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Abstract. Multiple-instance learning (MIL) is a generalization of the
supervised learning problem where each training observation is a labeled
bag of unlabeled instances. Several supervised learning algorithms have
been successfully adapted for the multiple-instance learning settings. We
explore the adaptation of the Naive Bayes (NB) classifier and the uti-
lization of its sufficient statistics for developing novel multiple-instance
learning methods. Specifically, we introduce MICCLLR (multiple-instance
class conditional log likelihood ratio), a method for mapping each bag of
instances as a single meta-instance using class conditional log likelihood
ratio statistics such that any supervised base classifier can be applied to
the meta-data. The results of our experiments with MICCLLR using dif-
ferent base classifiers suggest that no single base classifier consistently
outperforms other base classifiers on all data sets. We show that a sub-
stantial improvement in performance is obtained using an ensemble of
MICCLLR classifiers trained using different base learners. We also show
that an extra gain in classification accuracy is obtained by applying Ad-
aBoost.M1 to weak MICCLLR classifiers. Overall, our results suggest
that the predictive performance of the three proposed variants of MIC-
CLLR are competitive to some of the state-of-the-art MIL methods.

Key words: multiple-instance learning, image retrieval, drug activity
prediction, ensemble of multiple-instance learning classifiers, boosted
multiple-instance learning

1 Introduction

Dietterich et al. [1] introduced the multiple-instance learning (MIL) problem
motivated by his work on classifying aromatic molecules according to whether
or not they are ”musky”. In this classification task, each molecule can adopt
multiple shapes as a consequence of rotation of some internal bonds. Dietterich
et al. [1] suggested representing each molecule by multiple conformations (in-
stances) representing possible shapes or conformations that the molecule can
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assume. The multiple conformations yield a multiset (bag) of instances (where
each instance corresponds to a conformation) and the task of the classifier is
to assign a class label to such a bag. Dietterich’s proposed solution to the MIL
problem is based on the standard multiple-instance assumption, that all the in-
stances in a bag, in order for it be labeled negative, must contain no positively
labeled instance, and a positive bag must have at least one positive instance.
The resulting classification task finds application in drug discovery [1], identi-
fying Thioredoxin-fold proteins [2], content-based image retrieval (CBIR) [3–5],
and computer aided diagnosis (CAD) [6].

Several approaches to MIL have been investigated in the literature including
a MIL variant of the backpropagation algorithm [7], variants of the k-nearest
neighbor (k-NN) algorithm [8], the Diverse Density (DD) method [9] and EM-DD
[10] which improves on DD by using Expectation Maximization (EM), DD-SVM
[11] which trains a support vector machine (SVM) classifier in a feature space
constructed from a mapping defined by the local maximizers and minimizers of
the DD function, and MI logistic regression (MILR) [12]. Most of these methods
search for a single instance contributing the positive bag label. Alternatively, a
number of MIL methods [13–15] have a generalized view of the MIL problem
where all the instances in a bag are assumed to participate in determining the
bag label.

Two basic approaches for solving the MIL problem have been proposed in the
literature: i) adapting supervised learning algorithms for MIL settings. Zhou [16]
showed that standard single-instance supervised algorithms can be adapted for
MI learning by shifting their focuses from discrimination on the instances to the
discrimination on the bags. Many MIL methods can be viewed as single-instance
learning methods adapted for the MIL settings. For example, MI-SVM [17],
Citation-kNN [8], DD [9], and RBF-MIP [18]; ii) adapting MIL representation
for supervised algorithms. The basic idea is to convert each bag of instances
into a single feature vector such that supervised classifiers can be trained to
discriminate between positive and negative bags by discriminating between their
corresponding feature vectors. Several techniques for mapping bags into single
feature vectors are discussed in the next section.

Naive Bayes (NB) has proven effective in many practical applications, includ-
ing text classification, medical diagnosis, and systems performance management
[19–21]. In this work, we showed that NB classifier can be adapted for MIL
setting. However, this adaptation imposes strong and unrealistic independence
assumptions (instances within a bag are independent given the bag label and in-
stance attributes are independent given the label of the instance). Alternatively,
we propose MICCLLR, a generalized MIL algorithm that uses the class condi-
tional log likelihood ratio statistics to map each bag into a single meta-instance.
MICCLLR allows for any supervised learning algorithm to be the base classifier
for classifying the meta-instance data. Our results evaluating MICCLLR using
different base classifiers suggest that no single base classifier consistently out-
performs other base classifiers on all data sets. Consequently, we show that a
substantial improvement in performance is obtained using an ensemble of MIC-
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CLLR classifiers trained using different base learners. Additional gain in classi-
fication accuracy is obtained by applying AdaBoost.M1 [22] to weak MICCLLR
learners. Overall, our results suggest that the predictive performance of the three
proposed variants of MICCLLR are competitive to some of the state-of-the-art
MIL methods on five widely used MIL data sets for drug activity prediction [1]
and image retrieval [17] domains.

