.9
wine-n 0 11.1 £ 1.7 | 91.2 &£ 5.0

Observations

We make the following key observations from the results summarized in the Tables B.2,
B.3, B.4, B.5, and B.6.
Convergence Properties
Constructive learning algorithms performed quite well on several highly non-linear datasets.
Non-linearly separable datasets cannot be correctly classified by the perceptron algorithm
training a single layer of TLUs (see the average training accuracy in Table B.7). Construc-
tive learning algorithms were able to converge to zero classification errors on these non-linear
datasets. Further, a comparison of the size of the network constructed by the constructive
algorithms with the size of the training set indicates that the constructive algorithms are not

simply memorizing the classifications of the training patterns but are in fact attempting to

208

Table B.4 Experiments with the MTiling Algorithm.

Dataset | Failed Network Test
Runs Size Accuracy
p7 0 8.0 £ 0.0 -
p8 0 9.1+ 04 -
p9 0 11.0 &+ 5.2 -
2sp 1 41.1 £ 2.8 | 49.7 £ 17.5
Jc 1 40.3 £ 4.7 | 98.0 £ 10.0
balance 0 35.3 &+ 6.6 91.0 £ 3.6
glass-s 0 48.4 £4.3 | 60.0 £ 10.3
glass-n 2 57.1 £ 6.3 | 60.7 £ 12.7
ion 0 6.5 + 2.3 84.6 + 6.5
iris 0 10.4 £+ 3.3 95.3 £ 4.5
liver-s 0 442+ 56 | 66.4+ 104
liver-n 0 47.7 £ 6.2 64.4 + 6.3
pima-$§ 1 78.4 £ 10.7 | 64.0 &+ 2.6
pima-n 0 94.6 £ 9.5 61.3 £ 5.8
sonar 0 49+ 1.5 770+ 7.2
vhel-s 0 919+ 7.1 76.1 £ 4.0
vheln 0 134.4 + 10.5 | 66.0 & 5.6
wdbc-s 0 59+ 1.9 96.3 + 2.1
wdbc-n 2 33.5+ 4.9 90.0 £ 5.0
wine-s 0 3.0 £ 0.0 95.9 £+ 4.0
wine-n 6 21.3 £ 2.2 86.8 £ 7.4

learn a suitable input-output mapping.

The MPyramid and MCascade algorithms do not converge to zero training errors on sev-
eral real world datasets. This is the case despite the fact that datasets with large magnitude
attributes were either scaled or normalized. On the other hand the hybrid Tiling-Pyramid and
Tiling-Cascade algorithms that use the MTiling based adaptive vector quantization were able
to converge to zero classification errors on all the datasets. The reason for this behavior is most
likely due to the fact that the MTiling algorithm trains the ancillary neurons on progressively
smaller subsets of the entire training set. In the MPyramid and MCascade algorithms the
entire training set is input to each neuron trained. Since the datasets are inherently difficult
to classify presenting the entire pattern set to each neuron results in the addition of new layers

(in the case of MPyramid) or the addition of new daughter neurons (in the case of MCascade)

Table B.5 Experiments with the Tiling-Pyramid Algorithm.

209

Dataset | Failed | Network Test
Runs Size Accuracy
p7 0 8.0 £ 0.0 -
p8 0 9.0 £ 0.0 -
p9 0 10.0 + 0.0 -
2sp 0 36.9 +£ 2.2 | 59.0 £ 8.5
Jc 1 387+ 39| 95.5+0.7
balance 0 2824+ 29| 91.9 £ 3.7
glass-s 0 48.4 £ 4.3 | 60.0 + 10.3
glass-n 4 51.5 £ 3.0 | 54.8 £5.8
ion 0 51 1.4 | 85.4 £+ 3.3
iris 0 9.9+ 2.1 | 96.0 £ 4.7
liver-s 0 296 + 1.6 | 66.8 £ 11.4
liver-n 0 35.1 2.1 | 588 £ 6.4
pima-s 1 412+ 15| 6494+ 6.6
pima-n 0 55.9 £ 2.8 | 61.5 £+ 4.2
sonar 0 43+£07 | 72.0 £ 8.6
vhel s 0 76.0 £ 6.0 | 74.3 £ 5.5
vheln 0 84.5 + 4.9 | 64.0 £ 4.5
wdbc-s 0 56 £ 2.1 | 95.7 £ 2.6
wdbc-n 0 26.6 = 2.5 | 89.8 £ 3.5
wine-s 0 3.0+ 0.0 | 959+ 4.8
wine-n 2 20.5 £ 3.7 | 83.8+£6.9

without any significant improvement in the performance. This in turn prevents the algorithms
from converging to zero classification errors within the limited amount of training time that is

allowed.

