
Annotating images and image objects using a hierarchical
Dirichlet process model

Oksana Yakhnenko
Computer Science Department

Iowa State University
Ames, IA, 50010

oksayakh@cs.iastate.edu

Vasant Honavar
Computer Science Department

Iowa State University
Ames, IA, 50010

honavar@cs.iastate.edu

ABSTRACT
Many applications call for learning to label individual ob-
jects in an image where the only information available to the
learner is a dataset of images with their associated captions,
i.e., words that describe the image content without specifi-
cally labeling the individual objects. We address this prob-
lem using a multi-modal hierarchical Dirichlet process model
(MoM-HDP) - a nonparametric Bayesian model which pro-
vides a generalization for multi-model latent Dirichlet allo-
cation model (MoM-LDA) used for similar problems in the
past. We apply this model for predicting labels of objects
in images containing multiple objects. During training, the
model has access to an un-segmented image and its cap-
tion, but not the labels for each object in the image. The
trained model is used to predict the label for each region
of interest in a segmented image. MoM-HDP generalizes
a multi-modal latent Dirichlet allocation model in that it
allows the number of components of the mixture model to
adapt to the data. The model parameters are efficiently es-
timated using variational inference. Our experiments show
that MoM-HDP performs just as well as or better than the
MoM-LDA model (regardless the choice of the number of
clusters in the MoM-LDA model).

1. INTRODUCTION
The traditional supervised classification task requires the

use of labeled data. As more and more data becomes avail-
able, human annotation and labeling becomes prohibitively
time consuming and expensive. This is especially true in
the case of data that is derived from more than one modal-
ity (e.g., text and images; sound and images). For exam-
ple, many web data sources e.g., social network communities
such as Flickr, Facebook offer an abundant source of images
with their associated captions i.e., words that describe the
image content without specifically labeling the individual
objects in the image. In many application scenarios [5], it
is not enough to predict whether or not a particular object
appears in the image; it is necessary to be able to label in-
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dividual objects in the image.
Furthermore, in some cases we do not have objects labeled

explicitly, but with more and more types of data available,
the same information is contained in multiple data sources,
and it is of interest to find correlations between the features
of the different data sources.. Consider newspaper articles
which contain pictures of the events and the description of
the same events in text; or research articles which contain
figures and captions which describe these figures. Consider
the television news where in the video sequence voice-over
describes what is happening. Similar situations appear in
different domains - from the web, to multi-media, to biomed-
ical domain and others.

Given the expense of obtaining training datasets of images
wherein each object in the image is labeled by a human an-
notator, there is a need for methods that can, given a dataset
of images and their associated captions, learn to label indi-
vidual objects in an image. Against this background, this
paper focuses on the following problem: Given a dataset of
images and their associated captions, can we build a model
that not only predicts a caption for an entire image (the
image annotation task), but specifically labels the individ-
ual objects (or regions of interest) in the image (the image
object-label correspondence task)?

We first review the related work in the area of image anno-
tation and the previous work in the area of the object-label
correspondence.

Learning from multi-modal data, and annotation in par-
ticular has been cast as a multi-label, multiple instance learn-
ing problem [18]. In the context of image annotation each
image is represented by a bag of objects (instances), and
the corresponding image caption is represented by a bag of
words (set of labels). Zhou et al. [18] solved this problem
by mapping multiple instances within a bag into a single
meta instance and then solving the resulting single instance,
multi-label learning task by training as many binary one-
versus-all classifiers as there are class labels. It is unclear
how this approach can be used to label each individual ob-
ject in an image.

Hardoon et al. [8] have explored a kernelized version of
canonical correlation analysis, for image retrieval and anno-
tation.

Barnard et al. [2] has explored a range of models for solv-
ing the annotation and correspondence tasks. Of particular
interest to us is a multi-modal latent Dirichlet allocation
(MoM-LDA) model [5, 12] which was used in the study by
Barnard et al. [2]. MoM-LDA is a model which combines as
many latent Dirichlet allocation (LDA, [5]) models as there



are modalities in the data. Latent Dirichlet allocation is
a generative probabilistic model for independent collections
of data where each collection is modeled by a mixture over
latent factors. An advantage of LDA over other probabilis-
tic mixture models (such as probabilistic latent semantic
analysis, pLSA [9]) is that the distribution of the mixture
components is not fixed, but is flexible for each document,
thus allowing for multiple models. However a limitation of
MoM-LDA is the need to specify the number of components
of the mixture model. In practice, the model is trained for
several choices of the mixture components and the optimal
candidate for the number of clusters is chosen based on the
validation on a hold-out set. This can be expensive because
of the need to train several models. A somewhat similar
model to classify events and scenes was used by Li and Fei-
Fei [12].

