L earning DFA from Simple Examples

RAJESH PAREKH rpare@allstate.com
Allstate Research and Planning Center, 321 Middlefield Road, Menlo Park CA 94025, USA

VASANT HONAVAR™ ™ honavar@cs.iastate.edu
Department of Computer Science, lowa State University, Ames 1A 50011, USA

Abstract. Efficient learning of DFA isachallenging research problem in grammatical inference. It is known that both exact and
approximate (in the PAC sense) identifiability of DFA ishard. Pitt, in hisseminal paper posed the following open research problem:
“ Are DFA PAC-identifiable if examples are drawn from the uniformdistribution, or some other known simpledistribution?” [25]. We
demonstrate that the class of simple DFA (i.e., DFA whose canonical representations have logarithmic Kolmogorov complexity)
is efficiently PAC learnable under the Solomonoff Levin universal distribution. We prove that if the examples are sampled at
random according to the universal distribution by ateacher that is knowledgeable about the target concept, the entire class of DFA
is efficiently PAC learnable under the universal distribution. Thus, we show that DFA are efficiently learnable under the PACS
model [6]. Further, we prove that any concept that is learnable under Gold's model for learning from characteristic samples,
Goldman and Mathias' polynomial teachability model, and the model for learning from example based queries is also learnable
under the PACS model.

1. Introduction

The problem of learning the minimum state DFA that is consistent with a given sample has been actively
studied for over two decades. DFAs are recognizers for regular languages which constitute the simplest
classinthe Chomsky hierarchy of formal languages[5, 15]. Anunderstanding of theissuesand problems
encountered in learning regular languages (or equivalently, identification of the corresponding DFA) are
therefore likely to provideinsightsinto the problem of learning more general classes of languages.

Exact learning of the target DFA from an arbitrary presentation of labeled examples is a hard prob-
lem [11]. Gold showed that the problem of identifying the minimum state DFA consistent with a
presentation S comprising of a finite non-empty set of positive examples ST and possibly a finite non-
empty set of negative examples S~ is N P-hard. Under the standard complexity theoretic assumption
P # NP, Pitt and Warmuth showed that no polynomial time a gorithm can be guaranteed to produce a
DFA with at most V(1 —)leglog(N) gtates from a set of labeled examples corresponding to a DFA with N
states [26].

Efficient learning algorithms for identification of DFA assume that additional information is provided
to the learner. Trakhtenbrot and Barzdin described a polynomial time algorithm for constructing the
smallest DFA consistent with a complete labeled sample i.e., a sample that includes all strings up to a
particular length and the corresponding label that states whether the string is accepted by the target DFA
or not [28]. Angluin showed that given a live-complete set of examples (that contains a representative
string for each live state of the target DFA) and a knowledgeabl e teacher to answer membership queries
it is possible to exactly learn the target DFA [1]. In alater paper, Angluin relaxed the requirement of a
live-complete set and has designed a polynomial time inference algorithm using both membership and
equivalencequeries[2]. Theregular positive and negativeinference (RPNI) algorithmisaframework for
identifying in polynomial time, a DFA consistent with agiven sample S [21]. Further, if S is a superset
of acharacteristic set (see section 2.1) for the target DFA then the DFA output by the RPNI algorithmis
guaranteed to be equivalent to the target [21, 9].

Pitt surveyed several approaches for approximate identification of DFA [25]. Valiant's distribution-
independent model of learning, also called the probably approximately correct (PAC) learning model [29],

*  Theresultsin section 5 were presented earlier in [24].
** This research was partially supported by the National Science Foundation grants IRI-9409580 and IRI-9643299 to Vasant
Honavar.



is awidely used framework for approximate learning of concept classes. PAC learning models natural
learning in that it is fast (learning takes placein polynomial time) and it sufficesto learn approximately.
When adapted to the problem of learning DFA, the goal of a PAC learning algorithm is to obtain in
polynomial time, with high probability, a DFA that is a good approximation of the target DFA. We
define PAC learning of DFA more formally in section 2. Angluin’s L* agorithm [2] that learns DFA in
polynomial time using membership and equivalence queries can be recast under the PAC framework to
learn by posing membership queries alone. Even approximate learnability of DFA was proven to be a
hard problem. Pitt and Warmuth showed that the problem of polynomially approximate predictability
of the class of DFA is hard [27]. They used prediction preserving reductions to show that if DFAs are
polynomially approximately predictable then so are other known hard to predict concept classes such
as boolean formulas. Further, Kearns and Valiant showed that an efficient algorithm for learning DFA
would entail efficient algorithms for solving problems such as breaking the RSA cryptosystem, factoring
Blum integers, and detecting quadratic residues [17]. Under the standard cryptographic assumptions
these problems are known to be hard to solve. Thus, they argued that DFA learning is a hard problem.

The PAC model’s requirement of learnability under all conceivable distributions is often considered
too stringent for practical learning scenarios. Pitt's paper identified the following open research problem:
“Are DFA's PAC-identifiable if examples are drawn from the uniform distribution, or some other known
simple distribution? ” [25]. Using avariant of Trakhtenbrot and Barzdin's algorithm, Lang empirically
demonstrated that random DFAs are approximately learnable from a sparse uniform sample [18]. How-
ever, exact identification of the target DFA was not possible even in the average case with a randomly
drawn training sample. Severa efforts have been made to study the learnability of concept classes under
restricted classes of distributions. Li and Vitanyi proposed a model for PAC learning with simple exam-
ples called the simple PAC model wherein the class of distributionsis restricted to simple distributions
(see section 4). Following up on this, Denis et al proposed a model of learning where examples are
drawn at random according to the universal distribution by a teacher that is knowledgeable about the
target concept [6]. This model is known as the PACS learning model. In this paper, we present amethod
for efficient PAC learning of DFA from simple examples. We will prove that the class of simple DFA
(see section 4) is learnable under the simple PAC model and the entire class of DFA is learnable under
the PACS model. Further, we demonstrate how the model of learning from simple examples naturally
extends the model of learning concepts from representative examples [11], the polynomial teachability
model [12], and the model of |earning from example based queries[3] to a probabilistic framework.

This paper is organized as follows: Section 2 briefly introduces some concepts used in the results
described in this paper. Thisincludes a discussion of the PAC learning model, Kolmogorov complexity,
and the universal distribution. Section 3 reviews the RPNI algorithm for learning DFA. Section 4
discussesthe PAC learnability of the class of simple DFA under thesimple PAC learning model. Section5
demonstrates the PAC learnability of the entire class of DFA under the PACS learning model. Section 6
analyzes the PACS modé in relation with other models for concept learning. Section 7 addresses the
issue of collusion that arises because a helpful teacher can potentially encodethe target DFA as alabeled
training example. Section 8 concludes with a summary of our contributions and a discussion of several
intersting directions for future research.

2. Preliminaries

Let ¥ be afinite set of symbols called the alphabet; ¥* be the set of strings over ¥; «, 3, be strings
in ¥*; and |a| be the length of the string .. )\ is a special string called the null string and has length
0. Givenastring a = B, B is the prefix of a and v is the suffix of a. Let Pref(a) denote the set
of al prefixes of a. A language L is a subset of £*. The set Pref(L) = {a | o8 € L} isthe
set of prefixes of the language and the set L, = {8 | a8 € L} isthe set of tails of « in L. The
standard order of strings of the alphabet ¥ is denoted by <. The standard enumeration of strings over
Y = {a,b}is\, a,b,aa,ab,ba, bb, aaa, . .. Theset of short prefixes S, (L) of alanguage L is defined as
Sp(L) = {a € Pref(L) | AB € L* suchthat L, = Lgand 8 < a}. Thekernel N(L) of alanguage



Lisdefinedas N(L) = {A\} U{aa | a € Sp(L),a € E,aa € Pref(L)}. Giventwo sets S; and Sz,
let S1\S2 and S; @ S, denote the set difference and the symmetric difference respectively. Let In and 1g
denote the log to the bases e and 2 respectively.

2.1. Finite Automata

A deterministic finite state automaton (DFA) isaquintuple A = (Q, 6, X, qo, F') where, Q isafinite set
of states, ¥ isthefinite aphabet, go € @ isthe start state, F' C @Q isthe set of accepting states, and § is
thetransition function: Q@ x ¥ — Q. A statedy € @ suchthat Va € X, 6(dp, a) = dp iscaled adead
state. The extension of ¢ to handle input strings is standard and is denoted by §*. The set of all strings
accepted by A is its language, L(A). The language accepted by a DFA is called a regular language.
Fig. 1 showsthe state transition diagram for a sample DFA. A non-deter ministic finite automaton (NFA)
is defined just like the DFA except that the transition function § defines a mapping from Q x ¥ — 29,
In genera, afinite state automaton (FSA) refersto either a DFA or a NFA.

