
Learning Classifiers from Semantically
Heterogeneous Data

Doina Caragea, Jyotishman Pathak, and Vasant G. Honavar

Artificial Intelligence Research Laboratory
Department of Computer Science

Iowa State University
Ames, IA 50011-1040, USA

{dcaragea,jpathak,honavar}@cs.iastate.edu

Abstract. Semantically heterogeneous and distributed data sources are
quite common in several application domains such as bioinformatics and
security informatics. In such a setting, each data source has an associ-
ated ontology. Different users or applications need to be able to query
such data sources for statistics of interest (e.g., statistics needed to learn
a predictive model from data). Because no single ontology meets the
needs of all applications or users in every context, or for that matter,
even a single user in different contexts, there is a need for principled
approaches to acquiring statistics from semantically heterogeneous data.
In this paper, we introduce ontology-extended data sources and define
a user perspective consisting of an ontology and a set of interoperation
constraints between data source ontologies and the user ontology. We
show how these constraints can be used to derive mappings from source
ontologies to the user ontology. We observe that most of the learning al-
gorithms use only certain statistics computed from data in the process of
generating the hypothesis that they output. We show how the ontology
mappings can be used to answer statistical queries needed by algorithms
for learning classifiers from data viewed from a certain user perspective.

1 Introduction

Recent advances in computing, communications, and digital storage technologies,
together with development of high throughput data acquisition technologies have
made it possible to gather and store large volumes of data in digital form. For
example, advances in high throughput sequencing and other data acquisition
technologies have resulted in gigabytes of DNA, protein sequence data, and gene
expression data being gathered at steadily increasing rates in biological sciences;
organizations have begun to capture and store a variety of data about various
aspects of their operations (e.g., products, customers, and transactions); complex
distributed systems (e.g., computer systems, communication networks, power
systems) are equipped with sensors and measurement devices that gather and
store a variety of data for use in monitoring, controlling, and improving the
operation of such systems.

R. Meersman, Z. Tari (Eds.): CoopIS/DOA/ODBASE 2004, LNCS 3291, pp. 963–980, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

964 D. Caragea, J. Pathak, and V.G. Honavar

These developments have resulted in unprecedented opportunities for large-
scale data-driven knowledge acquisition with the potential for fundamental gains
in scientific understanding (e.g., characterization of macro-molecular structure-
function relationships in biology) in many data-rich domains. To exploit these
opportunities scientists at different institutions need to collaborate and share
information and findings in a field or across various research fields [1]. Thus,
researchers working at one level of a problem may benefit from data or results
developed for a different level of that problem or even for a different problem.

However, more often than not, it is not easy for a scientist to be able to use
information obtained from a different scientific community. Furthermore, even
scientists working on the same problem at different institutions find it difficult
to combine their results. These difficulties arise because of the large volume of
information that would need to be moved around or because of privacy consid-
erations. Even in cases when data can be shared, there are difficulties coming
from the heterogeneity of the data collected by different scientific communities
or organizations. This heterogeneity could be in terms of structure (relational
databases, flat files, etc.) or content (different ontological commitments, which
means different assumptions concerning the objects that exist in the world, the
properties or attributes of the objects, the possible values of attributes, and their
intended meaning) [2].

Against this background, we consider the problem of data driven knowl-
edge acquisition from autonomous, distributed, semantically heterogeneous data
sources [3]. Our approach to this problem comes from revisiting the traditional
formulation of the problem of learning from data and observing that most of
the learning algorithms use only certain statistics computed from the data in
the process of generating the hypotheses that they output. 1 This observation
yields a natural decomposition of a learning algorithm into two components: an
information extraction component that formulates and sends a statistical query
to a data source and a hypothesis generation component that uses the resulting
statistic to modify a partially constructed hypothesis (and further invokes the
information extraction component as needed). The information extraction from
distributed data entails decomposing each statistical query q posed by the in-
formation extraction component of the learner into sub-queries q1, · · · , qK that
can be answered by the individual data sources D1, · · · , DK , respectively, and
a procedure for combining the answers to the sub-queries into an answer to the
original query q. In addition to that, in order to be able to use machine learn-
ing approaches to acquire knowledge from semantically heterogeneous data, a
variant of the problem of information integration [2] needs to be solved.

The work described in this paper extends current approaches to information
integration [2] and our previous work on learning from distributed data to de-
velop principled methods for learning classifiers from semantically heterogeneous
data [4]. This is achieved by associating an ontology with each data source and
thus, reducing the problem of learning from heterogeneous data to the problem of

1 In general, a statistic is simply a function of data and any kind of query that returns
such a statistic is called a statistical query. Examples of statistics include counts of
instances that have specified values for a subset of attributes, called join counts.

Learning Classifiers from Semantically Heterogeneous Data 965

developing sound techniques for answering statistical queries from semantically
heterogeneous data sources (see Figure 1).

q
Statistical Query

Decomposition
Query

Answer
Composition

q

q

1

2

Query Formulation

User Ontology O

D

D
2

1

User Ontology O

, O

, O

1

2

O1

O2

Mappings
M(O−>Oi)

D , O
K K

OK
q

K

Eager Learning

Hypothesis Generation Result

O

Fig. 1. Learning from Semantically Heterogeneous Distributed Data: each data source
has an associated ontology and the user provides a global ontology and mappings from
the local ontologies to the global ontology.

In the rest of the paper we identify sufficient statistics for a class of learning
algorithms and show how we can gather these statistics from semantically het-
erogeneous data sources from a certain user perspective. To do that we define
ontology-extended data sources and interoperation constraints between ontolo-
gies and present a way to automatically infer ontology mappings from the set of
interoperation constraints specified by a user. We show how these mapping can
be used to gather sufficient statistics. We demonstrate our approach using the
Naive Bayes (NB) algorithm.