Network Size

The networks generated by the hybrid learning algorithms Tiling- Pyramid and Tiling-Cascade
are smaller (in terms of average number of neurons) as compared to those generated by the
MTiling algorithm. Further, the average network sizes of the networks generated by the
MPyramid and MCascade (in cases where these algorithms actually converged) are smaller as
compared to those generated by the MTiling based algorithms. This could suggest the fact

that the MPyramid and MCascade algorithms are more strongly biased towards parsimonious

Table B.6 Experiments with the Tiling-Cascade Algorithm.

210

Dataset | Failed | Network Test
Runs Size Accuracy
p7 0 9.6 + 3.3 -
p8 0 13.0 £ 7.3 -
p9 0 14.7 + 10.0 -
2sp 0 389+ 1.9 | 50.0 £ 17.8
Jc 1 382+ 39 | 955+ 0.7
balance 0 25,6 £ 1.7 | 90.8 £ 4.1
glass-s 2 34.6 £ 1.2 | 59.5 £ 10.2
glass-n 0 36.5+ 1.4 | 44.3 £ 10.3
ion 0 5.0 £ 1.1 86.6 + 4.1
iris 0 9.1+ 1.1 95.3 £ 6.3
liver-s 0 30.6 1.3 | 64.7 £ 9.8
liver-n 0 35.7 £ 3.0 | 60.6 £ 10.0
pima-$ 0 429+ 2.0 | 684+ 4.5
pima-n 0 58.1 £+ 3.6 | 62.6 + 8.3
sonar 0 59+ 1.3 73.5 + 6.3
vhel-s 0 46.7 +£ 2.5 | 76.0 £ 5.5
vheln 0 59.7 £33 | 71.6 £ 6.9
wdbc-s 0 59+ 1.3 96.4 + 3.3
wdbc-n 0 26.5 + 2.5 | 87.9 £ 4.2
wine-s 0 3.0 £ 0.0 97.1 + 4.2
wine-n 1 20.0 &+ 3.2 | 88.9 £ 10.1

network representations than the MTiling based algorithms.

Scaling versus Normalization

The performance of the constructive learning algorithms on the scaled version of the dataset
was better than the performance on the normalized version of the dataset both in terms of
network size and generalization. This is to be expected because as mentioned earlier normal-
ization tends to produce patterns in which some attributes have extremely small magnitudes in
comparison with some others. Consequently, the normalized datasets are significantly harder
to classify than their scaled counterparts where the relative magnitudes of all attributes are

nearly equal.

Table B.7 Experiments with the perceptron Algorithm.

211

Dataset | Training Test
Accuracy | Accuracy
p7 65.2 + 1.6 -
p8 63.5 + 1.1 -
p9 63.7 £ 0.0 -
2sp 55.1 £ 2.9 | 484+ 164
Jc 46.3 £ 3.9 | 44.0 £ 3.7
balance | 91.1 £ 0.6 | 87.9 £ 3.4
glass-s 74.6 £ 2.0 | 60.5 £ 8.4
glass-=n | 55.2 £ 2.2 | 46.7 £ 10.2
ion 97.0 £ 0.9 | 86.9 £ 5.3
iris 98.7+ 0.7 | 97.3 £ 3.4
liver-s 74.1+ 1.5 | 69.7 £ 10.9
liver-n 73.6 £ 1.0 | 67.1 £ 9.5
pima-s | 79.4+ 1.0 | 76.0 £ 5.8
pima-n | 70.9 £ 1.2 | 68.7+£ 5.6
sonar 955+19 | 740+ 7.4
vhels 85.0 £ 0.6 | 79.1 £ 2.1
vhelkn 76.9 £+ 0.9 | 73.24+ 4.7
wdbc-s 99.0 203 | 973 £ 1.9
wdbc-n | 93.0 £ 04 | 92.1 £ 2.7
wine-s | 100.0 £ 0.0 | 90.6 £ 4.6
wine-n | 89.7 £ 3.1 | 80.6 £ 8.0

Generalization

On an average the constructive learning algorithms generalize well from the training data. A
comparison of the test accuracy achieved by the constructive learning algorithms on the 2sp,
Je, balance, glass, ion, and sonar datasets with the test accuracy of the perceptron algorithm
bears testimony to the superior generalization ability of the constructive learning algorithms.