Figure 1. Deterministic Finite State Automaton.

Given any FSA A', there exists a minimum state DFA (also called the canonical DFA, A) such that
L(A) = L(A’). Without loss of generality, we will assume that the target DFA being learned is a
canonical DFA. Let N denote the number of states of A. It can be shown that any canonical DFA has
at most one dead state [15]. One can define a standard encoding of DFA as binary strings such that any
DFA with N statesisencoded asabinary string of length O (VN 1g V). A labeled example («, c¢(a)) for A
issuchthat a € ¥* and c(a) = + if a € L(A) (i.e, a isapositive example) or c(a) = — if a & L(A)
(i.e., o is anegative example). Let ST and S~ denote the set of positive and negative examples of A
respectively. A is consistent with asample S = S U S~ if it accepts all positive examples and rejects
al negative examples.

A set ST issaid to be structurally complete with respect to aDFA A if ST covers each transition of A
(except the transitions associated with the dead state dy) and uses every element of the set of final states
of A asan accepting state [22, 23, 10]. It can be verified that the set S* = {b, aa, aaaa} is structurally
completewith respect tothe DFA inFig. 1. Givenaset S, let PT A(S™) denotethe prefix tree acceptor
for ST. PT A(S™) isaDFA that contains a path from the start state to an accepting state for each string
in ST modulo common prefixes. Clearly, L(PT A(S*)) = S*. Learning algorithms such as the RPNI
(see section 3) require the states of the PTA to be numbered in standard order. If we consider the set
Pref(S™) of prefixes of the set S+ then each state of the PTA corresponds to a unique element in the
set Pref(ST) i.e, for each state g; of the PTA there exists exactly one string «; in the set Pref(S™)
such that §*(qo, ;) = ¢; and vice-versa. The strings of Pref(S™) are sorted in standard order < and
each state g; is numbered by the position of its corresponding string «; in the sorted list. The PT A for
theset St = {b, aa, aaaa} isshownin Fig. 2. Note that its states are numbered in standard order.



Gy--@ )@@
b

Figure 2. Prefix Tree Automaton.

GivenaFSA A and apartition  onthe set of states Q of A (ignoringthe dead state dy and its associated
transitions), we define the quatient automaton A, = (Qx, 6., 2, B(qo, 7), F;) obtained by merging the
states of A that belong to the same block of the partition 7 as follows: @, = {B(q,7) | ¢ € Q} isthe
set of states with each state represented uniquely by the block B(q, ) of the partition 7 that containsthe
stateq, Fy = {B(q,7) | ¢ € F} istheset of accepting states, and 6, : Q. x & — 29~ isthetransition
function such that VB(g;, ), B(g;, ) € Qx, Va € X, B(gj,m) = 0.(B(gi,m),a) iff ¢;,¢; € @ and
g; = 6(g;,a). Note that a quotient automaton of a DFA might be a NFA and vice-versa. For example,
the quotient automaton corresponding to the partition 7 = {{Qo, @1}, {Q2},{Q3}} of the set of states
of theDFA in Fig. 1isshownin Fig. 3.

N
O ©

Figure 3. Quotient Automaton.

The set of al quotient automata obtained by systematically merging the states of a DFA A represents
alattice of FSA [22]. This lattice is ordered by the grammar cover relation <. Given two partitions
7 = {B1,Bs,...,By}andn; = {Bi, Bs, ..., By} of thestates of A, we say that 7; coversn; (written
m; 3 m)ifr=k—1landforsomel <!,m <k, m; = {m;\{B;, B} U{B; U By, }}. Thetransitive
closure of < isdenoted by <. Wesay that A, < A, iff L(A,,) C L(Ax,). Givenacanonical DFA A
and aset ST that is structurally complete with respect to A, the lattice Q(S™) derived from PT A(S™)
is guaranteed to contain A [22, 23, 10].

A sample § = St U S~ is said to be characteristic with respect to a regular language L (with a
canonical acceptor A) if it satisfies the following two conditions [21]:

e Yae N(L),ifae Lthena € ST elsedB € ¥* suchthataf € ST.

e Vae€ S,(L),VB € N(L), if Ly, # Lg then3y € E* suchthat (ay € ST and By € S™) or (By €
Standay € S7).

Intuitively, S,(L), the set of short prefixes of L is a live complete set with respect to A in that for
each live state ¢ € @, thereisastring o € S,(L) such that 6*(go, @) = ¢. The kernel N (L) includes
the set of short prefixes as a subset. Thus, N (L) is also alive complete set with respect to A. Further,



N (L) coversevery transition between each pair of live states of A. i.e,, for al live states ¢;, g; € @, for
dla € X, if 6(g;,a) = g; thenthere existsa string 8 € N (L) such that 8 = aa and §*(go, &) = ¢;.
Thus, condition 1 above which identifies a suitably defined suffix 8 € X* for each string a € N(L)
such that the augmented string a3 € L implies structural completeness with respect to A. Condition 2
implies that for any two distinct states of A thereis a suffix « that would correctly distinguish them. In
other words, for any ¢;,q; € @ whereg; # ¢;, 3y € X* such that 6*(g;,vy) € F and 6*(g;,v) ¢ F
or vice-versa. Given the language L corresponding to the DFA A in Fig. 1, the set of short prefixesis
Sp(L) = {A, a,b,aa} and thekernel is N(L) = {), a,b, aa, aaa}. It can be easily verified that the set
S =S8TuUS™ where ST = {b,aa,aaaa} and S~ = {}, a, aaa, baa} is acharacteristic samplefor L.

2.2. PAC Learning of DFA

Let X denote the sample space defined as the set of all strings ¥*. Let z C X’ denote a concept. For our
purpose, z is aregular language. We identify the concept with the corresponding DFA and denote the
class of al DFA asthe concept class C. The representation R that assigns anameto each DFA inC is
defined asafunction R : C — {0,1}*. R isthe set of standard encodings of the DFA in C. Assume
that there is an unknown and arbitrary but fixed distribution D according to which the examples of the
target concept are drawn. In the context of learning DFA, D is restricted to a probability distribution on
strings of X* of length at most m.

Definition 1. (dueto Pitt [25])

DFAs are PAC-identifiableiff there exists a (possibly randomized) algorithm .4 such that on input of any
parameters € and 6, for any DFA M of size N, for any number m, and for any probability distribution
D on strings of ¥* of length at most m, if A obtains labeled examples of M generated according to the
distribution D, then A producesa DFA M such that with probability at least 1 — &, the probability (with
respect to distribution D) of the set {a | @ € L(M) @ L(M')} isa most e. The run time of .4 (and
hence the number of randomly generated examples obtained by A) is required to be polynomial in N,
m,1/e,1/6,and |X].

If the learning algorithm .A produces a DFA M such that with probability at least 1 — &, M’ is
equivalent to M i.e., the probability (with respect to distribution D) of theset {a | a € L(M) @ L(M ')}
is exactly Othen A is said to be a probably exact learning algorithm for the class of DFA and the class of
DFA is said to be probably exactly learnable by the algorithm A.

2.3.  Kolmogorov Complexity

Notethat the definition of PAC learning requiresthat the concept class (in this case the class of DFA) must
be learnable under any arbitrary (but fixed) probability distribution. Thisrequirement is often considered
too stringent in practical learning scenarios where it is not unreasonable to assume that a learner is first
provided with simple and representative examples of thetarget concept. Intuitively, whenweteach achild
the rules of multiplication we are more likely to first give simple exampleslike 3 x 4 than exampleslike
1377 x 428. A representative set of examplesis one that would enable the learner to identify the target
concept exactly. For example, the characteristic set of a DFA would constitute a suitable representative
set. The question now iswhether we can formalize what simple examples mean. Kolmogorov complexity
provides a machine independent notion of simplicity of objects. Intuitively, the Kolmogorov complexity
of an object (represented by a binary string «) is the length of the shortest binary program that computes
a. Objects that have regularity in their structure (i.e., objects that can be easily compressed) have low
Kolmogorov complexity. For example, consider the string s; = 010101...01 = (01)5°°. On aparticular
machine M, aprogram to compute this string would be “ Print 01 500 times”. On the other hand consider
atotally random string s; = 110011010...00111. Unlike sy, it isnot possible to compress the string s»



which means that a program to compute s» on M would be “Print 1100111010000. .. 00111" i.e., the
program would have to explicitly specify the string s5. The length of the program that computes s is
shorter than that of the program that computes s». Thus, we could argue that s; has lower Kolmogorov
complexity than s, with respect to the machine M.