2 Statistics for Learning from Data

In a distributed setting, the data are distributed over data sources D1, · · · , DK ,
where each data source contains only a fragment of the whole data. If the data is
also semantically heterogeneous, each data source Di has an associated ontology
Oi. We assume that a user who wants to use some of the data available in the
system for learning classifiers has also an associated ontology OU .

Definition : The problem of learning from semantically heterogeneous data
can be defined as follows: given the distributed, semantically heterogeneous data
sources D1, · · · , DK with the associated ontologies O1, · · · , OK and a user on-
tology OU , a hypothesis class H and a performance criterion P , the task of the
learner L is to output a hypothesis h ∈ H that optimizes P by integrating the
data sources D1, · · · , DK according to the user ontology OU .

Our approach to the problem of learning from semantically heterogeneous
data relies on sufficient statistics.

Definition [5]: A statistic s(D) is called a sufficient statistic for a parameter
θ if s(D) (loosely speaking) provides all the information needed for estimating

966 D. Caragea, J. Pathak, and V.G. Honavar

the parameter θ from data D. Thus, sample mean is a sufficient statistic for
mean of a Gaussian distribution.

We can generalize this notion of a sufficient statistic for a parameter θ to
yield the notion of a sufficient statistic sL(D, h) for learning a hypothesis h
using a learning algorithm L applied to a data set D [4]. Trivially, the data
D is a sufficient statistic for learning the hypothesis h using L applied to D.
However, we are typically interested in statistics that are minimal or at the very
least, substantially smaller in size than the whole data set D.

We observed that a large class of learning algorithms such as Naive Bayes [6],
Bayesian Networks [7,8], Bags of Words [6], Decision Trees [9], Relational Learn-
ing [10, 11], NB-k [12], Association Rules [13] etc. need only sufficient statistics
of type join count computed from the data in the process of generating a hy-
pothesis.

For some learning algorithms the sufficient statistics needed to generate a
hypothesis can be computed in one step (e.g., Naive Bayes), while for others
it is necessary to interleave statistics gathering and hypothesis generation (e.g.,
Decision Tree learning algorithm would first obtain the sufficient statistics for
a partial hypothesis h1 consisting of a single node, then follow up with queries
for additional statistics needed to iteratively refine h1 to obtain a succession of
partial hypotheses h1, h2, · · · culminating in h, the final decision tree).

Naive Bayes Classifier

Learning Phase:
For each class cj and each attribute value ai compute the probabilities P (cj)
and P (ai|cj) based on their frequencies over the training data.

Classification Phase:
Given a new instance x =< a1, · · · , an > to be classified

Return cNB(x) = arg max
cj∈C

P (cj)
n∏

i=1

P (ai|cj)

Fig. 2. Naive Bayes Algorithm

We will illustrate our approach to the problem of learning from semantically
heterogeneous data using the Naive Bayes algorithm as an example.

2.1 Sufficient Statistics for Naive Bayes Algorithm

In Naive Bayes framework (Figure 2), each example x is described by a conjunc-
tion of attribute values, i.e. x =< a1, · · · , an >. The class label of an example can
take any value from a finite set C = {c1, · · · , cm}. We assume that the attribute
values are conditionally independent given the class label. A training set of la-
beled examples D = {< x1, y1 >, · · · , < xt, yt >} is presented to the algorithm.

Learning Classifiers from Semantically Heterogeneous Data 967

During the learning phase, a hypothesis h, represented as a set of probabili-
ties P (cj) and P (ai|cj), is learned from the training set. During the evaluation
phase, the learner is asked to predict the classification of new instances x. The
set of probabilities P (cj) and P (ai|cj), representing the hypothesis, can be com-
puted based on counts of the form tj = countD(cj), and tij = countD(ai|cj).
Thus, these counts represent sufficient statistics for the hypothesis build during
the learning phase of Naive Bayes classifiers and can be computed in one pass
through the data.

The Naive Bayes algorithm for learning from data can be easily extended to
yield an algorithm for learning from horizontally distributed data by computing
the counts at the distributed data sources and combining them at a central
location to give a global count.

3 Answering Statistical Queries from Ontology-Extended
Data Sources

In order to learn classifiers from semantically heterogeneous distributed data,
techniques need to be developed for answering statistical queries, posed by the
learner in terms the user ontology OU , from the heterogeneous data sources. To
achieve this we introduce the notion of ontology-extended data sources, which
allows us to perform sound information integration. Our model is inspired from
a similar model called ontology-extended relational algebra described in [14]. Al-
though we can view a collection of physically distributed, autonomous, hetero-
geneous data sources as though they were relational databases [3], we will use
the term data sources and not relational databases in what follows, to point out
that, in principle, our data sources can be any kind of data sources (e.g., flat
files, relational databases, web pages etc.). We will explain the concepts in this
section using the following example.

3.1 Example

Suppose a company C1 records information about weather in some region of
interest R. From C1’s point of view, Weather is described by the attributes Tem-
perature, Wind, Humidity and Outlook. An ontology O1 associated with this data
could tell us that WindSpeed is part of the Wind attribute description (called
part-of relationship) and that Sunny, Rainy, Cloudy and Snowy are all Outlook
descriptions (called is-a relationship). It can also tell us that the Temperature
is measured in degrees Fahrenheit and the WindSpeed is measured in miles per
hour. The data D1 that this company collects can be stored in a table as shown
in Table 1.