Previous work [2] used global features for the image seg-
ments, such as shape, color, texture, etc. However, the re-
liance on global properties of image segments requires that
the images be segmented prior to training the model. In
contrast, by using local features of the image (obtained from
small patches sampled from the image), it is possible to train
the model on images without segmenting the images prior to
training. Furthermore, recent work in the image processing
community has shown that local representation of the image
can substantially improve the performance of the resulting
models [6]. In [2], the experiments were performed using the
Corel dataset which only provides the captions for the im-
age. In the absence of labels for individual objects or image
segments, their study provided a limited assessment on the
image object-label correspondence task on a small number
of hand-annotated objects.

In this paper, we introduce MoM-HDP, a non-parametric
generalization of the MoM-LDA model [5] using a hierarchi-
cal Dirichlet process. MoM-HDP, unlike MoM-LDA, adapts
the number of clusters based on the training data. Also un-
like previous work [5, 2] we use local features to represent the
image to enable the model to find the needed correlations
between the individual labels. We then apply this model to
solve the problem of training a probabilistic model from a
dataset of images and their associated captions to predict
both the caption (the image annotation problem) as well as
labels of individual regions of interest (the image object-label
correspondence problem).

We evaluate the performance of MoM-HDP and compare
it with MoM-LDA on the image annotation and image-label
correspondence task using a subset of VOC 2007 challenge
data which has 20 possible labels. Our choice of datasets
was motivated by the availability of labels for each region or
object in the image which although not used in training the
model, provides the ground truth needed to evaluate, un-
like previous studies [5, 2], the performance of the trained
model on the image object-label correspondence task. Our
experiments show that MoM-HDP is invariant to the num-
ber of hidden factors (unlike MoM-LDA) and has a better
generalization performance than MoM-LDA model on both
the image annotation task and the the image object-label
correspondence task.

This paper is organized as follows: We briefly describe the
MoM-LDA model and generalize it to a Dirichlet process
in Section 2. We describe the dataset, experimental setup,
evaluation procedure, and in the results of our comparison
of MoM-LDA and MoM-HDP models in Section 3. We con-

clude the paper with a summary and a brief discussion of
some directions for further research in Section 4.

2. MULTI-MODAL HIERARCHICAL DIRICH-
LET PROCESS MODEL

We begin with describing latent Dirichlet allocation and
multi-modal Dirichlet allocation, review the main princi-
ples behind the Dirichlet processes and introduce our multi-
modal hierarchical Dirichlet process model.

2.1 Notation
Let W be the vocabulary of all the possible words in the

captions, and wi = {wi1...wiN}, wij ∈ W be the caption
for image i. Let B be the vocabulary of all the possible
visual words in the pictures, and bi = {bi1...biM}, bij ∈ B

be the ’visual words’ representation of the image. Let D =
(wi,bi)

D
i=1 be the corpus of D images so that for each image

the set of caption keywords is known.

