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Abstract. Efficient learning of DFA is a challenging research problem in grammatical inference. It is known that both exact and
approximate (in the PAC sense) identifiability of DFA is hard. Pitt, in his seminal paper posed the following open research problem:
“Are DFA PAC-identifiable if examples are drawn from the uniform distribution, or some other known simple distribution?” [25]. We
demonstrate that the class of simple DFA (i.e., DFA whose canonical representations have logarithmic Kolmogorov complexity)
is efficiently PAC learnable under the Solomonoff Levin universal distribution. We prove that if the examples are sampled at
random according to the universal distribution by a teacher that is knowledgeable about the target concept, the entire class of DFA
is efficiently PAC learnable under the universal distribution. Thus, we show that DFA are efficiently learnable under the PACS
model [6]. Further, we prove that any concept that is learnable under Gold’s model for learning from characteristic samples,
Goldman and Mathias’ polynomial teachability model, and the model for learning from example based queries is also learnable
under the PACS model.

1. Introduction

The problem of learning the minimum state DFA that is consistent with a given sample has been actively
studied for over two decades. DFAs are recognizers for regular languages which constitute the simplest
class in the Chomsky hierarchy of formal languages [5, 15]. An understanding of the issues and problems
encountered in learning regular languages (or equivalently, identification of the corresponding DFA) are
therefore likely to provide insights into the problem of learning more general classes of languages.

Exact learning of the target DFA from an arbitrary presentation of labeled examples is a hard prob-
lem [11]. Gold showed that the problem of identifying the minimum state DFA consistent with a
presentation S comprising of a finite non-empty set of positive examples S� and possibly a finite non-
empty set of negative examples S� is NP -hard. Under the standard complexity theoretic assumption
P �� NP , Pitt and Warmuth showed that no polynomial time algorithm can be guaranteed to produce a
DFA with at most N �����loglog�N� states from a set of labeled examples corresponding to a DFA with N
states [26].

Efficient learning algorithms for identification of DFA assume that additional information is provided
to the learner. Trakhtenbrot and Barzdin described a polynomial time algorithm for constructing the
smallest DFA consistent with a complete labeled sample i.e., a sample that includes all strings up to a
particular length and the corresponding label that states whether the string is accepted by the target DFA
or not [28]. Angluin showed that given a live-complete set of examples (that contains a representative
string for each live state of the target DFA) and a knowledgeable teacher to answer membership queries
it is possible to exactly learn the target DFA [1]. In a later paper, Angluin relaxed the requirement of a
live-complete set and has designed a polynomial time inference algorithm using both membership and
equivalence queries [2]. The regular positive and negative inference (RPNI) algorithm is a framework for
identifying in polynomial time, a DFA consistent with a given sample S [21]. Further, if S is a superset
of a characteristic set (see section 2.1) for the target DFA then the DFA output by the RPNI algorithm is
guaranteed to be equivalent to the target [21, 9].

Pitt surveyed several approaches for approximate identification of DFA [25]. Valiant’s distribution-
independent model of learning, also called the probably approximately correct (PAC) learning model [29],
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is a widely used framework for approximate learning of concept classes. PAC learning models natural
learning in that it is fast (learning takes place in polynomial time) and it suffices to learn approximately.
When adapted to the problem of learning DFA, the goal of a PAC learning algorithm is to obtain in
polynomial time, with high probability, a DFA that is a good approximation of the target DFA. We
define PAC learning of DFA more formally in section 2. Angluin’s L� algorithm [2] that learns DFA in
polynomial time using membership and equivalence queries can be recast under the PAC framework to
learn by posing membership queries alone. Even approximate learnability of DFA was proven to be a
hard problem. Pitt and Warmuth showed that the problem of polynomially approximate predictability
of the class of DFA is hard [27]. They used prediction preserving reductions to show that if DFAs are
polynomially approximately predictable then so are other known hard to predict concept classes such
as boolean formulas. Further, Kearns and Valiant showed that an efficient algorithm for learning DFA
would entail efficient algorithms for solving problems such as breaking the RSA cryptosystem, factoring
Blum integers, and detecting quadratic residues [17]. Under the standard cryptographic assumptions
these problems are known to be hard to solve. Thus, they argued that DFA learning is a hard problem.

The PAC model’s requirement of learnability under all conceivable distributions is often considered
too stringent for practical learning scenarios. Pitt’s paper identified the following open research problem:
“Are DFA’s PAC-identifiable if examples are drawn from the uniform distribution, or some other known
simple distribution? ” [25]. Using a variant of Trakhtenbrot and Barzdin’s algorithm, Lang empirically
demonstrated that random DFAs are approximately learnable from a sparse uniform sample [18]. How-
ever, exact identification of the target DFA was not possible even in the average case with a randomly
drawn training sample. Several efforts have been made to study the learnability of concept classes under
restricted classes of distributions. Li and Vitányi proposed a model for PAC learning with simple exam-
ples called the simple PAC model wherein the class of distributions is restricted to simple distributions
(see section 4). Following up on this, Denis et al proposed a model of learning where examples are
drawn at random according to the universal distribution by a teacher that is knowledgeable about the
target concept [6]. This model is known as the PACS learning model. In this paper, we present a method
for efficient PAC learning of DFA from simple examples. We will prove that the class of simple DFA
(see section 4) is learnable under the simple PAC model and the entire class of DFA is learnable under
the PACS model. Further, we demonstrate how the model of learning from simple examples naturally
extends the model of learning concepts from representative examples [11], the polynomial teachability
model [12], and the model of learning from example based queries [3] to a probabilistic framework.

This paper is organized as follows: Section 2 briefly introduces some concepts used in the results
described in this paper. This includes a discussion of the PAC learning model, Kolmogorov complexity,
and the universal distribution. Section 3 reviews the RPNI algorithm for learning DFA. Section 4
discusses the PAC learnability of the class of simple DFA under the simple PAC learning model. Section 5
demonstrates the PAC learnability of the entire class of DFA under the PACS learning model. Section 6
analyzes the PACS model in relation with other models for concept learning. Section 7 addresses the
issue of collusion that arises because a helpful teacher can potentially encode the target DFA as a labeled
training example. Section 8 concludes with a summary of our contributions and a discussion of several
intersting directions for future research.

2. Preliminaries

Let � be a finite set of symbols called the alphabet; �� be the set of strings over �; �� �� � be strings
in ��; and j�j be the length of the string �. � is a special string called the null string and has length
0. Given a string � � ��, � is the prefix of � and � is the suffix of �. Let Pref��� denote the set
of all prefixes of �. A language L is a subset of ��. The set Pref�L� � f� j �� � Lg is the
set of prefixes of the language and the set L� � f� j �� � Lg is the set of tails of � in L. The
standard order of strings of the alphabet � is denoted by �. The standard enumeration of strings over
� � fa� bg is �� a� b� aa� ab� ba� bb� aaa� � � � The set of short prefixes Sp�L� of a languageL is defined as
Sp�L� � f� � Pref�L� j� �� � �� such that L� � L� and � � �g. The kernel N�L� of a language
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L is defined as N�L� � f�g � f�a j � � Sp�L�� a � �� �a � Pref�L�g. Given two sets S� and S�,
let S�nS� and S� � S� denote the set difference and the symmetric difference respectively. Let ln and lg
denote the log to the bases e and 2 respectively.

