
Design and Implementation of a Query Planner for Data Integration

Neeraj Koul, Vasant Honavar
Department of Computer Science,

Iowa State University, Ames -IA 50014, USA

Abstract

1 Many applications require integrated access to mul-
tiple distributed, autonomous, and often semantically dis-
parate data. Hence there is a need for bridging the seman-
tic gap between the user and the data sources and for an-
swering user queries based on the contents of multiple data
sources. This paper describes a query planner that solves
these two problems.

1 Introduction

Recent advances in high throughput data acquisition
technologies in many areas have led to a proliferation of
a multitude of physically distributed, autonomous, and of-
ten semantically disparate data sources. Effective use of
such data in data-driven knowledge acquisition and deci-
sion support applications e.g., in health informatics, secu-
rity informatics, social informatics, etc. presents a data in-
tegration challenge. Addressing this data integration chal-
lenge requires techniques for bridging the semantic gap be-
tween the user and the data sources with respect to both the
data schema and the data content (see [4] for a survey). In
a distributed setting, this also requires techniques for cop-
ing with horizontal and/or vertical data fragmentation. In
the case of horizontal fragmentation, each data source (e.g.,
economic data for different states) contains a subset of data
tuples that make up the data source of interest (e.g., eco-
nomic data for the nation). In the case of vertical frag-
mentation, the different data sources contain subtuples of
data tuples make up the data source of interest. Solving the
data integration problem in such a setting presents us with
a query planning problem, that is, the problem of decom-
posing a user query q into queries that can be processed (in
the order specified by a query plan) by the individual data
sourcesD1, D2 · · ·Dp and for combining the results to pro-
duce the answer to the user query q. In general, there can
be multiple query plans for answering a query query q from
a collection of data sourcesD1, D2 · · ·Dp, with some plans

1This research was supported in part by the grant IIS 0711356 from the
National Science Foundation.

being more optimal than others (e.g., the cost of execution).
This paper describes a query planner for data integration
that solves these two problems.

2 The Data Integration Problem

We associate with each data source, a data source de-
scription (i.e., the schema and ontology of the data source)
yielding an ontology extended data sources (OEDS). For-
mally An OEDS is a tuple D = {D,S,O}, where D is the
actual data set in the data source, S the data source schema
and O the data source ontology [3]. The formal semantics
of OEDS are based on ontology-extended relational algebra
[2]. Let D1 = {D1, S1, O1},D2 = {D2, S2, O2} . . .Dp =
{Dp, Sp, Op} be a set of p ontology extended data sources.
Let DU = {DU , SU , OU} be a (virtual) integrated data
source from the user’s perspective. A user’s perspective is
specified by PU = {DU ,MU ,ΨU} where MU is the set
of mappings from the user schema SU to the data source
schema S1 . . . Sp and ΨU a set of semantic correspon-
dences from user ontologyOU to the data source ontologies
O1, O2 . . . Op. For simplicity, we consider case when the
schema mappings are one to one (i.e. every attribute in SU

has a corresponding attribute in schema Si), the ontologies
are attribute value hierarchies and the semantic correspon-
dences take the form of x < y (x is semantically subsumed
by y i.e. a subclass relationship), x > y (x semantically
subsumes y i.e. a superclass relationship), x = y (x is
semantically equivalent to y i.e. equivalent class relation-
ship) and the individual data sources are either horizontal
or vertical fragments of the data from the user’s perspec-
tive. Let Q be the set of all possible queries that a user
can pose against DU . The queries are expressed using an
SQL like syntax (called SQLindus). More precisely, an
SQLindus query q is of the form 〈s, f, w〉 where s is the
set of attributes in the Select clause, f is the set correspond-
ing to the tables in the From clause and w is an expression
representing the Where clause. The syntax of the clause w
conforms to the grammar w = ε|watomic|w AND w|w OR
w and watomic = column.name op1 column.value where
op1 ∈ {> | < | = |! =}. When the column.name has an
ontology (attribute value hierarchy) associated with it, we

