
Nucleic Acids Research, 2007, 1–7
doi:10.1093/nar/gkm294

RNABindR: a server for analyzing and predicting
RNA-binding sites in proteins
Michael Terribilini1,2,*, Jeffry D. Sander1,2, Jae-Hyung Lee1,2, Peter Zaback1,2,

Robert L. Jernigan2,3, Vasant Honavar2,4 and Drena Dobbs1,2

1Department of Genetics, Development & Cell Biology, 2Bioinformatics & Computational Biology Program,
3Department of Biochemistry, Biophysics and Molecular Biology and 4Department of Computer Science,
Iowa State University, Ames, Iowa, 50011, USA

Received January 31, 2007; Revised April 3, 2007; Accepted April 12, 2007

ABSTRACT

Understanding interactions between proteins and
RNA is key to deciphering the mechanisms of many
important biological processes. Here we describe
RNABindR, a web-based server that identifies
and displays RNA-binding residues in known
protein–RNA complexes and predicts RNA-binding
residues in proteins of unknown structure.
RNABindR uses a distance cutoff to identify
which amino acids contact RNA in solved complex
structures (from the Protein Data Bank) and
provides a labeled amino acid sequence and
a Jmol graphical viewer in which RNA-binding
residues are displayed in the context of the
three-dimensional structure. Alternatively,
RNABindR can use a Naive Bayes classifier trained
on a non-redundant set of protein–RNA complexes
from the PDB to predict which amino acids in
a protein sequence of unknown structure are
most likely to bind RNA. RNABindR automatically
displays ‘high specificity’ and ‘high sensitivity’
predictions of RNA-binding residues. RNABindR is
freely available at http://bindr.gdcb.iastate.edu/
RNABindR.

INTRODUCTION

Protein–RNA interactions are vital to a wide range of
biological processes, including regulation of gene expres-
sion, protein synthesis and replication and assembly of
many viruses (1–4). A more detailed understanding of
protein–RNA interactions is especially important for
understanding how miRNA and other non-coding
RNAs regulate gene expression. The ability to computa-
tionally predict which residues of a protein directly
participate in RNA-binding has already contributed to
the design of wet-lab experiments to decipher mechanisms

of protein–RNA recognition (5,6) and has the potential to
enhance our fundamental understanding of how proteins
recognize RNA.
Here we describe RNABindR, a web-based server that

uses machine learning approaches to identify amino
acids in a protein that are most likely to participate in
RNA-binding. In previous work, we demonstrated that
RNABindR can predict RNA-binding residues with high
accuracy, using only the amino acid sequence of a query
protein (and no information about the bound RNA)
as input (7). In the current web-based implementation,
RNABindR allows users to: (i) identify actual binding
residues for a given protein–RNA complex in the Protein
Data Bank (PDB) (8) and (ii) predict RNA-binding
residues in a protein sequence whose RNA-bound
structure is not available in the PDB. When calculating
actual binding residues for a known structure, the only
required input is the PDB ID of a protein–RNA complex
and an interface distance cutoff in angstroms (Å).
The RNABindR server calculates which amino acids in
the protein have atoms within the defined cutoff
distance of atoms in the bound RNA. It returns a display
of the labeled amino acid sequence and a Jmol
(www.jmol.org) graphical viewer in which RNA-binding
residues are highlighted within the three-dimensional
structure of the complex. To predict RNA-binding
residues for a protein of unknown structure, the user
must provide the amino acid sequence of a protein of
interest. The RNABindR server returns the amino acid
sequence with the predicted RNA-binding status (þ or �)
for each residue. Three different prediction results,
reflecting different expected specificity values, are pro-
vided for each query sequence, allowing users to compare
results with high ‘specificity’ versus high ‘sensitivity’
for RNA-binding residues. RNABindR is designed to
be fast and easy to use; results are typically returned
within a few seconds. Output can be displayed as
described above, or can be downloaded as a file to
facilitate transfer into other programs.
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MATERIALS AND METHODS

