A Negotiation Model in Agent-mediated Electronic Commerce

Mokdong Chung
Department of Computer Engineering
Pukyong National University
599-1, Daeyeon-3Dong, Nam-Gu,
Pusan, Korea, 608-737
mdchung@pknu.ac.kr

Abstract

Today's first generation shopping agent is limited to
comparing merchant offerings usually on price instead of
their full range of attributes. Even in the full range
comparison, there is not a good model which considers the
overall features in the negotiation process. Therefore, the
negotiation model needs to be extended to include
negotiations over the more attributes. In this paper, we
propose a negotiation model in the agent-mediated
electronic commerce to negotiate over prices, product
features, warranties, and service policies based on utility
theory and simple heuristics. We will describe a prototype
agent-mediated electronic commerce framework called
Pmart. This framework provides the software reuse and
the extensibility based on the object-oriented technology. It
is implemented on Windows-based platforms using Java
and CORBA for the network transparency and platform
independence.

1. Introduction

The combination of electronic commerce and
autonomous intelligent agents is potential to deliver
enormous economic benefits. In many web sites, people
can go to find, buy, and sell goods such as OnSale [17],
UCE [22], and Amazon [1]. But none of these sites has the
notion of an autonomous agent which will actually do the
work of negotiating to find the best possible deal on your
behalf [4]. Furthermore, today's first generation shopping
agent is limited to comparing merchant offerings usually
on price instead of their full range of value. Even in the
full range comparison, there is not a good model which
considers the overall features in the negotiation process
appropriately. Therefore, the negotiation model needs to be
extended to include negotiations over the more attributes.

Agent mediated electronic commerce enables cheap
negotiation between buyers and sellers on the details of an
individual transaction. Auctions provide a well-defined
and simple framework for negotiation between

0-7695-0933-9/00 $10.00 © 2000 IEEE

403

Vasant Honavar
Department of Computer Science
Iowa State University
210 Atanasoff Hall
Ames, lowa 50011-1040, USA
honavar@cs.iastate.edu

self-interested buyers and sellers [19]. And they discover
the optimal price for a good through the bidding action of
self-interested agents. Although auctions traditionally
allow negotiation over price alone, auction mechanisms
can be extended to include negotiations over the full range
of attributes. Consumers manage their own negotiation
strategies over an extended period of time this is where
agent technologies. come in [13]. Bidding agents make
tradeoffs between features and price within an auction
framework.

Therefore we will suggest, in this paper, an
agent-mediated electronic commerce framework called
Pmart (Pukyong-marf) based on the multiagent to
negotiate over prices, product features, warranties, and
service policies. And we will suggest a negotiation model
which is based on special knowledge and general
knowledge at the same time. The former is based on the
MAUT (Multi-Attribute Utility Theory) [14] and the latter
is based on the previous purchase history and the simple
heuristics [8]. This framework provides the software reuse
and the extensibility based on the object-oriented
technology and software components technology.
Therefore, we could make different types of electronic
commerce systems by simply changing the contents of
Pmart External that is the variant part of Pmart.

The paper is organized as follows: section 2 is
concerning related works, section 3 a negotiation model of
Pmart, section 4 the design and implementation of Pmart,
and section 5 the conclusion and the future work.

2. Related work

MIT Media Lab developed an agent based market
called Kasbah [3,11] where users may assign the task of
buying or selling a specified good to an agent which then
performs negotiation and settlement of deals according to
the users' choice. And this is served a useful platform for
experiments with groups of users. But this system did not
intend to be a general market infrastructure and does not
offer distribution nor interaction models. After buying

agents and selling agents are matched, the only valid action
in the distributive negotiation protocol is for buying agents
to offer a bid to sellers. Selling agents respond with either
an answering "yes" or "no". Given this protocol, Kasbah
provides buyers with one of three negotiation "strategies":
anxious, cool-headed, and frugal. This negotiation takes
the form of multi-agent, bilateral bargaining but uses
simple raise or decay functions.

Tete-a-Tete [12,13] is an agent-mediated comparison
shopping system that allows consumers to consider
dimensions other than price in their buying decisions for
complex products. This system provides a unique
negotiation approach to retail sales. Unlike most other
on-line negotiation systems which competitively negotiate
over price, Tete-a-Tete agents cooperatively negotiate
across multiple terms of transaction, such as warranties,
delivery times, service contrasts, and return policies. This
system uses integrative negotiation interaction model,
together with a decision support module, creates an
improved online shopping environment for both consumers
and merchants. The decision support module uses
MAUT and product customization which is based on
distributed constraint satisfaction. But this has some
problems basically related to inferring the probabilities in
the decision-making problem under uncertainty.