2009 21st IEEE International Conference on Tools with Artificial Intelligence

1082-3409/09 $26.00 © 2009 IEEE

DOI 10.1109/ICTAI.2009.37

214

Authorized licensed use limited to: Iowa State University. Downloaded on March 12,2010 at 18:41:26 EST from IEEE Xplore. Restrictions apply.

overload the operators>,< and = to imply superclass, sub-
class and equivalent class respectively. The query 〈s, f, ε〉
corresponds to the case in which the where clause is ab-
sent. A data integration problem in this setting can be seen
as the triple 〈D∗, PU , Q〉 where D∗ = {D1,D2 . . .Dp},
PU = {DU ,MU ,ΨU} is the user perspective and Q is the
set of possible queries that can be posed by the user. We
say that the data integration problem is well-specified if it is
possible to combine the data sources to form a user view of
the data using the mappings specified. In this paper we re-
strict ourselves to well-specified data integration problems.
We proceed to describe a solution to the data integration
problem using a data structure called DTree. A DTree is a
binary tree in which the leaf nodes correspond to the actual
data sources. Each internal node is a virtual data source that
combines information from its two children. The structure
of the DTree specifies the constraints on the order in which
the data from the individual data sources are combined with
the root node denoting a virtual data source that corresponds
to DU .

Figure 1. DTree for the Introduced Example

A query againstDU is submitted to the root of the DTree
and recursively divided into sub-queries such that the leaf
nodes receive the queries to be executed against the respec-
tive individual data sources. The results from the leaf nodes
are recursively combined up the tree with the root node re-
ceiving the answer to the query. The leaf nodes in DTree
cope with the problem of bridging the semantic gap between
the user and the data sources (see below) whereas the inter-
nal nodes cope with data fragmentation (by combing the re-
sults from their respective children). Consider an example
where D1, D2, D3 are data sources and DU represents the

DU 7→ D1 7→ D2 7→ D3

EMLOYEE TABLE D1 Table D2 Table D3 Table
key id SSN social
position status type -
benefits compensation - salary
firstName alias - nickName
timeHere serviceLength - serviceYears

Table 1. Schema Mappings

integration of the aforementioned data sources. Let each of
the datasources contain a single table. Table 1 specifies the
attributes present in the data sources along with the schema
mappings from the attributes in DU to the attributes in the
data sources. A DTree for this example is shown in Figure
1.

Given a well-specified data integration problem π =
〈D∗, PU , Q〉, let DTree τ(π) represent a DTree that solves
a well-specified data integration problem π. Let Φ−1(Si)
denote the set of attributes in SU that are mapped to corre-
sponding attributes in Si (recall the schema mappings be-
tween SU and Si are one to one). The procedure in Algo-
rithm 1 outlines the steps to construct a DTree τ(π) for a
well-specified integration problem π.

Algorithm 1: DTree Construction
Input: A well-specified data integration problem

π = 〈D∗, PU , Q〉
Output: A DTree τ(π) that solves π
N 7→ emptyset
∀Di = 〈Di, Si, Oi〉 ∈ D∗ construct a node labeled Di

and associate with it the set Φ−1(Si) and add it to N .
repeat

while ∃Di,Dj ∈ N such that
Φ−1(Si) = Φ−1(Sj) do

begin
Replace nodes Di and Dj in N by a node
named Di Dj and associated it with the set
Φ−1(Si)

end
if ∃Di,Dj ∈ N and no Dk ∈ N such that
Φ−1(Si) ∪ Φ−1(Sk) ⊆ Φ−1(Sj) OR
Φ−1(Sj) ∪ Φ−1(Sk) ⊆ Φ−1(Si) then

Replace nodes Di,Dj ∈ N by a node named
Di Dj and associate it with the set
Φ−1(Si) ∪ Φ−1(Sj)

until until no change in |N |

It is easy to show that a DTree exists for every well spec-
ified data integration problem; and that in general, given a
well specified data integration problem, there can be more
than one DTree that solves it. Our algorithm outputs one

215

Authorized licensed use limited to: Iowa State University. Downloaded on March 12,2010 at 18:41:26 EST from IEEE Xplore. Restrictions apply.

of the possible DTrees that solves the given data integration
problem. However, the algorithm can be modified to output
an optimal DTree (based on some user-specified criteria).
For lack of space we omit the proof of correctness for the
DTree construction algorithm.