We will consider the prefix version of the Kolmogorov complexity that is measured with respect to
prefix Turing machines and denoted by K. Consider a prefix Turing machine that implementsthe partial
recursive function ¢ : {0, 1}* 2“5 £0,11*. For any string & € {0, 1}*, the Kolmogorov complexity
of « relative to ¢ is defined as K4(a) = min{|n| | ¢(r) = o} wherew € {0,1}* is a program
input to the Turing machine. Prefix Turing machines can be effectively enumerated and there exists
a Universal Turing Machine (U) capable of simulating every prefix Turing machine. Assume that the
universal Turing machine implements the partial function ). The Optimality Theorem for Kolmogorov
Complexity guarantees that for any prefix Turing machine ¢ there exists a constant ¢, such that for any
string o, Ky (o) < Ky(a) + c4. Note that we use the name of the Turing Machine (say M) and the
partial functionit implements(say ¢) interchangeably i.e., K 4(a) = K (). Further, by the Invariance
Theoremit can be shown that for any two universal machines; and ), thereisaconstant € A (where
N isthe set of natural numbers) such that for all strings a, | K, (o) — Ky, ()] < 1. Thus, we canfix a
single universal Turing machine U and denote K («) = Ky («). Notethat there exists a Turing machine
that computesthe identity function x : {0, 1}* — {0, 1}* whereVa, x(a) = «. Thus, it can be shown
that the Kolmogorov complexity of an object is bounded by its lengthi.e,, K(a) < |a| + K(Ja|) + 1
where 7 is a constant independent of a.

Suppose that some additional information in the form of a string 3 is available to the Turing machine
¢. The conditional Kolmogorov complexity of any object a given (3 is defined as Ky4(a | 8) =
min{|r| | ¢((r,8)) = a}wherer € {0,1}*isaprogramand (z, y) isastandard pairing function®. Note
that the conditional Kolmogorov complexity does not charge for the extrainformation 3 that is available
to ¢ aong with the program . Fixing a single universal Turing machine U we denote the conditional
Kolmogorov complexity of a by K (a|8) = Ky (a|B). It canbeshownthat K (a|8) < K(a) + n where
n isaconstant independent of .

2.4. Universal Distribution

The set of programs for a string « relative to a Turing machine M is defined as PROG p (o) = {7 |
M (7) = a}. The algorithmic probability of « relativeto M is defined as mys(a) = Pr(PROG ).
The agorithmic probability of o with respect to the universal Turing machine U isdenoted asmy (a) =
m(a). m is known as the Solomonoff-Levin distribution. It is the universal enumerable probability
distribution, in that, it multiplicatively dominates all enumerable probability distributions. Thus, for any
enumerable probability distribution P thereis a constant ¢ € A such that for all strings @, ¢ m(a) >
P(a). The Coding Theorem due independently to Schnorr, Levin, and Chaitin [20] states that 3n €
N suchthat Vo myy (a) < 27~ K@) |ntuitively thismeansthat if there are several programsfor astring
a on some machine M then thereis a short program for o on the universal Turning machine (i.e., « has
alow Kolmogorov complexity). By optimality of m it can be shown that: Ip € A/, suchthat Vo €
{0,1}*, 27 K(®) < m(a) < 27 K(®) Weseethat theuniversal distribution m assignshigher probability
to simple objects (objects with low Kolmogorov complexity). Given a string r € X*, the universal
distribution based on the knowledge of r, m,, is defined as is defined as m,. (o) = X,27K(@") where
Ar S pes 27K@IN =1 (i.e, A, > 1) [6]. Further, m, issuch that 2= X(@") < m, (a) < 27K (alr)
where n is a constant.

Theinterested reader is referred to [20] for a thorough treatment of Kolmogorov complexity, universal
distribution, and related topics.



3. TheRPNI Algorithm

The regular positive and negative inference (RPNI) algorithm [21] is a polynomial time algorithm for
identification of aDFA consistent with agivenset S = ST U S™. If the sampleis acharacteristic set for
the target DFA then the algorithm is guaranteed to return a canonical representation of the target DFA.
Our description of the RPNI algorithm is based on the explanation givenin [8].

A labeled sample S = S+ U S~ is provided as input to the algorithm. It constructs a prefix tree
automaton PT A(S*) and numbersits states in the standard order. Then it performsan ordered searchin
the space of partitions of the set of states of PT'A(ST) under the control of the set of negative examples
S~. The partition, 7o, corresponding to the automaton PT A(S%) itself is {{0},{1},...,{N — 1}}
where N isthenumber of statesof thePTA. M., = PT A(S™) isconsistent with all thetraining examples
and is treated as the initial hypothesis. The current hypothesisis denoted by M. and the corresponding
partitionis denoted by 7. The algorithmis outlined in Fig. 4. The nested for loop refines the partition
by merging the states of PT A(S™) in order. At each step, apartition 7 is obtained from the partition
by merging the two blocks that contain the states ; and ;5 respectively. The function derive obtains the
guotient automaton M, correspondingto the partition 7. Mz might beaNFA inwhich casethefunction
deterministic_merge determinizes it by recursively merging the states that cause non-determinism. For
example, if ¢;, g;, and g;, are states of M such that for somea € X, §(g;,a) = {g;, qx } then the states
q; and g, are merged together. This recursive merging of states can go on for at most N — 1 steps and
the resulting automaton M is guaranteed to be a DFA [8]. Note that since # < # we know by the
grammar coversrelation that if M5 accepts a negative examplein S~ then so would M ;. The function,
consistent(Ms, S™) returns Trueif M is consistent with all examplesin S~ and False otherwise. If a
partition 7 is found such that the corresponding DFA M ; is consistent with S~ then M replaces M., as
the current hypothesis.

Let||S*||and||S || denotethe sumsof thelengths of examplesin ST and S~ respectively. PT A(S™)
has O(||S*||) states. The nested for loop of the algorithm performs O(||S*||°) state merges. Further,
each time two blocks of the partition 7 are merged, the routine deterministic_merge in the worst case
would cause O(]|ST||) state mergings and the function consistent that checks for the consistency of the
derived DFA with the negative examples would incur acost of O(||S ~||). Hence the time complexity of
the RPNI algorithmis O((||S* || + 1S 1]) - [1S*1%).

Example

We demonstrate the execution of the RPNI algorithm on the task of learning the DFA in Fig. 1. Note
that for convenience we have shown the target DFA in Fig. 5 without the dead state d, and its associated
transitions. Assumethat asample S = ST U S~ where St = {b,aa, aaaa} and S~ = {}, a, aaa, baa}.
It can be easily verified that S is a characteristic sample for the target DFA. The DFA M = PT A(S™)
is depicted in Fig. 2 where the states are numbered in the standard order. The initial partition is
m™=Tp = {{0}7 {1}7 {2}7 {3}7 {4}7 {5}}

The agorithm attempts to merge the blocks containing states 1 and 0 of the partition . The quotient
FSA M; andthe DFA M; obtained after invoking deterministic_merge areshowninFig. 6. The DFA
M; acceptsthe negative example A € S—. Thus, the current partition = remains unchanged.

Next the agorithm merges the blocks containing states 2 and 0 of the partition . The quotient FSA
M isdepicted in Fig. 7. Since M is a DFA, the procedure deterministic_merge returns the same
automatoni.e., M; = M;. M; acceptsthe negative example A € S~ and hence the partition = remains
unchanged.

Table 1 lists the different partitions = obtained by fusing the blocks of 7, the partitions 7 obtained by
deterministic_merge of 7, and the negative example (belongingto S ), if any, that is accepted by the
quotient FSA M. The partitions marked x denote the partition 7 for which M is consistent with all



Algorithm RPNI

Input: A sample S = ST US™
Output: A DFA compatiblewith S

begin

/I Initialization

T =To0 = {{0}7{1}77{]\7_ 1}}

M, = PTA(S™)

/I Perform state merging

fori=1toN — 1

forj=0toi—1

I/ Merge the block of 7 containing state i with the block containing state j
# = x\{B(i,), B(j, )} U{B(i,7) U B(j, ")}
// Obtain the quotient automaton M
M; = derive(M, 7)
/I Determinize the quotient automaton (if necessary) by state merging
# = determistic-merge(Mj3)
// Does M; reject all stringsin S—?
if consistent(Mz,S™)

then
Il Treat M; asthe current hypothesis
M, = M;
T=7
break
end if
end for
end for
return M,

end

Figure 4. RPNI Algorithm.

Figure 5. Target DFA A.