The generalization performance of the MPyramid and MCascade algorithms on the 2sp,
Jc, and ion datasets is better than that of the MTiling based algorithms. On other datasets
(such as iris, sonar, wine, and wdbc) where at least one of the MPyramid and MCascade
algorithms did converge their generalization performance was comparable to that of MTiling
based algorithms. This strengthens the argument for preferring the MPyramid and MCascade

algorithms over MTiling based algorithms. The practical difficulty however, is the fact that

212

MPyramid and MCascade do not converge on several datasets. The use of the MTiling based
adaptive vector quantization does provide one framework that improves the convergence prop-
erties of the MPyramid and MCascade algorithms on real-valued datasets. It is of interest to
explore quantization schemes that might also improve the generalization performance of these
algorithms.

On the iris, liver, pima, vhel, and wdbc datasets we observe that the perceptron algorithm
generalizes better than all the constructive learning algorithms. This worsening of generaliza-

tion could be attributed to one of the following factors:

1. Inherent limitations of the datasets:
Some of the datasets we used were created at a time when algorithms for training multi-
layer networks were just gaining popularity. It is likely that these datasets contain a
set of carefully engineered features that were selected by experts to work well with the
algorithms existing at that time [MSTG89]. These inherent limitations of the datasets
result in the scenario where it is not possible to improve the generalization on a particular

dataset beyond what is achieved by a single layer network.

2. Presence of irrelevant or noisy attributes:
It is possible that the presence of irrelevant or noisy attributes for a set of patterns
actually complicates the task of the learning algorithm. The effectiveness of using an
appropriate feature subset selection mechanism in culling unwanted input attributes and
thereby simplifying the task of several inductive learning algorithms is well known [Rip96].
Experimental results have shown that using GA based feature subset selection algorithm

significantly boosts the performance of the DistAl constructive learning algorithm [YH97].

3. Qver-fitting of the training set:
Constructive learning algorithms allow the network to train until all training patterns
are correctly classified. This is likely to result in over-fitting of the training set where the
algorithm spends a large fraction of its effort in trying to correctly classify a small fraction

of hard to classify training patterns. A common approach for avoiding over-fitting in most

213

machine learning algorithms is to use separate training and cross-validation sets. The

training is stopped when the generalization on the cross-validation set begins to decline.

Over-fitting

We now describe the results of some experiments conducted specifically to address the issue
of over-fitting. We implemented the cross-validation based criterion for early termination of
the training phase in our constructive learning algorithms. Tables B.8 and B.9 summarize
the results of our ten fold cross-validation experiments with early termination on the sonar
and pimas datasets. The size, training accuracy, and generalization accuracy of the network

averaged over the ten runs is reported.

Table B.8 Cross-validation Experiments on the sonar Dataset.

Algorithm Network | Training Test
Size Accuracy | Accuracy
MPyramid 214+1.0 | 926 +£4.3 | 825+ 4.9
MCascade 224+ 13| 943+58 | 83.6 6.7
MTiling 234+ 1.7] 96.7+3.0 | 725+ 10.6
Tiling-Pyramid | 2.6 &= 1.7 | 97.3 &+ 2.4 | 76.5 £ 10.8
Tiling-Cascade | 2.5 £ 2.6 | 97.1 £ 2.4 | 77.5 £ 11.8

Table B.9 Cross-validation Experiments on the pima-s Dataset.

Algorithm Network | Training Test
Size Accuracy | Accuracy
MPyramid 8.1+48 | 805+ 1.7 | 783+ 3.7
MCascade 69+48 | 81.2+21|792+49
MTiling 12.8 +£21.3 | 8244+ 6.0 | 76.7 + 5.2
Tiling-Pyramid | 4.3 +£ 10.4 | 80.4 £ 3.9 | 76.7 £ 5.4
Tiling-Cascade 38+89 | 7984+ 1.6 | 76.3 + 4.3

The results in Tables B.8 and B.9 suggest the following.

e Constructive learning algorithms do indeed tend to overfit data. The average test accu-
racy of the networks that were trained using the cross-validation based stopping criterion
is better than that of the networks that were trained until they correctly classied all train-

ing patterns on both the datasets. To further demonstrate the over-fitting we plot the

Accuracy (%)

214

learning curve for a single run of the M Tiling algorithm on the pima-s dataset in Fig. B.1.
Over-fitting sets in very early during training with the best generalization being recorded
at the first layer itself. We contrast this with the behavior of the MTiling algorithm on
the 3c dataset in Fig. B.2. In this case, there is no over-fitting and the train and test

accuracies track each other very closely.

The MPyramid and MCascade algorithms did not converge to zero classification errors on
the pima-s dataset (see Tables B.2 and B.3). However, when the early stopping criterion
is implemented for training their performance is comparable to that of the MTiling based

algorithms.