3 Query Planner

A query posed by the user againstDU is submitted to the
root node of the DTree τ(π) that solves the data integration
problem 〈D∗, PU , Q〉. A query planner is invoked at each
non leaf node of τ(π) to compute the set of plans that can
be used to answer the query submitted to the node. Suppose
a query q is submitted to a node n in the DTree τ(π). The
task of the query planner is to output a set of plans P such
that each p ∈ P is of the form { ql

n, q
r
n,⊕ } where ql

n and
qr
n are the queries submitted to the left and right child of

node n and ⊕ is a binary operator applied to the results of
ql
n and qr

n to obtain the results to q. The operator ⊕ speci-
fies an aggregation strategy. For simplicity, we assume that
their is no data overlap among the p data sources (the data
overlap can be detected and handled by assuming the ex-
istence of an unique id for each instance). Denoting by rl
and rr the results obtained from the left and the right child
of a node, we specify the following aggregation strategies:
(i) t(rl, rr) denotes a multiset of all the rows/tuples in rl
and rr. We overload the operator t to denote the addition
of counts in the case of count queries; (ii) ./id (rl, rr) de-
notes an inner join of rl and rr on id; (iii) ↑ denotes that
there is no need for aggregation which is the case when a
query is submitted to only one child; (iv) 〈φ, qlocal〉 where
φ ∈ {t, ./id, ↑} dentotes that obtain rtemp = φ(rl, rr)
and then obtain the final results by running the query qlocal

on rtemp; and (v) 〈φ, qremote〉 where φ ∈ {t, ./id, ↑} de-
notes obtain rtemp = φ(rl, rr) and use rtemp to construct
query qremote from a template and generate a new plan for
this qremote yielding a two step plan. We now introduce
some notation used in describing the Planner Algorithm.
Given 〈q, n, τ(π)〉 where q = 〈s, f, w〉, we define the fol-
lowing functions: (i) sig(x) returns the set of attributes
that appear in x where x ∈ {q, s, w} (For n , sig(n) re-
turns Φ−1(n)); (ii) Fjoin(n) returns the join column for the
children of n (applicable for vertical fragments only); (iii)
F l

child(n) and Fr
child(n) returns the left and right child of

the node n respectively; (iv) sl
n = sig(s) ∩ sig(F l

child(n))
and sr

n = sig(s)∩sig(Fr
child(n)) returns the select columns

that are present in the left and right child of n respectively;
(v) q+ = 〈s∪Fjoin(n), f, w〉 adds a join column to the se-
lect clause of the query; (vi) TallData(q, n, l) =〈(sig(q+)∩
sig(F l

child(n))), f, ε〉 retrieves the data corresponding to
columns of the query q+ that are present in the left
child of n; (vii) TallData(q, n, r) = 〈(sig(q+) ∩
sig(Fr

child(n))), f, ε〉; (viii)Result(q) represents the result
of the query q; (ix) singlePath(q, n) returns true if all the

columns in q are present in one child of n (WLOG we as-
sume when the function returns true, all the columns are
present in F l

child(n)) ; (x) horizontalFragmentation(n)
returns true if F l

child(n) and Fr
child(n) form the horizontal

fragments of n.

For a node n we define a template for a where clause
as Wn

temp = Fjoin(n) IN $values$. The function
Replace(Wn

temp, vals) replaces the place holder $values$
in the template Wn

temp by a comma separated list of val-
ues in vals. This template is used in a two step plan,
where the results of the first step are used in the template
to construct the query for the second step. Once a query
q is submitted to a node n in the DTree, the plan(s) gen-
erated to answer the query depend on how the attributes
in s and w clause are distributed (based on how the data
is fragmented) among the children of node n. We specify
the different data fragmentation scenarios using the function
M(q, n) 7→ 〈C0, C1, C2, C3〉 where C0 is set to 1 when the
attributes of the select clause are distributed among the two
children of the node. C1 is set to 1 when the attributes in
the where clause are distributed among the two children of
the node (in this case it has to be w = wl op wr where
op ∈ {AND, OR}). C2 is set to 1 when C1 = 1
and w = wl op wr and the attributes in wl and wr oc-
cur individually in the two children (WLOG we assume
the signature of the left child includes the signature of wl