Dataset of protein–RNA interactions

A training dataset of protein–RNA interactions was
extracted from structures of known protein–RNA
complexes in the PDB solved by X-ray crystallography.
Proteins with430% sequence identity or structures with
resolution worse than 3.5 Å were removed using PISCES
(9). This resulted in a dataset, RB147, containing 147
non-redundant protein chains and a total of 32 324 amino
acids. This dataset is larger than the RB109 dataset used in
our previously published work (5,7), where a different
method was used to define RNA-binding residues.
Previously, we used the ENTANGLE program (10) to
identify amino acids in contact with RNA. For the dataset
used in the current implementation of RNABindR,
RNA-binding residues were identified according to a
distance-based cutoff definition: an RNA-binding residue
is an amino acid containing at least one atom within 5 Å
of any atom in the bound RNA. According to this
definition, RB147 contains a total of 6157 RNA-binding
residues and 26 167 non-binding residues.

Naive Bayes classifier

RNABindR uses a Naive Bayes classifier (11) as
implemented in the Weka software package (12) for all
predictions. A detailed description of the algorithm and
evaluation of its performance on several different datasets
of RNA-binding proteins has been published (7). Briefly,
the Naive Bayes classifier assumes the independence
of attributes. This assumption greatly reduces the
complexity of the classifier. In RNABindR, the
input to a Naive Bayes classifier consists of a window
x ¼ ðx�n, x�nþ1, . . . , xT�1, xT, xTþ1, . . . ,xn�1, xnÞ of 2nþ 1
contiguous amino acid identities, with n amino acid
sequence residues on either side of the target residue xT.
The output is an instance c 2 fþ,�g where ‘þ’ indicates
that the target residue xT at the center of the window is an
RNA-binding residue and ‘�’ indicates xT is not an RNA-
binding residue. The Naive Bayes classifier assigns the
class label ‘þ’ to input x if:

PðC ¼ þjX ¼ xÞ

PðC ¼ �jX ¼ xÞ
5�

and the class label ‘�’ otherwise. The desired trade-off of
sensitivity versus specificity can be achieved by varying �,
which is the classification threshold. Specificity is the
fraction of residues predicted to be RNA-binding residues
that are in fact RNA-binding residues. Sensitivity is the
fraction of actual RNA-binding residues that are pre-
dicted to be RNA-binding residues by RNABindR (7,13).

Reliability of RNABindR predictions

RNABindR has been evaluated using leave-one-out cross
validation experiments with several different datasets of
RNA-binding proteins (7). For the Naive Bayes classifier
implemented in the current web-based version of
RNABindR, one protein sequence was used as the test
set and the other 146 sequences in the RB147 dataset
were used as the training set for each round of training.

This process was repeated until each protein had
been used as the test set. Figure 1 depicts RNABindR
performance over all values of � and the inset table
provides a summary of the average classification perfor-
mance of RNABindR on the RB147 dataset, using
three different values of the classification threshold, �.
The results illustrate that, as with other machine learning
methods, in the RNABindR predictions there is a trade-
off between the specificity (or ‘precision’) and sensitivity
(or ‘recall’). Changing the value of � changes the number
of predicted RNA-binding residues and the ‘confidence’
with which binding residues are predicted. In classification
tasks that involve unbalanced training sets (i.e. unequal
numbers of positive and negative examples), as is the case
here, the correlation coefficient (CC) is perhaps the best
single parameter for comparing the ‘overall’ performance
of different machine learning algorithms (13; also see 7 for
further discussion and precise definitions of performance
parameters used in our work.).

As shown in Figure 1, using the ‘high specificity’
classification threshold, RNABindR predicts a smaller
number of RNA-binding residues, with higher confidence:
80% of the RNA-binding residues predicted for the
RB147 dataset are, in fact RNA-binding residues. In
contrast, using the ‘high sensitivity’ classification thresh-
old, RNABindR predicts a larger number of RNA-
binding residues, but with lower confidence: only 28%