AuctionBot [26] is general purpose internet auction
server at University of Michigan where users create new
auctions to buy or sell products by choosing from a
selection of auction types and specifying its parameters.
And buyers and sellers can then bid according to the
multilateral distributive negotiation protocols of the
created auction. In a typical scenario, a seller would bid a
reservation price after creating an auction and let
AuctionBot manage and enforce buyer bidding according
to the auction protocols and parameters.

Magnet [21] was developed by University of
Minnesota. The goal of the Magnet project was to develop
a semantic model for the integration of planning,
contracting, scheduling, and execution in a multi-agent
market domain.

The SICS MarketSpace [7] prototype was developed
. in Intelligent Systems Lab, Swedish Institute of Computer
Science using Java. And it consists of a personal assistant
allowing the user to describe his/her interests. Two agents
augmented web shops. It provides a directory service
which allows user and service agents to register interests
and find agents with matching interests.

A variety of architectures have been proposed for
electronic commerce and multi-agent automated
contracting [7,11,13,21,26]. And several protocols have
been developed and proposed to support automated
contracting and negotiation among multiple agents.

But most these systems competitively negotiate over
only price, and especially systems such as Kasbah,
AuctionBot, Magnet, SICS MarketSpace do not have
sophisticated negotiation strategies like Pmart. P-mart
agents cooperatively negotiate across multiple terms of

404

transaction, such as prices, warranties, delivery times,
service contrasts, and return policies.

3. A negotiation model of Pmart

We have two alternatives in negotiating between buyer and
seller agents. The first approach is using only MAUT
consistently. The second is using MAUT and if fail even
after a few trials, say numS, then resorting to the previous
purchase history data base and simple heuristics. This
history database contains information about successfully
purchased transaction so far. This may be general
knowledge on purchasing a good. The reason why we want
to select the second approach is as follows:

1) The negotiation starting from special knowledge
(MAUT) to general knowledge (purchase history
and simple heuristics) is sound in the general inference
mechanism [20].

2) If the negotiation fails even after a few trials of
MAUT-based negotiation, we can infer this
MAUT-based negotiation might be less than the general
knowledge-based negotiation. Because general
knowledge might represent general purchasing
behaviors of all clients so far, and also because the
utility function which was assessed by the buyers are
not consistently reasonable, resorting to this general
knowledge might be reasonable.

Therefore, we can provide hybrid, two-fold decision

making process that involves the usage of special

knowledge in a first decision step based on MAUT, and
general knowledge in a second decision step based on the
purchase history database:CaseBase and simple heuristics.

In such a model, we propose a kind of case-based

reasoning to observe behavior in previous similar

situations.
We will discuss the concepts of MAUT and simple
heuristics in the following sections.

3.1. A procedure for assessing Utility Function

Regardless of the technique being used to assess a
utility function, the specific points or objectives that
must be considered and accomplished by any assessment
procedure are essentially the same as ensuing five sections
[14].

3.1.1. Preparing for Assessment. Let X be the evaluator
function, which associates to a consequence Q the real
number x = X(Q). Are higher x values more or less
desirable? Ask whether we prefer a consequence x; to
consequence x,. We might ask him whether or not he
prefers consequence T to consequence S in Fig. 1. Fig.1
shows a two-attribute, ¥ and Z, consequence space. By
consequence @ we mean the consequence where y =y, and
z=z,. The consequence R is the consequence where y =y,
and z = z,.

3.1.2. Identifying relevant independence assumptions.
We discuss procedures to verify whether ¥ and Z are
additive independent and if either attribute is utility
independent of the other.

%

4

Jbta
o~y

id ¥, y*
Figure 1. A two-attribute consequence space

3.1.3. Identifying relevant qualitative characteristics.
We want to determine whether or not the utility function is
monotonic. If x; is greater than x;, is x; always preferred to
x;? Next, we want to determine whether u is risk averse,
risk neutral, or risk prone. We ask the decision maker if he
prefers <x+h, x-h> or x for arbitrary chosen amounts of x
and h. After the qualitative characteristics have been
identified, we need to assess quantitative utility values for
a few points.

