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Abstract  

Assigning putative functions to novel proteins and the discovery of sequence correlates of protein 
function are important challenges in bioinformatics. In this paper, we explore several machine 
learning approaches to data-driven construction of classifiers for assigning protein sequences to 
appropriate Gene Ontology (GO) function families using a class conditional probabilistic repre-
sentation of amino acid sequences. Specifically, we represent protein sequences using class condi-
tional probability distribution of amino acids (amino acid composition) or short (k-letter) subse-
quences (k-grams) of amino acids. We compare a model (NB k-grams) that ignores the statistical 
dependencies among overlapping k-grams with an alternative, NB(k), that uses an undirected 
probabilistic graphical model that captures the relevant dependencies. These two methods require 
only one pass through the training data during the learning phase, making them especially at-
tractive in settings where there is a need to update the classifiers as new training data become 
available. We also explore a support vector machine (SVM) classifier, SVM k-grams, trained on 
the k-gram class conditional probability distributions of sequences. We report the performance of 
the resulting classifiers on three data sets of functional families from the Gene Ontology (GO) da-
tabase. Our results show that NB(k) classifier outperforms NB k-grams in terms of accuracy of 
classification (as measured by cross-validation) by a few percentage points. SVM k-grams outper-
forms NB(k) in the majority of test cases. These results suggest the possibility of developing fully 
automated and computationally efficient approaches to construction of classifiers based on undi-
rected graphical models of overlapping k-grams that can be easily updated as additional training 
data become available. Our results also show that further gains in accuracy of the classifiers are 
achievable (at the expense of increased computational demands and hence greater difficulty of 
frequent updates to the classifier as new training data become available) using SVM k-grams. 



1 Introduction 

Proteins are the principal catalytic agents, structural elements, signal transmitters, transport-
ers and molecular machines in cells.  Experimental determination of protein structure and 
function significantly lags behind the rate of growth of protein sequence databases. This situa-
tion is likely to continue for the foreseeable future.  Hence, assigning proteins putative func-
tions from sequences alone remains one of the most challenging problems in functional genom-
ics [Eisenberg et al., 2000].  Improvements in annotating protein sequences can be expected to 
yield significant improvements in gene annotations.  One class of sequence-based approaches 
relies on the comparison of the sequence in question to other sequences in a database of se-
quences with known function.  Functional assignment is made by transference of function 
whenever sequences are sufficiently similar. A commonly employed notion of similarity is based 
on estimated sequence homology with programs such as BLAST and its derivatives [Altschul et 
al., 1997]. Sequence searches often return multiple hits, so significant human expertise is 
needed for interpreting results. The reliability of homologs detected by multiple sequence 
alignment rapidly drops once the pair-wise sequence identity drops below 30 percent [Rost, 
1999].  A second class of sequence-based approaches for assigning putative functions to protein 
sequences rely on the detection of sequence patterns (Several automated tools for identifying 
conserved sequence patterns from a given set of sequences e.g., e-Motif and e-Matrix [Huang 
and Brutlag, 2001; Ben-Hur and Brutlag, 2003], MEME [Bailey et al., 1999] are available.) Mo-
tif databases can be queried using a protein sequence to obtain a list of conserved sequence pat-
terns found in the sequence as well as functions associated with the respective patterns. The 
results can be used to assign putative functions to the protein sequence.  In the case of protein 
families having sufficient numbers of well-characterized members,  data mining approaches 
rooted in statistical inference and machine learning [Baldi and Brunak, 1998] offer an attrac-
tive and cost-effective approach to automated construction of classifiers for assigning putative 
functions to novel protein sequences.  In essence, the data mining approach uses a representa-
tive training data set that encodes information about proteins with known functions to build a 
classifier for assigning proteins to one of the functional families represented in the training set 
(and if necessary, a default class indicating unknown function).   The resulting classifier can 
then be used to assign novel protein sequences to one of the protein families represented in the 
training set after it has been validated using an independent test set (which was not used to 
build the classifier).  Recent work by our group [Wang et al., 2003; Andorf et al., 2002] has ex-
plored the use of machine learning approaches to automated construction of such classifiers. 