Figure 1. Summary of RNABindR performance in predicting RNA-
binding residues. Specificity versus sensitivity trade-off and the average
performance statistics for RNABindR in leave-one-out cross-validation
experiments on the RB147 dataset are shown. The plot shows the
specificity and sensitivity values across the entire range of the
classification threshold �, with the ‘Optimal,’ ‘High Specificity,’ and
‘High Sensitivity’ points marked. The columns in the table show results
obtained using the three different classification thresholds employed by
RNABindR. The ‘Optimal Prediction’ uses the threshold value that
maximizes the correlation coefficient on the training dataset; this
prediction represents a balance between the competing goals of
identifying as many RNA-binding residues as possible and minimizing
the number of false positives. The ‘High Specificity Prediction’ identifies
fewer RNA-binding residues, but with higher confidence in the positive
predictions. The ‘High Sensitivity Prediction’ identifies more
RNA-binding residues, but at the cost of an increased false positive
rate. Definitions of performance measures are according to Baldi et al.
(2001) (13). Specificity ‘þ’ and ‘�’refer to specificity on the positive
class (RNA-binding residues) and negative class (non-RNA-binding
residues), respectively.

2 Nucleic Acids Research, 2007



of the RNA-binding residues predicted for the RB147
dataset are actually RNA-binding. Using this high
sensitivity threshold, however, a much higher fraction
(�80%) of the actual binding residues is identified. The
third prediction provided by RNABindR, referred to as
the ‘optimal’ prediction, uses a threshold corresponding to
the value of � that maximizes the correlation coefficient for
predictions on the RB147 dataset. The ‘optimal’ predic-
tion is not guaranteed to be the best prediction. Instead, it
is a prediction in which the trade-off between specificity
and sensitivity has been optimized on the training dataset.

Server description

RNABindR provides two main services: (i) identification
of RNA-binding residues, given the structure of a protein–
RNA complex and (ii) prediction of RNA-binding
residues given a protein sequence. An overview of
RNABindR is provided in Figure 2.

Calculation of RNA-binding residues in protein–RNA
complexes of known structure

Input—To identify RNA-binding residues (i.e. amino
acid residues that lie in the interface between protein and
bound RNA) in a known protein–RNA complex, the
only required input is the PDB ID of the complex.
RNABindR parses the PDB file to determine which
chains in the complex are protein and which are RNA.
Interactions are calculated for each protein chain with
every RNA chain in the complex. For example, for a
protein–RNA complex with two protein chains (A and
B) and two RNA chains, (C and D), interactions will be
calculated between the following pairs of chains: A and
C, A and D, B and C and B and D. If desired, the user
can enter a single protein chain identifier to restrict the
output to only those interactions between the specified
protein chain and the RNA chain(s) in the complex.

By default, RNABindR uses a distance cutoff of 5 Å
between any atom of the amino acid and any atom of the

RNA to determine which residues interact with the RNA.
However, RNABindR allows the user to change this
parameter to any desired value (between 0 and 100 Å) to
make the definition of RNA-binding more or less
stringent.

Output—Figure 3 shows an example of RNABindR
output to identify RNA-binding residues in a known
protein–RNA complex. The output is a display of the
sequence of each chain in the complex, with a label
for each residue; ‘þ’ for residues that are within the
specified distance cutoff and ‘�’ for residues that do
not have any atoms within the distance cutoff. The
calculated RNA-binding residues are also displayed on
the PDB structure of the protein–RNA complex using
Jmol (www.jmol.org). By default, the RNA-binding
residues are displayed in red space-fill representation,
the rest of the protein is displayed in blue space-fill
and the bound RNA is displayed in green wireframe.
Users can also print or download the text output
to facilitate further analysis of the calculated RNA-
binding residues.

Prediction of RNA-binding residues in proteins of unknown
structure

Input—To predict RNA-binding residues in a protein
of interest, the only required input is the amino
acid sequence of the protein. RNABindR accepts
FASTA-formatted protein sequences in the single-letter
amino acid representation, but is able to read any
standard amino acid sequence format; any characters
(e.g. sequence numbering or blank spaces) that are not
part of the standard 20-letter amino acid alphabet are
ignored. After processing the sequence to remove any
extra characters, RNABindR determines whether the
query sequence has an exact match in any protein–RNA
complexes available in the PDB. If an exact match to the
query sequence is identified, the prediction program is
not run. Instead, RNABindR returns the actual RNA-
binding residues from the PDB complex and a Jmol
image of its structure, in which the RNA-binding
residues are highlighted as described above. If no exact
match is found, RNABindR predicts RNA-binding
residues in the query protein sequence. In the current
implementation, RNABindR predictions are made using
a Naive Bayes classifier trained on all 147 protein chains
in the RB147 dataset; the input query sequence is used as
the test case.
Output—Figure 4 shows an example of RNABindR
output obtained for predicting RNA-binding residues in
a protein of unknown structure. The input amino acid
sequence is shown at the top, and labels ‘þ’ and ‘�’ for
predicted RNA-binding and non-binding residues,
respectively, are shown immediately below the sequence.
Users can also print or download the text output to
facilitate further analysis of the predicted RNA-binding
residues.