2.1. Finite Automata

A deterministic finite state automaton (DFA) is a quintuple A � �Q� ���� q�� F � where, Q is a finite set
of states, � is the finite alphabet, q� � Q is the start state, F � Q is the set of accepting states, and � is
the transition function: Q�� �� Q. A state d� � Q such that 	a � �� ��d�� a� � d� is called a dead
state. The extension of � to handle input strings is standard and is denoted by ��. The set of all strings
accepted by A is its language, L�A�. The language accepted by a DFA is called a regular language.
Fig. 1 shows the state transition diagram for a sample DFA. A non-deterministic finite automaton (NFA)
is defined just like the DFA except that the transition function � defines a mapping from Q�� �� �Q.
In general, a finite state automaton (FSA) refers to either a DFA or a NFA.
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Figure 1. Deterministic Finite State Automaton.

Given any FSA A
�

, there exists a minimum state DFA (also called the canonical DFA, A) such that
L�A� � L�A

�

�. Without loss of generality, we will assume that the target DFA being learned is a
canonical DFA. Let N denote the number of states of A. It can be shown that any canonical DFA has
at most one dead state [15]. One can define a standard encoding of DFA as binary strings such that any
DFA withN states is encoded as a binary string of lengthO�N lgN�. A labeled example (�, c���) forA
is such that � � �� and c��� � � if � � L�A� (i.e., � is a positive example) or c��� � � if � �� L�A�
(i.e., � is a negative example). Let S� and S� denote the set of positive and negative examples of A
respectively. A is consistent with a sample S � S� � S� if it accepts all positive examples and rejects
all negative examples.

A set S� is said to be structurally complete with respect to a DFA A if S� covers each transition of A
(except the transitions associated with the dead state d�) and uses every element of the set of final states
of A as an accepting state [22, 23, 10]. It can be verified that the set S� � fb� aa� aaaag is structurally
complete with respect to the DFA in Fig. 1. Given a set S�, let PTA�S�� denote the prefix tree acceptor
for S�. PTA�S�� is a DFA that contains a path from the start state to an accepting state for each string
in S� modulo common prefixes. Clearly, L�PTA�S��� � S�. Learning algorithms such as the RPNI
(see section 3) require the states of the PTA to be numbered in standard order. If we consider the set
Pref�S�� of prefixes of the set S� then each state of the PTA corresponds to a unique element in the
set Pref�S�� i.e., for each state qi of the PTA there exists exactly one string �i in the set Pref�S��
such that ���q�� �i� � qi and vice-versa. The strings of Pref�S�� are sorted in standard order � and
each state qi is numbered by the position of its corresponding string �i in the sorted list. The PTA for
the set S� � fb� aa� aaaag is shown in Fig. 2. Note that its states are numbered in standard order.
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Figure 2. Prefix Tree Automaton.

Given a FSAA and a partition� on the set of statesQ ofA (ignoring the dead state d� and its associated
transitions), we define the quotient automaton A� � �Q�� ����� B�q�� ��� F�� obtained by merging the
states of A that belong to the same block of the partition � as follows: Q� � fB�q� �� j q � Qg is the
set of states with each state represented uniquely by the blockB�q� �� of the partition � that contains the
state q, F� � fB�q� �� j q � Fg is the set of accepting states, and �� � Q� �� �� �Q� is the transition
function such that 	B�qi� ��� B�qj � �� � Q�, 	a � �, B�qj � �� � ���B�qi� ��� a� iff qi� qj � Q and
qj � ��qi� a�. Note that a quotient automaton of a DFA might be a NFA and vice-versa. For example,
the quotient automaton corresponding to the partition � � ffQ�� Q�g� fQ�g� fQ�gg of the set of states
of the DFA in Fig. 1 is shown in Fig. 3.
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Figure 3. Quotient Automaton.

The set of all quotient automata obtained by systematically merging the states of a DFA A represents
a lattice of FSA [22]. This lattice is ordered by the grammar cover relation 
. Given two partitions
�i � fB�� B�� � � � � Brg and �j � fB�� B�� � � � � Bkg of the states of A, we say that �i covers �j (written
�j 
 �i) if r � k � � and for some � � l�m � k, �i � f�jnfBl� Bmg � fBl � Bmgg. The transitive
closure of
 is denoted by�. We say that A�j � A�i iff L�A�j � � L�A�i�. Given a canonical DFA A
and a set S� that is structurally complete with respect to A, the lattice ��S�� derived from PTA�S��
is guaranteed to contain A [22, 23, 10].

A sample S � S� � S� is said to be characteristic with respect to a regular language L (with a
canonical acceptor A) if it satisfies the following two conditions [21]:

 	� � N�L�� if � � L then � � S� else �� � �� such that �� � S�.

 	� � Sp�L��	� � N�L�� if L� �� L� then �� � �� such that ��� � S� and �� � S�� or ��� �
S� and �� � S��.

Intuitively, Sp�L�, the set of short prefixes of L is a live complete set with respect to A in that for
each live state q � Q, there is a string � � Sp�L� such that ���q�� �� � q. The kernel N�L� includes
the set of short prefixes as a subset. Thus, N�L� is also a live complete set with respect to A. Further,



5

N�L� covers every transition between each pair of live states of A. i.e., for all live states qi� qj � Q, for
all a � �, if ��qi� a� � qj then there exists a string � � N�L� such that � � �a and ���q�� �� � qi.
Thus, condition 1 above which identifies a suitably defined suffix � � �� for each string � � N�L�
such that the augmented string �� � L implies structural completeness with respect to A. Condition 2
implies that for any two distinct states of A there is a suffix � that would correctly distinguish them. In
other words, for any qi� qj � Q where qi �� qj , �� � �� such that ���qi� �� � F and ���qj � �� �� F
or vice-versa. Given the language L corresponding to the DFA A in Fig. 1, the set of short prefixes is
Sp�L� � f�� a� b� aag and the kernel is N�L� � f�� a� b� aa� aaag. It can be easily verified that the set
S � S� � S� where S� � fb� aa� aaaag and S� � f�� a� aaa� baag is a characteristic sample for L.

2.2. PAC Learning of DFA

Let X denote the sample space defined as the set of all strings ��. Let x � X denote a concept. For our
purpose, x is a regular language. We identify the concept with the corresponding DFA and denote the
class of all DFA as the concept class C. The representation R that assigns a name to each DFA in C is
defined as a function R � C �� f	� �g�. R is the set of standard encodings of the DFA in C. Assume
that there is an unknown and arbitrary but fixed distribution D according to which the examples of the
target concept are drawn. In the context of learning DFA, D is restricted to a probability distribution on
strings of �� of length at most m.

Definition 1. (due to Pitt [25])
DFAs are PAC-identifiable iff there exists a (possibly randomized) algorithmA such that on input of any
parameters 	 and �, for any DFA M of size N , for any number m, and for any probability distribution
D on strings of �� of length at most m, if A obtains labeled examples of M generated according to the
distributionD, thenA produces a DFA M

�

such that with probability at least �� �, the probability (with
respect to distribution D) of the set f� j � � L�M� � L�M

�

�g is at most 	. The run time of A (and
hence the number of randomly generated examples obtained by A) is required to be polynomial in N ,
m, �
	, �
�, and j�j.

If the learning algorithm A produces a DFA M
�

such that with probability at least � � �, M
�

is
equivalent to M i.e., the probability (with respect to distributionD) of the set f� j � � L�M��L�M

�

�g
is exactly 0 then A is said to be a probably exact learning algorithm for the class of DFA and the class of
DFA is said to be probably exactly learnable by the algorithmA.