3.1.4. Choosing a Utility Function. As a simple
illustration of several points, suppose that the decision
maker's utility function was monotonically increasing in x
and decreasingly risk averse. We know a family of utility
functions that satisfies these characteristics is
u(x) = h + k(- -be™™), where a, b, ¢, and k are
positive constants.
Now we verify relevant independence assumptions: that is
check whether ¥ was utility independent of Z. It was
concluded that ¥ was utility independent of Z. In a similar
manner, Z was found to be utility independent of ¥.
Generally, if the utility function u(x;, x, x;) is
additive and utility independent, then
u(xy, Xz, x3) = kuy(xy) + kauz(xy) + ksus(xs), where u(x°)
=0, u;(x’y) =1, for all i.

3.2. Utilization of simple heuristics. The reason why we
use simple heuristics is that it is difficult to predict the
preferences of users which are related to the attributes of a
good. Also it is difficult for even users to determine their
preferences quantitatively which is related to the attributes
of a good.

There are two types of rationality: unbounded
rationality and bounded rationality [9]. In decision models
based on unbounded rationality, there are decision-making
strategies that have little or no regard for the constraints of
time, knowledge, and computational capacities that real

405

human face. This is traditionally modeled by probability
theory and the best-known realizations are the
maximization of expected utility and Bayesian model.

In decision models based on bounded rationality,
there are satisficing, and fast and frugal heuristics.
Satisficing searches through a sequence of available
alternatives. Fast and frugal heuristics use little
information and computation to make a variety of kinds of
decisions. There is a sound reason why a person might
base a decision on only one reason rather than on a
combination of reasons: combining information from
different cues requires converting them into a common
currency, a conversion that may be expensive. Assume that
there is a common currency for all beliefs and desires,
namely, quantitative probabilities and utilities. Although
this is a mathematically convenient assumption, the way
we look at the world does not always conform to it. And
this heuristics employ a minimum of time, knowledge, and
computation to make adaptive choices. Little time and
knowledge would be to employ a form of one-reason
decision making in which he need only find a single piece
of information to determine his decision. This might base a
decision on only one reason rather than on a combination
of reasons [16].

Different environments can have different specific
fast and frugal heuristics. But specificity can also be a
danger if a different heuristic were required for every
slightly different environment, we would need an
unworkable multitude of heuristics. Fast and frugal
heuristics avoid this trap by their simplicity and enable
them to generalize well to new situations [9]. Take The
Best fries cues in order, searching for a cue that
discriminates between the two objects. If the
discriminating is found, it serves as the basis for an
inference, and all other cues are ignored. Since it does not
integrate information or require extensive computations, it
is fast. Since it has a stopping rule to effect limited search
for cues, it is frugal. Take The Best outperforms multiple
regression, especially when the training set is small [10].

3.3. Algorithm

Algorithm Negotiate()
/**************#*******************************
Define GoodDB as the database which contains goods and
users' preferences. If good G; is selected in step 1, good G;
is selected in step 2, and G; was purchased by the buyer,
let's describe this transaction as Tj. Define n(T) as the
number of the transactions successfully purchased so far.
Define CaseBase as the history database which contains
n(Ty). Define numS as the times of trials to use special
knowledge. Define numG as the times of trials to use
general knowledge. The total number of goods in a
product, N = numS + numG, if every selected good is
unique. If numsS is equal to the total number of goods in a
product, N, this algorithm uses only special knowledge.
Else if numS is 0, this algorithm uses only general

knowledge. Otherwise, this algorithm uses both special
knowledge and general knowledge.
************#**********#**********************/
Step 1 // Using special knowledge based on MAUT.
1.1 : Preferences() /* Determine the utility function by
interaction with the user according to MAUT:
u(xy, xz, x3) = kuy(xy) + kpy(xg) + ... + kqun(x,),
where u;(x°) =0, u;(x ') = 1, and k; is constant for
alli.
uj(x;)
-risk prone : b(2% -1)
- risk neutral : bx
- risk averse : blogy(x+1)
where b, ¢ > 0 constants */
Define the set of all goods as ¥(G) = {G,, G, ...,
G,}. Also define V(S) as the subset of V(G) which
are selected according to MAUT in step 1. Define
the number of elements in V() as numS, where V(S)
is sorted from the most promising good to the
least promising good according to MAUT.
: For every element of V(S), negotiate and remove
the element from GoodDB. If succeeded, then
Success(). If N = numS, then Fail().