2.2 Latent Dirichlet allocation model for im-
ages and captions (MoM-LDA)

We first describe a multi-modal latent Dirichlet allocation
model (MoM-LDA) introduced by Blei and Jordan [5], and
then generalize this model using a hierarchical Dirichlet pro-
cess (MoM-HDP). Informally, the following generative pro-
cess is assumed for images and captions. The image topic
(e.g. horseback riding) generates a distribution for interme-
diate level components (e.g. horse, person, grass, fence, sky,
sun, building) and the intermediate level components gener-
ate specific words and image regions observed in the training
data (e.g. the words “horse” and“person”, and the image re-
gions which correspond to horse’s eyes, ears, person’s face,
arms and legs, etc). MoM-LDA assumes a pre-defined num-
ber of clusters which group the related entities in the modal-
ities, and it groups the related visual words and the related
words in the same clusters. In addition, the probability dis-
tribution of the clusters is different for each image-caption
pair, which is achieved by introducing a Dirichlet prior for
the distribution of clusters. Formally, the images and cap-
tions are described by the following generative process: For
each image i, pick a πi ∼ Dirichlet(α). For each caption
word j, pick a latent factor tij ∼ Mult(πi) and then pick
the word wij ∼ F (tij). Similarly for each image feature j,
pick a latent factor sij ∼ Mult(πi) and then pick the feature
bij ∼ F (sij). The graphical model for this process is shown
in Figure 1. Here F (x) can be any appropriate distribu-
tion, such as Multinomial for words and discrete features, or
Gaussian for continuous features. In our model and in our
experiments, we use discrete-valued image features (visual
words). Hence, we focus our discussion on the MoM-HDP
model based on the multinomial distribution. However, the
model described in this paper can be easily extended to han-
dle other distributions.

2.3 Dirichlet Process
A limitation of mixture models is that the need to specify

a number of components to include in the mixture (namely
K). The choice of number of the mixture components can
have a major influence on how well the model fits the data,
and its ability to generalize beyond the training data. Hence,
we consider a model based on a Hierarchical Dirichlet Pro-
cess (HDP) [17], with countably infinite number of mixture



components. We summarize the key aspects of DP, and then
HDP here. For details on the HDP and their applications
in probabilistic graphical models we refer the reader to [1],
[17] or [4].

The Dirichlet Process (DP) is a generalization of a finite
mixture model, and it assumes countably infinite number
mixture components. Unlike in the finite mixture models
where the priors for the mixture components are assumed
to be drawn from some distribution, the DP assumes that
the priors are created according to some stochastic process.

DP is parametrized by a base distribution G0 and a scal-
ing parameter α and is denoted by DP (α, G0). Let z =
{z1, z2...} be the mixture components, and let X1...XN be a
sample from the DP mixture. Then we can assume the fol-
lowing generative process for the data: draw mixture priors
β ∼ DP (α, G0). For each mixture component z = {z1, z2...}
draw parameters φz ∼ G0 which specify the distribution for
the observations X. For each instance i = 1...N draw pa-
rameters πi which specify the distribution of the mixture
components, draw a mixture component zi ∼ Mult(πi), and
from the mixture component zi draw Xi ∼ φzi

.
The two common approaches to constructing the DP are

Chinese Restaurant Process [11], and stick-breaking con-
struction [16]. In our work, we consider the latter. Intu-
itively, stick-breaking construction can be described as fol-
lows: the prior β is generated by taking a stick of length 1,
and breaking off segments of the stick proportional to the
remaining stick.

We use β ∼ GEM(α) to denote that β = (β1, β2...) is
generated according to the stick-breaking distribution. Let
u1, u2... be countably infinite proportions that are gener-
ated according to the beta distribution. Then the weights
β are defined in terms of βz = uz

∏

z′<z(1 − uz′). Such
construction ensures that β is countably infinite with each
component drawn i.i.d.

2.4 Hierarchical Dirichlet Process
We described a simple Dirichlet Process which we will use

as a basis for a more complicated model. DP assumes one
model with infinitely many mixture components for all doc-
uments, and it is a non-parametric equivalent of the prob-
abilistic latent semantic analysis (p-LSA). We would like
a learning algorithm which creates a model for each docu-
ment (just like LDA) and therefore we assume a hierarchical
Dirichlet process (HDP) to provide a non-parametric gener-
alization of the LDA model [17]. HDP assumes a separate
generative model for each document j = 1...J , and that each
model shares a collection of the mixture components. Each
model provides a probability distribution for the mixture
components (πz), and these distributions are tied between
the models via the prior β.

2.5 Hierarchical Dirichlet Process multi-modal
model (MoM-HDP)

We now apply the stick-breaking construction of the pri-
ors for the hierarchical Dirichlet process to the multi-modal
generative model. Like in the case of MoM-LDA, we assume
that each observable modality is clustered by the mixture
components, so that each word w is generated by a cluster
t, each image component b is generated by a cluster s. The
clusters for image-caption pair wi, bi have multinomial dis-
tribution parametrized by πi drawn from DP (απ, β) were β

is constructed using a stick-breaking distribution. Further-

more, the parameters for observations given their clusters
φw

t = p(w|t) and φb
s = p(b|s) are generated from some base

distribution G0 (such as a Dirichlet distribution).
We show MoM-LDA and MoM-HDP in graphical notation

in Figure 1. We also note that if the prior β is assumed to be
drawn from finite Dirichlet instead of a stick-breaking dis-
tribution, this model becomes a Dirichlet-smoothed version
of the MoM-LDA.