2.3. Kolmogorov Complexity

Note that the definition of PAC learning requires that the concept class (in this case the class of DFA) must
be learnable under any arbitrary (but fixed) probability distribution. This requirement is often considered
too stringent in practical learning scenarios where it is not unreasonable to assume that a learner is first
provided with simple and representative examples of the target concept. Intuitively, when we teach a child
the rules of multiplication we are more likely to first give simple examples like 
� � than examples like
�
��� ��. A representative set of examples is one that would enable the learner to identify the target
concept exactly. For example, the characteristic set of a DFA would constitute a suitable representative
set. The question now is whether we can formalize what simple examples mean. Kolmogorov complexity
provides a machine independent notion of simplicity of objects. Intuitively, the Kolmogorov complexity
of an object (represented by a binary string �) is the length of the shortest binary program that computes
�. Objects that have regularity in their structure (i.e., objects that can be easily compressed) have low
Kolmogorov complexity. For example, consider the string s� � 	�	�	����	� � �	�����. On a particular
machineM , a program to compute this string would be “Print 01 500 times”. On the other hand consider
a totally random string s� � ��		��	�	 � � �		���. Unlike s�, it is not possible to compress the string s�
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which means that a program to compute s� on M would be “Print 1100111010000 � � � 00111” i.e., the
program would have to explicitly specify the string s�. The length of the program that computes s� is
shorter than that of the program that computes s�. Thus, we could argue that s� has lower Kolmogorov
complexity than s� with respect to the machine M .

We will consider the prefix version of the Kolmogorov complexity that is measured with respect to
prefix Turing machines and denoted by K. Consider a prefix Turing machine that implements the partial

recursive function � � f	� �g�
partial
�� f	� �g�. For any string � � f	� �g�, the Kolmogorov complexity

of � relative to � is defined as K���� � minfj�j j ���� � �g where � � f	� �g� is a program
input to the Turing machine. Prefix Turing machines can be effectively enumerated and there exists
a Universal Turing Machine (U ) capable of simulating every prefix Turing machine. Assume that the
universal Turing machine implements the partial function �. The Optimality Theorem for Kolmogorov
Complexity guarantees that for any prefix Turing machine � there exists a constant c� such that for any
string �, K���� � K���� � c�. Note that we use the name of the Turing Machine (say M ) and the
partial function it implements (say �) interchangeably i.e., K���� � KM ���. Further, by the Invariance
Theorem it can be shown that for any two universal machines�� and �� there is a constant  � N (where
N is the set of natural numbers) such that for all strings �, jK������K�����j � . Thus, we can fix a
single universal Turing machine U and denote K��� � KU ���. Note that there exists a Turing machine
that computes the identity function � � f	� �g� �� f	� �g� where 	�� ���� � �. Thus, it can be shown
that the Kolmogorov complexity of an object is bounded by its length i.e., K��� � j�j �K�j�j� � 
where  is a constant independent of �.

Suppose that some additional information in the form of a string � is available to the Turing machine
�. The conditional Kolmogorov complexity of any object � given � is defined as K��� j �� �
minfj�j j ��h�� �i� � �gwhere� � f	� �g� is a program and hx� yi is a standard pairing function�. Note
that the conditional Kolmogorov complexity does not charge for the extra information � that is available
to � along with the program �. Fixing a single universal Turing machine U we denote the conditional
Kolmogorov complexity of � by K��j�� � KU ��j��. It can be shown that K��j�� � K��� �  where
 is a constant independent of �.

2.4. Universal Distribution

The set of programs for a string � relative to a Turing machine M is defined as PROGM ��� � f� j
M��� � �g. The algorithmic probability of � relative to M is defined as mM ��� � Pr�PROGM �.
The algorithmic probability of � with respect to the universal Turing machineU is denoted asmU��� �
m���. m is known as the Solomonoff-Levin distribution. It is the universal enumerable probability
distribution, in that, it multiplicatively dominates all enumerable probability distributions. Thus, for any
enumerable probability distribution P there is a constant c � N such that for all strings �� cm��� �
P ���. The Coding Theorem due independently to Schnorr, Levin, and Chaitin [20] states that � �
N such that 	�mM��� � ���K���� Intuitively this means that if there are several programs for a string
� on some machine M then there is a short program for � on the universal Turning machine (i.e., � has
a low Kolmogorov complexity). By optimality of m it can be shown that: � � N � such that 	� �
f	� �g�� ��K��� �m��� � ���K����We see that the universal distributionm assigns higher probability
to simple objects (objects with low Kolmogorov complexity). Given a string r � ��, the universal
distribution based on the knowledge of r, mr, is defined as is defined as mr��� � �r�

�K��jr� where
�r
P

���� ��K��jr� � � (i.e., �r � �) [6]. Further,mr is such that ��K��jr� � mr��� � ���K��jr�

where  is a constant.

The interested reader is referred to [20] for a thorough treatment of Kolmogorov complexity, universal
distribution, and related topics.
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3. The RPNI Algorithm

The regular positive and negative inference (RPNI) algorithm [21] is a polynomial time algorithm for
identification of a DFA consistent with a given set S � S� � S�. If the sample is a characteristic set for
the target DFA then the algorithm is guaranteed to return a canonical representation of the target DFA.
Our description of the RPNI algorithm is based on the explanation given in [8].

A labeled sample S � S� � S� is provided as input to the algorithm. It constructs a prefix tree
automaton PTA�S�� and numbers its states in the standard order. Then it performs an ordered search in
the space of partitions of the set of states of PTA�S�� under the control of the set of negative examples
S�. The partition, ��, corresponding to the automaton PTA�S�� itself is ff	g� f�g� � � � � fN � �gg
whereN is the number of states of the PTA.M�� � PTA�S�� is consistent with all the training examples
and is treated as the initial hypothesis. The current hypothesis is denoted by M� and the corresponding
partition is denoted by �. The algorithm is outlined in Fig. 4. The nested for loop refines the partition �
by merging the states of PTA�S�� in order. At each step, a partition �� is obtained from the partition �
by merging the two blocks that contain the states i and j respectively. The function derive obtains the
quotient automatonM	�, corresponding to the partition ��. M	� might be a NFA in which case the function
deterministic merge determinizes it by recursively merging the states that cause non-determinism. For
example, if qi, qj , and qk are states of M	� such that for some a � �, ��qi� a� � fqj � qkg then the states
qj and qk are merged together. This recursive merging of states can go on for at most N � � steps and
the resulting automaton M
� is guaranteed to be a DFA [8]. Note that since �� � �� we know by the
grammar covers relation that if M	� accepts a negative example in S� then so would M
�. The function,
consistent�M
�� S

�� returns True if M
� is consistent with all examples in S� and False otherwise. If a
partition �� is found such that the corresponding DFA M
� is consistent with S� then M
� replaces M� as
the current hypothesis.

Let jjS�jj and jjS�jj denote the sums of the lengths of examples inS� andS� respectively. PTA�S�)
has O�jjS�jj� states. The nested for loop of the algorithm performs O�jjS�jj�� state merges. Further,
each time two blocks of the partition � are merged, the routine deterministic merge in the worst case
would cause O�jjS�jj� state mergings and the function consistent that checks for the consistency of the
derived DFA with the negative examples would incur a cost of O�jjS�jj�. Hence the time complexity of
the RPNI algorithm is O��jjS�jj� jjS�jj� � jjS�jj

�
�.

Example

We demonstrate the execution of the RPNI algorithm on the task of learning the DFA in Fig. 1. Note
that for convenience we have shown the target DFA in Fig. 5 without the dead state d� and its associated
transitions. Assume that a sample S � S��S� where S� � fb� aa� aaaag and S� � f�� a� aaa� baag.
It can be easily verified that S is a characteristic sample for the target DFA. The DFA M � PTA�S��
is depicted in Fig. 2 where the states are numbered in the standard order. The initial partition is
� � �� � ff	g� f�g� f�g� f
g� f�g� f�gg.

The algorithm attempts to merge the blocks containing states � and 	 of the partition �. The quotient
FSA M	� and the DFA M
� obtained after invoking deterministic merge are shown in Fig. 6. The DFA
M
� accepts the negative example � � S�. Thus, the current partition � remains unchanged.