12:

1.3

/* If negotiations failed even after numsS trials, change
the negotiation policy from special knowledge-based
negotiation to the general knowledge-based negotiation.
*/
Step 2 // Using general knowledge based on the purchase
/] history database:CaseBase and simple heuristics.
2.1 : Define the set of the remaining goods which are not
selected in step 1 as V(R), where
V(G) = V(S) + V(R) if every selected good is unique.
For every element Gy in V(R) where n(T;;) > 0,
2.1.1 Retrieve Gx whose value of n(Tjy) is the
highest in CaseBase
2.1.2 Negotiate and remove G; from GoodDB.
2.1.3 If succeeded then Success()
2.2 : CuesOrder() /| The order of importance in cues is
// determined by interacting with the buyer.
2.3 : // There is not such a G in step 2.1
For every element G, in V(R) // all remaining goods
2.3.1 Heuristics(Gy). If there is not such a G,
then Fail().
2.3.2 Negotiate and remove G, from GoodDB.
2.3.3 If succeeded, then Success().
/I End of Negotiate()
Algorithm Heuristics(Gy) // Take the best, ignore the rest.
Step 1 : TakeTheBest(Gy)
/* If the most important preference is, say the
cue , then good Gy in GoodDB whose value
of the cue @ is the most desirable, is selected
according to the result of Take The Best. */
Step 2 : If there is not such a Gy in GoodDB then return.
/! End of Heuristics()
Algorithm Success()
Step 1 : Add n(T;3) in CaseBase by 1, and terminate the

406

negotiation with success
Step 2 : exit(0)
/! End of Success()
Algorithm Fail()
Step 1 : Terminate the negotiation in fail.
Step 2 : exit(1)
Il End of Fail()

This algorithm is flexible. Because if we want to use
only special knowledge that is MAUT, we can set numS =
N. If we want to use both special knowledge and general
knowledge, we can set 0 < numS < N. If we want to use
only general knowledge, we can set numS =0.

3.4. A negotiation scenario
Let’s assume the initial GoodDB for a product P; is
shown in Table 1. Here we assume three attributes and x,

which is the seller’s reserved margin.

Table 1. GoodDB for a] rodugt P,

6, 1. G Gy Gy |GG
) | $50 | $70 | $40 | $50 | $30 | $55
¢ 7 1 10 5 14
3 6 2 5 1
2 3 1 2 0
Algorithm Negotiate()

Step 1: Using special knowledge based on MAUT.

1.1 : Preferences() // Utility function is determined by
MAUT and suppose “risk averse” is selected by the
user.
suppose humS = 3.

Suppose good Gy, G3, and G are selected in

sequence according to the utility function which

was established in the previous step. Therefore

V(8) = {G,, G5, G;}

: Negotiation between buyer agent and seller agent
is starting from G, to G, in V(S). Suppose all
negotiations failed.

Step 2:Using general knowledge:CaseBase and heuristics
2.1 : Let’s assume the content of CaseBase is shown in

Table 2. Because n(T;3) of G,, G, and G, are not

zero as shown CaseBase, G, G3, and G4 could

be the members of V(R). But G; and G, failed

in step 1. Therefore V(R) ={G.}, and the agents

can negotiate with G,.

Also suppose this negotiation failed.

CuesOrder() //Suppose order of cues is (x, x;, x3).

: 2.3.1 : Heuristics()

2.3.2 : G5, Gg, Gs are selected in sequence.
Because the order of cues is (x,, x;, x3), the
goods are selected according to this order. The
value x;, of Gy and G, 1is the same, but G, is
preferable in the second cue, x;. Therefore G,
is selected first.