Figure 6. M Obtained by Fusing Blocks Containing the States 1 and 0 of 7 and the Corresponding M:

&-e-@-0-@

Figure 7. M; (same as M) Obtained by Fusing Blocks Containing the states 2 and 0 of .

examplesin S~ and henceis the current hypothesis. It is easy to see that the DFA corresponding to the
partition 7 = {{0}, {1, 4}, {2}, {3,5}} isexactly the target DFA we aretryingto learn (Fig. 1).

Table 1. Execution of the RPNI Algorithm.

Partition 7 Partition # Negative Example

({0, 1}, {2}, {3}, {4}, {5}} {{0,1,3,4,5},{2}} a
{0,2}, {1}, {3}, {4}, {5}} | {{0,2}, {1}, {3}, {4}, {5}} A
{0}, {1,2}, {3}, {4}, {5}} | {{0},{1,2}, {3}, {4}, {5}} a
{0,3}, {1}, {2}, {4}, {5}} {0,3}, {1, 4}, {2}, {5} A
{0}, {1, 3}, {2}, {4}, {5}} {{0},{1,3,4,5},{2}} a
0},{1},{2,3}, {4}, {5}} | {{o},{1},{2,3},{4},{5}} baa
({0,4}, {1}, {2}, {3}, {5}} | {{0,4},{1,5},{2},{3}} a
({0}, {1,4}, {2}, {3}, {5}} | {{0},{1,4},{2}, {3 51} —
({0,3,5},{1,4},{2}} ({0,3,5}, {1,4},{2}} A
({0},{1,3,4,5},{2}} ({0}, {1,3,4,5}, {2}} a
[10},11,4},{2,3,5+} r10}ﬂ1 4}, {2 3,5}} baa
{{0},{1,4},{2},{3,5}} | {{0},{1,4},{2},{3,5}}" -
{0},{1,3,4,5},{2}} {{0},{1,3,4,5},{2}} a

4. Learning Simple DFA under the Simple PAC model

Li and Vitanyi have proposed the simple PAC learning model wherethe class of probability distributionsis
restricted to simple distributions[19]. A distributionissimpleif it is multiplicatively dominated by some
enumerable distribution. Simple distributionsinclude a variety of distributionsincluding all computable
distributions. Further, the simple distribution independent learning theorem due to Li and Vitanyi says
that a concept classis learnable under universal distribution m iff it is learnable under the entire class of
simple distributions provided the examples are drawn according to the universal distribution [19]. Thus,
the simple PAC learning model is sufficiently general. Concept classes such as log n-term DNF and
simple k-reversible DFA are learnable under the simple PAC model whereastheir PAC learnability in the
standard sense is unknown [19]. We show that the class of simple DFA is polynomially learnable under
the simple PAC learning model.



10

A simple DFA is one with low Kolmogorov complexity. More specifically, a DFA A with N states
and a standard encoding (or canonical representation) r is ssimpleif K(A) = O(lg N). For example, a
DFA that accepts all strings of length NV isasimple DFA. Note however that this DFA containsa path for
every string of length V and hence it has a path of Kolmogorov complexity N. In general, smple DFA
might actually have very random paths. We saw in section 2.3 that a natural learning scenario would
typicaly involve learning from a simple and representative set of examples for the target concept. We
adopt Kolmogorov complexity as a measure of simplicity and define simple examples as those with low
Kolmogorov complexity i.e., with Kolmogorov complexity O(lg N). Further, a characteristic set for the
DFA A can betreated as its representative set.

We demonstrate that for every simple DFA there exists a characteristic set of simple examples S..

LeEmMMA 1 For any N state simple DFA (with Kolmogorov complexity O(lg N)) there exists a charac-
teristic set of simple examples S, such that the length of each string in this set isat most 2N — 1.

Proof: Consider the following enumeration of a characteristic set of examples for a DFA A =
(@,4,%, qo, F) with N states’.

1. Fix anenumeration of the shortest paths (in standard order) from the state ¢, to each statein Q except
the dead state. Thisisthe set of short prefixesof A. Thereareat most N such paths and each pathis
of lengthat most N — 1.

2. Fix an enumeration of pathsthat includes each path identified above and its extension by each letter
of the alphabet ¥. From the pathsjust enumerated retain only those that do not terminatein the dead
state of A. Thisrepresentsthe kernel of A. Thereare at most N(|X| + 1) such paths and each path
isof length at most V.

3. Let the characteristic set be denoted by S. = S U S, .

(A) For each string « identified in step 2 above, determine the first suffix 3 in the standard enumer-
ation of stringssuchthat a3 € L(A). Since|a| < N, and § isthe shortest suffix in the standard
order it isclear that |a3| < 2N — 1. Each such a3 isamember of S

(B) For each pair of strings (a, 3) in order where « is a string identified in step 1, 8 is a string
identified in step 2, and « and g lead to different states of A determine the first suffix + in the
standard enumeration of strings such that ay € L(A) and 8y ¢ L(A) or vice versa. Since
la] < N —1,|B8] < N, and v is the shortest distinguishing suffix for the states represented by
a and g itis clear that |ay|,|8y| < 2N — 1. The accepted string from among oy and 3y isa
member of S and the rejected string is a member of S .

Trivial upper bounds on the sizes of S and S, are |S;7| < N2(|Z] + 1) + N(|Z]), |S.] <
N2(|S|+1) — N. Thus, |S.| = O(N?). Further, thelength of each stringin S islessthan 2V — 1.

Thestringsin S, can be ordered in some way such that individual strings can be identified by an index of
length at most 1g(3|%|N2) bits. There exists a Turing machine M that implements the above algorithm
for constructing the set S.. M can take as input an encoding of a simple DFA of length O(lg N) bits
and an index of length 1g(3|X|N2) bits and output the corresponding string o belonging to S.. Thus,
Va € S,

K(a) < ki lgN +1g(3|Z|N?)
K(a) < kilgN +klgN
= O(lgN)

This provesthe lemma. u



11

LEMMA 2 Supposea sample S is drawn accordingtom. For 0 < § < 1, if |S| = O(N*1g(3)) then
with probability greater than1 — §, S, C S where k isa constant.

Proof: From lemma 1 we know that Va € S., K(a) = O(IgN). Further, |S.| = O(N?). By
definition, m(a) > 27 K(®, Thus, m(a) > 2 %118 N or equivalently m(a) > N~ % where k; isa
constant.

Pr(a € S. isnot sampledin onerandom draw) < (1 — N F)
Pr(a € S, isnot sampledin | S| random draws) < (1 — N —F1)ISI
Pr(somea € S, isnot sampledin | S| randomdraws) < |S,|(1 — N~*1)I5]
< kyN2(1 — N~F)lS|

since|S.| = O(N?)

Pr(S. € S) < kaN%(1 — N~F)lS|

IN

We want this probability to be less than 4.
kyN2(1— N~F)ISl < ¢

I~32N2(67N_k1)‘5I < dsincel —z <e ®
In(ks) + In(N?) — N~¥[S| < In(6)
1
|S| > Nk (ln(g) + In(k2) + In(N?))
A |
= O(N* lg(g)) where k replaces k;
Thus, Pr(S. C S) > 1—4. [ |

We now prove that the class of simple DFA is polynomialy learnable under m.

THEOREM 1 For all N, theclassC=" of simple DFA whose canonical representations have at most N
states is probably exactly learnable under the simple PAC model.

Proof: Let A beasimpleDFA withat most N states. Let S, beacharacteristic sample of A enumerated
as described in lemma 1 above. Recall, that the examplesin S, are simple (i.e., each example has
Kolmogorov complexity O(lg N)). Now consider the algorithm .4, in Fig. 8 that drawsasample S with
the following properties.

1. S =S5TUS isasetof positive and negative examples corresponding to the target DFA A.
2. Theexamplesin S are drawn at random according to the distribution m.
3. |S| =O(N* lg(%)).

Lemma 1 showed that for every ssmple DFA A there exists a characteristic set of simple examples
S. where each example is of length at most 2N — 1. Lemma 2 showed that if a labeled sample S of
size O(N*1g(3)) is randomly drawn according to m then with probability greater than 1 — 6, S C S.
The RPNI agorithm is guaranteed to return a canonical representation of the target DFA A if the set of
examples S provided is a superset of a characteristic set S.. Sincethe size of S ispolynomial in N and
1/6 and the length of each stringin S isrestricted to 2N — 1, the RPNI algorithm, and thus the algorithm
A; can be implemented to run in time polynomial in N and 1/6. Thus, with probability greater than
1 -4, A; is guaranteed to return a canonical representation of the target DFA A. This proves that the
class C=" of simple DFA whose canonical representations have at most N states is exactly learnable
with probability greater than1 — 6. ]



12

Algorithm A;

Input: N;0<d <1
Output: ADFA M

begin
Randomly draw alabeled sample S according to m
Retain only those examplesin S that have length at most 2NV — 1
M = RPNI(S)
return M

end

Figure 8. A Probably Exact Algorithm for Learning Simple DFA.