In this paper, we explore methods that use class conditional probabilities of k-grams (k-letter 
subsequences) to represent acid sequences.  The first method uses a Naive Bayes classifier 
which treats each amino acid sequence as if it were simply a bag of amino acids.  The second 
method (NB k-grams) applies the Naive Bayes classifier to a bag of k-grams (k > 1).   Note that 
NB k-grams violates the Naive Bayes assumption of independence in an obvious fashion: 
neighbouring k-grams overlap along the sequence, adjacent k-grams have k-1 elements in com-
mon. 

Our third method overcomes this problem by constructing an undirected graphical probabilistic 
model for k-grams [Charniak, 1993], which explicitly models the dependencies among overlap-



ping k-grams in a sequence.  We train one such model per functional family. During classifica-
tion, just as in the case of the Naive Bayes classifier, the sequence to be classified is assigned to 
the class that has the largest posterior probability given the sequence.  We call the resulting 
classifier NB(k) to denote the fact that it models dependencies among k adjacent elements of 
sequences.  Note that NB(1) is equivalent to NB 1-grams, which in turn is equivalent to the Na-
ive Bayes classifier. 

Our fourth method applies a support vector machine (SVM) [Boser et al., 1992; Vapnik, 1998] 
to classify amino acid sequences represented using class conditional probability distributions of 
k-grams in the sequence.  SVMs have recently been applied successfully to many problems in 
computational biology including protein function classification [Lanckriet et al., 2003] and iden-
tification of protein-protein interaction sites from sequences [Yan et al., 2004].  However, to the 
best of our knowledge, previous work using SVM has not utilized a class conditional k gram 
probability-based representation of amino acid sequences. 

While SVMs, unlike NB(k) and NB k-grams classifiers, do not have the advantage of training 
with only one pass through the training data, they are attractive in scenarios where higher ac-
curacy of classification than that achievable by algorithms that make a single pass through the 
training data is desired. This increased accuracy comes at the expense of increased computa-
tional requirements - especially in cases where it is necessary to update the classifiers fre-
quently as new training data become available.  On a large data set a SVM classifier may take 
days to construct while NB(k) and NB k-grams can build a classifier in minutes.  Hence, we 
explore an SVM that uses as input a k-gram class conditional probability distribution associ-
ated with the protein sequence to be classified. We call this third method SVM k-grams.  This 
method is comparable to work using SVMs to predict subcellular localization based on amino 
acids [Hua and Sun, 2001; Bhasin and Raghava, 2004].  Their research focussed on using mo-
nopeptide and dipeptide composition.  We consider larger ordered polypeptide composition in 
our study. 

We compare NB k-grams, NB(k) SVM k-grams classifiers for assigning protein sequences to the 
corresponding GO (the Gene Ontology [Gene Ontology Consortium, 2000]) taxonomy of protein 
functional families. The sequence data sets used in our experiments were extracted from 
SWISSPROT [Boeckmann et al., 2003]. In our experiments, the NB k-gram classifier outper-
formed (in terms of classification accuracy), the standard Naive Bayes classifier by a large mar-
gin; the NB(k) classifier outperformed NB k-grams classifier by a few percentage points, and 
SVM k grams outperformed NB(k) in the majority of the test cases.  

2 Method 

In this section we outline the two probabilistic models we use for modelling the interactions 
among k consecutive elements in the sequence.  First, we define a method to build a classifier 
associated with a probabilistic model.  

Classification Using a Probabilistic model: Suppose we have a probabilistic model α  for se-
quences defined over some alphabet ∑  (which in our case is the 20-letter amino acid alphabet).  