2.3.3 : If the negotiation with G; failed and the

1.2:

1.3

2.2:
2.3

buyer purchase G5 then the negotiation
would be succeeded. The contents of
CaseBase will be changed as shown in Table
3. Table 3 shows the adding T, into Table 2.
T426 means good G is selected in step

1, good G, is selected in step 2, and Gg

was purchased by the buyer.
Table’/2. CqseBase before urcha\gil‘l G, __
T2 1
Tz
T34 2

CaseBase after purchasing

4. Design and implementation of Pmart
4.1. Pmart in distributed environments

Pmart is an application framework which provides
electronic commerce services in the distributed
environment as shown in Fig.2. This framework consists of
Application layer, Framework layer, and Middleware layer.
Application layer consists of variant components such as
Pmart External and domain knowledge. Framework layer
consists of invariant components such as Client, Server,
and DB Server. When the domain is changed, Application
layer could be changed whereas Framework layer needs
not to be changed.

f; RSB b S Omart ExXtai: 51 | Domain Knowledge J
|
N—

X
DB Seiver
Manager
: o ODBC Driver
TR
el VisiChannel for JOBC
— x < vy

Java OR8

Figure 2. Distributed environment of Pmart

4.1.1. Pmart External and Domain Knowledge. Pmart
External consists of agents which are sensitive to the
changes of the domain, and Domain Knowledge is the
knowledge pertaining to the specific domain. We could
construct different types of electronic commerce systems
by simply changing the contents of Pmart External.

407

4.1.2. Client. Client consists of Web Browser, Multimedia
Player, and VisiChannel for JDBC Client [24]. Users may
execute Interface Agent which is an applet on the
Java-enabled web browser. Clients create objects,
communicate with the ORB to convey a request for an
operation invocation, and access to databases through the
AP1 of VisiBroker for Java [23,25]. Java has transformed
the World Wide Web into an interactive system
supporting objects but it is not a sufficient solution
to the problem of creating transparently interoperating
objects for client/server systems [6,15]. A platform for
universal network computing can be created using Java as
a programming language and mobile code system CORBA
as an integration technology. The role of the stub class
of CORBA is to provide proxy objects that clients
can invoke methods on. The proxy object marshals and
transmits the invocation request. The resulting marshaled
form is sent to the object implementation using ORB's
infrastructure.

4.1.3. Server. Server consists of a Web Server such as
Internet Information Server 3.0, Pmart Internal, and
VisiChannel for JDBC Server [24]. VisiChannel for JDBC
is a multi-tiered architecture that enables a JDBC program
on a client machine to access data in ODBC data sources
on a server machine. Server responses to the requests of
the learner. The skeleton code provides the glue between
an object implementation, a CORBA server, and the
ORB. The skeleton class implements the mechanism by
which invocation request coming into a server can be
unmarshalled and directed to the right method of the right
implementation object. If the request is related to the
database access, the API of VisiChannel for JDBC can be
used.

4.1.4. DB Server. DB Server consists of ODBC Driver
Manager, ODBC Driver, and DBMS. The ODBC Driver
Manager implements the ODBC API and provides
information to an application, loads ODBC drivers
dynamically as they are needed, and offers argument and
state transition checking. The VisiChannel for JDBC
Client enables JDBC applications and applets to use
the features of the ODBC drivers installed on the server
machine. The server-side ODBC drivers handle direct
interactions with the DBMS.

4.1.5. ORB and Operating Systems. ORB is Java ORB.
CORBA can replace the current Web-based system of
providing client/server services which uses HTTP/CGI
[18,23,25]. Using CORBA with Java, that is Java ORB,
would allow Java components to be split into client
and server components making the Web client/server
model even more attractive since download time would
decrease. OS(Operating System) layer may be

Windows-based OS such as Windows98, 2000, and NT.
4.2. Architecture of Pmart

The overall architecture of the proposed framework
Pmart is shown in Fig. 3. The electronic commerce
framework Pmart consists of Pmart Internal which is
independent on the specific domain and Pmart External
which is dependent on the domain.

4.2.1. Pmart Internal. Pmart Internal consists of one
Facilitator Agent, Buyer Agent, Seller Agent, and
Information Agent. Facilitator Agent can help other agents
in Pmart to communicate with each other using the
functionality of Agent Name Server and the meta
knowledge. Facilitator Agent consists of a global
blackboard, a hierarchical knowledge, and an inference
engine. Global blackboard contains the meta knowledge
and the hierarchical knowledge is the knowledge about the
construction of Facilitator Agent. The hierarchical
knowledge is used for the construction of Facilitator
Agents when the function of Facilitator is complex and
complicated.

An agent can find desired agents without requiring the
sender to know the locations of those agents using the
function of Facilitator Agent. Each agent has to register the
name, the function, and the address on the Facilitator
Agent when it is created. When an agent needs some
information on problem solving, Facilitator Agent
informs the agent of the appropriate information using the
meta knowledge stored in the Facilitator Agent.