Next the algorithm merges the blocks containing states � and 	 of the partition �. The quotient FSA
M	� is depicted in Fig. 7. Since M	� is a DFA, the procedure deterministic merge returns the same
automaton i.e., M
� � M	�. M
� accepts the negative example � � S� and hence the partition � remains
unchanged.

Table 1 lists the different partitions �� obtained by fusing the blocks of ��, the partitions �� obtained by
deterministic merge of ��, and the negative example (belonging to S�), if any, that is accepted by the
quotient FSA M
�. The partitions marked � denote the partition � for which M� is consistent with all
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Algorithm RPNI

Input: A sample S � S� � S�

Output: A DFA compatible with S

begin
// Initialization
� � �� � ff	g� f�g� � � � � fN � �gg
M� � PTA�S��
// Perform state merging
for i = 1 to N � �

for j = 0 to i� �
// Merge the block of � containing state i with the block containing state j
�� � �nfB�i� ��� B�j� ��g � fB�i� �� � B�j� ��g
// Obtain the quotient automatonM	�

M	� � derive�M� ���
// Determinize the quotient automaton (if necessary) by state merging
�� � determistic merge�M	��
// Does M
� reject all strings in S�?
if consistent�M
�� S

��
then

// Treat M
� as the current hypothesis
M� � M
�

� � ��
break

end if
end for

end for
return M�

end

Figure 4. RPNI Algorithm.
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Figure 5. Target DFA A.
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Figure 7. M
�� (same as M

��) Obtained by Fusing Blocks Containing the states � and � of �.

examples in S� and hence is the current hypothesis. It is easy to see that the DFA corresponding to the
partition � � ff	g� f�� �g� f�g� f
� �gg is exactly the target DFA we are trying to learn (Fig. 1).

Table 1. Execution of the RPNI Algorithm.

Partition �� Partition �� Negative Example
ff�� �g� f�g� f�g� f�g� f�gg ff�� �� �� �� �g� f�gg a

ff�� �g� f�g� f�g� f�g� f�gg ff�� �g� f�g� f�g� f�g� f�gg �

ff�g� f�� �g� f�g� f�g� f�gg ff�g� f�� �g� f�g� f�g� f�gg a

ff�� �g� f�g� f�g� f�g� f�gg ff�� �g� f�� �g� f�g� f�gg �

ff�g� f�� �g� f�g� f�g� f�gg ff�g� f�� �� �� �g� f�gg a

ff�g� f�g� f�� �g� f�g� f�gg ff�g� f�g� f�� �g� f�g� f�gg baa

ff�� �g� f�g� f�g� f�g� f�gg ff�� �g� f�� �g� f�g� f�gg a

ff�g� f�� �g� f�g� f�g� f�gg ff�g� f�� �g� f�g� f�� �gg� —
ff�� �� �g� f�� �g� f�gg ff�� �� �g� f�� �g� f�gg �

ff�g� f�� �� �� �g� f�gg ff�g� f�� �� �� �g� f�gg a

ff�g� f�� �g� f�� �� �gg ff�g� f�� �g� f�� �� �gg baa

ff�g� f�� �g� f�g� f�� �gg ff�g� f�� �g� f�g� f�� �gg� —
ff�g� f�� �� �� �g� f�gg ff�g� f�� �� �� �g� f�gg a

4. Learning Simple DFA under the Simple PAC model

Li and Vitányi have proposed the simple PAC learning model where the class of probability distributions is
restricted to simple distributions [19]. A distribution is simple if it is multiplicatively dominated by some
enumerable distribution. Simple distributions include a variety of distributions including all computable
distributions. Further, the simple distribution independent learning theorem due to Li and Vitanyí says
that a concept class is learnable under universal distribution m iff it is learnable under the entire class of
simple distributions provided the examples are drawn according to the universal distribution [19]. Thus,
the simple PAC learning model is sufficiently general. Concept classes such as logn-term DNF and
simple k-reversible DFA are learnable under the simple PAC model whereas their PAC learnability in the
standard sense is unknown [19]. We show that the class of simple DFA is polynomially learnable under
the simple PAC learning model.
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A simple DFA is one with low Kolmogorov complexity. More specifically, a DFA A with N states
and a standard encoding (or canonical representation) r is simple if K�A� � O�lgN�. For example, a
DFA that accepts all strings of length N is a simple DFA. Note however that this DFA contains a path for
every string of length N and hence it has a path of Kolmogorov complexity N . In general, simple DFA
might actually have very random paths. We saw in section 2.3 that a natural learning scenario would
typically involve learning from a simple and representative set of examples for the target concept. We
adopt Kolmogorov complexity as a measure of simplicity and define simple examples as those with low
Kolmogorov complexity i.e., with Kolmogorov complexity O�lgN�. Further, a characteristic set for the
DFA A can be treated as its representative set.

We demonstrate that for every simple DFA there exists a characteristic set of simple examples Sc.

Lemma � For any N state simple DFA (with Kolmogorov complexity O�lgN�) there exists a charac-
teristic set of simple examples Sc such that the length of each string in this set is at most �N � �.

Proof: Consider the following enumeration of a characteristic set of examples for a DFA A �
�Q� ���� q�� F � with N states�.

1. Fix an enumeration of the shortest paths (in standard order) from the state q� to each state inQ except
the dead state. This is the set of short prefixes of A. There are at most N such paths and each path is
of length at most N � �.

2. Fix an enumeration of paths that includes each path identified above and its extension by each letter
of the alphabet �. From the paths just enumerated retain only those that do not terminate in the dead
state of A. This represents the kernel of A. There are at most N�j�j� �� such paths and each path
is of length at most N .

3. Let the characteristic set be denoted by Sc � S�
c � S�c .

(A) For each string � identified in step 2 above, determine the first suffix � in the standard enumer-
ation of strings such that �� � L�A�. Since j�j � N , and � is the shortest suffix in the standard
order it is clear that j��j � �N � �. Each such �� is a member of S�

c .

(B) For each pair of strings (�� �) in order where � is a string identified in step 1, � is a string
identified in step 2, and � and � lead to different states of A determine the first suffix � in the
standard enumeration of strings such that �� � L�A� and �� �� L�A� or vice versa. Since
j�j � N � �, j�j � N , and � is the shortest distinguishing suffix for the states represented by
� and � it is clear that j��j� j��j � �N � �. The accepted string from among �� and �� is a
member of S�

c and the rejected string is a member of S�c .

Trivial upper bounds on the sizes of S�
c and S�c are jS�

c j � N��j�j � �� � N�j�j�, jS�c j �
N��j�j����N . Thus, jScj � O�N��. Further, the length of each string in Sc is less than �N � �.

The strings in Sc can be ordered in some way such that individual strings can be identified by an index of
length at most lg�
j�jN�� bits. There exists a Turing machine M that implements the above algorithm
for constructing the set Sc. M can take as input an encoding of a simple DFA of length O�lgN� bits
and an index of length lg�
j�jN �� bits and output the corresponding string � belonging to Sc. Thus,
	� � Sc,

K��� � k� lgN � lg�
j�jN��

K��� � k� lgN � k� lgN

� O�lgN�

This proves the lemma.
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Lemma � Suppose a sample S is drawn according tom. For 	 � � � �, if jSj � O�N k lg� �
�
�� then

with probability greater than �� �, Sc � S where k is a constant.

Proof: From lemma 1 we know that 	� � Sc� K��� � O�lgN�. Further, jScj � O�N��. By
definition, m��� � ��K���. Thus, m��� � ��k� lgN or equivalently m��� � N�k� where k� is a
constant.