The model α  specifies for any sequence nssS ,...,1= the probability ),...,( 1 nssSP =α according to the 
probabilistic model using the following (standard) procedure: 

1. For each class  train a probabilistic model jc )( jcα  using the sequence belonging to . jc

2. Predict the classification )(Sc of a novel sequence nssS ,...,1= as given by:    
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Naïve Bayes Classifier:  The Naïve Bayes classifier assumes that each element of the sequence is independ-
ent of the other elements given the class label.  Consequently,  
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Note that the Naive Bayes classifier for sequences treats each sequence as though it were sim-
ply a bag of letters. We now consider two Naive Bayes-like models based on k -grams. 

Naïve Bayes k-grams Classifier:  The Naive Bayes k-grams (NB k-grams) method uses a sliding a 
window of size k along each sequence to generate a bag of k-grams representation of the se-
quence. Much like in the case of the Naive Bayes classifier described above treats each k-gram 
in the bag to be independent of the others given the class label for the sequence. Given this 
probabilistic model, the previously outlined method for classification using a probabilistic 
model can be applied.   The probability model associated with Naïve Bayes k-grams classifier is 
as follows [Silvescu, 2004]: 
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A problem with the NB k-grams approach is that successive k-grams extracted from a sequence 
share k-1 elements in common.  This grossly and systematically violates the independence as-
sumption of Naive Bayes. 

Naïve Bayes (k):  We introduce the Naive Bayes (k) or the NB(k) model to explicitly model the 
dependencies that arise as a consequence of the overlap between successive k-grams in a se-
quence.  Figure 1a) shows the dependency model for a sequence of 5 elements.  We represent 
the dependencies in a graphical form by drawing edges between the elements that are directly 
dependent on each other. The graph for pair-wise dependencies is illustrated in Figure 1.b and 
the one for 3-way dependency is depicted in Figure 1.c  

 



 
Figure 1:  Graphical depiction of the dependence between the elements in a sequence of five 
elements using Undirected Graphical Models:  a) shows the Naïve Bayes  b) shows pairwise 
dependence (k = 2) and c) shows 3-way dependence (k=3). 

 

Using the Junction Tree Theorem for probabilistic graphical models [Cowell et al., 1999], it can 
be shown that the correct probability model α  that models the dependencies among overlap-
ping k-grams is given by [Silvescu et al., 2004] for details): 
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Again, given this probabilistic model, we can use the standard approach to classification given 
a probabilistic model. It is easily seen that when k = 1, Naive Bayes 1-grams as well as Naive 
Bayes (1) reduce to the Naive Bayes model.  

The relevant probabilities required for specifying the above models are estimated using stan-
dard techniques for estimation of probabilities using Laplace estimators [Silvescu et al., 2004]. 

SVM k-grams:  Note that the NB(k) algorithm was developed because NB k-grams systemati-
cally violates the independence assumption of Naïve Bayes. Against this background, it is of 
interest to consider other methods that can utilize class conditional k-gram frequencies without 
relying on the independence assumptions made by NB k-grams and without the need for ex-
plicit modelling of dependencies as in the case of NB(k). Hence, we consider a Support Vector 
Machine (SVM) classifier which accepts as input, a class conditional k gram probability distri-
bution for the protein (which is same as the one used by NB k-grams model) and outputs a class 
label. In this method, the SVM classifier can be seen as a second stage of a 2-stage classifier. 
The inputs to the SVM are supplied by the NB k-grams model. 



3 Experimental setup and results 

We compare the performance of the four classifiers - NB, NB k-grams, NB(k) and SVM k-grams 
on three protein function classification data sets.  

Data Sets: The data sets used in this study are constructed as follows: First, a set of functional 
classes are chosen from the GO taxonomy of protein functional families. Then, the correspond-
ing sequences are retrieved from the SWISSPROT data base [Boeckmann et al. 2003]. Because 
the GO taxonomy has the form of a directed acyclic graph, and many proteins are multi-
functional, it is possible that a given protein belongs to multiple functional families. Hence, the 
resulting  data set is filtered to remove proteins that had multiple GO class labels to ensure 
that the classes are non overlapping (i.e.., mutually disjoint) - a requirement of most standard 
machine learning and statistical methods for classification including the methods considered in 
this paper. (The development of principled approaches to classification of data that are labelled 
with multiple class labels is largely an open problem in machine learning).   