whereas the signature of the right child includes the sig-
nature ofwr). C3 is set to 1 when C1 is 1, C2 = 0
and w = wl op wrl and the attributes in wl occurs com-
pletely in one child and attributes in wrl are distributed
over the two children. The value 〈C1, C2, C3〉 describe how
the attributes in the where clause w are fragmented among
the two children of the current node. The value 〈0, 0, 0〉
corresponds to no fragmentation, 〈1, 1, 0〉 corresponds to
clean fragmentation, 〈1, 0, 1〉corresponds to partial frag-
mentation and 〈1, 0, 0〉 corresponds to full fragmentation.
Since our goal is to effectively minimize data fragmenta-
tion, among the multiple equivalent ways of expressing w,
we choose one that corresponds to the least amount of frag-
mentation. Let DeFrag(n,w) return an equivalent where
clause for w that has the least fragmentation for n. The
Query Planner is outlined in Algorithm 2.

The correctness of the plans generated by the query plan-
ner follows from the manner in which the results are com-
bined at each node of the DTree. It can further be shown
that the plans produced by the query planner ensure that
each data source is queried at most twice (proof omitted).
Note that for a given user query q, the query planner is ex-
ecuted (and produces a set of query plans) at each node in
the DTree. Answering the query q requires choosing one
such plan at each of the non leaf nodes of the DTree. This
choice can be made so as to optimize some desired crite-
rion (e.g., estimated cost of answering the query q for each

216

Authorized licensed use limited to: Iowa State University. Downloaded on March 12,2010 at 18:41:26 EST from IEEE Xplore. Restrictions apply.

Algorithm 2: Query Planner
Input: q posed to a node n in DTree τ(π)
Output: Set of Plans to answer q
if sig(q) ⊃ sig(n) then

throw Exception(Query Can’t be answered);
if horizontalFragmentation(n) then

Add Plan 7→ qn
l = qn

r = q; ⊕ = t;
Add Plan 7→ DefaultPlan(q, n)

else
/*VerticalFragmentation */
〈C0, C1, C2, C3〉 =M(q, n)
w = DeFrag(n,w)
if C0 == 0 then

/*SelectClauseNotFragmented */
switch 〈C1, C2, C3〉 do

case 〈0, 0, 0〉
Plans 7→ NoFragmentation(q, n)

case 〈1, 1, 0〉
Plans 7→
CleanFragmentation(q, n)

case 〈1, 0, 1〉
Plans 7→
PartialFragmentation(q, n)

case 〈1, 0, 0〉
Plans 7→ DefaultPlan(q, n)

otherwise
throw Exception(”Not a Possible
Case”)

else
/*SelectClauseIsFragmented */
Plans 7→ SelectFragmented(q, n)

Function DefaultPlan(q, n)
qn
l = 〈TallData(q, n, l)〉; qn

r = 〈TallData(q, n, r)〉
if horizontalFragmentation(n) then
⊕ = 〈t, qlocal〉; where qlocal = q;

else ⊕ = 〈./Fjoin(n) , qlocal〉 where qlocal = q;

Function NoFragmentation(q, n)
if singlePath(q,n) then

Add Plan 7→ qn
l = q; qn

r = null; ⊕ =↑
else

/*WLOG assume attributes in s in
right child and w in left child

*/
Add Plan 7→
qn
l = 〈Fjoin(n), f, w〉; qn

r = null;
⊕ = 〈↑, qremote〉
qremote = 〈s, f,Replace(Wn

temp, Result(q
n
l))〉;

Add Plan 7→
qn
l = 〈Fjoin(n), f, w〉; qn

r = 〈s ∪ Fjoin(n), f, ε〉;
⊕ = {./Fjoin(n)};