5. Learning DFA under the PACS model

In section 4 we proved that the class of ssmple DFA is |learnable under the simple PAC model where
the underlying distribution is restricted to the universal distribution m. Denis et al proposed a model
of learning where examples are drawn at random according to the universal distribution by a teacher
that is knowledgeable about the target concept [6]. Under this model, examples with low conditional
Kolmogorov complexity given a representation r of the target concept are called simple examples.
Specifically, for a concept with representation r, the set S7,,, = {a | K(alr) < plg(|r])} (where v is
a constant) is the set of simple examples for the concept. Further, S¢;,, .., is used to denote a set of
simple and representative examples of ». The PACS model restricts the underlying distribution to m,,..
Formally, the probability of drawing an example o for atarget concept with representation r is given as
m,(a) = A2~ K (@l") Representative examplesfor the target concept are those that enable the learner to
exactly learnthetarget. Asexplained earlier, the characteristic set correspondingto aDFA can betreated
as arepresentative set for the DFA. The Occam’s Razor theorem proved by Denis et al statesthat if there
exists a representative set of simple examples for each concept in a concept class then the concept class
isPACSlearnable[6].

We now demonstrate that the class of DFA is efficiently learnable under the PACS model. Lemma 3
provesthat for any DFA A with standard encoding r there exists a characteristic set of simple examples

r
sim,rep*

LeMMA 3 For any N state DFA with standard encoding (|| = O(N 1g(NV))), there exists a charac-
teristic set of simple examples (denoted by S, ...,,) such that each string of this set is of length at most
2N — 1.

Proof: GivenaDFA A = (@, 4, %, qo, F), it is possible to enumerate a characteristic set of examples
S, for A asdescribed in lemma 1 such that |S.| = O(N?) and each example of S.. is of length at most
2N — 1. Individual stringsin S, can beidentified by specifying an index of length at most 1g(3||N 2)
bits. There exists a Turing machine M that implements the above algorithm for constructing the set S..
Given the knowledge of the target concept r, M can take asinput an index of length1g(3| | N 2) bitsand
output the corresponding string belongingto S... Thus, Va € S,

K(alr) < 1g(3|Z|N?)
< wlg(|r|) where u is aconstant

We definethe set S, to be the characteristic set of smple examples S”, for the DFA A. Thisproves

sim,rep

the lemma. [ |



13

LEMMA 4 (DuetoDenisetal [6])

Suppose that a sample S is drawn according to m,. For aninteger [ > |r|, and 0 < § < 1, if
|S| = O(1*1g(5)) then with probability greater than 1 — 4, S7;,, C S.

Proof: Claim4.1: Va € ST, m,(a) >17H

sim?

9K (alr)

B
=
&

2—ulg\r|
| ™"
l_ﬂ

vV IV IV IV

Claim4.2: |ST,,.| <21~

[{a € {0,1}" | K(afr) < ulg(|r)}|
{a € {0,1}" | K(alr) < plg()}
{6 €{0,1}" [ 18] < ulg()}|

oulg(l)+1

20

S5

stm

VAN VAN VAN VAN VAN

Claim4.3: If |S] = O(1* 1g(%)) then Pr(ST

sim

CH>1-6

Pr(a € S7,,, isnot sampled in onerandomdraw) < (1 —1[17#)

sim

(clam 4.1)

Pr(a € S7,,, isnot sampledin | S| random draws) < (1 —1~#)!5]
Pr(somea € S7;,. isnot sampledin | S| random draws) < 21#(1 — [=#)!S|

(claim4.2)

Pr(ST,, ZS) < 20*(1—17)IS]

sim

We would like this probability to be less than 6.

At —1"MISI < 6
2l"(e_lw)|s| < 4, sincel—z<e™®
In(2) + In(I*) — |S|I™* < In(d)
|S| > I* (In(2) + In(I*) + In(1/9))
S| > 00" 1g(1/5))
Thus, Pr(S%,,, CS)>1-6 [

COROLLARY 1 Suppose that a sample S is drawn according to m,.. For an integer [ > |r|, and
0 <6 <1,if|S] =0(I*1g(1/6)) then with probability greater than 1 — §, S cSs.

sim,rep =

Proof: Followsimmediately fromLemma3since S csr

sim,rep = ~sim*
We now provethat the class of DFA is polynomially learnable under m,..
THEOREM 2 For all N, the classC=" of DFA whose canonical representations have at most N states
is probably exactly learnable under the PACS model.

Proof: Let A be acanonica DFA with at most N states and r be its standard encoding. We define
the simple representative sample S, to be the characteristic sample of A enumerated as described

sim,rep



14

in lemma 3. Recall that the length of each examplein S? isat most 2N — 1. Now consider the

sim,rep

algorithm A, that draws a sample S with the following properties
1. §=581TUS~ isaset of positive and negative examples corresponding to the target DFA A
2. Theexamplesin S are drawn at random according to the distribution m.,.

3. |S| = 0( 1g(3))

Algorithm A,

Input: N;0<d§ <1
Output: ADFA M

begin
Randomly draw alabeled sample S according to m..
Retain only those examplesin S that have length at most 2NV — 1
M = RPNI(S)
return(M)

end

Figure 9. A Probably Exact Algorithm for Learning DFA.

Lemma 3 showed that for every DFA A there exists a characteristic set of simple examples S¢;,., ,...,.-
Corollary 1 showed that if a labeled sample S of size O(i*1g(})) is randomly drawn according to
m, then with probability greater than 1 — 6, S§;,, .., € S. The RPNI agorithm is guaranteed to
return a canonical representation of the target DFA A if the set of examples S is a superset of a
characteristic set for A. Since the size of .S is polynomia in N and 1/§ and the length of each string
in S isrestricted to 2N — 1, the RPNI agorithm, and thus the algorithm A, can be implemented to
run in time polynomia in N and 1/6. Thus, with probability greater than 1 — 6, A» is guaranteed
to return a canonical DFA equivalent to the target A. This proves that the class C=" of DFA whose
canonical representations have at most N statesis exactly learnable with probability greater than 1 — 6.

Since the number of states of the target DFA (V) might not be known in advance we present a PAC
learning algorithm A3 that iterates over successively larger guesses of N. At each step the algorithm
draws a random sample according to m,., applies the RPNI algorithm to construct a DFA, and tests the
DFA using arandomly drawn test sample. If the DFA is consistent with the test sample then the algorithm
outputs the DFA and halts. Otherwise the algorithm continues with the next guessfor V.

THEOREM 3 The concept classC of DFA islearnablein polynomial time under the PACS model.

Proof: Fig. 10 showsaPAC learning algorithm for DFA.

In agorithm 45 the polynomia p is defined such that a sample S of size p(N, %) contains the
characteristic set of simple examples Sg;,,, ..., with probability greater than 1 — 6. It follows from
corollary 1 that p(N, ¥) = O(I* 1g(1/6)) will satisfy this constraint. The polynomial ¢ is defined as
q(i, 1, 1) = L2In(i + 1) + In(3)].

Consider the execution of the algorithm A3. At any step i where: > N, the set S will include the
characteristic set of simple examples S;,,, ..., with probability greater than 1 — 4 (as provedinlemma4).
In this case the RPNI algorithm will return aDFA M that is equivalent to the target A and hence M will
be consistent with the test sasmple T'. Thus, with probability at least 1 — §, the algorithm will halt and

correctly output the target DFA.



15

Algorithm A3
Input: ¢, 6
Output: ADFA M
begin
1) i=1,EX =¢p(0,1/6)=0
2) repeat
Draw p(i,1/6) — p(i — 1,1/4) examples according to m,.
Add the examplesjust drawnto the set EX
Let S be the subset of examplesin EX of length at most 27 — 1
M = RPNI(S)
Draw q(z,1/¢,1/6) examples according to m,. and call thisset T
if consistent(M,T)
then Output M and halt
dsei =ix2
end if
until eternity
end

Figure 10. A PAC Algorithm for Learning DFA.