100 0

90 -

——Train Accuracy

80+
-==-Test Accuracy

70 - TSpeeeenl

60 T T T T

L ayer
Figure B.1 Learning Curve of the MTiling Algorithm (pima-s Dataset).

Accuracy (%)

215

100

oe]
o
1

—o—Train Accuracy
-=2=-Test Accuracy

N
o
1

20 1 1
1.0 15 2.0

L ayer
Figure B.2 Learning Curve of the MTiling Algorithm (3c Dataset).

[Ang78]

[Ang81]

[Ang87]

[BFT72]

[BH69]

[BLI1]

[Bur94]

[CGSS]

[Chob6]

216

BIBLIOGRAPHY

D. Angluin. On the complexity of minimum inference of regular sets. Information

and Control, 39(3):337-350, 1978.

D. Angluin. A note on the number of queries needed to identify regular languages.

Information and Control, 51:76-87, 1981.

D. Angluin. Learning regular sets from queries and counterexamples. Information

and Computation, 75:87-106, 1987.

A. Biermann and J. Feldman. A survey of results in grammatical inference. In
S. Watanabe, editor, Frontiers of Pattern Recognition, pages 31-54. Academic

Press, New York, 1972.
A. E. Bryson and Y. C. Ho. Applied Optimal Control. Blaisdell, New York, 1969.

E. Baum and K. Lang. Constructing hidden units using examples and queries. In
R. Lippmann, J. Moody, and D. Touretzky, editors, Advances in Neural Informa-
tion Processing Systems, vol. 3, pages 904-910, Morgan Kaufmann, San Mateo,
CA, 1991.

N. Burgess. A constructive algorithm that converges for real-valued input patterns.

International Journal of Neural Systems, 5(1):59-66, 1994.

G. Carpenter and S. Grossberg. The art of adaptive pattern recognition by a

self-organizing neural network. Computer, (March): 77-88, 1988.

N. Chomsky. Three models for the description of language. PGIT, 2(3):113-124,

1956.

[CLR1]

[CM96]

[CPY*95]

[Cra96]

[Day90]

[DDG96]

[DGIT]

[DHT73]

[DKS95]

217

T. Cormen, C. Leiserson, and Rivest R. [Introduction to Algorithms. MIT Press,

Cambridge, MA, 1991.

D. Carmel and S. Markovitch. Learning models of intelligent agents. In Proceedings
of the AAAI-96 (vol. 1), Portland, OR, pages 62-67, AAAI Press/MIT Press,
Menlo Park, CA, 1996.

C-H. Chen, R. Parekh, J. Yang, K. Balakrishnan, and V. Honavar. Analysis of
decision boundaries generated by constructive neural network learning algorithms.
In Proceedings of WCNN’95 (vol. 1), Washington D.C., pages 628-635, Lawrence

Erlbaum Associates/INNS Press, Mahwah, NJ, 1995.

M. Craven. Fztracting Comprehensible Models from Trained Neural Networks. PhD

dissertation, University of Wisconsin, Madison, WI, 1996.

J. Dayhoff. Neural Network Architectures: An Introduction. Van Nostrand Rein-

hold, New York, 1990.

F. Denis, C. D’Halluin, and R. Gilleron. PAC learning with simple examples.
STACS’96 - Proceedings of the 13" Annual Symposium on the Theoretical Aspects

of Computer Science, pages 231-242, 1996.

F. Denis and R. Gilleron. PAC learning under helpful distributions. In Proceedings
of the Fighth International Workshop on Algorithmic Learning Theory (ALT’97),

Sendai, Japan, Lecture Notes in Artificial Intelligence 1316, pages 132-145, 1997.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New

York, 1973.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In Proceedings of the Twelfth International Conference

on Machine Learning, San Francisco, CA, pages 194-202, 1995.

[DMV94]

[DR95]

[Dre62]

[Dup96a]

[Dup96b]

[Fah88]

[FB75]

[FL90]

[FLSW90]

218

P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular
inference? In Proceedings of the Second International Colloguium on Grammatical

Inference (ICGI°94), Alicante, Spain, pages 25-37, 1994.

S. Donoho and L. Rendell. Representing and restructuring domain theories: A
constructive induction approach. Journal of Artificial Intelligence Research, 2:411—

446, 1995.

S. Dreyfus. The numerical solution of variational problems. Journal of Mathemat-

ical Analysis and Applications, 5(1):30-45, 1962.

P. Dupont. Incremental regular inference. In L. Miclet and C. Higuera, editors,
Proceedings of the Third ICGI-96, Montpellier, France, Lecture Notes in Artificial

Intelligence 1147, pages 222-237, 1996.