Suppose that another company C2 collects information about weather in the
same region R. From C2’s point of view Weather is described by the attributes
temperature denoted Temp, Wind, Humidity and precipitations denoted Prec.
The ontology O2 associated with its data tells us that Speed and Direction are
both parts of the Wind attribute (part-of relationship) and that Snow, Rain and
NoPrec are both Prec (is-a relationship). This ontology also stores information

968 D. Caragea, J. Pathak, and V.G. Honavar

Table 1. Data set D1: Weather Data collected by company C1

Day Temperature WindSpeed Humidity Outlook
1 20 16 67 Cloudy
2 10 34 53 Sunny
3 17 25 62 Rainy

about the amount of precipitation by quantifying the precipitation values. For
example, when recording the precipitation for one day, one can say Rain or Ligh-
tRain or HeavyRain etc. (so LightRain is-a description of Rain). Furthermore,
the ontology tells us that Temp is measured in degrees Celsius and that Speed is
measured in kilometers per hour. Thus, the data D2 collected by this company
looks like the one shown in the Table 2.

Table 2. Data set D2: Weather Data collected by the company C2

Day Temp WindSp WindDir Humidity Prec
1 3 24 N 67 Rain
2 -2 50 NW 53 LightRain
3 0 34 NE 62 NoPrec

Suppose that a user U , having his or her own semantic about the weather
domain, wants to infer some global information about weather in region R using
the data collected by both C1 and C2. Assume that in this user ontology OU ,
Temperature (measured in degrees Fahrenheit), Wind described by WindSpeed
(measured in mph) and WindDir, Humidity and Precipitations are the significant
attributes. In order to be able to use simultaneously both data sources D1 and
D2, the user needs to specify mappings from the data source ontologies O1
and O2 to his ontology OU . For example, the user would map Temperature in
O1 and Temp in O2 to Temperature in OU ontology. The user needs also to
specify a conversion function to convert Temp values in O2 from degrees Celsius
to Fahrenheit. Similarly, the user defines mappings and conversion functions
for WindSpeed. With respect to Precipitations, the user observes that Outlook
in O1 and Prec in O2 can be mapped to Precipitations in OU . Also Rainy in
O1 can be mapped to Rain in OU etc. In principle, a different user U ′ with a
different semantic (ontology OU ′) may also want to use the data sources D1
and D2 for weather analysis. Similar to the first user, this user needs to specify
mapping and conversion functions from the data source ontologies to his or her
own ontology. Thus, every user can use the available data sources from his or
her own perspective.

Learning Classifiers from Semantically Heterogeneous Data 969

3.2 Ontologies and Mappings

Having the above example in mind, we will formally define the terms used, by
extending the definitions in [14] from relational databases to general data sources
(represented as tables).

Definition [14]: Let S be a partially ordered set under the ordering ≤. We
say that an ordering � defines a hierarchy on S if the following three conditions
are satisfied:

• x � y ⇒ x ≤ y, ∀x, y ∈ S (we say that (S, �) is more concise than (S, ≤)),
• (S, ≤) is the reflexive, transitive closure of (S, �),
• no other ordering �, which is more concise than (S, ≤), satisfies the above

two conditions.

Example : Let S = {Weather, Wind, WindSpeed}. We can define a partial
ordering ≤ on S according to the part-of relationship. Thus, Wind is part-of
the Weather description, WindSpeed is also part-of the Weather description,
and WindSpeed is part-of Wind description. Besides, everything is part-of it-
self. Therefore, (S, ≤) = {(Weather, Weather), (Wind, Wind), (WindSpeed,
WindSpeed), (Wind, Weather), (WindSpeed, Weather), (WindSpeed, Wind)}.
It follows that (S, �) = {(Wind, Weather), (WindSpeed, Wind)} is the only
one hierarchy associated with the order determined by the part-of relationship.
Furthermore, (S, ≤) is the reflexive, transitive closure of (S, �).

Let Λ be a finite set of strings that can be used to define hierarchies for a set
of terms S. For example, Λ may contain strings like is-a, part-of corresponding
to is-a and part-of relationships, respectively.

Definition [14]: An ontology O (over terms in S) with respect to the partial
orderings contained in Λ is a mapping Θ from Λ to hierarchies on S defined
according to orderings in Λ.

In other words, an ontology associates orderings to their corresponding hi-
erarchies. Thus, if is-a ∈ Λ, then Θ(is-a) will be the is-a hierarchy associated
with the set of terms in S. For example, Figures 3, 4 and 5 show the ontologies
associated with the data sets D1 and D2, and the user ontology OU , respectively,
when Λ = {is-a, part-of}. In this case, the ontologies consist of is-a and part-of
hierarchies.

As mentioned before, we want to associate ontologies O1, · · · , OK with dis-
tributed data sources D1, · · · , DK . For a user having an ontology OU to be able
to ask queries over several autonomous heterogeneous data sources, the user
needs to specify mappings from the data source ontologies O1, · · · , OK to the
user ontology OU , so that all the ontologies O1, · · · , OK are integrated according
to the ontology OU .

Definition [14,15]: Let (H1, �1), · · · , (HK , �K) be a set of K hierarchies de-
termined by the same relationship ord (e.g., is-a) on the sets of terms S1, · · · , SK ,
respectively, and let (HU , �U) be a user ontology determined by the relationship
ord on a set of terms S. A set of interoperation constraints IC(ord) is a set of
relationships that exist between elements from hierarchies Hi and elements from
the hierarchy HU . Thus, for two elements x ∈ Hi and y ∈ HU we can have one
of the following IC’s - x : Hi = y : HU or x : Hi �= y : HU or x : Hi ≤ y : HU or
x : Hi �≤ y : HU .