Typical users of RNABindR may have different goals in
mind when predicting RNA-binding residues: some may

Figure 2. RNABindR flowchart. The query sequence is first compared
with every protein sequence in every protein–RNA complex structure in
the PDB to search for an exact match. If a match is found, the
prediction program is not run and the actual RNA-binding residues are
calculated using a distance cutoff and returned, along with an
interactive Jmol image highlighting interface residues within the
protein–RNA complex structure. If an exact sequence match is not
identified, the Naive Bayes classifier is run and the predicted RNA-
binding and non-binding residues are returned (using three different
classification threshold values, see text).
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wish to identify a relatively small number of amino acids
predicted to bind RNAwith ‘high confidence,’ while others
may wish to identify as many potential RNA-binding
residues as possible, with more potentially ‘false positive’

predictions. To accommodate these different uses,
RNABindR displays three different predictions for each
query sequence: an ‘optimal’ prediction, a ‘high specificity’
prediction and a ‘high sensitivity’ prediction. As discussed

Figure 3. Example of RNABindR results: identifying actual RNA-binding residues in a known protein–RNA complex. RNABindR output includes
the amino acid sequence of the identified protein chain(s) in the complex, with a ‘þ’ label for each interacting residue (those having atoms within the
selected RNA contact cutoff distance) and ‘�’ for non-binding residues. Below, a Jmol applet displays the structure of the protein–RNA complex.
RNA-binding residues are displayed in red space-fill, non-binding residues in blue space-fill and the RNA in green wireframe. Users can manipulate
the image using the Jmol applet.
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above, the high specificity prediction uses a more stringent
classification threshold to identify the most likely
RNA-binding residues, whereas the high sensitivity pre-
diction uses a less stringent threshold to identify more
potential RNA-binding residues. Because the reliability of
RNABindR predictions for any particular protein depends
on the extent to which the query protein shares features
that are ‘captured’ by the Naive Bayes classifier (during
training on the RB147 dataset), prediction performance for
any particular query sequence cannot be guaranteed. The
three types of predictions are supplied as a guide to help the
user make best use of RNABindR predictions.

Related servers

Predicting RNA-binding residues has proven to be an
important and difficult computational task (7,14–16).
Since RNABindR was developed, two other web-based
servers for RNA-binding site predictions have become
available, BindN (14) and KYG (15). BindN (http://
bioinformatics.ksu.edu/bindn) uses a support vector
machine (SVM) to predict both RNA-binding and
DNA-binding residues in a protein sequence. BindN is a
sequence-based server, requiring only the amino acid
sequence of a query protein. The feature vector used as

Figure 4. Example of RNABindR results: predicting RNA-binding residues in a protein of unknown structure. RNABindR output includes the
query sequence and three predictions obtained using three different classification thresholds. Residues predicted to bind RNA are indicated by ‘þ’
and non-binding residues by ‘�’ on the line below the sequence. The ‘optimal prediction’ uses the threshold value that maximizes the correlation
coefficient on the RB147 dataset. The ‘high specificity prediction’ provides fewer predicted RNA-binding residues, with higher confidence, and the
‘high sensitivity prediction’ provides more predicted RNA-binding residues, but with lower confidence. Links are provided for downloading the
predictions in a text-only format or a printer friendly format.
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input to the SVM classifier consists of the side chain
pKa value, hydrophobicity index and molecular mass for
each amino acid in a window of 11 residues. The BindN
server requires users to choose an estimated specificity
or sensitivity, which is used to determine the classification
threshold (14). KYG (http://yayoi.kansai.jaea.go.jp/qbg/
kyg/index.php) provides several methods for statistically
analyzing a protein structure and predicting RNA-binding
residues. KYG is a structure-based server and relies on
estimating the interface propensity for single amino acids
and pairs of amino acids. KYG also utilizes evolutionary
information in the form of a multiple sequence alignment
profile, which must be supplied by the user. Users are
allowed to choose among nine different predictions, each
of which is based on a different combination of residue
propensities and profile scores. The KYG server can
predict RNA-binding residues only for those proteins
whose structures are known.
RNABindR offers some potential advantages over