Consider the probability that the algorithm halts at some step 7 and returns a DFA M with an error
greater than e.
1—c¢
(1—¢)lTl
(1 — ¢)c[2m(HD)+in(3)]

Pr(M and A are consistent on some «)
Pr(M and A areconsistentondl o € T')

VAN VAR VAN VAN

e 2D+ gnee] —z < e "
)
(i +1)2

IN

The probability that the algorithm halts at step ¢ and returns a DFA with error greater than ¢ is less
than Z L which is in turn strictly less than §. Thus, we have shown that with probability
=

greater: than 1 — 6 the algorithm returns a DFA with error at most €. Further, the run time of the
algorithm is polynomia in N, X, % % and m (where m is the length of the longest test example
seen by the algorithm). Thus, the class of DFA is efficiently PAC learnable under the PACS model.

[ |

6. Relationship of the PACS Model to other Learning Models

In this section we study the relationship of the PACS model to other prominent learning models such
as Gold’'s model of polynomial identifiability from characteristic samples [11], Goldman and Mathias
polynomial teachability model [12], and the model of learning from example based queries [3]. We
explain how the PACS learning model naturally extendsthese other modelsto a probabilistic framework.
In the discussion that followswe will let X' be the instance space, C be the concept class and R be the set
of representations of the conceptsin C.



16

6.1. Polynomial Identifiability from Characteristic Samples

Gold's model for polynomial identifiability of concept classes from characteristic samples is based on
the availability of a polynomial sized characteristic sample for any concept in the concept class and an
algorithm which when given a superset of a characteristic set is guaranteed to return, in polynomial time,
arepresentation of the target concept.

Definition 2. (dueto Colin delaHiguera[14])
C is polynomially identifiable from characteristic samples iff there exist two polynomials p; () and p2()
and an algorithm A such that

1. Given any sample S = S+ U S~ of labeled examples, A returns in time p1 (||S™|| + [|S7|]) a
representationr € R of aconcept ¢ € C such that ¢ is consistent with S.

2. For every concept ¢ € C with corresponding representationr € R there exists acharacteristic sample
Se =87 US; suchthat ||SF || + (]S || = p2(|r]) andif Aisprovidedwithasample S = S* U S~
where 5”r C 5”r andS; C S thenA returns a representation » of aconcept ¢ that is equivalent
toc.

Using the above definition Gold's result can be restated as follows.

THEOREM 4 (dueto Gold[11])
The class of DFA is polynomially identifiable from characteristic samples.

The problem of identifying a minimum state DFA that is consistent with an arbitrary labeled sample
S = St U S~ isknown to be NP-complete [11]. This result does not contradict the one in theorem 4
because a characteristic set is not any arbitrary set of examples but a special set that enables the learning
algorithm to correctly infer the target concept in polynomial time (see the RPNI algorithm in section 3).

6.2. Polynomial Teachability of Concept Classes

Goldman and Mathias devel oped a teaching model for efficient learning of target concepts [12]. Their
model takes into account the quantity of information that a good teacher must provide to the learner.
An additional player called the adversary is introduced in this model to ensure that thereis no collusion
whereby the teacher gives the learner an encoding of the target concept. A typical teaching session
proceeds as follows:

1. Theadversary selects atarget concept and givesit to the teacher.
2. Theteacher computes a set of examples called the teaching set.

3. The adversary adds correctly labeled examplesto the teaching set with the goal of complicating the
learner’stask.

4. Thelearner computes a hypothesis from the augmented teaching set.

Under this model, a concept class for which the computations of both the teacher and the learner takes
polynomial time and the learner always learns the target concept is called polynomially T/L teachable.
Without the restrictive assumption that the teacher’s computations be performed in polynomial time, the
concept classissaid to be semi-polynomially T/L teachable. When thismodel is adapted to the framework
of learning DFA the length of the examples seen by the learner must be included as a parameter in the
model. In the context of learning DFA the number of examplesis infinite (it includes the entire set ¥*)
and further the lengths of these examples grow unboundedly. A scenario in which the teacher constructs



17

a very small teaching set whose examples are unreasonably long is clearly undesirable and must be
avoided. Thisis explained more formally in the following definition.

Definition 3. (dueto Colin delaHiguera[14])

A concept class C is semi-polynomially T/L teachable iff there exist polynomiaspi (), p2(), and p3(), a
teacher T', and a learner L, such that for any adversary ADV and any concept ¢ with representation r
that is selected by ADV, after the following teaching session the learner returnsthe representationr of
aconcept ¢ that is equivalent to c.

1. ADV givesrtoT.

2. T computes ateaching set S of size at most p; (|r|) such that each example in the teaching set has
length at most p2(|r|).

3. ADYV adds correctly labeled examplesto this set, with the goal of complicating the learner’s task.

4. Thelearner uses the augmented set S to compute a hypothesis intime ps(||S||).

Notethat from Gold’sresult (theorem 4) it followsthat DFA are semi-polynomially T/L teachable. Fur-
ther, we demonstrated in lemma 1 that for any DFA there exists a procedureto enumerate a characteristic
set corresponding to that DFA. This procedure can be implemented in polynomial time thereby proving
astronger result that DFA are polynomially T/L teachable. It was proved that the model for polynomial
identification from characteristic samplesand the model for polynomial teachability areequivalent to each
other (i.e., by identifying the characteristic set with the teaching sample it was shown that a concept class
is polynomially identifiable from characteristic samplesiff it is semi-polynomially T/L teachable) [14].

LEMMA 5 Let ¢ € C be a concept with corresponding representation » € R. If there exists a char-
acteristic sample S, for ¢ and a polynomial p; () such that such that S. can be computed from r» and
[|Se|| = p1(|r]) then each examplein S, issimplein the sensethat Va € S, K (alr) < plg(|r|) where
1 isaconstant.

Proof: Fix an ordering of the elements of S, and define an index to identify the individual elements.
Since ||S¢|| = p1(|r]) anindex that islg(p1 (|r])) = wlg(|r]) bitslong is sufficient to uniquely identify
each element of S.3. Since S, can be computed from r we can construct a Turing machine that
given r reads as input an index of length n1g(|r|) and outputs the corresponding string of .S.. Thus,
Va € S, K(alr) < plg(|r]) where u isaconstant independent of «. [ |

Let us designate the characteristic set of simple examples S, identified above to be the set of simple
representative examples Sg;,., ..., for the concept ¢ represented by ». Lemma4 and corollary 1 together

show that for an integer I > |r| and 0 < 6 < 1 if asample S of size |S| = O(I*1g(3)) is drawn at
random according to m,. then with probability greater than1 — 6, S’ cS.

sim,rep =

THEOREM 5 Any concept class that is polynomially identifiable from characteristic samples or equiv-
alently semi-polynomially T/L teachableis probably exactly learnable under the PACS model.

Proof: The proof follows directly from the results of lemma5, lemma4, and corollary 1. ]

6.3. Learning from Example Based Queries

A variety of concept classes areknown to belearnablein deterministic polynomial timewhenthelearner is
allowed accessto ateacher (or an oracle) that answers example based queries[3]. Examplebased queries
include equival ence, member ship, subset, superset, disjointedness, exhaustive, justifying assignment, and
partial equivalence queries.



18

Definition 4. (dueto Goldman and Mathias[12])
An example based query is any query of the form

Y(zy,T2,...,2) € X does o, (z 1,2s,...,2;) = 17

where r isthetarget concept and & is a constant.

¢ may use the instances (z1, - - -, z) to compute additional instances on which to perform membership
queries. Theteacher’sresponse to example based queriesis either yes or a counter example consisting of
(z1,22,...,7) € X* (dlong with the correct classification corresponding to each of the z;’s) for which
¢r(z 1,22,...,2;) = 0 and the labeled examples for which membership queries were made in order to
evaluate ¢,..

THEOREM 6 (dueto Goldman and Mathias[12])
Any concept class that is learnable in deterministic polynomial time using example based queries is
semi-polynomially T/L teachable.

The above theorem enables us to connect learning from example based queries to PACS learning as
follows.

THEOREM 7 Any concept classthat islearnablein deterministic polynomial time using example based
queriesisalso probably exactly learnable under the PACS model

Proof: Followsdirectly from theorems 6 and 5. [ ]

Recently Castro and Guijarro have independently shown that any concept class that is learnable using
membership and equivalence queries is aso learnable under the PACS model [4]. Further, they have
intuitively demonstrated how this result can be extended to all example based queries. Theorem 7 above
isan alternate proof of the relationship between query learning and PACS learning. Theresults presented
in this section are more general and enable usto view the PACS learning model in a broader context.