The first data set was derived from families of yeast and human kinases. These families were 
chosen for this study because many of them are well-characterized, with known structures and 
functions.  The data set used in this study consisted of 396 proteins belonging to the Gene On-
tology functional family GO0004672, Protein Kinase Activity. We classified them according to 
the highest level below GO0004672. This consists of 5 groups. In GO, their labels are 
GO0004672, Protein Kinase Activity (102 proteins); GO0004674, protein serine/threonine 
kinase activity (209 proteins); GO0004713, protein-tyrosine kinase activity (69 proteins); 
GO0004712, protein threonine/tyrosine kinase activity (10 proteins); and GO0004716, receptor 
signalling protein tyrosine kinase activity (6 proteins).  

The second data set is derived from two subfamilies of GO0003824, Catalytic Activity. This di-
vision is at a higher level of GO then the previous data set and consists of 376 proteins belong-
ing to the Gene Ontology functional family GO0004672, Protein Kinase Activity (158 proteins) 
and GO001684, Protein Ligase Activity (218 proteins).  

The third data set is a superset of data set two. It contains the Kinase data and Ligase data in 
addition to two other subfamilies of GO0003824, Catalytic Activity. These families are 
GO0004386, Protein Helicase Activity (110 proteins), and GO0016853, Protein Isomerase Activ-
ity (86 proteins). This data set tests the classifiers ability on a larger number of classes at a 
high level of GO and includes a total of 572 proteins. 

Experiments and Results: The computational experiments were motivated by the following 
questions: 

1. How do NB k-grams, NB(k), and SVM k-grams models compare with each other and 
against the baseline represented by Naïve Bayes (NB) classifier?  

2. What is the effect of k (which can be viewed as a measure of the complexity of the models 
in question) on classification accuracy of the resulting classifiers? 

 



NB k-grams and NB(k) models were constructed and evaluated on the three data sets for dif-
ferent choices of k from 1 to 4.  Values of k larger than 4 were not considered because at higher 
values of k we run out of data to obtain reliable probability estimates. SVM k grams model, us-
ing a linear SVM kernel, was tested with values of k from 1 to 3.  (Higher values of k were not 
explored because of computational and memory requirements). The reported accuracy esti-
mates are based on stratified 10-fold cross validation.  Within the 10-fold cross validation ex-
periments, the majority of the individual standard deviations among classifiers were under 1% 
and never reached above 2%.  This shows little variability among the classifiers used for these 
experiments.    

   

k NB NB       
k-grams 

NB(k) SVM     
k-grams 

1 66.1 66.1 66.1 84.1 
2 - 81.3 88.6 90.7 
3 - 89.9 92.7 90.3 
4 - 90.4 91.6 X 

Table 1:  Kinase data set results.   

k NB NB       
k-grams 

NB(k) SVM     
k-grams 

1 77.9 77.9 77.9 97.6 
2 - 83.5 84.6   100.0 
3 - 84.0 85.6   100.0  
4 - 85.9 90.7 X 

Table 2:  Kinase/Ligase data set results. 

k NB NB       
k-grams 

NB(k) SVM     
k-grams 

1 56.1 56.1 56.1 93.9 
2 - 70.3 72.2 94.5 
3 - 79.5 80.8 94.7 
4 -     79.4 82.0 X 

Table 3:  Kinase/Ligase/Helicase/Isomerase data set results. 

Table 1 – 3: All numbers represent classification accuracy estimated by 10-fold cross validation 
(Note:  NB method applies only for k=1; SVM k-grams was found to be infeasible because of 
computational and memory requirements k > 3. 

  

 



Because SVM is a binary classifier, and the problem calls for multi-class classifier, a separate 
SVM classifier was constructed for each class.  The ith classifier is trained using the training 
data from class i as positive examples and the rest of the training data as negative examples.  
Note that unlike SVM, NB, NB k-grams, and NB(k) can build a single multi-class classifier. 

