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Abstract. Most learning algorithms for data-driven induction of pat-
tern classifiers (e.g., the decision tree algorithm), typically represent in-
put patterns at a single level of abstraction – usually in the form of an
ordered tuple of attribute values. However, in many applications of in-
ductive learning – e.g., scientific discovery, users often need to explore
a data set at multiple levels of abstraction, and from different points
of view. Each point of view corresponds to a set of ontological (and
representational) commitments regarding the domain of interest. The
choice of an ontology induces a set of representatios of the data and a
set of transformations of the hypothesis space. This paper formalizes the
problem of inductive learning using ontologies and data; describes an
ontology-driven decision tree learning algorithm to learn classification
rules at multiple levels of abstraction; and presents preliminary results
to demonstrate the feasibility of the proposed approach.

1 Introduction

Inductive learning algorithms (e.g., decision tree learning) offer a powerful ap-
proach to data-driven discovery of complex, a-priori unknown relationships (e.g.,
classifiers) from data. Most learning algorithms for data-driven induction of
pattern classifiers (e.g., the decision tree algorithm), typically represent input
patterns at a single level of abstraction – usually in the form of an ordered
tuple of attribute values. They typically assume that each pattern belongs to
one of a set of disjoint classes. Thus, any relationships might exist between the
different values of an attribute or relationships between classes (e.g., a hier-
archically nested class structure) are ignored. In contrast, data-driven knowl-
edge discovery in practice, occurs within a context, or under certain ontolog-
ical commitments on the part of the learner. The learner’s ontology (i.e., as-
sumptions concerning things that exist in the world) determines the choice of
terms and relationships among terms (or more generally, concepts) that are
used to describe the domain of interest and their intended correspondence with
objects and properties of the world [11]. This is particularly true in scientific
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applications of machine learning where specific ontological and representational
commitments often reflect prior knowledge and working assumptions of scien-
tists. When several independently generated and managed data repositories are
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Fig. 1. Ontology-driven inductive learning

to be used as sources of data in
a learning task, the ontological
commitments that are implicit in
the design of the data reposito-
ries may or may not correspond
to those of the user (typically
a scientist familiar with the do-
main e.g., a biologist) in a given
context [6], [7]. For example, in
one context, the scientist may
not consider it necessary to dis-
tinguish between different sub-
families of a family of proteins or

different types of sequence patterns or structural features of proteins. In other
cases, such distinctions may be desirable. In computational characterization of
protein sequence-structure-function relationships, it is often useful to consider
alternative representations of protein sequences and different notions of protein
function [2]. In scientific discovery applications, because users often need to ex-
amine data in different contexts from different perspectives and at different levels
of abstraction, there is no single universal ontology that can serve all users, or
for that matter, even a single user, in every context. Hence, methods for learn-
ing from ontologies and data are needed to support knowledge acquisition from
heterogeneous distributed data.

Making ontological commitments (that are typically implicit in a data set)
explicit enables users to explore data from multiple perspectives, and at differ-
ent levels of abstraction. Some aspects of ontology guided learning have received
attention in the literature. Walker [13] first used the concept taxonomies in infor-
mation retrieval from large database. Han et al. [4] proposed attribute-oriented
induction of multi-level classification rules using background knowledge in the
form of concept hierarchies. They also proposed a method to discover associa-
tion rules at multiple levels of abstraction. Quinlan [9] suggested pre-processing
approaches to deal with tree-structured attributes (ISA hierarchy), re-encoding
the training examples in terms of an equivalent set of purely nominal attributes.
Almuallim [1] proposed handling tree-structured attributes directly by routing
examples in hierarchies, which count the class frequency of every concept node,
then apply decision tree learning algorithm to score and find the best concept
node in the hierarchy to build the decision tree. Taylor et al [12] proposed an
algorithm for rule learning using taxonomies and data.