P. Dupont. Utilisation et Apprentissage de Modéles de Language pour la Recon-
naissance de la Parole Continue. PhD dissertation, Ecole Normale Supérieure des

Télécommunications, Paris, France, 1996.

S. E. Fahlman. An empirical study of learning speed in backpropagation networks.
Technical Report CMU-CS-88-162, Carnegie-Mellon University, Pittsburgh, PA,

1988.

K. S. Fu and T. L. Booth. Grammatical inference: Introduction and survey (part

1). IFEFE Transactions on Systems, Man and Cybernetics, 5:85-111, 1975.

S. E. Fahlman and C. Lebiere. The cascade correlation learning algorithm. In
D.S. Touretzky, editor, Neural Information Processing Systems 2, pages 524-532.

Morgan-Kauffman, San Mateo, CA, 1990.

J. A. Feldman, G. Lakoff, A. Stolcke, and S. H. Weber. Miniature language acquisi-
tion: A touchtone for cognitive science. Technical Report TR-90-009, International

Computer Science Institute, Berkeley, California, 1990.

[FO93]

[FPSS96]

[Fre90al

[Fre90b]

[Fre92]

[Fu82]

[Fu89]

[Fu93]

[Gal90]

[Gal93]

[GD*+93]

219

J. Fletcher and Z. Obradovi¢. Combining prior symbolic knowledge and construc-

tive neural network learning. Connection Science, 5(3,4):365-375, 1993.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Advances in Knowledge Discovery

and Data Mining. MIT Press, Cambridge, MA, 1996.

M. Frean. Small Nets and Short Paths: Optimizing Neural Computation. PhD
dissertation, Center for Cognitive Science, Edinburgh University, Edinburgh, Scot-

land, 1990.

M. Frean. The upstart algorithm: A method for constructing and training feedfor-

ward neural networks. Neural Computation, 2:198-209, 1990.

M. Frean. A thermal perceptron learning rule. Neural Computation, 4:946-957,
1992.

K. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood
Cliffs, NJ, 1982.

L. M. Fu. Integration of neural heuristics into knowledge-based inference. Connec-

tion Science, 1:325-340, 1989.

L. M. Fu. Knowledge-based connectionism for revising domain theories. IFEF

Transactions on Systems, Man, and Cybernetics, 23(1):173-182, 1993.

S. Gallant. Perceptron based learning algorithms. IFFFE Transactions on Neural

Networks, 1(2):179-191, 1990.

S. Gallant. Neural Network Learning and Ezxpert Systems. MIT Press, Cambridge,
MA, 1993.

A. Guérin-Dugué et al. Deliverable R1-B1-P - Task B1: Databases. Technical
report, Elena-Nervesll “Enhanced Learning for Evolutive Neural Architecture”,

ESPRIT-Basic Research Project Number 6891, 1993.

[Gin90]

[GJ79]

[GM93]

[Gol78]

[GT7S]

[Heb49]

[Hig96]

[Hir90]

[Hon90]

[Hon94]

[Hry92]

220

A. Ginsberg. Theory reduction, theory revision, and retranslation. In Proceed-
ings of the Eighth National Conference on Artificial Intelligence, pages T77-782,

AAAI/MIT Press, Boston, MA, 1990.

M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman, New

York, 1979.

S. Goldman and H. Mathias. Teaching a smarter learner. In Proceedings of
the Workshop on Computational Learning Theory (COLT’93), pages 67-76, ACM

Press, New York, 1993.

E. M. Gold. Complexity of automaton identification from given data. Information

and Control, 37(3):302-320, 1978.

R.C. Gonzales and M.G. Thomason. Syntactic Pattern Recognition - An Introduc-

tion. Addison Wesley, Reading, MA, 1978.
D. Hebb. The Organization of Behavior. Wiley, New York, 1949.

Colin de la Higuera. Characteristic sets for polynomial grammatical inference. In
L. Miclet and C. Higuera, editors, Proceedings of the Third ICGI-96, Montpellier,

France, Lecture Notes in Artificial Intelligence 1147, pages 59-71, 1996.

H. Hirsh. Incremental Version Space Merging: A General Framework for Concept

Learning. Kluwer Academic, Boston, MA, 1990.

V. Honavar. Generative Learning Structures and Processes for Generalized Connec-

tionist Networks. PhD dissertation, University of Wisconsin, Madison, WI, 1990.

V. Honavar. Toward learning systems that integrate multiple strategies and rep-
resentations. In V. Honavar and L. Uhr, editors, Artificial Intelligence and Neural
Networks: Steps Toward Principled Integration, pages 615-644. Academic Press,

New York, 1994.