Table 1 shows the results using the Kinase data set. We obtained a classification accuracy of 
66% classification using Naive Bayes alone and an accuracy of 84% using SVM 1-gram. Increas-
ing k to 2 resulted in significant improvements in accuracy: The accuracy increased to 81.3% for 
NB 2-grams, 88.6% for NB(2), and 90.7% for SVM 2-grams. In the case of NB(2) this represents 
22% improvement over Naive Bayes and 7% improvement in classification accuracy over NB 2-
grams.  SVM on 2-grams only outperformed NB(2) by about 2% in terms of classification accu-
racy.  NB 3-grams and NB(3) had accuracies of 89.9% and 92.7% respectively, with NB(3) 
(92.7%) actually outperforming SVM 3-grams (90.3%). Increasing k to 4 resulted in little im-
provement on this data set. NB 4-grams improved by only 0.5% and NB(4), while performing 
better than NB 4-grams, has slightly worse accuracy relative to NB(3).  This can be explained 
by the fact that as k increases, the probability estimates become less and less reliable (as we 
run out of data). 

Similar results were obtained for the Kinase/Ligase and Kinase/Ligase/Isomerase/Helicase data 
sets. NB(4) outperforms NB(3) (by over 5% for the second data set [Table 2] and nearly 1.2% for 
the third data set [Table 3]) and NB 4-grams (nearly 5% [Table 2] and over 2% [Table 3]. SVM 
k-grams significantly outperforms NB(k), yielding 100% accuracy for the second data set and 
94.7% accuracy for the third data set. This corresponds to a 14% improvement over the best 
accuracy of NB(k) on each of the data sets. 

The experimental results demonstrate the superiority of both NB k-grams and NB(k) over Na-
ive Bayes on all test cases using these datasets.  Furthermore, in terms of accuracy, NB(k) out-
performs NB k-grams, and SVM k-grams significantly outperformed NB(k) in terms of classifi-
cation accuracy in two of the three test cases. In one of the test cases, the performance of SVM 
k-grams was comparable to that of NB k-grams. The results collectively demonstrate the utility 
of representing amino acid sequences in terms of class conditional probabilities of amino acids 
or k-grams of amino acids for sequence-based assignment of proteins to functional families. 

4 Summary and Discussion 

Development of robust methods for assigning putative functions to novel proteins and the dis-
covery of sequence correlates of protein function are important challenges in bioinformatics.  

This paper explored several methods for assigning protein sequences to functional families 
based on class conditional probability distributions of amino acids or short sub-sequences (k-
grams) of amino acids on three data sets. The data sets were extracted from functional classes 
extracted from GO [Gene Ontology Consortium, 2000] and the corresponding sequences are ex-
tracted from SWISSPROT [Boeckmann et al. 2003].  

Our results show that the NB (k) classifier, which models the dependencies among overlapping 
k-grams in a sequence, consistently outperforms NB k-grams and the Naive Bayes classifier in 
terms of classification accuracy. SVM k-grams, which also uses the class conditional k-gram 



probabilities for the sequences outperforms NB(k) on two of the three data sets in terms of clas-
sification accuracy.  

NB k grams and NB(k) require only one pass through the data which makes the resulting clas-
sifiers easy to construct and update as new data become available.   In contrast, at present, 
there are no efficient algorithms for updating SVM classifiers to incorporate new data in an 
incremental fashion.  This makes NB(k) an attractive alternative when using large data sets or 
data sets that are rapidly being updated or modified. 

Some directions for future work include: exploration of classifiers constructed using reduced  
alphabet representations of protein sequence [Andorf et al., 2002]; development of principled 
approaches to assigning a protein sequence simultaneously to multiple classes (in the case of 
multifunctional proteins); incorporation of other sources of information (e.g., expression data, 
interaction data, structural features) to enhance the accuracy of function classification; exami-
nation of the resulting classifiers to identify testable hypotheses concerning sequence correlates 
of protein function and to guide the design of experiments to validate such hypotheses.  
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