BindN and KYG. RNABindR has been designed to be
user-friendly and widely applicable. Like BindN,
RNABindR requires only a protein sequence as input,
so researchers can obtain predictions for any protein
sequence of interest. RNABindR does not require users to
specify any parameters or choose between different
methods. Also, RNABindR provides a quick and easy
way to visualize RNA-binding residues and examine the
protein–RNA interface(s) within the three-dimensional
structure of any known protein–RNA complex.
RNABindR, BindN and KYG each use different

methods, are trained on different datasets and often
provide different predictions of RNA-binding residues for
the same query protein sequence. Users may use all three
servers and apply their biological expertise regarding their
protein of interest to determine which predictions warrant
further investigation.

SIGNIFICANCE AND FUTURE DIRECTIONS

Over the last decade, there has been a dramatic increase in
the number of available structures of protein–nucleic acid
complexes: the Protein Data Bank (PDB) included only
198 protein–nucleic acid complexes in 1996, but by April
2007, this number had grown to 1734, of which 529 were
protein–RNA complexes (PDB, accessed April 3, 2007,
http://www.pdb.org).The resulting availability of larger
and more diverse training sets can be expected to
significantly improve the performance of RNABindR.
RNABindR will be updated periodically to take advan-
tage of the latest data available in the PDB. A beta-version
with three types of enhancements is under development. In
recent work, we have generated a comprehensive database
that includes every protein–RNA interface for which
structural information is available in the PDB. The next
version of RNABindR will incorporate this complete
database. Users will have the option of choosing a
classifier that is trained on the comprehensive dataset or
on one of several ‘non-redundant’ datasets (e.g. RB 147).
Alternatively, users will be able to train a new classifier
using a ‘customized’ training dataset (e.g. any subset of

known protein–RNA complexes, chosen based on simila-
rities in sequence or biological function). Recent unpub-
lished and earlier published results (7) indicate that using
such training datasets can provide a significant increase in
the reliability of RNA-binding site predictions. A second
enhancement will be to allow users to choose among
several machine learning algorithms (e.g. SVMs) or
statistical methods that have been shown to be effective
for RNA-binding site prediction by our group and by
others (5,7,14–16). Third, RNABindR will allow users to
take advantage of structural and/or evolutionary informa-
tion, when available. If the structure of a query protein is
available in the PDB (but the structure of the query
protein in complex with RNA is not), predicted RNA-
binding residues will be identified and displayed on the
three-dimensional structure of the protein, as is done for
calculated RNA-binding residues in known protein–RNA
complexes in the current implementation (see Figure 3).
In the longer term, structural predictions will also be
included for such RNA-binding sites, based on structure
fragment libraries and other homology modeling
approaches.

Protein–RNA interactions play many essential and
diverse roles in biological regulation, ranging from
structural and catalytic roles in ribosomes and spliceo-
somes, to regulatory roles in microRNA-mediated gene
regulation and cellular signaling, to storage and propaga-
tion of genetic information (17–20). Despite their obvious
functional importance, the details of the molecular
mechanisms of protein–RNA recognition are still poorly
understood. The impressive diversity of structures and
functions of protein–RNA complexes makes understand-
ing what dictates specificity in protein–RNA interaction
an especially challenging problem (18). Hence, computa-
tional tools for analyzing protein–RNA interfaces and for
predicting RNA-binding sites in proteins are becoming
increasingly important for deciphering the amino acid
sequence and structural underpinnings of protein–RNA
interactions (7,14–16,21–25). RNABindR predictions
have already helped guide the experimental investigation
of the RNA-binding domains in proteins (5,6).
Approaches that combine computational prediction and
experimental validation of RNA-binding sites in proteins
will increase our understanding of the mechanisms of
protein–RNA recognition.
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