Task agents formulate the problem-solving plans,
exchange information with other agents, and proceed the
autonomous problem solving procedures. Buyer Agent and
Seller Agent are included in Task Agents as shown in Fig.

[merface Agent][User Model U
:

r Facilitator Agent -I

e)

Buyer Agent

Seller Agent :

Information Agent l

_

Figure 3. Architecture of Pmart

Seller Agent controls the electronic commerce service and
is also a downloadable applet when the selling session
begins. It has the selling and negotiation knowledge,
inference engine, and the function of analyzing the seller's
actions.

Buyer Agent is also downloadable applet when the

408

buying session begins. It has the buying and negotiation
knowledge, inference engine, and the function of analyzing
the buyer's actions. Both Seller Agent and Buyer Agent
communicate with Facilitator Agent to update the User
Model in the end of negotiation.

Information Agents provide intelligent access to a
heterogeneous collection of information sources. And
these agents have models of the associated information
resources and strategies for source selection, information
access, and conflict resolution.

The communication between Buyer Agent, Seller
Agent, and the Facilitator Agent uses Java Event and
EventListener interface technique. The argument object
that is passed with the Events is new object called a
Message which is modeled after a standard KQML
message packet. We have modified the concept of the
Marketplace [2] in the agent communication.

4.2.2. Pmart External. Pmart External consists of
Interface Agent and the User Model which is the variant
part of Pmart when the domain is changed.

Interface Agent interacts with the users to acquire
information about users' profile, responses, and goals. It
observes and imitates the user's behavior, adapts based on
user feedback, and can ask for advice from other agents
assisting other users. This agent is a first downloadable
Java applet when the session begins and exchanges
information with Information Agent to fetch/store the
contents of the User Model from/into databases.

User Model has knowledge of the information about
buyers and sellers, and the purchase history of the
negotiation. User Model is placed in the server-side and
the client-side at the same time for the efficiency of the
communication. Since the frequency of the communication
among Interface Agent, Buyer Agent, and User Model is
very high, we can place these components in the client-side
together during the buying/selling session for the
efficiency. In the end of session, however, the contents of
User Model is copied into that of the server-side for
consistency.

Interface Agent may be created by applets and other
agents may be created by applications.

4.3. Implementation of Pmart

The implementation environment is as follows:
Server : Windows NT 4.0 Server
Client : Windows 98
Web Server : Internet Information Server3.0
Data Base Server : NT Oracle 7.3
Web Browser: Communicator 4.7 / Expleror 5.0
Development Software
-JDK1.2.2
- VisiBroker for Java

- Symantec Visual Cafe
- VisiChannel for JDBC

In the proposed electronic commerce framework
Pmart, n-web clients, including buyers and sellers, make

request for the services of multiple web servers and DB
servers through Java ORB, VisiBroker for Java 3.2. In this
approach, instead of invoking a method on a remote
object, the code for the class is transferred across the
network, run locally and then the method is invoked on
a local object instance. Here we choose Inprise's
VisiBroker for Java 3.2 as Java ORB.

VisiChannel for JDBC requires that the following
software be installed on our client machine before
installing the VisiChannel for JDBC software: Java
development environment (such as the JDK) and a
Java-enabled web browser. In addition, the
VisiChannel for JDBC Server machine must have the
following software: Java runtime environment (such as
the JDK)), ODBC Driver Manager and ODBC drivers, and
appropriate client and network libraries for our database.

The ODBC Driver Manager implements the ODBC
API and provides information to an application, loads
ODBC drivers dynamically as they are needed, and offers
argument and state transition checking.

We have implemented a prototype of Pmart. The
distributed environment of Pmart in Fig. 2 was developed
by Al Lab of Pukyong National University [5]. We have
developed Pmart architecture in Fig. 3 and modified the
concept of Marketplace [2] in the agent communication
modeled after a standard KQML. Among Pmart External,
the implementation of Interface Agent is partially
implemented and is going on using Visual Cafe. Fig. 4
shows a typical operation model of Pmart.