Against this background, it is of interest to formalize the problem of learn-
ing from ontologies and data and to explore the design space of algorithms for
data-driven knowledge acquisition using explicitly specified ontologies. In this
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paper, we formalize the problem of inductive learning using ontologies (as a
form of background knowledge or working assumptions) and data. We present
an ontology-driven decision tree learning algorithm to learn classification rules
at multiple levels of abstraction. We present some preliminary results to demon-
strate the feasibility of the proposed approach. We briefly examine several vari-
ations of the proposed approach and a general strategy for transforming tra-
ditional inductive learning algorithms into ontology-guided inductive learning
algorithms for data-driven discovery of relationships at multiple levels of ab-
straction.

2 Role of Ontologies in Learning from Data

An ontology specifies the terms or concepts and relationships among terms and
their intended correspondence to objects and entities that exist in the world [3],
[11]. A formal ontology is specified by a collection of names for concept and
relation types organized in a partial ordering by the type-subtype relation [11].
In philosophy, an ontology corresponds to a nomenclature of all things (entities,
properties of entities, and relations among entities) that exist and as such, there
is no room for multiple ontologies. However, such a view is untenable in practice.
Consequently, we adopt the position that an ontology corresponds to a particular
conceptualization of the world from a specific point of view.

Syntactically, given a logical language L, an ontology is a tuple < V,A >,
where the vocabulary V ⊂ Sp is some subset of the predicate symbols ofL and
the axioms A ⊂ W are a subset of the well-formed formulas of L [5]. Taxonomies
that specify hierarchical relationships among concepts in a domain of interest are
among some of the most commonly used ontologies. Normally, we would draw
this mapping in the form of a tree, or a directed acyclic graph (DAG).

As is usually the case in formulations of inductive learning problems, we will
assume that each instance is described by a tuple of attribute values and that a
concept corresponds to a set of instances that satisfy specific constraints on the
values of their attributes. Note that there is a certain duality between attributes
and concepts. For instance, instances in a particular domain may be described
in terms of two attributes: color and size. Now, blue, a possible value for the
attribute color is itself a concept (composed out of all the instances that have
color blue). Thus, it is possible for each attribute to have an ontology associated
with it.

In what follows, we consider several cases (ordered by their complexity) in
which ontologies may play a role in learning from data.

a) Each attribute has associated with it, an ontology in the form of a hierarchy.
A hierarchical ontology is the simplest form of ontology, and is typically rep-
resented by a tree. Every node in the tree represents a concept. The topmost
root concept is the name of the corresponding attribute. Every link in the
tree represents an interrelationship between two nodes. The interrelationship
between concepts could be the relation of ISA, Instance-Of, or Part-Of. For
an attribute with a finite domain of possible values, each value corresponds
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to a primitive concept (or a leaf node) in a hierarchical ontology. An at-
tribute without a hierarchically structured ontology corresponds to a single
level taxonomy with attribute name as root, and the attribute values as the
children leaf nodes of root.

b) Each attribute has a single ontology associated with it. However, concepts
that appear in ontologies associated with different attributes can be related.
This results in ontologies that can be represented using directed acyclic
graphs (DAGs). (this would yield more complicated ontologies than a set
of competing hierachies).

The next section describes an ontology-driven decision tree construction al-
gorithm for the first of the four cases outlined above.

3 Ontology-Guided Decision Tree Learning Algorithm

We consider decision tree learning in a scenario in which each attribute has
a single hierarchically structured ontology (e.g., a concept taxonomy) associ-
ated with it and each instance is labeled with one of m disjoint class labels.
Ontology-driven Decision Tree (ODT) learning algorithm is a top-down multi-
level ontology (concept hierarchy) guided search in a hypothesis space of decision
trees.

Recall that the basic decision tree algorithm recursively selects at each step,
an attribute from a set of candidate attributes based on an information gain cri-
terion [9]. Thus, each node in a partially constructed decision tree has associated
with it, a set of candidate attributes to choose from for growing the tree rooted
at that node.

In our case, each attribute has associated with it, a hierarchically structured
taxonomy over possible values of the attribute. Thus, the learning algorithm
has to choose not just a particular attribute, but also an appropriate level of
abstraction in the taxonomy. The basic idea behind the algorithm is to start
with abstract attributes (i.e., groupings of attribute values that corresponds
to nodes that appear at higher levels of a hierarchically structured attribute
value taxonomy). Thus, each node of a partially constructed decision tree has
associated with it, a set of candidate attributes drawn from the taxonomies
associated with each of the individual attributes. The algorithm maintains for
each node in the partially constructed decision tree, a set of pointers to nodes
on the frontier, computes information gain for the corresponding attributes, and
selects from the set of candidate attributes under consideration, one with the
largest information gain.