Function CleanFragmentation(q, n)
q = 〈s, f, wl op wr〉
Add Plan 7→
qn
l = 〈Fjoin(n), f, wl〉; qn

r = null; ⊕ = 〈↑, qremote〉
qremote = 〈s, f, wr op Replace(Wn

temp, Result(q
n
l))〉

Add Plan 7→
Mirror of Plan Above (switch l and r in Plan Above)
Add Plan 7→
qn
l = 〈Fjoin(n), f, wl〉; qn

r = 〈Fjoin(n), f, wr〉;
if op == AND then φ = u; else φ = t;
rtemp = φ(Result(qn

l), Result(qn
r));

⊕ = 〈φ, qremote〉;
qremote = 〈s, f,Replace(Wn

temp, rtemp)〉
Add Plan 7→ /*applicable if op is AND */
if op == AND then

qn
l = q+; qn

r = 〈Fjoin(n), f, wr〉;
⊕ = {./Fjoin(n)};

Add Plan 7→ DefaultPlan(q, n);

Function PlansSelectFragmented(q, n)
〈C0, C1, C2, C3〉 =M(q, n)
/*Function called when C0 == 1 */
switch 〈C1, C2, C3〉 do

case 〈0, 0, 0〉
/*no fragmentation */
Add Plan 7→
qn
l = 〈sl

n,∪Fjoin(n), f, w〉;
qn
r = 〈sr

n,∪Fjoin(n), f, φ〉;
⊕ = 〈./Fjoin(n) , qlocal〉; qlocal = q;
Add Plan 7→
Assuming w occurs completely in left child.
qn
l = 〈Fjoin(n), f, w〉; qn

r = null;
⊕ = 〈↑, qremote〉; qremote =
〈s, f,Replace(Wn

temp, Result(q
n
l))〉;

Add Plan 7→ DefaultPlan(q, n)
case 〈1, 1, 0〉

/*clean fragmentation */
Add Plan 7→
q = 〈s, f, wlopwr〉
if op == AND then φ = u; else φ = t;
ql = 〈Fjoin(n), f, wl〉;
qr = 〈Fjoin(n), f, wr〉; ⊕ = 〈φ, qremote〉;
rtemp = φ (Result(qn

l , Result(q
n
r))) ;

qremote = 〈s, f,Replace(Wn
temp, rtemp)〉;

Add Plan 7→ DefaultPlan(q, n);
case 〈1, 0, 1〉

Add Plan 7→ DefaultPlan(q, n);
case 〈1, 0, 0〉

Add Plan 7→ DefaultPlan(q, n);
otherwise

throw Exception(”Not Applicable”);

217

Authorized licensed use limited to: Iowa State University. Downloaded on March 12,2010 at 18:41:26 EST from IEEE Xplore. Restrictions apply.

Function PartialFragmentation(q, n)
Add Plan 7→ DefaultPlan(q, n);
Add Plan 7→
q = 〈s, f, wl op wrl〉.
if (wrl == wll op2wrr such that wrr occurs
completely in right child and wll occurs completely in
left child, AND s occurs completely in left child) then

w = (wl op wll)op2(wl op1 wrr)
/*op and op2 will be different */
if op == AND then φ = u; else φ = t;
qn
l = 〈Fjoin(n), f, wl〉; qn

r = 〈Fjoin(n), f, wrr〉;
⊕ = 〈φ, qremote〉;
rtemp = φ(Result(qn

l), Result(qn
r)); qremote =

〈s, f, (wl opwll) op2 Replace(Wn
temp, rtemp)〉;

possible choice of plans). Once a query plan is chosen for
each node of the DTree, answering the user query reduces
to recursively combining the answers to the sub queries
that are passed to the leaf nodes of the DTree. The leaf
nodes handle the semantic gap between the DU and the in-
dividual data sources (arising due to difference in schema’s
and ontologies used) through the process of Query Bind-
ing. Query binding converts a sub query received by each
leaf node in a form that can be executed against the cor-
responding data source and consists of three steps: Trans-
lation, Renaming and Rewriting. Let Φ←(Si) be a renam-
ing of the schema Si by using the one to one schema map-
ping between SU and Si. Translation converts a query q in
schema SU and ontology OU into a query against schema
Φ←(Si) and ontology Oi (refer [1] for details). Renaming
converts the translated query q1 (now in schema Φ−1(S1))
to a query q2 that is against the schema Si of the corre-
sponding data source Di. After Renaming the query q2 is
still in SQLindus syntax and may include ontological re-
lations (e.g. subclass and superclass) in the where clause
of the query. The process of Rewriting converts the query
q2 in SQLindus syntax into a query q3 in the language un-
derstood by the data source while preserving the query se-
mantics. For RDBMS data source the only non trivial part
is to convert the subclass, superclass and equivalentclass
relations (within the corresponding data source ontology)
that appear in the where clause w (if any) of the query in
SQLindus syntax into appropriate expressions in SQL. We
do this as follows: ∀watomic = column.name op1 value
where the attribute column.name has an AVH associated
with it, replace watomic by a SQL fragment of the form col-
umn.name IN valueSet where valueSet = {x|x ∈ Oi and
x op1 value is true}.