Pr�� � Sc is not sampled in one random draw� � ���N�k��

Pr�� � Sc is not sampled in jSj random draws� � ���N�k��jSj

Pr� some � � Sc is not sampled in jSj random draws� � jScj���N�k��jSj

� k�N
����N�k��jSj

since jScj � O�N��

Pr�Sc �� S� � k�N
����N�k��jSj

We want this probability to be less than �.

k�N
����N�k��jSj � �

k�N
��e�N

�k� �jSj � � since �� x � e�x

ln�k�� � ln�N���N�k� jSj � ln���

jSj � Nk��ln�
�

�
� � ln�k�� � ln�N���

� O�Nk lg�
�

�
�� where k replaces k�

Thus, Pr�Sc � S� � �� �.

We now prove that the class of simple DFA is polynomially learnable underm.

Theorem � For all N , the class C�N of simple DFA whose canonical representations have at most N
states is probably exactly learnable under the simple PAC model.

Proof: LetA be a simple DFA with at mostN states. Let Sc be a characteristic sample ofA enumerated
as described in lemma 1 above. Recall, that the examples in Sc are simple (i.e., each example has
Kolmogorov complexityO�lgN�). Now consider the algorithmA� in Fig. 8 that draws a sample S with
the following properties.

1. S � S� � S� is a set of positive and negative examples corresponding to the target DFA A.

2. The examples in S are drawn at random according to the distributionm.

3. jSj � O�Nk lg� �
�
��.

Lemma 1 showed that for every simple DFA A there exists a characteristic set of simple examples
Sc where each example is of length at most �N � �. Lemma 2 showed that if a labeled sample S of
size O�Nk lg� �

�
�� is randomly drawn according tom then with probability greater than �� �, Sc � S.

The RPNI algorithm is guaranteed to return a canonical representation of the target DFA A if the set of
examples S provided is a superset of a characteristic set Sc. Since the size of S is polynomial in N and
�
� and the length of each string in S is restricted to �N � �, the RPNI algorithm, and thus the algorithm
A� can be implemented to run in time polynomial in N and �
�. Thus, with probability greater than
� � �, A� is guaranteed to return a canonical representation of the target DFA A. This proves that the
class C�N of simple DFA whose canonical representations have at most N states is exactly learnable
with probability greater than �� �.
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Algorithm A�

Input: N� 	 � � � �
Output: A DFA M

begin
Randomly draw a labeled sample S according tom
Retain only those examples in S that have length at most �N � �
M � RPNI�S�
return M

end

Figure 8. A Probably Exact Algorithm for Learning Simple DFA.

5. Learning DFA under the PACS model

In section 4 we proved that the class of simple DFA is learnable under the simple PAC model where
the underlying distribution is restricted to the universal distribution m. Denis et al proposed a model
of learning where examples are drawn at random according to the universal distribution by a teacher
that is knowledgeable about the target concept [6]. Under this model, examples with low conditional
Kolmogorov complexity given a representation r of the target concept are called simple examples.
Specifically, for a concept with representation r, the set Srsim � f� j K��jr� � �lg�jrj�g (where � is
a constant) is the set of simple examples for the concept. Further, Srsim�rep is used to denote a set of
simple and representative examples of r. The PACS model restricts the underlying distribution tomr.
Formally, the probability of drawing an example � for a target concept with representation r is given as
mr��� � �r�

�K��jr� Representative examples for the target concept are those that enable the learner to
exactly learn the target. As explained earlier, the characteristic set corresponding to a DFA can be treated
as a representative set for the DFA. The Occam’s Razor theorem proved by Denis et al states that if there
exists a representative set of simple examples for each concept in a concept class then the concept class
is PACS learnable [6].

We now demonstrate that the class of DFA is efficiently learnable under the PACS model. Lemma 3
proves that for any DFA A with standard encoding r there exists a characteristic set of simple examples
Srsim�rep.

Lemma � For any N state DFA with standard encoding r (jrj � O�N lg�N��), there exists a charac-
teristic set of simple examples (denoted by Srsim�rep) such that each string of this set is of length at most
�N � �.

Proof: Given a DFA A � �Q� ���� q�� F �, it is possible to enumerate a characteristic set of examples
Sc for A as described in lemma 1 such that jScj � O�N�� and each example of Sc is of length at most
�N � �. Individual strings in Sc can be identified by specifying an index of length at most lg�
j�jN ��
bits. There exists a Turing machine M that implements the above algorithm for constructing the set Sc.
Given the knowledge of the target concept r, M can take as input an index of length lg�
j�jN �� bits and
output the corresponding string belonging to Sc. Thus, 	� � Sc

K��jr� � lg�
j�jN��

� � lg�jrj� where � is a constant

We define the set Sc to be the characteristic set of simple examples Srsim�rep for the DFA A. This proves
the lemma.
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Lemma � (Due to Denis et al [6])
Suppose that a sample S is drawn according to mr. For an integer l � jrj, and 	 � � � �, if
jSj � O�l	 lg� �

�
�� then with probability greater than �� �, Srsim � S.

Proof: Claim 4.1: 	� � Srsim� mr��� � l�	

mr��� � ��K��jr�

� ��	lgjrj

� jrj�	

� l�	

Claim 4.2: jSrsimj � �l	

jSrsimj � jf� � f	� �g� j K��jr� � �lg�jrj�gj

� jf� � f	� �g� j K��jr� � �lg�l�gj

� jf� � f	� �g� j j�j � �lg�l�gj

� �	lg�l���

� �l	

Claim 4.3: If jSj � O�l	 lg� �
�
�� then Pr�Srsim � S� � �� �

Pr�� � Srsim is not sampled in one random draw� � ��� l�	�

(claim 4.1)

Pr�� � Srsim is not sampled in jSj random draws� � ��� l�	�jSj

Pr�some � � Srsim is not sampled in jSj random draws� � �l	��� l�	�jSj

(claim 4.2)

Pr�Srsim �� S� � �l	��� l�	�jSj

We would like this probability to be less than �.

�l	��� l�	�jSj � �

�l	�e�l
��

�jSj � �� since �� x � e�x

ln��� � ln�l	�� jSjl�	 � ln���

jSj � l	 �ln��� � ln�l	� � ln��
���

jSj � O�l	 lg��
���

Thus, Pr�Srsim � S� � �� �

Corollary � Suppose that a sample S is drawn according to mr. For an integer l � jrj, and
	 � � � �, if jSj � O�l	 lg��
��� then with probability greater than �� �, Srsim�rep � S.

Proof: Follows immediately from Lemma 3 since Srsim�rep � Srsim.

We now prove that the class of DFA is polynomially learnable undermr.

Theorem � For all N , the class C�N of DFA whose canonical representations have at most N states
is probably exactly learnable under the PACS model.

Proof: Let A be a canonical DFA with at most N states and r be its standard encoding. We define
the simple representative sample Srsim�rep to be the characteristic sample of A enumerated as described
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in lemma 3. Recall that the length of each example in Srsim�rep is at most �N � �. Now consider the
algorithm A� that draws a sample S with the following properties

1. S � S� � S� is a set of positive and negative examples corresponding to the target DFA A

2. The examples in S are drawn at random according to the distributionmr

3. jSj � O�l	 lg� �
�
��

Algorithm A�

Input: N� 	 � � � �
Output: A DFA M

begin
Randomly draw a labeled sample S according tomr

Retain only those examples in S that have length at most �N � �
M � RPNI�S�
return�M�

end

Figure 9. A Probably Exact Algorithm for Learning DFA.