7. Collusion and PACS Learning

Learning models that involve interaction between a knowledgeabl e teacher and alearner are vulnerable
to unnatural collusion wherein a the teacher passes information about the representation of the target
function as part of the training set [16, 13]. Consider for simplicity that the instance space is {0,1}"
(i.e., thetraining examples are n bitslong). The teacher and learner can a-priori agree on some suitable
binary encoding of concepts. The teacher can then break the representation of the target concept  in
to groups of n bits and use the training set to pass these groups as appropriately labeled examples to
the learner. The learner could quickly discover the target concept without even considering the labels
of the training examples. The teaching model due to Jackson and Tomkins [16] prevents this blatant
coding of the target concept by requiring that the learner must still succeed if the teacher is replaced
by an adversaria substitute (who does not code the target concept as the teacher above). Further, they
argue that in their model the learner can stop only when it is convinced that there is only one concept
consistent with theinformation received from the teacher i.e., the teacher does not tell the learner when to
stop. Otherwiselearning would betrivialized in that the teacher passes groups of n bitsto the learner (as
training examples) and when sufficient number of bits have been passed to the learner so asto reconstruct
the representation » of the target concept, the teacher tells the learner to stop. Goldman and Mathias
work on polynomial teachability [13] shows that an adversary whose task it is to embed the training set
provided by the teacher (called teaching set) into alarger set of correctly labeled examplesis sufficient
to prevent the type of collusion discussed above. An interesting quirk of the PACS learning model is the
fact that the standard encoding of the target concept r is itself a simple example because by definition
K (r|r) islow. Thus, r has a high probability under the universal distribution m,.. The PACS learning



19

scenario wherein examples are drawn at random according to the universal distribution m,. is similar to
the teaching framework in the above teaching model s where a knowl edgeabl e teacher draws a helpful set
of examples that would enable the learner to learn the target concept quickly. The representation of the
target concept r (that is drawn with high probability according to m,.) could be broken into groups of
n bits and passed to the learner as appropriately labeled training examples. Following the argument of
Jackson and Tomkins, alearner who is accumulating bits would not know precisely when it has sufficient
information to reconstruct the target.

Consider the implication of this issue of collusion on the problem of learning DFA. Note that unlike
several concept learning scenarios where the instance space is restricted to fixed length examples in
{0,1}™, in DFA learning the individual examples of the teaching set can be of different lengths. In
section 5 we presented an algorithm for PAC learning of DFA (under the universal distribution m ) that
uses the RPNI method. As discussed above, the canonical encoding of the target DFA A (astring r of
length O(N 1g N)) appears with high probability when the examples are drawn at random according to
m,.. Thefact that DFA learning does not require fixed length examples means that » would itself appear
with high probability as part of a polynomial sized training set. Of course the learner cannot directly
identify which of the example strings representsthe target DFA. However, the learner can decode each of
thelabeled examples. For each examplethat representsavalid DFA, thelearner can test whether the DFA
(the decoded example) is consistent with the teaching set and output (say) thefirst DFA inlexicographic
order that is consistent with the training set. With high probability the learner would output the target
DFA. This constitutes a PACS agorithm for learning DFA that is computationally more efficient than
the RPNI based PACS algorithm presented in this paper. This is another perhaps more subtle form of
collusion wherein the learner is provided with an encoding of the target concept but must perform some
computation (checking for consistency) in order to suitably identify the target. Goldman and Mathias
claim that thisis not collusion according to their definition wherein a colluding teacher learner pair isone
where the teacher can potentially influence the distribution on the concept class C when presenting the
learner with teaching sets for logically equivalent concepts [13]. Specifically, say the teacher encodes
the representation r of the target DFA A as part of the teaching set. The adversary can simply add a
correctly labeled exampler’ whichisarepresentation of aDFA A’ that islogically equivalent to A to the
teaching set. Both A and A" are consistent with the teaching set and the learner that operates by decoding
examples could output either r or r . While this does not constitute collusion as per their definition the
fact isthat the strategy of learning by decoding is more attractive as it is computationally more efficient
than the RPNI based |earning algorithm.

It is clear from the above discussion that the PACS learning framework admits multiple learning
algorithms for learning DFA including the seemingly collusive one that learns by decoding labeled
examples. A natural question to ask then is whether one can tighten the learning framework suitably
so as to avoid any unnatural collusion. Obtaining a satisfactory and general answer to this question
would require the devel opment of much more precise definitions of collusion and collusion-freelearning
algorithmsthan are currently available. One might argue that sampling of examples according to helpful
distributions (as done by the PACS framework) by itself constitutes aform of collusion. One might even
suggest (perhaps quite unreasonably) that all inductivelearning frameworksallow someform of collusion
since the training examples have to provide adequate information to identify or approximate the target
concept. It is possible that, in general, the definition of collusion-free learning may have to be relative
to well-defined restrictions on the specific strategies that can be employed by the learner. A detailed
exploration of these isses is beyond the scope of this paper. We restrict ourselves to a few remarksin
relation to the DFA learning algorithms discussed in this paper and the collusion strategy that operates
by decoding examples and checking for consistency.

In the PACS learning algorithms discussed earlier we have not clearly distinguished between the
environment (or the teacher) that providesthe labeled examples (drawn according to m,.) and the learner
that usesthetraining set to produce ahypothesisDFA. It is helpful to keep thisdistinctionin mind for the
following discussion. Consider the algorithm 45 for probably exact learning of DFA (see Fig. 9). The
teacher drawslabeled examples according to m,.. Thelearning framework allows only labeled examples



20

of length up to 2N — 1 to be passed to the learner. Clearly, the encoding of the target DFA which
is of length O(N 1g N') cannot appear as a single labeled example in the training set that is restricted
to examples of length up to 2V — 1 only. Note that breaking up the representation of the target DFA
into smaller bit strings will not help either because the learner will have to concatenate different strings
in different ways in order to determine which concatenation represents a valid DFA. In the worst case
thiswould involve considering all possible permutations of the example stringswhich is very expensive.
Admittedly, it is possiblethat the teacher and the learner have a-priori agreed that thefirst few stringswill
contain the necessary representation of thetarget DFA. Further, sincethelearner knows IV (the number of
states of the target) it knows exactly how many bits would be needed to encode the representation of the
target. To overcomethisscenario it is sufficient to include an adversary (asin the model of Goldman and
Mathias). By simply shuffling the set of stringsin the teaching set the adversary can cripplealearner that
was expecting to receive the target DFA encoded in the first few labeled example strings. The iterative
algorithm A3 (see Fig. 10) is used when the number of states of the target DFA is not known in advance.
In this algorithm, although the training set is restricted to labeled examples of length 27 — 1 (wherei is
the current guess of the number of states of the target DFA), the test set T' is not thus restricted. The
learner could thus potentially receive an encoding of the target concept as a labeled example in the test
set. One way to prevent thisis to again resort to the adversary. In addition to shuffling the elements of
thetraining set (as discussed above) the adversary will have to take over the task of testing the hypothesis
produced by the learner. The learning would proceed as follows. The teacher draws a polynomial (in i
and 1/4) sized sample of labeled examples according to m,.. The adversary takes a subset of the above
sample such that each example of the subset is of length at most 2: — 1, randomly shuffles the subset,
and gives it to the learner. The learner uses this training set to produce a hypothesis. The adversary
tests the learner’s hypothesis for consistency with a polynomial sized test sample drawn according m.,.
and informs the learner (without actually revealing the test set) whether the hypothesis was consistent
with the test sample or not. The learner decides whether to halt or continue with another iteration of the
above steps. This framework will not allow the collusive learning algorithm that operates on decoding
examples.

8. Discussion

Theproblem of exactly learning thetarget DFA from an arbitrary set of |abeled examples and the problem
of approximating the target DFA from labeled examples under Valiant's PAC learning framework are
both known to be hard problems. Thus, the question as to whether DFA are efficiently learnable under
some restricted yet fairly general and practically useful classes of distributionswas clearly of interest. In
this paper, we have answered this question in the affirmative by providing a framework for efficient PAC
learning of DFA from simple examples.

We have demonstrated that the class of simple DFA is polynomially learnable under the universal
distribution m (the smple PAC learning model) and the entire class of DFA is shown to be learnable
under the universal distribution m,. (the PACS learning model). When an upper bound on the number of
states of the target DFA is unknown, the algorithm for learning DFA under m,. can be used iteratively
to efficiently PAC learn the concept class of DFAs for any desired error and confidence parameters®.
These results have an interesting implication on the framework for incremental learning of the target
DFA. In the RPNI2 incremetal algorithm for learning DFA, the learner maintains a hypothesis that is
consistent with all labeled examples seen thus far and modifies it whenever a new inconsistent example
is observed [8]. The convergence of this algorithm relies on the fact that sooner or later, the set of
labeled examples seen by the learner will include a characteristic set. If in fact the stream of examples
provided to thelearner is drawn according to asimple distribution, our results show that in an incremental
setting the characteristic set would be made availablerelatively early (during learning) with asufficiently
high probability and hence the algorithm will converge quickly to the desired target. Finally, we have
shown the applicability of the PACS learning model in amore general setting by proving that all concept
classes that are polynomially identifiable from characteristic samples according to Gold’'s model, semi-



21

polynomialy T/L teachable according to Goldman and Mathias' model, and |earnable in deterministic
polynomial time from example based queries are also probably exactly learnable under the PACS model.