Figure 1: MoM-LDA model (left). Its MoM-HDP
counterpart (right).

We summarize the generative processes modeled by MoM-
HDP and MoM-LDA below.

MoM-HDP MoM-LDA

draw β ∼ GEM(α) chose priors (α1...αK)

for each z = 1, 2... for each z = 1, ..., K

draw φw
z ∼ Dirichlet(αw) draw φw

z ∼ G0

draw φb
z ∼ Dirichlet(αb) draw φb

z ∼ G0

for each image i = 1, ..., D for each image i = 1, ..., D

draw πi ∼ DP(απ, β) draw πi ∼ Dir(α1...αK)

for each word j = 1...Ni for each word j = 1...Ni

draw tij ∼ Mult(πi) draw tij ∼ Mult(πi)

draw wij ∼ Mult(φw
tij

) draw wij ∼ Mult(φw
tij

)

for each word j = 1, ..., Mi for each word j = 1, ..., Mi

draw sij ∼ Mult(πi) draw sij ∼ Mult(πi)

draw bij ∼ Mult(φb
sij

) draw bij ∼ Mult(φb
sij

)

To make the parameter estimation feasible, we assume a
truncated DP [10], and truncate β at K, so that βz = 0 for
all z > K. In this case, πi ∼ DP(απ, β) simply becomes
πi ∼ Dirichlet(απ, β1...βK). While the model has infinite
number of states, the density of the process is determined
by the first several states, and as the cut-off K increases,
the approximation improves.

Next we describe the parameter estimation procedure for
the hierarchical Dirichlet process model using variational in-
ference.

2.6 Parameter Estimation via Variational In-
ference

Let θ be the model parameters and z be all the hid-
den variables and x be the observations. The goal of fully
Bayesian inference is to estimate parameters θ which maxi-
mize the probability p(θ, z|x). Such estimation puts hidden
variables and the model parameters on equal footing. Be-
cause the exact inference is intractable we use variational
inference. The probability p(θ, z|x) can be approximated by
some distribution q∗(θ, z), such that

q
∗(θ, z) = argminq∈QKL(q(θ, z)||p(θ, z|x)

where Q is a tractable subset of distributions. In particu-
lar, if Q is a fully factorized distribution, then each of the



factors will have a closed form solution which depends on
other factors, and the solution which minimizes the original
problem is obtained in the iterative fashion, similar to the
expectation maximization procedure.

Define

Q =q(β, π, s, t, φs, φt)

=q(β)q(π)
M
∏

i=1

q(s)
N
∏

i=1

q(t)
K
∏

z=1

(

q(φb

z )q(φz

w)
)

where q(β) ∼ GEM(α) is drawn from the stick-breaking
distribution, q(π) ∼ DP(απ, β) is drawn from the Dirichlet
process, q(φz)’s are drawn from the Dirichlet distributions,
and q(s), q(t) are Multinomial.

Using mean-field approximation we get the following prop-
erty: if q(y) =

∏n

i=1 qi(yi) is a factorized distribution for
each of the factors yi, then the solution for qi(yi) has the
form qi(yi) ∝ exp(Eq−i log p(yi|y−i)) where y−i is a set of
all the factors which are not yi (see [3] for details).

The variational mean-field for the hierarchical Dirichlet
process can be viewed as a three-step process: the expec-
tation step involves optimizing hidden multinomial factors
q(s) and q(t) (equivalent E-step in the EM). The maximiza-
tion step involves parameter estimation to optimize q(φ) and
q(π) (equivalent to the M-step in the EM). The last step is
optimizing the top-level distribution q(β) (this step has no
counterpart in the standard EM).