Lemma 3 showed that for every DFA A there exists a characteristic set of simple examples Srsim�rep.
Corollary 1 showed that if a labeled sample S of size O�l	 lg� �

�
�� is randomly drawn according to

mr then with probability greater than � � �, Srsim�rep � S. The RPNI algorithm is guaranteed to
return a canonical representation of the target DFA A if the set of examples S is a superset of a
characteristic set for A. Since the size of S is polynomial in N and �
� and the length of each string
in S is restricted to �N � �, the RPNI algorithm, and thus the algorithm A� can be implemented to
run in time polynomial in N and �
�. Thus, with probability greater than � � �, A� is guaranteed
to return a canonical DFA equivalent to the target A. This proves that the class C�N of DFA whose
canonical representations have at most N states is exactly learnable with probability greater than �� �.

Since the number of states of the target DFA (N ) might not be known in advance we present a PAC
learning algorithm A� that iterates over successively larger guesses of N . At each step the algorithm
draws a random sample according tomr, applies the RPNI algorithm to construct a DFA, and tests the
DFA using a randomly drawn test sample. If the DFA is consistent with the test sample then the algorithm
outputs the DFA and halts. Otherwise the algorithm continues with the next guess for N .

Theorem � The concept class C of DFA is learnable in polynomial time under the PACS model.

Proof: Fig. 10 shows a PAC learning algorithm for DFA.
In algorithm A� the polynomial p is defined such that a sample S of size p�N� �

�
� contains the

characteristic set of simple examples Srsim�rep with probability greater than � � �. It follows from
corollary 1 that p�N� �

�
� � O�l	 lg��
��� will satisfy this constraint. The polynomial q is defined as

q�i� �
�
� �
�
� � �

�
�� ln�i� �� � ln� �

�
��.

Consider the execution of the algorithm A�. At any step i where i � N , the set S will include the
characteristic set of simple examples Srsim�rep with probability greater than �� � (as proved in lemma 4).
In this case the RPNI algorithm will return a DFA M that is equivalent to the target A and hence M will
be consistent with the test sample T . Thus, with probability at least � � �, the algorithm will halt and
correctly output the target DFA.
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Algorithm A�

Input: 	� �
Output: A DFA M

begin
1) i � �, EX � �, p�	� �
�� � 	
2) repeat

Draw p�i� �
��� p�i� �� �
�� examples according tomr

Add the examples just drawn to the set EX
Let S be the subset of examples in EX of length at most �i� �
M � RPNI�S�
Draw q�i� �
	� �
�� examples according tomr and call this set T
if consistent�M�T �
then Output M and halt
else i � i � �
end if

until eternity
end

Figure 10. A PAC Algorithm for Learning DFA.

Consider the probability that the algorithm halts at some step i and returns a DFA M with an error
greater than 	.

Pr�M and A are consistent on some �� � �� 	

Pr�M and A are consistent on all � � T � � ��� 	�jT j

� ��� 	�
�

�
�� ln�i����ln� �

�
��

� e��� ln�i����ln� �
�
�� since �� x � e�x

�
�

�i� ���

The probability that the algorithm halts at step i and returns a DFA with error greater than 	 is less

than
�X

i�

�

�i� ���
which is in turn strictly less than �. Thus, we have shown that with probability

greater than � � � the algorithm returns a DFA with error at most 	. Further, the run time of the
algorithm is polynomial in N , j�j, �

�
, �
�

, and m (where m is the length of the longest test example
seen by the algorithm). Thus, the class of DFA is efficiently PAC learnable under the PACS model.

6. Relationship of the PACS Model to other Learning Models

In this section we study the relationship of the PACS model to other prominent learning models such
as Gold’s model of polynomial identifiability from characteristic samples [11], Goldman and Mathias’
polynomial teachability model [12], and the model of learning from example based queries [3]. We
explain how the PACS learning model naturally extends these other models to a probabilistic framework.
In the discussion that follows we will let X be the instance space, C be the concept class andR be the set
of representations of the concepts in C.
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6.1. Polynomial Identifiability from Characteristic Samples

Gold’s model for polynomial identifiability of concept classes from characteristic samples is based on
the availability of a polynomial sized characteristic sample for any concept in the concept class and an
algorithm which when given a superset of a characteristic set is guaranteed to return, in polynomial time,
a representation of the target concept.

Definition 2. (due to Colin de la Higuera [14])
C is polynomially identifiable from characteristic samples iff there exist two polynomials p��� and p���
and an algorithmA such that

1. Given any sample S � S� � S� of labeled examples, A returns in time p��jjS�jj � jjS�jj� a
representation r � R of a concept c � C such that c is consistent with S.

2. For every concept c � C with corresponding representation r � R there exists a characteristic sample
Sc � S�

c �S
�
c such that jjS�

c jj� jjS
�
c jj � p��jrj� and if A is provided with a sample S � S� �S�

where S�
c � S� and S�c � S� then A returns a representation r

�

of a concept c
�

that is equivalent
to c.

Using the above definition Gold’s result can be restated as follows.

Theorem � (due to Gold [11])
The class of DFA is polynomially identifiable from characteristic samples.

The problem of identifying a minimum state DFA that is consistent with an arbitrary labeled sample
S � S� � S� is known to be NP-complete [11]. This result does not contradict the one in theorem 4
because a characteristic set is not any arbitrary set of examples but a special set that enables the learning
algorithm to correctly infer the target concept in polynomial time (see the RPNI algorithm in section 3).

6.2. Polynomial Teachability of Concept Classes

Goldman and Mathias developed a teaching model for efficient learning of target concepts [12]. Their
model takes into account the quantity of information that a good teacher must provide to the learner.
An additional player called the adversary is introduced in this model to ensure that there is no collusion
whereby the teacher gives the learner an encoding of the target concept. A typical teaching session
proceeds as follows:

1. The adversary selects a target concept and gives it to the teacher.

2. The teacher computes a set of examples called the teaching set.

3. The adversary adds correctly labeled examples to the teaching set with the goal of complicating the
learner’s task.

4. The learner computes a hypothesis from the augmented teaching set.

Under this model, a concept class for which the computations of both the teacher and the learner takes
polynomial time and the learner always learns the target concept is called polynomially T/L teachable.
Without the restrictive assumption that the teacher’s computations be performed in polynomial time, the
concept class is said to be semi-polynomially T/L teachable. When this model is adapted to the framework
of learning DFA the length of the examples seen by the learner must be included as a parameter in the
model. In the context of learning DFA the number of examples is infinite (it includes the entire set ��)
and further the lengths of these examples grow unboundedly. A scenario in which the teacher constructs
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a very small teaching set whose examples are unreasonably long is clearly undesirable and must be
avoided. This is explained more formally in the following definition.

Definition 3. (due to Colin de la Higuera [14])
A concept class C is semi-polynomially T/L teachable iff there exist polynomials p���, p���, and p���, a
teacher T , and a learner L, such that for any adversary ADV and any concept c with representation r
that is selected by ADV , after the following teaching session the learner returns the representation r

�

of
a concept c

�

that is equivalent to c.

1. ADV gives r to T .

2. T computes a teaching set S of size at most p��jrj� such that each example in the teaching set has
length at most p��jrj�.

3. ADV adds correctly labeled examples to this set, with the goal of complicating the learner’s task.

4. The learner uses the augmented set S to compute a hypothesis r
�

in time p��jjSjj�.

Note that from Gold’s result (theorem 4) it follows that DFA are semi-polynomially T/L teachable. Fur-
ther, we demonstrated in lemma 1 that for any DFA there exists a procedure to enumerate a characteristic
set corresponding to that DFA. This procedure can be implemented in polynomial time thereby proving
a stronger result that DFA are polynomially T/L teachable. It was proved that the model for polynomial
identification from characteristic samples and the model for polynomial teachability are equivalent to each
other (i.e., by identifying the characteristic set with the teaching sample it was shown that a concept class
is polynomially identifiable from characteristic samples iff it is semi-polynomially T/L teachable) [14].