T. Hrycej. Modular Learning in Neural Networks. Wiley, New York, 1992.

[HUT79]

[HU93]

[Kat89]

[KFS94]

[Koh8g]

[Koh89]

[KV89]

[KV94]

[Lan92]

[Lan95]

[LP81]

221

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, Reading, MA, 1979.

V. Honavar and L. Uhr. Generative learning structures and processes for connec-

tionist networks. Information Sciences, 70:75-108, 1993.

B. F. Katz. EBL and SBL: A neural network synthesis. In Proceedings of the

FEleventh Annual Conference of the Cognitive Science Society, pages 683-689, 1989.

M. Kopel, R. Feldman, and A. Serge. Bias-driven revision of logical domain theories.

Journal of Artificial Intelligence Research, 1:159-208, 1994.

T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, New

York, 1988.

T Kohonen. Self-Organization and Associative Memory. Springer-Verlag, New

York, 1989.

M. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean for-
mulae and finite automata. In Proceedings of the 215 Annual ACM Symposium on

Theory of Computing, pages 433-444, 1989.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory.

MIT Press, Cambridge, MA, 1994.

K. J. Lang. Random DFAs can be approximately learned from sparse uniform sam-
ple. In Proceedings of the 5th ACM workshop on Computational Learning Theory,

pages 45-52, 1992.

P. Langley. FElements of Machine Learning. Morgan Kaufmann, Palo Alto, CA,

1995.

H. R. Lewis and C. H. Papadimitriou. FElements of the Theory of Computation.

Prentice-Hall, Englewood Cliffs, NJ, 1981.

[.S89]

[LV91]

[LV93]

[LV97]

[MA94]

[Mae95]

[Mar91]

[MGRO0]

[Mit80]

[Mit82]
[Mit97]

[MMO94]

222

G. F. Luger and W. A. Stubblefield. Artificial Intelligence and the Design of Expert

Systems. Benjamin Cummings, Redwood City, CA, 1989.

M. Li and P. Vitanyi. Learning simple concepts under simple distributions. STAM

Journal of Computing, 20:911-935, 1991.

M. Li and P. Vitdnyi. An Introduction to Kolmogorov Complezity and its Applica-

tions. Springer-Verlag, New York, 1993.

M. Li and P. Vitdnyi. An Introduction to Kolmogorov Complezity and its Applica-

tions, 2 edition. Springer-Verlag, New York, 1997.

P. Murphy and D. Aha. UCI repository of machine learning databases. Department

of Information and Computer Science, University of California, Irvine, CA, 1994.

P. Maes. Agents that reduce work and information overload. Communications of

the ACM, 38(11):108-114, 1995.

J. C. Martin. Introduction to Languages and The Theory of Computation. McGraw-

Hill, New York, 1991.

M. Marchand, M. Golea, and P. Rujan. A convergence theorem for sequential

learning in two-layer perceptrons. Furophysics Letters, 11(6):487-492, 1990.

T. Mitchell. The need for biases in learning generalizations. Technical Report

CBM-TR-117, Rutgers University, New Brunswick, NJ, 1980.
T. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.

J. Mahoney and R. Mooney. Comparing methods for refining certainty-factor rule-
bases. In Proceedings of the Eleventh International Conference on Machine Learn-

ing, pages 173180, 1994.

[MMRO7]

[MN89]

[MP43]

[MP69]

[MQ86]

[MSTG89]

[Mug92]

[Nat91]

[Nil65]

[0BS92]

[0G92]

223

K. Mehrotra, C. Mohan, and S. Ranka. Flements of Artificial Neural Networks.

MIT Press, Cambridge, MA, 1997.

M. Mézard and J. Nadal. Learning feed-forward networks: The tiling algorithm.

J. Phys. A: Math. Gen., 22:2191-2203, 1989.

W. S. Mcculloch and W. Pitts. A logical calculus of ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geom-

etry. MIT Press, Cambridge, MA, 1969.

L. Miclet and J. Quinqueton. Learning from examples in sequences and gram-
matical inference. In G. Ferrate et al, editor, Syntactic and Structural Pattern

Recognition, pages 153-171. NATO ASI Series Vol. FF45, 1986.

R. Mooney, J. Shavlik, G. Towell, and Alan Gove. An experimental comparison
of symbolic and connectionist learning algorithms. In Proceedings of the FEleventh
International Joint Conference on Artificial Intelligence, pages 775-780. Morgan

Kauffman, San Mateo, CA, 19809.
S. Muggleton. Inductive Logic Programming. Academic Press, San Diego, 1992.

B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauffman,

San Mateo, CA, 1991.

N.J. Nilsson. The Mathematical Foundations of Learning Machines. McGraw-Hill,

New York, 1965.