970 D. Caragea, J. Pathak, and V.G. Honavar

Snowy

Outlook

Sunny Rainy Cloudy

Humidity WindTemperature

Weather

Humidity OutlookTemperature Wind

Speed
Wind

Fig. 3. Ontology O1 associated with the data source D1

Speed

Temp Wind Humidity Prec

Weather

Humidity Prec

Rain SnowNoPrec

Moderate
Rain

Light
Rain

Heavy
Rain

Light Moderate Heavy
Snow Snow Snow

Temp Wind

 Direction

Fig. 4. Ontology O2 associated with the data source D2

Example : For the weather example, if we consider the is-a hierarchies as-
sociated with the data sources D1 and D2 (i.e., H1(is-a) and H2(is-a)) and
the is-a hierarchy HU (is-a), we have the following interoperation constraints,
among others: Temp : H2(is-a) = Temperature : HU (is-a), Humidity : H1(is-
a)�= Wind : HU (is-a), Rainy : H1(is-a) �≤ LightRain : HU (is-a), HeavyRain :
H2(is-a)≤ Rain : HU (is-a), etc.

Definition : A user perspective UP with respect to a set of ontologies
O1, · · · , OK is defined by a user ontology OU and a set of interoperation con-
straints IC from hierarchies in O1, · · · , OK to hierarchies in user ontology OU .
We write UP = (OU , IC). In particular, the ontologies O1, · · · , OK and OU

could be simply hierarchies.

Learning Classifiers from Semantically Heterogeneous Data 971

Wind

Wind Humidity

Weather

Wind
Speed

Wind
Dir

Humidity

Rain SnowNoPrec

Moderate
Rain

Light
Rain

Heavy
Rain

Light Moderate Heavy
Snow Snow Snow

Temperature Precipitations

PrecipitationsTemperature

Fig. 5. User ontology OU

Definition : Let (H1, �1), · · · , (HK , �K) be a set of K hierarchies and UP =
(HU , IC) a user perspective with respect to the hierarchies H1, · · · , HK . We
say that the hierarchies H1, · · · , HK are integrable according to the hierarchy
(HU , �) in the presence of the interoperation constraints IC (or equivalently
HU is the integration hierarchy of H1, · · · , HK) if there exist K injective partial
mappings φ1, · · · , φK from H1, · · · , HK , respectively, to HU with the following
two properties:

• For all x, y ∈ Hi, if x �i y then φi(x) � φi(y) (we call this order preserva-
tion);

• For all x ∈ Hi and y ∈ HU , if (x : Hi op y : HU) ∈ IC, then φi(x) op y in
the hierarchy HU (we call this interoperation constraints preservation).

Thus, a set of ontologies are integrable from a user perspective, if a set of
mappings from the hierarchies in the local ontologies to the user hierarchies in the
user ontology (satisfying the properties in the integration hierarchy definition)
can be found.

We propose a simple algorithm for finding a set of mappings that witness
the integration of the hierarchies H1, · · · , HK according to a user perspective
UP = (OU , IC) (see Figure 6). It is easy to check if the set of mappings found by
this algorithm is consistent with the interoperation constraints and if it satisfies
the order preservation property (see [15] for the details of the algorithm). We
use the resulting set of mappings to integrate a set of ontologies O1, · · · , OK

according to a user ontology OU in the presence of the interoperation constraints
IC = {IC(ord)|ord ∈ Λ}.

Example : Let H1, H2 and HU be the is-a hierarchies in Figures 3,
4 and 5, respectively. Let IC(is-a)= {Temp : H2(is-a) = Temperature :
HU (is-a), Outlook : H1(is-a) = Precipitations : HU (is-a), Prec : H2(is-

972 D. Caragea, J. Pathak, and V.G. Honavar

Finding Mappings
Input: a set of hierarchies H1, · · · , HK and a user perspective UP = (HU , IC).
Output: a mappings set MS.
{
MS = φ
for (each Hi)

Name Matching Mappings:
for (each term ∈ Hi)

If (term ∈ HU),then
MS → MS ∪ {term : Hi → term : HU }
(unless there is a constraint that does not allow this)

Equality Constraints Mappings:
for (each equality constraint term1 : Hi = term2 : HU)

MS → MS ∪ {term1 : Hi → term2 : HU }
If (MS is consistent with the non-equality constraints)

return MS
Else

eliminate mappings that are inconsistent with the integrity constraints
return MS

}

Fig. 6. Algorithm for finding mappings between a set of data source hierarchies and a
user hierarchy

a)= Precipitations : HU (is-a), Sunny : H1(is-a)= NoPrec : HU (is-a),
Rainy : H1(is-a)�≤ Rain : HU (is-a), LightRain : H2(is-a)≤ Rain : HU (is-
a), Rainy : H1(is-a)�≤ Rain : HU (is-a), · · · }. According to the first step of the
Finding Mappings algorithm (name matching mappings), we add the mappings
in Table 3. According to the second step of the algorithm (equality constraint
mappings), we add the mappings in Table 4. We can easily check that all the
mappings constructed are consistent with the non-equality constraints and sat-
isfy the order preservation property.

Table 3. Mappings from H1(is-a) and H2(is-a) (corresponding to the data sets D1

and D2, respectively) to HU (is-a) found using name matching strategy.

φ1 φ2

Temperature → Temperature -
Wind → Wind Wind → Wind

Humidity → Humidity Humidity → Humidity

- Rain → Rain

- LightRain → LightRain

- ModerateRain → ModerateRain

- HeavyRain → HeavyRain

- LightSnow → LightSnow

- ModerateSnow → ModerateSnow

- HeavySnow → HeavySnow

- NoPrec → NoPrec

Learning Classifiers from Semantically Heterogeneous Data 973

Table 4. Mappings from H1(is-a) and H2(is-a) (corresponding to the data sets D1

and D2, respectively) to HU (is-a) found from equality constraints.