It is useful to introduce some notation to help describe our algorithm.
Let the set of attributes used to describe instances in the data set be
A = {A1, A2, ..., An}. Let the set of class labels be O = {O1, O2, ..., Om}.
Each attribute Ai, has associated with it, a corresponding taxonomy Ti.
The set of ontologies is denoted by T = {T1, T2, ..., Tn}. Note that
the root node of taxonomy Ti is Ai. Let Ψ(c) denote the children of
a node c. The training data set is denoted by S. Each leaf node of
a partially constructed decision tree has associated with it, a subset of
the training data set. We will associate with each such set of examples,
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Fig. 2. Vector of Pointers: concept frontier
across different attribute taxonomies

n pointers that point to n concepts
in n taxonomies (one for each at-
tribute). Let P = {p1, p2, ..., pn} de-
note such a vector of pointers where
pi is concept in taxonomy Ti. A vec-
tor of pointers is called an ending
vector if each pi is a leaf node in
the corresponding taxonomy Ti. We
use Φ(P ) = true to denote that
P is an ending vector. Note that
Φ(P ) = true if and only if ∀pi ∈
P, Ψ(pi) = {}.

Our current implementation selects an attribute from a set of candidate
attributes (specified by the vector of pointers) that yields the maximum
reduction in entropy as the splitting criterion to partition the dataset [9].
However, other splitting criteria could also be adopted directly in our algorithm
(e.g. Gini Index, one-sided purity, one-sided extremes, etc).

ODT algorithm:
ODT (Examples S, Attributes A, Taxonomies T , Class labels O, Vector of
Pointers P , Default Df)

1. If decision tree is NULL Then create a root node for decision tree, set all ex-
amples to S, and set P = {A1, A2, ..., An}, and setDf = Majority Class(S)

2. If S is empty Then assign the label Df to the node.
Else If every instance in S has the same class label o Then Return(o)
Else If Φ(P ) is true Then assign the label Df to the node.

3. Calculate the best attribute Bj and best concept b by calling function
Choose-Best(P, S, A, O)

4. Set the best partition value set Bvalue = Ψ(b)
5. Partition the examples S using the concepts in Bvalue

For each value Vi in Bvalue Do
Si = subset of S with concept Vi

j = order of Bj in A
update the Pointing Vector P to P ′ by substituting pj for Vi

construct the subtree by callingODT(Si, A,O, P
′,Majority V alue(Si))

add new branch with label Vi and connect to its subtree.
End

6. Return the Decision Tree

Choose-Best(PointingVectors P , Examples S, Attributes A, Class labels O)
/* Returns the attribute whose expansion will yield the best information
gain, selected from P = {p1, ...pn} */
Return argmax

i
Gain(S, pi)

The ontology-driven decision tree algorithm can be viewed as a best-first
search through the hypothesis space of decision trees defined with respect to a
set of attribute taxonomies.
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3.1 Illustration of the Working of the ODT Algorithm

The preliminary test of our algorithm is based on a simple customer purchase
database that used in Taylor’s paper [12]. Each of the attributes used to describe
instances in this data set has a taxonomy associated with it. The two taxonomies
are ISA hierarchies for Beverage and Snack. For concepts in the Beverage taxon-
omy, there are three different levels of abstraction, and in the Snack taxonomy,
we have two different levels of abstraction. The class has three values: Young,
Middle-aged, and Old. Figure 3 shows the two taxonomies, and Figure 4 shows
the dataset and the induced tree.