The class of simple distributions includes a large variety of probability distributions (including all
computable distributions). It has been shown that a concept class is efficiently learnable under the
universal distribution if and only if it is efficiently learnable under each simple distribution provided
that sampling is done according to the universal distribution [19]. This raises the possibility of using
sampling under the universal distribution to learn under all computable distributions. However, the
universal distributionisnot computable. Whether one can instead get by with apolynomially computable
approximation of the universal distribution remains an open question. It is known that the universal
distribution for the class of polynomially-timebounded simple distributionsis computablein exponential
time[19]. This opens up anumber of interesting possibilities for learning under simple distributions. In
arecent paper Denis and Gilleron have proposed a new model of learning under helpful distributions[7].
A helpful distribution is one in which examples belonging to the characteristic set for the concept (if
there exists one) are assigned non-zero probability. A systematic characterization of the class of helpful
distributions would perhaps give us a more practical framework for learning from simple examples. For
instance it might help in adapting the PACS learning model to the incremental learning scenario. A
helpful teacher could start out by drawing simple examples based on its knowledge of the target concept
but as the learning progresses the teacher could potentially draw examples by combining its knowledge
of the target concept with the current hypothesis output by the learner.

A related question of interest has to do with the nature of environments that can be modeled by
simple distributions. In particular, if Kolmogorov complexity is an appropriate measure of the intrinsic
complexity of objectsin natureand if nature (or the teacher) has a propensity for smplicity, then it stands
to reason that the examples presented to the learner by the environment are likely to be generated by a
simple distribution. Against this background, empirical evaluation of the performance of the proposed
algorithms using examples that come from natural domainsis clearly of interest.

The issue of collusion that we addressed briefly also opens up several avenues that merit further
investigation. Collusion and collusion-freelearning need to be defined more precisely. It is of interest to
identify whether that are any concept classes that are efficiently learnable by a collusive |earning strategy
(such as the one that relies on decoding training examples) but are not otherwise efficiently learnable.
We have demonstrated one possible modification to the PACS framework for learning DFA to prevent
unnatural collusion whereby the target DFA is passed to the learner as a suitably labeled example. Itis
natural to inquire if the learning framework can be modified similarly for other concept clases such that
thistype of collusion is prevented.

Some of the negative results in approximate identification of DFA are derived by showing that an
efficient algorithm for learning DFA would entail algorithms for solving known hard problems such
as learning boolean formulae [26] and breaking the RSA cryptosystem [17]. It would be interesting
to explore the implications of our results on efficient learning of DFA from simple examples on these
problems.

Acknowledgments

The authors wish to thank Jack Lutz for introducing them to Kolmogorov complexity, Giora Slutzki for
severa helpful discussions on automata theory, Pierre Dupont for a careful review of an earlier draft of
this paper and several helpful suggestions, and Colin de la Higuera and Frangois Denis for discussions
that helped clarify some of the issues related to collusion.

Notes

1. Define (z,y) = bd(z)01y where bd is the bit doubling function defined as bd(0) = 00, bd(1) = 11, and
bd(az) = aabd(z),a € {0,1}.
2. Thisenumeration strategy applies to any DFA and is not restricted to simple DFA alone.



22

Notethat if the sum of the lengths of the examples belonging to aset is k then clearly, the number of examples
inthat setisat most k + 1.

Recently it has been shown that if a concept class is learnable under the PACS model using an algorithm
that satisfies certain properties then simple concepts of that concept class are learnable under the smple PAC
learning model [4]

References

wnN e

4.

S

10.

11.
12.

13.
14.

15.
16.

17.

18.

10.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Angluin. A note on the number of queries needed to identify regular languages. Information and Control, 51:76-87, 1981.
D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75:87-106, 1987.

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.

J. Castro and D. Guijarro. Query, pacs and simple-pac learning. Technical Report LSI-98-2-R, Universitat Polyéctica de
Catalunya, Spain, 1998.

N. Chomsky. Three models for the description of language. PGIT, 2(3):113-124, 1956.

F. Denis, C. D’Halluin, and R. Gilleron. Pac learning with simple examples. STACS 96 - Proceedings of the 13" Annual
Symposium on the Theoretical Aspects of Computer Science, pages 231-242, 1996.

F. Denis and R. Gilleron. Pac learning under helpful distributions. In Proceedings of the Eighth International Workshop on
Algorithmic Learning Theory (ALT' 97), Lecture Notes in Artificial Intelligence 1316, pages 132-145, Sendai, Japan, 1997.
P. Dupont. Incremental regular inference. In L. Miclet and C. Higuera, editors, Proceedings of the Third ICGI-96, Lecture
Notesin Artificial Intelligence 1147, pages 222—237, Montpellier, France, 1996.

P. Dupont. Utilisation et Apprentissage de Moctles de Language pour |a Reconnaissance de la Parole Continue. PhD thesis,
Ecole Normale Supérieure des Télécommunications, Paris, France, 1996.

P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference? In Proceedings of the Second
International Colloquium on Grammatical Inference (ICGI’94), pages 25-37, Alicante, Spain, 1994.

E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37(3):302-320, 1978.

S. Goldman and H. Mathias. Teaching a smarter learner. In Proceedings of the Workshop on Computational Learning Theory
(COLT 93), pages 67—76. ACM Press, 1993.

S. Goldman and H. Mathias. Teaching a smarter learner. Journal of Computer and System Sciences, 52:255-267, 1996.
Colin de la Higuera. Characteristic sets for polynomial grammatical inference. In L. Miclet and C. Higuera, editors,
Proceedings of the Third ICGI-96, Lecture Notes in Artificial Intelligence 1147, pages 5971, Montpellier, France, 1996.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison Wesley, 1979.

J. Jackson and A. Tomkins. A computational model of teaching. In Proceedings of the Workshop on Computational Learning
Theory (COLT' 92), ACM Press, pages 319-326, 1992.

M. Kearnsand L. G. Vdiant. Cryptographic limitations on learning boolean formulae and finite automata. In Proceedings of
the 215t Annual ACM Symposium on Theory of Computing, New York, pages 433444, 1989.

K. J. Lang. Random dfa’s can be approximately learned from sparse uniform sample. In Proceedings of the 5th ACM
workshop on Computational Learning Theory, pages 45-52, 1992.

M. Li and P. Vitanyi. Learning simple concepts under simple distributions. SSAM Journal of Computing, 20:911-935, 1991.
M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications, 2 edition. Springer Verlag, New
York, 1997.

J. Oncinaand P. Garda. Inferring regular languages in polynomial update time. In N. et al Rrez, editor, Pattern Recognition
and Image Analysis, World Scientific, pages 4961, 1992.

T. Pao and J. Carr. A solution of the syntactic induction-inference problem for regular languages. Computer Languages,
3:53-64, 1978.

R. G. Parekh and V. G. Honavar. Efficient learning of regular languages using teacher supplied positive examples and learner
generated queries. In Proceedings of the Fifth UNB Conference on Al, Fredricton, Canada, pages 195-203, 1993.

R. G. Parekh and V. G. Honavar. Learning dfa from simple examples. In Proceedings of the Eighth International Workshop
on Algorithmic Learning Theory (ALT’ 97), Lecture Notes in Artificial Intelligence 1316, pages 116-131, Sendai, Japan,
1997. Springer. Also presented at the Workshop on Grammar Inference, Automata Induction, and Language Acquisition
(ICML’97), Nashville, TN, July 12, 1997.

L. PFitt. Inductive inference, DFAs and computational complexity. In Analogical and Inductive Inference, Lecture Notes in
Artificial Intelligence 397, Springer-Verlag, pages 1844, 1989.

L. Pitt and M. K. Warmuth. Reductions among prediction problems: on the difficulty of predicting automata. In Proceedings
of the 3"¢ |EEE Conference on Sructure in Complexity Theory, pages 60-69, 1988.

L. Pitt and M. K. Warmuth. The minimum consistency dfa problem cannot be approximated within any polynomial. In
Proceedings of the 215 ACM Symposium on the Theory of Computing, ACM, pages 421432, 1989.

B. Trakhtenbrot and Ya. Barzdin. Finite Automata: Behavior and Synthesis. North Holland Publishing Company, Amsterdam,
1973.

L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.