6. Degotiatc
7.5d
8, conteroffe
9. pegotisty
10, bid
11, counser offer
2 o
136
14, bid scoept
15. bid acoept
16, bid acoeps
17.end tneaction
18, record & end
traneaction

Figure 4. Pmart typical operation model

In Fig. 4, both agents Buyer Agent and Seller Agent
must register with the Facilitator Agent before they can
have any interactions with other agents in the electronic
commerce. When the users make their own agents and
select the Start option, a single Facilitator Agent is created.
Seller Agent advertises the items they have to sell by

409

sending messages to the Facilitator Agent. Buyer Agents
initialize their own buying lists. The first sales negotiation
takes place when one of the Buyer Agents wakes up and
takes an item from its buying list. It then asks the
Facilitator Agent to recommend a Seller Agent who has
advertised its ability to sell that item. If more than one
seller has advertised an item in the global blackboard, the
Facilitator Agent provides all information of sellers to the
Buyer Agent. And then, Buyer Agent begins the
negotiation with Seller Agent based on our negotiation
algorithm, Negotiate(). Buyer Agent or Seller Agent could
make a counter offer if they are not satisfied by the current
negotiation.

4.4. Characteristics of Pmart and other systems

Electronic commerce framework Pmart has the
characteristics of an intelligent agent since it is based on
the multiagent architecture such as autonomy, social ability
and pro-activeness. Pmart is autonomous: agents operate
without the direct intervention of humans or others, and
have some kind of control over their actions and internal
state.

The second characteristic of Pmart is the social
ability: agents interact with other agents via some kind of
agent-communication language or the methods of other
agents. Here we used KQML-like Java methods.

The third characteristic of Pmart is pro-activeness:
agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking
the initiative. Pmart also pro-actively seeks out potential
buyers or sellers and negotiates with them on their owner's
behalf using the contents of User Model.

If we compare Pmart and other systems which are
based on MAUT and sophisticated negotiation strategies,
we can consider Tete-a-Tete developed in MIT. In this
system, shopping agents assist shoppers during
negotiations by providing them with a level of decision
support to help them determine which merchant offering
best meets their needs. This decision support is based on
the MAUT. In this sense it is similar to Pmart. But this has
some problems basically related to inferring the
probabilities in the decision-making problem under
uncertainty. Whereas in Pmart, we can use special
knowledge: MAUT in the first negotiation phase, and if
that fails even after several trials we could apply general
knowledge heuristically in the second negotiation phase. In
such a model, we have proposed a kind of case-based
reasoning to observe behavior in previous similar
situations. The generalization knowledge of transaction
behaviors is achieved using successful purchase history so
far and simple heuristics. Since the successful history
database, CaseBase, is pertaining to all customers’
buying/selling behaviors, it is meaningful data. Therefore, -
we could expect more successful negotiation result due to
special knowledge as well as general knowledge. Other
systems such as Kasbah, AuctionBot, Magnet, SICS

MarketSpace do not have
strategies like Pmart.

sophisticated negotiation

5. Conclusion and the future work

Today's first generation shopping agent is limited to
comparing merchant offerings usually on price instead of
their full range of value. Even in the full range comparison,
there is not a good model which considers the overall
features in the negotiation process appropriately. Therefore
the negotiation model needs to be extended to include
negotiations over the more attributes.

In this paper, we have suggested an agent-mediated
electronic commerce framework called Pmart based on the
multiagent to negotiate over prices, product features,
warranties, and service policies. And we have proposed a
negotiation model which is based on special knowledge
and general knowledge at the same time. The former is
based on the MAUT and the latter is based on the previous
successful purchase history and the simple heuristics.

Pmart framework provides the software reuse and the
extensibility based on the object-oriented and software
components technologies. Therefore, we could make
different types of electronic commerce systems by simply
changing the contents of Pmart External that is variant
part of Pmart.

Future implementation may be based on mobile agent
platforms such as Voyager or SMART and utilize a more
sophisticated collection of information agent. In the future,
we will study the general auction framework, which
supports our negotiation algorithm.

References

[1] Amazon.com. http://www.amazon.convexec/obidos/subst/
home/ home.html/

[2] J.P.Bigus and J.Bigus, Constructing intelligent Agents with
Java, John Wiley & Sons, New York, NY, 1998.

[3] A.Chavez and P. Maes, "Kasbah: An Agent Marketplace for
Buying and Selling Goods," Proceedings of the first
International conference on the Practical Application of
Intelligent Agents and Multi-agent Technology (PAAMY6),
London, UK, 1996, pp. 75-90.