A. Okabe, B. Boots, and K Sugihara. Spatial tessellations : concepts and applica-

tions of Voronoi diagrams. Wiley and Sons, Chichester, England, 1992.

J. Oncina and P. Garcia. Inferring regular languages in polynomial update time.
In N. Pérez et al, editor, Pattern Recognition and Image Analysis, pages 49-61,

World Scientific, New Jersey, 1992.

[OMY4]

[0S95]

[0S97]

[PC78]

[PFO1]

[PHY3]

[PHY6]

[PHI7]

224

D. Ourston and R. J. Mooney. Theory refinement: Combining analytical and

empirical methods. Artificial Intelligence, 66:273-310, 1994.

D. W. Opitz and J. W. Shavlik. Dynamically adding symbolically meaningful
nodes to knowledge-based neural networks. Knowledge-Based Systems, 8(6):301—

311, 1995.

D. W. Opitz and J. W. Shavlik. Connectionist theory refinement: Genetically
searching the space of network topologies. Journal of Artificial Intelligence Re-

search, 6:177-209, 1997.

T. Pao and J. Carr. A solution of the syntactic induction-inference problem for

regular languages. Computer Languages, 3:53—-64, 1978.

S. Porat and J. Feldman. Learning automata from ordered examples. Machine

Learning, 7:109-138, 1991.

R. G. Parekh and V. G. Honavar. Efficient learning of regular languages using
teacher supplied positive examples and learner generated queries. In Proceedings

of the Fifth UNB Conference on Al, Fredricton, Canada, pages 195-203, 1993.

R. G. Parekh and V. G. Honavar. An incremental interactive algorithm for regular
grammar inference. In L. Miclet and C. Higuera, editors, Proceedings of the Third
ICGI-96, Montpellier, France, Lecture Notes in Artificial Intelligence 1147, pages

238-250, 1996.

R. G. Parekh and V. G. Honavar. Learning DFA from simple examples. In Pro-
ceedings of the Fighth International Workshop on Algorithmic Learning Theory
(ALT’97), Sendai, Japan, Lecture Notes in Artificial Intelligence 1316, pages 116
131, 1997. Also presented at the Workshop on Grammar Inference, Automata

Induction, and Language Acquisition (ICML’°97), Nashville, TN, 1997.

[PH98a]

[PHOSb]

[Pit89]

[PK92]

[PNH97]

[Pom89]

[Pou95]

[PWS8S]

[PW89]

225

R. G. Parekh and V. G. Honavar. Grammar inference, automata induction, and
language acquisition. In Dale, Moisl, and Somers, editors, Handbook of Natural

Language Processing. Marcel Dekker, 1998. (To appear).

R. G. Parekh and V. G. Honavar. Constructive theory refinement in knowledge
based neural networks. In Proceedings of the International Joint Conference on

Neural Networks’98, Anchorage, AK, 1998. (To appear).

L. Pitt. Inductive inference, DFAs and computational complexity. In Analogical
and Inductive Inference, Lecture Notes in Artificial Intelligence 397, pages 18-44.

Springer-Verlag, New York, 1989.

M. Pazzani and D. Kibler. The utility of knowledge in inductive learning. Machine

Learning, 9:57-94, 1992.

R. G. Parekh, C. Nichitiu, and V. G. Honavar. A polynomial time incremental
algorithm for regular grammar inference. Technical Report ISU-CS-TR97-03, lowa

State University, Ames, lowa, 1997.

D. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Technical

Report CMU-CS-89-107, Carnegie Mellon University, Pittsburgh, PA, 1989.

H. Poulard. Barycentric correction procedure: A fast method of learning threshold

units. In Proceedings of WCNN’95 (vol. 1), Washington D.C., pages 710-713, 1995.

L. Pitt and M. K. Warmuth. Reductions among prediction problems: on the
difficulty of predicting automata. In Proceedings of the 3"¢ IEEE Conference on

Structure in Complexity Theory, pages 60—69, 1988.

L. Pitt and M. K. Warmuth. The minimum consistency dfa problem cannot be
approximated within any polynomial. In Proceedings of the 2158 ACM Symposium

on the Theory of Computing, pages 421-432, 1989.

[PYH95]

[PYH97a]

[PYH97b]

[PYHO7c]

[PYHO98]

[Quis6]

[Ree93]

[RHWS6]

[Rip96]

226

R. Parekh, J. Yang, and V. Honavar. Constructive neural network learning algo-
rithms for multi-category classification. Technical Report ISU-CS-TR95-15a, lowa

State University, Ames, [A, 1995.