φ1 φ2

- Temp → Temperature

Outlook → Precipitations Prec → Precipitations

Sunny → NoPrec -
Rainy → Rain -

Once a set of mappings is found using the algorithm in Figure 6, the user is
given the opportunity to inspect the mappings and add other mappings if needed
and if they don’t violate the interoperation constraints or the order preservation
property.

3.3 Conversion Functions

So far, we have defined ontologies, explained what it means to integrate ontolo-
gies and showed how a user can check if his or her ontology can be an inte-
gration for a set of ontologies associated with autonomous data sources. Once
the user integration ontology is defined (together with the mapping to the data
sources ontologies), the user’s goal is to ask queries in his/her ontology and
get sound answers from the data sources. For example, in the weather exam-
ple, the user may want to ask queries about the days when the Temperature
was higher than 40F. To get the answer to such a query, besides name map-
pings (Temp : O2 → Temperature : O), a conversion from degree Celsius to
Fahrenheit is needed in the case of the second data source D2.

Definition [14, 15]: We define T = {τ | τ is a string} to be a set of types.
For each type τ , dom(τ) = {v | v is a value of type τ } is called the domain
of τ . The members of dom(τ) are called values of type τ . For example, type τ
could be a predefined type, e.g., int or string or it can be a type like F o (degrees
Fahrenheit), USD (US dollars), mph (miles per hour) or it can be an enumerated
type such as Outlook whose domain is given by the values: Sunny, Rainy, Snowy
etc.

Definition : We say that a total function τ12τ2 : dom(τ1) → dom(τ2) that
maps values of τ1 to values of τ2 is a conversion function from τ1 to τ2. The set
of all conversion functions must satisfy the following constraints:

• For every two types τi, τj ∈ T at most one conversion function τi2τj exists.
• For every type τ ∈ T , τ2τ exists (the identity function).
• If τi2τj and τj2τk exist, then τi2τk exists and τi2τk = τi2τj ◦ τj2τk.

We say that τ1 can be converted into τ2 and we write τ1 → τ2 if there exists
a conversion function τ12τ2. Note that, if τ1 and τ2 are on the same path in
a hierarchy (H, ≤) and τ1 ≤ τ2, then τ1 → τ2, which means that τ12τ2 exists
(it could be the identity.) A user needs to specify conversion functions for all
the ontology mappings defined in the system. If a conversion function is not
explicitly specified, it is assumed to be the identity function.

974 D. Caragea, J. Pathak, and V.G. Honavar

Example : The conversion function associated with the mapping Humid-
ity :O1→ Humidity :OU is the identity. The conversion function associated with
the mapping Temp:O2→Temperature:OU (where Temp is measured in degrees
Celsius and Temperature is measured in degrees Fahrenheit) is the function
Temp(C)2Temperature(F) which converts Celsius to Fahrenheit.

Definition : Let H be a hierarchy and τ a type in that hierarchy. We define
belowH(τ) as being the union between the values of τ and the subtypes τ ′ of
τ , i.e., belowH(τ) := {τ ′|τ ′ ∈ H, τ ′ ≤H τ} ∪ dom(τ). If τ ′ ∈ belowH(τ), we say
that τ implies a higher level of abstraction than τ ′ or, equivalentely, τ ′ implies a
lower level of abstraction than τ . The level of abstraction at which instances in
a data source are specified determines a cut through the associated data-source
ontology.

Example : We have belowH(Prec)={Rain, NoPrec, Snow, LightRain, Mod-
erateRain, HeavyRain, LightSnow, ModerateSnow, HeavySnow}. Furthermore,
Rain implies a higher level of abstraction than LightRain, as LightRain is below
Rain in the hierarchy associated with the attribute Precipitation in the ontol-
ogy O2 corresponding to the data source D2 in the weather example. The set
{Rain, NoPrec, Snow} represents a cut through the hierarchy associated with
the attribute Precipitation in the same ontology.

Definition : Let τ1 and τ2 be two types. A type τ is called the least common
supertype of τ1 and τ2 if:

• τ1 → τ and τ2 → τ .
• If there exists τ ′ such that τ1 → τ ′ and τ2 → τ ′, then τ → τ ′.

Example : Let X = Rain and Y = HeavySnow be two terms in the is-a
hierarchy of the user ontology in the Weather example. Then the least common
supertype of type(X) and type(Y) is Precipitation.

3.4 Ontology-Extended Data Sources

We will show that we can ensure the semantical correctness of an answer to a
query if we extend each data source with its corresponding ontology and also with
the type information associated with each attribute (i.e., data source schema),
and specify conversion functions between different types.

Definition : Let {A1, · · · , An} be the set of attributes used to describe the
data in a particular data source D, and let {τ1, · · · , τn} be the set of types
associated with these attributes. The set {A1 : τ1, · · · , An : τn} is called the
schema of the data source D.

Definition : Two schemas S1=(A1:τ1
1, · · · , An:τ1

n) and S2=(A1:τ2
1, · · · ,

An:τ2
n) are compatible if τ1

i and τ2
i have a least common supertype τi and the

conversion functions τ1
i 2τi and τ2

i 2τi exist for all i = 1, · · · , n. The common
schema S = (A1 : τ1, · · · , An : τn) is called the least common super-schema of
S1 and S2. The conversion functions Sj2S are defined by:

Sj2S(D) = {(τ j
12τ1(x1), · · · , τ j

n2τn(xn))|(x1, · · · , xn) ∈ D} for j = 1, 2.
Definition : We say that (D,S,O) is an ontology-extended data source if D

is a data source (represented as a table), O is an ontology over D, S = {A1 :

Learning Classifiers from Semantically Heterogeneous Data 975

τ1, · · · , An : τn} is the data source schema, and the following conditions are
satisfied:

(1) τ1, · · · , τn ∈ O are types in the ontology O and
(2) D ⊆ belowO(τ1) × · · · × belowO(τn).