Lemma � Let c � C be a concept with corresponding representation r � R. If there exists a char-
acteristic sample Sc for c and a polynomial p��� such that such that Sc can be computed from r and
jjScjj � p��jrj� then each example in Sc is simple in the sense that 	� � Sc� K��jr� � � lg�jrj� where
� is a constant.

Proof: Fix an ordering of the elements of Sc and define an index to identify the individual elements.
Since jjScjj � p��jrj� an index that is lg�p��jrj�� � � lg�jrj� bits long is sufficient to uniquely identify
each element of Sc�. Since Sc can be computed from r we can construct a Turing machine that
given r reads as input an index of length � lg�jrj� and outputs the corresponding string of Sc. Thus,
	� � Sc� K��jr� � � lg�jrj� where � is a constant independent of �.

Let us designate the characteristic set of simple examples Sc identified above to be the set of simple
representative examples Srsim�rep for the concept c represented by r. Lemma 4 and corollary 1 together
show that for an integer l � jrj and 	 � � � � if a sample S of size jSj � O�l	 lg� �

�
�� is drawn at

random according tomr then with probability greater than �� �, Srsim�rep � S.

Theorem � Any concept class that is polynomially identifiable from characteristic samples or equiv-
alently semi-polynomially T/L teachable is probably exactly learnable under the PACS model.

Proof: The proof follows directly from the results of lemma 5, lemma 4, and corollary 1.

6.3. Learning from Example Based Queries

A variety of concept classes are known to be learnable in deterministic polynomial time when the learner is
allowed access to a teacher (or an oracle) that answers example based queries [3]. Example based queries
include equivalence, membership, subset, superset, disjointedness, exhaustive, justifying assignment, and
partial equivalence queries.
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Definition 4. (due to Goldman and Mathias [12])
An example based query is any query of the form

	�x�� x�� � � � � xk� � X
k does �r�x �� x�� � � � � xk� � ��

where r is the target concept and k is a constant.

� may use the instances (x�� � � � � xk) to compute additional instances on which to perform membership
queries. The teacher’s response to example based queries is either yes or a counter example consisting of
�x�� x�� � � � � xk� � X k (along with the correct classification corresponding to each of the xi’s) for which
�r�x �� x�� � � � � xk� � 	 and the labeled examples for which membership queries were made in order to
evaluate �r.

Theorem � (due to Goldman and Mathias [12])
Any concept class that is learnable in deterministic polynomial time using example based queries is
semi-polynomially T/L teachable.

The above theorem enables us to connect learning from example based queries to PACS learning as
follows.

Theorem � Any concept class that is learnable in deterministic polynomial time using example based
queries is also probably exactly learnable under the PACS model

Proof: Follows directly from theorems 6 and 5.

Recently Castro and Guijarro have independently shown that any concept class that is learnable using
membership and equivalence queries is also learnable under the PACS model [4]. Further, they have
intuitively demonstrated how this result can be extended to all example based queries. Theorem 7 above
is an alternate proof of the relationship between query learning and PACS learning. The results presented
in this section are more general and enable us to view the PACS learning model in a broader context.

7. Collusion and PACS Learning

Learning models that involve interaction between a knowledgeable teacher and a learner are vulnerable
to unnatural collusion wherein a the teacher passes information about the representation of the target
function as part of the training set [16, 13]. Consider for simplicity that the instance space is f	� �gn

(i.e., the training examples are n bits long). The teacher and learner can a-priori agree on some suitable
binary encoding of concepts. The teacher can then break the representation of the target concept r in
to groups of n bits and use the training set to pass these groups as appropriately labeled examples to
the learner. The learner could quickly discover the target concept without even considering the labels
of the training examples. The teaching model due to Jackson and Tomkins [16] prevents this blatant
coding of the target concept by requiring that the learner must still succeed if the teacher is replaced
by an adversarial substitute (who does not code the target concept as the teacher above). Further, they
argue that in their model the learner can stop only when it is convinced that there is only one concept
consistent with the information received from the teacher i.e., the teacher does not tell the learner when to
stop. Otherwise learning would be trivialized in that the teacher passes groups of n bits to the learner (as
training examples) and when sufficient number of bits have been passed to the learner so as to reconstruct
the representation r of the target concept, the teacher tells the learner to stop. Goldman and Mathias’
work on polynomial teachability [13] shows that an adversary whose task it is to embed the training set
provided by the teacher (called teaching set) into a larger set of correctly labeled examples is sufficient
to prevent the type of collusion discussed above. An interesting quirk of the PACS learning model is the
fact that the standard encoding of the target concept r is itself a simple example because by definition
K�rjr� is low. Thus, r has a high probability under the universal distribution mr. The PACS learning
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scenario wherein examples are drawn at random according to the universal distributionmr is similar to
the teaching framework in the above teaching models where a knowledgeable teacher draws a helpful set
of examples that would enable the learner to learn the target concept quickly. The representation of the
target concept r (that is drawn with high probability according to mr) could be broken into groups of
n bits and passed to the learner as appropriately labeled training examples. Following the argument of
Jackson and Tomkins, a learner who is accumulating bits would not know precisely when it has sufficient
information to reconstruct the target.

Consider the implication of this issue of collusion on the problem of learning DFA. Note that unlike
several concept learning scenarios where the instance space is restricted to fixed length examples in
f	� �gn, in DFA learning the individual examples of the teaching set can be of different lengths. In
section 5 we presented an algorithm for PAC learning of DFA (under the universal distributionmr) that
uses the RPNI method. As discussed above, the canonical encoding of the target DFA A (a string r of
length O�N lgN�) appears with high probability when the examples are drawn at random according to
mr. The fact that DFA learning does not require fixed length examples means that r would itself appear
with high probability as part of a polynomial sized training set. Of course the learner cannot directly
identify which of the example strings represents the target DFA. However, the learner can decode each of
the labeled examples. For each example that represents a valid DFA, the learner can test whether the DFA
(the decoded example) is consistent with the teaching set and output (say) the first DFA in lexicographic
order that is consistent with the training set. With high probability the learner would output the target
DFA. This constitutes a PACS algorithm for learning DFA that is computationally more efficient than
the RPNI based PACS algorithm presented in this paper. This is another perhaps more subtle form of
collusion wherein the learner is provided with an encoding of the target concept but must perform some
computation (checking for consistency) in order to suitably identify the target. Goldman and Mathias
claim that this is not collusion according to their definition wherein a colluding teacher learner pair is one
where the teacher can potentially influence the distribution on the concept class C when presenting the
learner with teaching sets for logically equivalent concepts [13]. Specifically, say the teacher encodes
the representation r of the target DFA A as part of the teaching set. The adversary can simply add a
correctly labeled example r

�

which is a representation of a DFA A
�

that is logically equivalent to A to the
teaching set. BothA andA

�

are consistent with the teaching set and the learner that operates by decoding
examples could output either r or r

�

. While this does not constitute collusion as per their definition the
fact is that the strategy of learning by decoding is more attractive as it is computationally more efficient
than the RPNI based learning algorithm.

It is clear from the above discussion that the PACS learning framework admits multiple learning
algorithms for learning DFA including the seemingly collusive one that learns by decoding labeled
examples. A natural question to ask then is whether one can tighten the learning framework suitably
so as to avoid any unnatural collusion. Obtaining a satisfactory and general answer to this question
would require the development of much more precise definitions of collusion and collusion-free learning
algorithms than are currently available. One might argue that sampling of examples according to helpful
distributions (as done by the PACS framework) by itself constitutes a form of collusion. One might even
suggest (perhaps quite unreasonably) that all inductive learning frameworks allow some form of collusion
since the training examples have to provide adequate information to identify or approximate the target
concept. It is possible that, in general, the definition of collusion-free learning may have to be relative
to well-defined restrictions on the specific strategies that can be employed by the learner. A detailed
exploration of these isses is beyond the scope of this paper. We restrict ourselves to a few remarks in
relation to the DFA learning algorithms discussed in this paper and the collusion strategy that operates
by decoding examples and checking for consistency.