2.6.1 Updating Dirichlet distribution factors q(π), q(φw
z ),

q(φb
z) (M-step)

Since we have truncated β at a finite K, the Dirichlet pro-
cess reduces to a finite Dirichlet distribution. Using mean-
field q(π) ∝ Eq log(p(π|t, s)) ∝ Eq log(p(t, s|π)). The opti-
mal q(π) parametrized by γ is given by standard update for
a Dirichlet distribution: q(π|γ) = Dirichlet(απβ + Ct(·) +
Cs(·)) so we use the prior γ of the form γ = απβ + Ct(·) +
Cs(·) as the update for the Dirichlet parameters, where Ct(·)
is a vector of expected counts of the values that the factor
t can take. Formally, define Ct(·) = Ct(t1...tk) where each

of Ct(tk) = Eq

∑N

i=1 1(ti,tk) (1(ti,tk) is the indicator func-
tion). Similarly Cs(·) = Cs(s1...sk) is the vector of expected
counts that the factor s can take. These expected counts
are computed using q(s) and q(t) that we describe below
(E-step).

The updates for the q(φ) are obtained similarly, and are
q(φw

z |λ
w
z ) = Dirichlet(αw + Cw(z, ·)) where λw

z = αw +
Cw(z, ·) and q(φb

z|λ
b
z) = Dirichlet(αb + Cb(z, ·)) where λb

z =
αb + Cb(z, ·). Here Cw(z, ·) = C(z, w1...wW ) is the vector
of expected counts of words of the image in cluster z and
Cb(z, ·) = C(z, b1...bB) is the vector of expected counts for
visual words in cluster z that describe the image.

2.6.2 Updating multinomial distribution factors q(t),
q(s) (E-step)

In order to introduce dependency of the data, we first
define q(tj |wi) ∝ q(tj , wi) and q(tj) can be recovered by
marginalizing over the words w. Using mean-field approxi-
mation,

q(tj |wi) = exp (Eq log(p(tj |wi))

∝ exp (Eq log(p(tj , wi))

∝ exp (Eq log π(j)) exp
(

Eq log φ
w
tj

(wi)
)

Define multinomial weights as W (tj) = exp (Eq log π(j))

and Wtj
(wi) = exp

(

Eq log φw
tj

(wi)
)

. The weights W can

be computed efficiently, namely Wtj
(wi) = exp(Ψ(λt(wi))

exp Ψ(
∑

i λt(wi)

and Wt(tj) =
exp(Ψ(γj)

exp Ψ(
∑

i γi)
where Ψ(x) = ∂

∂x
log Γ(x) is the

Digamma function (which can be computed using Taylor-
series approximation). The Dirichlet priors λ and γ are used
after updating the Dirichlet distribution factors (which was
described in the previous step).

We now show how to compute the expectation of the
multinomial weight which depends on the Dirichlet prior.
For a variable φ drawn from a Dirichlet distribution parametrized
by γ:

p(φ|γ) = e(
∑

i γi log φi−
∑

i log Γ(γi)+log Γ(
∑

i γi))

where log φi is the sufficient statistic and log Γ(
∑

i γi) −
∑

i log Γ(γi) is the log-normalization factor. Using the gen-
eral fact that the expectation of the sufficient statistic is
the first moment of the log-normalization factor w.r.t to its
natural parameter, we get Eq log φi = Ψ(γi) − Ψ(

∑

j γj).

2.6.3 Updating top-level component q(β)

Finally we summarize the updates for the stick-breaking
parameters β. Again, using mean-field it is easy to show that
q(β) ∝ Eqp(β|α) + Eqp(π|β), and so q(β) = EqGEM(β; α) +
EqDP(π; απβ), however since we truncated β at K, it be-
comes q(β) = EqGEM(β; α) + EqDirichlet(π; απβ). There
are no closed-form solutions for β, however it is possible
to use maximize q(β) using gradient ascent and update the

components of β with η
∂q(β)
∂βk

iteratively. The updates are

very similar to [13]. In order to satisfy the constraint
∑K

i=1 βi =
1 we use Quadratic Penalty method [15].

2.7 Making predictions
Given the model, we can now use it to make predictions for

the region annotation. To predict the label for the described
by b = b1...bT , we can use the word which has the highest
probability given all the visual words in the region: p(w|b).
This probability can be computed using:

p(w|b) =
T

∑

m=1

∑

zm

p(w|zm)

ˆ

p(zm|πs)p(πs|bm)dπs

≈

T
∑

m=1

∑

zm

p(w|zm)q(zm|bm)

Note that the integral can be computed efficiently using vari-
ational inference for the test region.