3.5 Statistical Query Language

So far, we have extended data sources with ontologies and type information. We
want to use these ontology-extended data sources to answer statistical queries.

Definition : We define a statistical query language consisting of a set of tra-
ditional data operators and a set of statistical operators that are used to formu-
late statistical queries. The set of data operators consists of set operators (e.g.,
UNION , INTERSECTION , etc.) and relational operators (e.g., SELECT ,
PROJECT , etc.) that are used to specify the data to which the statistical oper-
ators are applied. The set of statistical operators consists of aggregate operators
(e.g., AV G, COUNT , MIN , MAX), used to compute aggregate statistics for a
data set and compositional operators (e.g., +, UNION , etc.), used to combine
statistics collected from several data sources.

To ensure that the answers to statistical queries are sound, we need to make
sure that the results of the operators defined above are well-typed. Bonatti and
his collegues [14] showed how one can ensure that the results of data operators
are well-typed. In short, the result of a unary operator is always well-typed. The
result of a binary data operator is well-typed if the data sources to which the
operator is applied have a least common super-schema. The results of statistical
operators are well-typed if the data sources to which they are applied are well-
typed and their schemas have a least common super-schema.

3.6 An Example Demonstrating Statistical Queries over
Ontology-Extended Data Sources

In this section we will show how we can answer statistical queries needed to
construct Naive Bayes classifiers from semantically heterogeneous data. Assume
there exist two data sources D1 and D2 with the associated ontologies O1 and
O2 and a user is interested in analyzing the data from D1 and D2 from his
perspective, which corresponds to the ontology OU and a set of interoperation
constraints IC. Suppose D1 contains 10 instances of Rainy days and 30 instances
of Snowy days. The data source D2 contains 10 instances of LightRain days, 20
instances of HeavyRain days, 10 instances of LightSnow days and 10 instances
of HeavySnow days.

A statistical query qOU is posed to the two data sources based on the ontology
OU : What fraction of the days are Rain days? After performing the necessary
mappings (Rainy : O1 → Rain : OU , Rain : O2 → Rain : OU), the answer to
this query can be computed in a straightforward way as the ratio of the number
of Rain days (20+10+20=50) divided by the total number of days (100) yielding
an answer of 0.5.

976 D. Caragea, J. Pathak, and V.G. Honavar

Now consider another query rOU (also based on the ontology OU): What
fraction of days are HeavyRain days? The answer to this query is not as straight-
forward as the answer to the previous query qOU

. This is due to the fact that
the quantification of rain for the days in data source D1 is only partially spec-
ified [16] with respect to the ontology OU . Consequently, we can never know
the precise fraction of days that are HeavyRain days based on the information
available in the two data sources. However, if it is reasonable to assume that the
data contained in both D1 and D2 are drawn from the same universe (i.e., can
be modeled by the same underlying distribution), we can estimate the fraction
of days that are HeavyRain days in the data source D1 based on the fraction of
Rain days that are HeavyRain days in the data source D2 (i.e., 20 out of 30) and
use the result to answer the query rOU . Under the assumption that the samples
of days in D1 and D2 can be modeled by the same distribution, the estimated
number of HeavyRain days in D1 is given by

(20
30

)
(20) =

(40
3

)
. Hence, the esti-

mated number of HeavyRain days in D1 and D2 is
(40

3

)
+ 20 =

(100
3

)
. Thus, the

answer to the query rOU is
(100

3

) (1
100

)
= 1

3 . While the assumption that the data
sources under consideration can be modeled by the same underlying distribution
may be reasonable in some cases, in other cases, alternative assumptions may be
justified. For example, some users might want to assume that the precise amount
of rain in data source D1 cannot reasonably be estimated on the basis of the rain
distribution of the days in data source D2 and hence require that the answer to
query rOU be based only on the data in D2, yielding an answer of 20 out of 100
or 0.2.

Note that the answer to query qOU is completely determined by the ontologies
O1, O2, OU , the mappings shown in Tables 3, 4 and the data available in the
data sources D1 and D2. However, answer to the query rOU is only partially
determined by the ontologies O1, O2, OU , the mappings shown in Tables 3, 4
and the data available in the data sources D1 and D2. In such cases, answering
statistical queries from semantically heterogeneous data sources requires the user
to supply not only the mappings between ontologies associated with the data
sources and his or her ontology, but also additional assumptions of a statistical
nature (e.g., that data in D1 and D2 can be modeled by the same underlying
distribution). The validity of the answer returned depends on the validity of
the assumptions and the soundness of the procedure that computes the answer
based on the supplied assumptions.

Let (D1, S1, O1), · · · , (DK , SK , OK) be K ontology-extended data sources
and OU a user ontology. Let Z(O1), · · · , Z(OK) be the levels of abstraction (cuts)
at which the instances are specified in the data sources D1, · · · , DK , respectively
and Z(OU) a cut through the user ontology defining the level of abstraction
at which the user queries are formulated. When answering statistical queries
from D1, · · · , DK using the user ontology OU , the name and type heterogeneity
problems are solved once valid mappings between data source ontologies and
user ontology have been specified. However, we still encounter problems as those
described in the above. More precisely, having different ontologies associated with
different data sources implies that the instances could be specified at different
levels of abstraction with respect to a user ontology.