[4] A. Chavez et al, "A Real-Life Experiment in Creating an
Agent Marketplace," In Proceedings of the Second
International Conference on the Practical Application of
Intelligent Agents and Multi-agent Technology (PAAM?97),
London, UK, 1997, pp. 159-178.

[S] M. Chung et al, Multiagent-based Distance Learning
Framework using CORBA, In Proceedings of the IASTED
International Conference on Internet and Multimedia
Systems and Applications (IMSA99), Nassau, Bahamas, 1999,
Pp- 224-228.

[6] G.Cornell and C.S.Horstmann, Core Java, 2nd Edition,
Sun Soft Press, CA, 1997.

[7] J. Eriksson et al., "SICS MarketSpace - An Agent-Based

CA;

410

Market Infrastructure,” Lecture Note in Artificial Intelligence
1571, Agent Mediated Electronic Commerce, 1998, pp.
41-53.

[8] G.Gigerenzer et al., Simple Hueristics That Make Us Smart,
Oxford University Press, New York, 1999.

[9] G.Gigerenzer and P.M.Todd, "Fast and Frugal Heuristics: The
Adaptive Toolbox" In Simple Hueristics That Make Us Smart,
Oxford University Press, New York, 1999. pp.3-34.

[10] G.Gigerenzer and D.G.Goldstein, "Betting on One Good
Reason The Take The Best Heuristics," In Simple Hueristics
That Make Us Smart, Oxford University Press, New York,
1999. pp.75-95.

[11] R.H. Guttman and P. Maes, "Agent-Mediated Integrative
Negotiation for Retail Electronic Commerce," Lecture Note
in Artificial Intelligence 1571, Agent Mediated Electronic
Commerce, 1998, pp. 70-90.

[12] R.H.Guttman, Merchant Differentation through Integrative
Negotiation in Agent-mediated Electronic Commerce, MS
thesis, Media Art and Sciences, MIT, 1998.

[13] R.H.Guttman et al., "Agent-mediated electronic commerce: a
survey,” Knowledge Engineering Review, Vol. 13, No. 2,
1998, pp. 147-159.

[14] R.L.Keeney and H.Raiffa, Decisions with Multiple
Objectives: Preferences and Value Tradeoffs, John Wiley &
Sons, New York, NY, 1976.

[15] S.C.Lewandowski, Frameworks for Component-Based
Client/Server Computing, ACM Computing Survey, Vol. 30,
No. 1, 1998, pp.3-27.

[16] L.Martignon and U. Hoffrage, "Why Does One-Reason
Decision Making Work?" In Simple Hueristics That Make Us
Smart, Oxford University Press, New York, 1999.
pp.119-140.

[17} OnSale:Live Online Auction House. http://www.onsale.
com/

[18] R.Orfali and D.Harkey, Client/Server programming with
JAVA and CORBA 2nd ed., John Wiley&Sons, Inc., NY,
1998.

[19] D.C.Parkes et al, "Accounting for Cognitive Costs in
On-Line Auction Design," Lecture Note in Artificial
Intelligence 1571, Agent Mediated Electronic Commerce,
1998, pp. 25-40.

[20] S.Russell and P.Norvig, Artifiial Intelligence : A Modern
Approach, Prentice Hall Inc., NJ, 1995.

[21] E. Steinmetz et al., "Bid evaluation and Selection in the
MAGNET Automated Contracting System," Lecture Note in
Artificial Intelligence 1571, Agent Mediated Electronic
Commerce, 1998, pp. 105-125.

[22] United Computer Exchange. http://www.use.com/

[23]) VisiBroker for Java 3.2 Programmer's Guide, Visigenic
Co..fitp://ftp.visigenic.com/private /vbj/ vbj32/vbj32.html

[24) VisiChannel for JDBC Administrator and Programming
Guide Release 1.1, http://www.inprise.com/techpubs
visibriker/vcd4jdbe/html/jdbec2.htm

[25] A. Vogel and K. Dubby, J4VA Programming with CORBA,
2nd Edition, Wiley Computer Publishing Co., NY, 1998.

[26] PR.Wurman et al, "The Michigan AuctionBot: A
Configurable Auctioon Server for Human and Software
Agents," In Proceedings of the Second International
Conference on Autonomous Agents (Agents98), Minneapolis,
MN, 1998, pp.301-308.