In the PACS learning algorithms discussed earlier we have not clearly distinguished between the
environment (or the teacher) that provides the labeled examples (drawn according tomr) and the learner
that uses the training set to produce a hypothesis DFA. It is helpful to keep this distinction in mind for the
following discussion. Consider the algorithm A� for probably exact learning of DFA (see Fig. 9). The
teacher draws labeled examples according tomr. The learning framework allows only labeled examples
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of length up to �N � � to be passed to the learner. Clearly, the encoding of the target DFA which
is of length O�N lgN� cannot appear as a single labeled example in the training set that is restricted
to examples of length up to �N � � only. Note that breaking up the representation of the target DFA
into smaller bit strings will not help either because the learner will have to concatenate different strings
in different ways in order to determine which concatenation represents a valid DFA. In the worst case
this would involve considering all possible permutations of the example strings which is very expensive.
Admittedly, it is possible that the teacher and the learner have a-priori agreed that the first few strings will
contain the necessary representation of the target DFA. Further, since the learner knowsN (the number of
states of the target) it knows exactly how many bits would be needed to encode the representation of the
target. To overcome this scenario it is sufficient to include an adversary (as in the model of Goldman and
Mathias). By simply shuffling the set of strings in the teaching set the adversary can cripple a learner that
was expecting to receive the target DFA encoded in the first few labeled example strings. The iterative
algorithmA� (see Fig. 10) is used when the number of states of the target DFA is not known in advance.
In this algorithm, although the training set is restricted to labeled examples of length �i� � (where i is
the current guess of the number of states of the target DFA), the test set T is not thus restricted. The
learner could thus potentially receive an encoding of the target concept as a labeled example in the test
set. One way to prevent this is to again resort to the adversary. In addition to shuffling the elements of
the training set (as discussed above) the adversary will have to take over the task of testing the hypothesis
produced by the learner. The learning would proceed as follows: The teacher draws a polynomial (in i
and �
�) sized sample of labeled examples according tomr. The adversary takes a subset of the above
sample such that each example of the subset is of length at most �i � �, randomly shuffles the subset,
and gives it to the learner. The learner uses this training set to produce a hypothesis. The adversary
tests the learner’s hypothesis for consistency with a polynomial sized test sample drawn accordingmr

and informs the learner (without actually revealing the test set) whether the hypothesis was consistent
with the test sample or not. The learner decides whether to halt or continue with another iteration of the
above steps. This framework will not allow the collusive learning algorithm that operates on decoding
examples.

8. Discussion

The problem of exactly learning the target DFA from an arbitrary set of labeled examples and the problem
of approximating the target DFA from labeled examples under Valiant’s PAC learning framework are
both known to be hard problems. Thus, the question as to whether DFA are efficiently learnable under
some restricted yet fairly general and practically useful classes of distributions was clearly of interest. In
this paper, we have answered this question in the affirmative by providing a framework for efficient PAC
learning of DFA from simple examples.

We have demonstrated that the class of simple DFA is polynomially learnable under the universal
distribution m (the simple PAC learning model) and the entire class of DFA is shown to be learnable
under the universal distributionmr (the PACS learning model). When an upper bound on the number of
states of the target DFA is unknown, the algorithm for learning DFA undermr can be used iteratively
to efficiently PAC learn the concept class of DFAs for any desired error and confidence parameters�.
These results have an interesting implication on the framework for incremental learning of the target
DFA. In the RPNI2 incremetal algorithm for learning DFA, the learner maintains a hypothesis that is
consistent with all labeled examples seen thus far and modifies it whenever a new inconsistent example
is observed [8]. The convergence of this algorithm relies on the fact that sooner or later, the set of
labeled examples seen by the learner will include a characteristic set. If in fact the stream of examples
provided to the learner is drawn according to a simple distribution, our results show that in an incremental
setting the characteristic set would be made available relatively early (during learning) with a sufficiently
high probability and hence the algorithm will converge quickly to the desired target. Finally, we have
shown the applicability of the PACS learning model in a more general setting by proving that all concept
classes that are polynomially identifiable from characteristic samples according to Gold’s model, semi-
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polynomially T/L teachable according to Goldman and Mathias’ model, and learnable in deterministic
polynomial time from example based queries are also probably exactly learnable under the PACS model.

The class of simple distributions includes a large variety of probability distributions (including all
computable distributions). It has been shown that a concept class is efficiently learnable under the
universal distribution if and only if it is efficiently learnable under each simple distribution provided
that sampling is done according to the universal distribution [19]. This raises the possibility of using
sampling under the universal distribution to learn under all computable distributions. However, the
universal distribution is not computable. Whether one can instead get by with a polynomially computable
approximation of the universal distribution remains an open question. It is known that the universal
distribution for the class of polynomially-time bounded simple distributions is computable in exponential
time [19]. This opens up a number of interesting possibilities for learning under simple distributions. In
a recent paper Denis and Gilleron have proposed a new model of learning under helpful distributions [7].
A helpful distribution is one in which examples belonging to the characteristic set for the concept (if
there exists one) are assigned non-zero probability. A systematic characterization of the class of helpful
distributions would perhaps give us a more practical framework for learning from simple examples. For
instance it might help in adapting the PACS learning model to the incremental learning scenario. A
helpful teacher could start out by drawing simple examples based on its knowledge of the target concept
but as the learning progresses the teacher could potentially draw examples by combining its knowledge
of the target concept with the current hypothesis output by the learner.

A related question of interest has to do with the nature of environments that can be modeled by
simple distributions. In particular, if Kolmogorov complexity is an appropriate measure of the intrinsic
complexity of objects in nature and if nature (or the teacher) has a propensity for simplicity, then it stands
to reason that the examples presented to the learner by the environment are likely to be generated by a
simple distribution. Against this background, empirical evaluation of the performance of the proposed
algorithms using examples that come from natural domains is clearly of interest.

The issue of collusion that we addressed briefly also opens up several avenues that merit further
investigation. Collusion and collusion-free learning need to be defined more precisely. It is of interest to
identify whether that are any concept classes that are efficiently learnable by a collusive learning strategy
(such as the one that relies on decoding training examples) but are not otherwise efficiently learnable.
We have demonstrated one possible modification to the PACS framework for learning DFA to prevent
unnatural collusion whereby the target DFA is passed to the learner as a suitably labeled example. It is
natural to inquire if the learning framework can be modified similarly for other concept clases such that
this type of collusion is prevented.

Some of the negative results in approximate identification of DFA are derived by showing that an
efficient algorithm for learning DFA would entail algorithms for solving known hard problems such
as learning boolean formulae [26] and breaking the RSA cryptosystem [17]. It would be interesting
to explore the implications of our results on efficient learning of DFA from simple examples on these
problems.
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Notes

1. Define hx� yi � bd	x
��y where bd is the bit doubling function defined as bd	�
 � ��, bd	�
 � ��, and
bd	ax
 � aabd	x
� a � f�� �g.

2. This enumeration strategy applies to any DFA and is not restricted to simple DFA alone.
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3. Note that if the sum of the lengths of the examples belonging to a set is k then clearly, the number of examples
in that set is at most k � �.

4. Recently it has been shown that if a concept class is learnable under the PACS model using an algorithm
that satisfies certain properties then simple concepts of that concept class are learnable under the simple PAC
learning model [4]
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