Beverag

Soda Dairy Beverage Fruit Juice
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Diet
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Fig. 3. Two taxonomies defined over two attributes

Customer Item1 Item 2 Class
1 Diet Coke Ranch Dorito Young
2 AB OJ CD Cereal Old
3 Reg Coke Reg Dorito Young
4 Reg Coke SB Chips Mid-Aged
5 Diet Coke Nacho Dorito Young
6 Diet Pepsi BBQ Frito Mid-Aged
7 Reg Pepsi Reg Frito Mid-Aged
8 Skim Milk CD Cereal Old
9 Reg Pepsi BBQ Frito Mid-Aged
10 CD OJ Bread Old
11 Reg Pepsi Popcorn Young
12 AB Egg Nog CD Steak Old

ALL

82: 2:

1: 1: 3: 3:

Attr1: [Soda, Dairy, Juice]
Attr2: [Dorito, Frito, SBChips

Popcorn, Bread, Cereal, Steak]

Attr1: [Pepsi, Coke]
Attr2: [Dorito, Frito, SBChips, Popcorn]

SodaDairyJuice

SBChips

Popcorn Dorito

FritoOld

Young Mid-
Aged

Old

Young Young

Fig. 4. Sample customer purchase database and the induced decision tree

We start our search with the Pointing Vectors pointing to the root of both
taxonomies. The information gain associated with the attribute Beverage is
higher than that associated with Snack. Consequently, the attribute correspond-
ing to the root of the Beverage hierarchy is selected to partition the original data.
This yields a 3-way split at the root of the decision tree. Two examples are clas-
sified as Old on the basis of the attribute corresponding to the concept “Dairy
Beverage”, and two examples are classified as Old on the basis of the attributed
corresponding to the concept concept “Fruit Juice”. The remaining eight exam-
ples need to be partitioned further. The first element p1 in Pointing Vector for
these eight examples changes to “Soda” in the Beverage Taxonomy, and hence
the possible choice of attribute values will be [Pepsi, Coke]. While the second
element p2 continues to the root of the Snack Taxonomy, the possible attribute
value set will include all the available concepts in the first level of this taxonomy.
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This time p2 yields a better value for information gain and all eight examples are
correctly classified. The resulting decision tree corresponds to the rules: If Soda
and Dorito Then Young; If Soda and Frito Then Midle-aged; If Dairy Then Old;
If Juice Then Old. Note that many of the rules discriminate among instances
belonging to the three classes using attributes that correspond to concepts that
reside at higher levels of the corresponding attribute taxonomies.

4 Summary and Discussion

Many practical applications of machine learning (e.g., data-driven scientific dis-
covery in computational biology [2] call for exploration of a data set from multiple
perspectives (that correspond to multiple ontologies). Different ontologies induce
different representations of the data and transformations of the hypothesis space.
For example, hierarchically structured taxonomies over values of attributes facil-
itate discovery of classifiers at different levels of abstraction. The work described
in this paper represents a tentative first step toward formulating the problem
of ontology-guided data-driven knowledge discovery. We have demonstrated an
extension of the standard decision tree learning algorithm that can exploit user-
supplied ontologies to induce classification rules at higher levels of abstraction.

Work in progress is aimed at:

a) Systematic experimental evaluation of the proposed algorithm on real-
world data sets that are encountered in computational biology (e.g., data-
driven characterization of macromolecular sequence-structure-function rela-
tionships), text classification, among others.

b) Extensions of the proposed approach to accommodate use of multiple hierar-
chically structured ontologies for each attribute, as well as DAG-structured
(as opposed to tree-structured) ontologies.

In related work, we are exploring ontology-guided learning algorithms for do-
mains in which:

a) Each class (target attribute) has a tree-structured concept hierarchy (e.g., a
taxonomy) associated with it. For example, in a pattern classification task, it
may be necessary to classify an instance at different levels of abstraction (e.g.,
a soft drink into Pepsi, Cola, carbonated beverage). Higher level concepts
correspond to generalizations of the basic level target concepts.

b) Each instance may belong to more than one class. (For instance, an individ-
ual may be classified as a parent, student, wife, friend. A protein may have
multiple not necessarily mutually exclusive functions) [10].

c) There is a need to integrate information from multiple heterogeneous, au-
tonomous, distributed data and knowledge sources from different ontological
view points [6],[7] (e.g., in scientific discovery environments).
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