R. G. Parekh, J. Yang, and V. G. Honavar. Constructive neural network learning
algorithms for multi-category real-valued pattern classification. Technical Report
ISU-CS-TR97-06, lowa State University, Ames, IA, 1997. (Submitted for review to

the IEEE Transactions on Neural Networks).

R. G. Parekh, J. Yang, and V. G. Honavar. Mupstart - a constructive neural
network learning algorithm for multi-category pattern classification. In Proceedings
of the IEEE/INNS International Conference on Neural Networks, ICNN’97, pages

1924-1929, 1997.

R. G. Parekh, J. Yang, and V. G. Honavar. Pruning strategies for constructive
neural network learning algorithms. In Proceedings of the IEEE/INNS International

Conference on Neural Networks, ICNN’97, pages 1960-1965, 1997.

R. G. Parekh, J. Yang, and V. G. Honavar. An experimental comparison of con-

structive neural network learning algorithms, 1998. (In preparation).
R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

R. Reed. Pruning algorithms — a survey. IFEFE Transactions on Neural Networks,

4(5):740-747, 1993.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In Parallel Distributed Processing: Fzrplorations into
the Microstructure of Cognition, volume 1 (Foundations). MIT Press, Cambridge,
MA, 1986.

B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,

New York, 1996.

[RMY5]

[RN95]

[Ros58]

[RS93]

[SRK95]

[ST91]

[TB73]

[Thr95]

[TS93]

[TS94]

[TSN9O]

227

B. Richards and R. Mooney. Automated refinement of first-order horn-clause do-

main theories. Machine Learning, 19:95-131, 1995.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,

Englewood Cliffs, NJ, 1995.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386-408, 1958.

R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-

quences. Information and Computation, 103(2):299-347, 1993.

K-Y. Siu, V. Roychowdhury, and T. Kailath. Discrete Neural Computation - A

Theoretical Foundation. Prentice-Hall, Englewood Cliffs, NJ, 1995.

J. Saffery and C. Thornton. Using stereographic projection as a preprocessing

technique for upstart. In Proceedings of the International Joint Conference on

Neural Networks, pages 11 441-446, IEEE Press, New York, 1991.

B. Trakhtenbrot and Ya. Barzdin. Finite Automata: Behavior and Synthesis. North

Holland Publishing Company, Amsterdam, 1973.

S. Thrun. Lifelong learning: A case study. Technical Report CMU-CS-95-208,

Carnegie Mellon University, Pittsburgh, PA, 1995.

G. Towell and J. Shavlik. Extracting rules from knowledge-based neural networks.

Machine Learning, 13:71-101, 1993.

G. Towell and J. Shavlik. Knowledge-based artificial neural networks. Artificial

Intelligence, 70(1-2):119-165, 1994.

G. G. Towell, J. W. Shavlik, and M. O. Noordwier. Refinement of approximate
domain theories by knowledge-based neural networks. In Proceedings of the Fighth

National Conference on Artificial Intelligence, pages 861-866, 1990.

[Val84]

[VBST]

[Wat89]

[WD92]

[Wer74]

[YHO6]

[YHO7]

[YHOS]

[YPH96]

[YPH98a]

[YPH98b]

228

L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142,

1984.

K. Vanlehn and W. Ball. A version space approach to learning context-free gram-

mars. Machine Learning, 2:39-74, 1987.

C. J. Watkins. Learning from Delayed Rewards. PhD dissertation, King’s College,
Cambridge, UK, 1989.

C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-292, 1992.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in Be-

havioral Sciences. PhD dissertation, Harvard University, 1974.

J. Yang and V. Honavar. A simple randomized quantization algorithm for neu-
ral network pattern classifiers. In Proceedings of the World Congress on Neural

Networks’96, San Diego, C'A, pages 223-228, 1996.

J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In

Proceedings of the Genetic Programming’97, Stanford, C'A, pages 380-385, 1997.

J. Yang and V. Honavar. Experiments with the cascade-correlation algorithm.

Microcomputer Applications, 1998. (To appear).

J. Yang, R. Parekh, and V. Honavar. MTiling - a constructive neural network
learning algorithm for multi-category pattern classification. In Proceedings of the

World Congress on Neural Networks’96, San Diego, CA, pages 182—-187, 1996.

J. Yang, R. Parekh, and V. Honavar. Comparison of performance of variants of

single-layer perceptron algorithms on non-separable datasets. (Submitted for review

to the Journal of Artificial Neural Networks), 1998.

J. Yang, R. Parekh, and V. Honavar. DistAl: An inter-pattern distance-based con-
structive learning algorithm. In Proceedings of the International Joint Conference

on Neural Networks’98, Anchorage, AK, 1998. (To appear).