Learning Classifiers from Semantically Heterogeneous Data 977

Definition : Let x = (vA1 , · · · , vAn) ∈ Dj be an instance in Dj . We say that
the instance x is:

• completely specified if for all 1 ≤ i ≤ n, the correspondent of vAi
in OU

belongs to the user level of abstraction Z(OU).
• partially specified if there exist at least one attribute value vAi for which the

corresponding value in Z(OU) does not belong to the user level of abstraction
Z(OU). This value can be under-specified if its correspondent in the user
ontology is above the user cut, or over-specified if its correspondent in the
user ontology is below the user cut (but it actually does not exist).

Example : Assume that the instances in the data source D1 are speci-
fied in terms of Rain, NoPrec and Snow. The instances in D2 are speci-
fied in terms of LightRain, ModerateRain, HeavyRain, NoPrec, LightSnow,
ModerateSnow, HeavySnow. Assume that according to the user level of
abstraction the instances have to be specified in terms of LightRain,
ModerateRain, HeavyRain, NoPrec and Snow. We can see that in this case,
the instances in D1 are under-specified, while the instances in D2 are over-
specified. Thus, Rain is an under-specified value of the attribute Prec in D1,
while LightSnow, ModerateSnow, HeavySnow are over-specified values of the
attribute Prec in D2.

One way to deal with the under- or over-specification problems is to replace
the original data set with a new data set, where the values of the attributes are
at the right level of specification, given the user level of abstraction. In prin-
ciple, this can be easily done when an attribute is over-specified: we replace
the over-specified value with a higher level ancestor in the corresponding hier-
archy (specifically, with the ancestor that has the same level of abstraction as
the value in the user hierarchy). However, for the under-specified values, addi-
tional assumptions need to be made by the user (e.g., all data comes from the
same distribution) and under-specified values are filled accordingly, by replacing
the original instance with a new instance having the right level of specification,
according to a distribution corresponding to the user preference. This way of
handling partially specified data, together with the mappings and conversion
functions ensure correct answers to statistical queries posed over distributed,
semantically heterogeneous data sources.

Now we show how Naive Bayes classifiers can be generated from semantically
heterogeneous, horizontally distributed data. Let A1(OU), · · · , An(OU) be the
user attributes with respect to a data domain and OU = {H1(A1), · · · , Hn(An)}
the user ontology associated with these attributes. Let vA1(OU), · · · , vAn

(OU)
be a learning cut through the user ontology (note that vAi(OU) ⊆ HU (Ai) could
be a set of values of the attribute Ai(OU)). If the data is horizontally distributed,
then each data source Dj contains an attribute Ai(Oj) that maps to Ai(OU).

The algorithm for learning naive Bayes classifiers from horizontally dis-
tributed heterogeneous data sources is similar to the algorithm for learning naive
Bayes classifiers form horizontally distributed homogeneous data sources [4,15].
As opposed to this scenario, in the case of heterogeneous data sources: First, the
set of mappings is used to find the correspondents of the user attributes in the
distributed data sources (e.g., Ai(Oj) → Ai(OU)) and also to resolve the seman-

978 D. Caragea, J. Pathak, and V.G. Honavar

tic mismatches between the correspondent attributes. Second, for each attribute
value v ∈ vAi(OU) in the user cut, we compute the counts at a particular data
source Dj that contains that attribute, as follows:

– If v is over-specified in Dj , then we recursively propagate up the counts
from its children in Hi(Dj) to v, till all the children are specified in Dj

(primitives). For example, in Figure 4, to compute the counts in D2 corre-
sponding to Snow, we compute the counts for LightSnow, ModerateSnow,
and HeavySnow and we add them up.

– If v is under-specified in Dj , we can treat it as a missing value and thus we
reduce our problem to the problem of filling in missing values. Under the
assumption that all the data is coming from the same distribution, we can
estimate this distribution based on a data set where the values are specified,
and then propagate down the counts based on that distribution in a data set
where the values are under-specified. For example, if there are 8 instances in
D1 for which Prec takes value Rain and if the distribution over the values
LightRain, ModerateRain, HeavyRain is (25, 50, 25), then we can infer
that there are 2 instances for which Prec = LightRain, 4 instances for which
Prec = ModerateRain and 2 instances for which Prec = HeavyRain.

Once the counts are estimated this way, the algorithm works as in the case of
homogeneous distributed data. Thus, we can see that we don’t need to explicitly
construct data sets where all the instances are completely specified, as the counts
can be computed implicitly.

4 Summary and Discussion

In this paper, we showed how the approach for learning from distributed data
sources introduced in [4] can be extended to yield an approach for learning from
heterogeneous data sources, by presenting a way to answer statistical queries
needed by learning algorithms from heterogeneous data. To do that, we defined
ontologies, user perspective and integration of a set of ontologies from a user
perspective. We associated an ontology with each data source. In this setting,
answering statistical queries from ontology-extended data sources implies
solving a variant of the information integration problem [2] together with a way
of handling partially specified data that appears when different data sources
are specified at different levels of abstraction [16]. We defined a statistical query
language and ensured that the invocation of the operators in this language
results in well-typed data sets or statistics over data sets, through the means
of mappings and conversion functions between terms in different ontologies.
We demonstrated our approach by designing an algorithm for generating Naive
Bayes classifiers from distributed, semantically heterogeneous data.

In terms of related work, Davidson et al. [17] and Eckman [18] survey al-
ternative approaches to data integration. Most of the traditional information
integration approaches use mediator programs to integrate heterogeneus data
sources. However, these approaches are not theoretically well founded. Levy [2]

Learning Classifiers from Semantically Heterogeneous Data 979

proposed an approach based on logic, which is theoretically well-founded, but it
doesn’t deal with type heterogeneity.