The label assigned to a region is then the one which gives
the highest probability wpred = arg maxwi∈W p(wi|b).

3. EXPERIMENTS AND RESULTS

3.1 Data



3.1.1 PASCAL Visual Objects Classes
We compare both MoM-LDA and MoM-HDP on the im-

age annotation and image-label correspondence tasks on a
subset of VOC 2007 challenge data [7] with 20 possible la-
bels.

In order to evaluate the performance of the model on im-
age object label correspondence, we need to assume that the
image to be labeled is segmented into regions or objects and
need to have labels for each region or object in each test im-
age. This requirement influenced our choice of the datasets
used in our experiments. Note that we do not use object-
level labels in training the model. A major goal of this work
is to explore the feasibility of using models trained on a
dataset of images and their associated annotations to per-
form both image annotation as well as labeling of individual
objects in each images. The Corel dataset used in previous
studies [2] does not include labels for objects within each
image, and hence cannot be used to assess the performance
of the model on the image object-label correspondence task.
In addition this dataset is also no longer publicly available.

The VOC 2007 database contains 2501 training images in
20 categories, from which we selected images in 7 categories
that contain roughly the same number of images/labeled re-
gions: ’boat’, ’cat’, ’cow’, ’motorbike’, ’sofa’, ’sheep’, ’train’,
resulting in a training set of 714 images (at training we also
include all the caption that came in the images, so the actual
number of captions is 20).

We rescaled the images for the maximum height of 256
pixels. We then used SIFT detector [14] to extract 128 fea-
tures for all images in the training set. These features are
invariant to rotation and occlusion, which is often present in
the images. The descriptors were clustered into 1500 clus-
ters using k-means clustering to create a codebook of ’visual
words’. Each image was then represented as a bag of visual
words, and a bag of caption words (labels). The codebook
created from the training images was used to represent the
test objects.

We then selected images from the test set in the same
categories (resulting in 1414 test images). We assume that
the test images are segmented and extract the SIFT fea-
tures from the regions, and use the codebook created at
training to represent the test objects. If the images are not
segmented, we can use standard segmentation algorithms to
segment each image into regions before processing them fur-
ther. However, the results of such segmentation may or may
not coincide with the segmentation that forms the basis of
object-level labels used as reference to evaluate the perfor-
mance of the model on the image object-label correspon-
dence task. Hence we assume here that segmented images
are provided during the test phase. Each test image has two
to three objects, resulting in a total of 3726 test objects.

We show some representative training and test images in
Figure 2 to demonstrate the variety of the images and com-
plexity of the task.

3.2 Experiments and results

3.2.1 Initialization for parameter estimation
Variational inference is susceptible to local minima. Since

one of the local minima corresponds to the setting where
all factors are equally likely, we initialize the model by ran-
domly assigning several image/caption pairs to a factor. We
set the hyperparameters α = {α, απ, αb, αw} to 1. (Given

Figure 2: Sample from the VOC 2007 training and
test images.

the large size of the training dataset, we believe that the
choice of hyperparameters is not especially critical).

3.2.2 Image annotation and region labeling
In order to assess the performance of the models on the

image annotation task, we used accuracy of annotation as
the performance measure. Let C be the predicted set of
words in a caption. Let R be the actual caption (the ac-
tual set of words that appear in the caption for a particular
image). To avoid the complication of having to deal with
multiple objects with the same name, we binarize C and R.
To measure how close C is to R we count how many ele-
ments are in common in C and R; In other words, we are
interested in the cardinality of the intersection |C ∩ R|. We

can now define accuracy as Acc = P (R|C) = |C∩R|
|C|

.

Since we have the ground truth or object-level labels for
the regions, we can also evaluate the performance of the
model on the object recognition task on the per-label basis
using standard performance measures such as precision (the
fraction of the actual objects with a given label out of all
the objects classified as such), recall (the fraction of the
objects that were assigned a particular label out of all the
existing objects with that label), and accuracy (the fraction
of correctly labeled objects in the entire set of test images).