4. Results and Discussion
The proposed approach to data integration has been im-

plemented in Java as part of INDUS integration system.

The prototype implementation of the system (with the plan-
ner) is open sourced at [7]. Our implementation when used
with the Indus Learning Framework (ILF), an approach that
learns classifiers from a single data source using SQL count
queries [9] [8], enables ILF to learn classifiers from multi-
ple semantically disparate data sources

The problem of data integration has received significant
attention in literature (see [10] and [4] for overviews). Most
of this work has focused on dealing with schema hetero-
geneity (see [11] for a survey). Aspects of data content
heterogeneity are addressed in [13], [5]. Related systems
of interest are SIRUP [14], COIN [5] and BUSTER [12].
In contrast our solution focuses on integrating ontology ex-
tended data sources that are fragmented and semantically
heterogeneous from a user point view. It does not assume
existence of a single global ontology and uses mappings to
handle schema and data content heterogeneity.

References

[1] J. Bao, D. Caragea, and V. Honavar. Query translation for
ontology extended data sources. AAAI Workshop on Se-
mantic e-Science, 2007.

[2] P. Bonatti, Y. Deng, and V. Subrahmanian. An ontology-
extended relational algebra. IRI , pp. 192–199, 2003.

[3] D. Caragea, J. Zhang, J. Bao, J. Pathak, and V. Honavar. Al-
gorithms and software for collaborative discovery from au-
tonomous, semantically heterogeneous information sources
(invited paper). ALT, LNCS vol. 3734, pp. 13–44. Springer-
Verlag, 2005.

[4] A. Doan and A. Y. Halevy. Semantic-integration research in
the database community. AI Mag., 26(1):83–94, 2005.

[5] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Con-
text interchange: new features and formalisms for the in-
telligent integration of information. ACM Trans. Inf. Syst.,
17(3):270–293, 1999.

[6] R. Hull. Managing semantic heterogeneity in databases: a
theoretical prospective. PODS , pp. 51–61, ACM, 1997.

[7] N. Koul. Indus integration framework.
http://code.google.com/p/indusintegrationframework/,2008.

[8] N. Koul. Indus learning framework.
http://code.google.com/p/induslearningframework/, 2008.

[9] N. Koul, C. Caragea, V. Honavar, V. Bahirwani, and
D. Caragea. Learning classifiers from large databases using
statistical queries. Web Intelligence, 1:923–926, 2008.

[10] M. Lenzerini. Data integration: a theoretical perspective.
PODS , pp. 233–246, ACM 2002.

[11] P. Shvaiko and J. Euzenat. A survey of schema-based match-
ing approaches. J. Data Semantics , 4:146–171, 2005.

[12] U. Visser, H. Stuckenschmidt, H. Wache, and T. Vgele. En-
abling technologies for interoperability. TZI, University of
Bremen, pp. 35–46, 2000.

[13] H. Wache and H. Stuckenschmidt. Practical context transfor-
mation for information system interoperability. CONTEXT
, pp. 367–380, Springer-Verlag, 2001

[14] P. Ziegler. The SIRUP Approach to Personal Semantic Data
Integration,. PhD thesis, University of Zurich, 2007.

218

Authorized licensed use limited to: Iowa State University. Downloaded on March 12,2010 at 18:41:26 EST from IEEE Xplore. Restrictions apply.