Our definition of ontology-extended data sources was inspired by a similar
definition for ontology-extended relational algebra introduced in [14]. The au-
thors in [14] associate a graph with each hierarchy. In their setting, the user
defines a set of mappings between different hierarchies in the system and a set
of interoperation constraints. The mappings are used to merge all the individual
graph hierarchies into an overall graph hierarchy. An integration hierarchy is
given by a canonical hierarchy which consists of all strongly connected compo-
nents in the graph hierarchy. An integration hierarchy is valid if it satisfies a set
of interoperation constraints and order preservation property.

As opposed to [14], we define a user perspective as consisting of a user ontol-
ogy and a set of interoperation constraints. We present a simple algorithm for
coming up with mappings between data source ontologies and a user ontology
based on interoperation constraints and an algorithm for checking that these
mappings are valid. Our approach is more general that the approach in [14] be-
cause users can impose their own perspective over a set of data sources, which
ensures flexibility required for Semantic Web applications where different users
may want to access data from different perspectives or for that matter, even the
same user may impose different ontologies in different contexts.
McClean et al. [19, 20] provides an approach to answering aggregate queries
formulated in a user ontology, from statistical databases. Their results are similar
to our results. However, their framework assumes that there exists metadata, in
terms of mappings between ontologies, in the system, while we give the user the
possibility to specify how he or she wants to use the existent data, by specifying
a set of interoperation constraints that relates data of interest. Another strength
of our approach comes from the ability to deal with type heterogeneity (by using
conversion functions, e.g. F → C).

Our approach to learning from ontology-extended data sources is similar
to the approach in [16], where AVT’s are associated with the attributes in a
data set and the level of abstraction which gives the best accuracy is sought.
In our case, we assume the level the abstraction is given by the user. This level
defines a level of abstraction for each data source ontology, which results in some
attributes being over-specified while others might be under-specified, hence the
connection with learning from partially specified data. We can envision scenarios
where there is no user predefined level of abstraction, in which case we would
iterate through successive user levels of abstraction as in [16] and the one that
gives the best accuracy is chosen.

Directions for future work include the extension of the approach presented in
this paper to other types of ontologies besides attribute values taxonomies and
applications to problems in bioinformatics.

Acknowledgments. This work has been supported in part by grants from the
National Science Foundation (IIS 0219699) and the National Institutes of Health
(GM 066387) to Vasant Honavar.

980 D. Caragea, J. Pathak, and V.G. Honavar

References

1. Hendler, J.: Science and the semantic web. Science 299 (2003)
2. Levy, A.Y.: Logic-based techniques in data integration. In: Logic-based artificial

intelligence. Kluwer Academic Publishers (2000) 575–595
3. Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J., Honavar, V.: Infor-

mation extraction and integration from heterogeneous, distributed, autonomous
information sources: A federated, query-centric approach. In: IEEE International
Conference on Information Integration and Reuse, In press (2003)

4. Caragea, D., Silvescu, A., Honavar, V.: A framework for learning from distributed
data using sufficient statistics and its application to learning decision trees. Inter-
national Journal of Hybrid Intelligent Systems 1 (2004)

5. Casella, G., Berger, R.: Statistical Inference. Duxbury Press, Belmont, CA (2001)
6. Mitchell, T.: Machine Learning. McGraw Hill (1997)
7. Pearl, J.: Graphical Models for Probabilistic and Causal Reasoning. Cambridge

Press (2000)
8. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer (2001)
9. Quinlan, R.: Induction of decision trees. Machine Learning 1 (1986) 81–106

10. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Proceedings of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, Morgan Kaufmann Publishers Inc. (1999) 1300–1309

11. Atramentov, A., Leiva, H., Honavar, V.: Learning decision trees from multi-
relational data. In Horváth, T., Yamamoto, A., eds.: Proceedings of the 13th
International Conference on Inductive Logic Programming. Volume 2835 of Lec-
ture Notes in Artificial Intelligence., Springer-Verlag (2003) 38–56

12. Silvescu, A., Andorf, C., Dobbs, D., Honavar, V.: Inter-element dependency models
for sequence classification. In: ICDM, Submitted (2004)

13. Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions
On Knowledge And Data Engineering 8 (1996) 962–969

14. Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational algebra.
In: Proceedings of the IEEE Conference on INformation Integration and Reuse,
IEEE Press (2003) 192–199

15. Caragea, D.: Learning from Distributed, Heterogeneous and Autonomous Data
Sources. PhD thesis, Department of Computer Sciene, Iowa State University, USA
(2004)

16. Zhang, J., Honavar, V.: Learning naive bayes classifiers from attribute-value tax-
onomies and partially specified data. In: Proceedings of the Conference on Intelli-
gent System Design and Applications, In Press (2004)

17. Davidson, S., Crabtree, J., Brunk, B., Schug, J., Tannen, V., Overton, G., Stoeck-
ert, C.: K2/kleisli and gus: Experiments in integrated access to genomic data
sources. IBM Journal 40 (2001)

18. Eckman, B.: A practitioner’s guide to data management and data integration in
bioinformatics. Bioinformatics (2003) 3–74

19. McClean, S., Páircéir, R., Scotney, B., Greer, K.: A Negotiation Agent for Dis-
tributed Heterogeneous Statistical Databases. SSDBM 2002 (2002) 207–216

20. McClean, S., Scotney, B., Greer, K.: A Scalable Approach to Integrating Hetero-
geneous Aggregate Views of Distributed Databases. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) (2003) 232–235

	Introduction
	Statistics for Learning from Data
	Sufficient Statistics for Naive Bayes Algorithm

	Answering Statistical Queries from Ontology-Extended Data Sources
	Example
	Ontologies and Mappings
	Conversion Functions
	Ontology-Extended Data Sources
	Statistical Query Language
	An Example Demonstrating Statistical Queries over Ontology-Extended Data Sources

	Summary and Discussion