VOC2007.
In the VOC 2007 dataset, the number of labels is 20, and

so predicting a label at random results in 5% accuracy.
We summarize the performance of MoM-LDA on the re-

gion annotation and overall image annotation as a function
of the number of the mixture components K, in Figure 3.
The best precision of MoM-LDA in terms labels assigned to
objects in the image and in terms of the caption assigned
to the image was obtained at K = 5. The performance of
MoM-HDP is less sensitive to the choice of K used to trun-
cate the HDP model. We also observe that the performance
of Mom-LDA degraded when the number of mixture com-
ponents exceeded the optimum value (K = 5 whereas the
performance of MoM-HDP was more robust with respect to
K.

While an accuracy of 34% may be viewed as poor in the
standard supervised learning setting, it is worth noting that
the more general multi-modal learning setting considered
in this paper is far more challenging (see for example, the
results reported in [2] where a similar performance measure
was used to evaluate the performance of MoM-LDA, however
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Figure 3: Performance of MoM-LDA (represented
by the solid line) and performance of MoM-HDP
(represented by the dotted line) vs the number of
mixture components. The accuracy on the region
labeling is denoted by label (region), and the over-
all accuracy on the captions constructed from the
region labels is denoted by label (caption).

Figure 4: Region annotation result: per-label preci-
sion recall on all predicted region labels. The labels
not shown in the plot had precision/recall 0.

we also note that they used a probability threshold, thus
allowing for several label to be predicted for a given region).

We also examine in detail the performance on the per-
label basis, and we show the precision/recall plots in Figure
4 for MoM-HDP.

Note that the label ’person’ has a very high recall and
low prevision, which indicates that it was often predicted as
a possible label. While we constructed the dataset by at-
tempting to include the regions which had similar frequency
distributions, we discovered that in the training data 456
captions included ’person’. Consider an image which has
many objects of which only a few have corresponding labels
in the caption. In such a scenario, the visual words associ-
ated with the image (which could be very diverse) are likely
to get assigned to the clusters associated with the few la-
bels that appear in the image caption, thereby biasing the
predictions towards those labels. We conjecture that the
sparsity of captions relative to the number of objects in the
image biases the model towards the labels that are overrep-
resented in captions. One possible approach to correcting
this bias is to use partially supervised training data and to
add region/caption pairs as additional training examples.
Another possible source of improvement is better quality
captions, i.e., captions that are descriptive of all objects in
the image.

4. CONCLUSION AND DISCUSSION
In this paper we considered a problem of semi-supervised

object recognition: Given a dataset of images and their asso-
ciated captions, can we build a model that not only predicts
a caption for an entire image (the image annotation task),
but specifically labels the individual objects (or regions of in-
terest) in the image (the image object-label correspondence
task)? The need to find such correlations between the text
and images is important for many problems in domains in

which labeled data is expensive or is not readily available.
Specifically, we have introduced MoM-HDP, a hierarchical

Dirichlet process which generalizes the MoM-LDA model [5].
MoM-HDP, unlike MoM-MDP, adapts the number of clus-
ters based on the training data. We also used local features
(visual words) to represent the image, to enable the model to
find the needed correlations between the individual labels,
and the ’visual words’ that represent the image segments.

We compared the performance of MoM-LDA and MoM-
HDP on the image annotation and image-label correspon-
dence task on a dataset with variety of labels and objects.
Our experiments show that MoM-HDP performs just as well
as or better than the MoM-LDA model (regardless the choice
of the number of clusters in the MoM-LDA model) on both
the image annotation task and the the image object-label
correspondence task.

It is only relatively recently that probabilistic models for
learning from multi-modal data and associated learning al-
gorithms have begun to receive significant attention in the
literature. For the purposes of evaluation, we restricted our
work and application to images and text, however it is of
interest to apply such models in domains with other data
types (such as sound, video sequences, and others). The
model we presented in this paper considers two modalities,
however it can be easily extended to three or more, and it
is also of interest to access the performance of this model
when more data modalities are present.

Other interesting questions remain to be answered in the
future. In this model we considered bag-of-words represen-
tation for each modality. It will be interesting to extend the
model to consider dependencies between the features into
account. In our experiments we encountered the problem
of the sparsity of the captions. It is of interest to develop
models which overcome this problem. The model we con-
sidered is a generative model. In light of the superior per-
formance of discriminative models on classification tasks, it
would be interesting to investigate discriminative correspon-
dence models.
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