The rest of this paper is organized as follows: Section 2 summarizes the for-
mulations of the MIL problem and overviews a number of related MIL methods
that follow the same approach of adapting MIL representation for single-instance
learning algorithms. Section 3 introduces our method. Section 4 gives our exper-
imental results. Section 5 concludes with a brief summary and discussion.

2 Preliminaries

2.1 Multiple-instance learning problem.

In the standard (single-instance) supervised classifier learning scenario, each
instance (input to the classifier) is typically represented by an ordered tuple of
attribute values. The instance space I = D1×D2×...×Dn whereDi is the domain
of the ith attribute. The output of the classifier is a class label drawn from a set
C of mutually exclusive classes. A training example is a labeled instance in the
form 〈Xi, c(Xi)〉 where Xi ∈ I and c : I → C is unknown function that assigns
to an instance Xi its corresponding class label c(Xi). For simplicity we consider
only the binary classification problem in which C = {−1, 1}. Given a collection
of training examples, E = {〈X1, c(X1)〉, 〈X2, c(X2)〉, ..., 〈Xn, c(Xn)〉}, the goal
of the (single-instance) learner is to learn a function c∗ that approximates c as
well as possible.

In the multiple-instance supervised classifier learning scenario, the goal is to
train a (multiple-instance) classifier to label a bag of instances. Under standard
MIL assumption, a bag is labeled negative if and only if all of its instances are
negatively labeled and a bag is labeled positive if at least one of its instances
is labeled positive. More precisely, Let Bi denotes the ith bag in a set of bags
B. Let Xij ∈ I denotes the jth instance in the bag Bi and Xijk be the value
of the kth feature in the instance Xij . The set of MI training examples, EMI ,
is a collection of ordered pairs 〈Bi, f(Bi)〉 where f is unknown function that
assigns to each bag Bi a class label f(Bi) ∈ {−1, 1}. Under the standard MIL
assumption [1], f(Bi) = −1 iff ∀Xij∈Bic(Xij) = −1; and f(Bi) = 1 iff ∃Xij∈Bi ,
such that c(Xij) = 1. Given EMI , a collection of MI training examples, the goal
of the multiple-instance learner is to learn a good approximation function of f .
It should be noted that the function f is defined in terms of a function c : I → C.
However, learning c from the MI training data is challenging since we have labels
only associated with bags and we do not have labels for each instance.

A generalization of the MIL problem has been considered by Weidmann et al.
[13] and Tao et al. [14]. In this setting, all the bag instances contribute the label
assigned to the bag and negative bags may contain some positive instances.
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Instead of a single concept, the generalized MIL problem considers a set of
underlying concepts and requires a positive bag to have a certain number of
instances in each of them.

2.2 Adapting MI representation for single-instance learning
algorithms.

A number of existing methods for solving the MIL are based on the idea of
adapting the MI representation for single-instance learning algorithms. Gartner
et al. [23] mapped each bag into a single meta-instance using an aggregation
function (e.g. mean, median, minimum, maximum, etc.) applied to each instance
attribute. The resulting labeled meta-instances data set is then used to train an
SVM classifier. Weidmann et al. [13] proposed a two-level classifier (TLC) trained
from the data at two different levels of abstraction. The first classifier is trained
from the MI data at the instance level by assigning the label of each bag to its
instances and assigning a weight to each instance such that bags of different size
will end up with the same weight. Then, the trained classifier is used to map
MI data into a set of meta-instances and a second level supervised classifier is
trained. In their experiments, Weidmann et al, [13] used a pruned decision tree
and a Logit-boosted decision stumps (DS)[24] with 10 boosting iterations as the
first and second level classifier, respectively.

Chen et al. [11] mapped each bag into a meta-instance in a feature space
defined by a set of instance prototypes. An instance prototype is an instance
that is close as possible to at least one instance in each positive bag and as far
as possible from instances in negative bags. The algorithm, named DD-SVM,
proceeds in two steps. First a collection of instance prototypes are learned such
that each prototype is a local maximizer of the DD function. Second, each bag
is mapped into a feature vector where the ith feature is defined by the minimum
distance between the ith prototype and each instance in the bag. Finally, a
standard SVM classifier is trained in the new feature space.

Recently, Chen et al. [15] proposed multiple-instance learning via embedded
instance selection (MILES) which can be viewed as a variant of DD-SVM where
the new feature space is defined by the set of all training instances instead of
the set of prototypes used with DD-SVM. This feature mapping often provides a
large number of irrelevant features. Therefore, 1-norm SVM is applied to select
important features and construct classifiers simultaneously.

Zhou and Zhang [25] proposed constructive clustering-based ensemble (CCE)
method where all the training instances are clustered into d groups. Then, each
bag is mapped into a d binary vector, where the value of the ith feature is set
to one if the concerned bag has instances falling into the ith group and zero
otherwise. The above procedure is repeated for different values of d. For each
value of d, a meta-instance representation of each bag is generated and an SVM
classifier is trained. All the classifiers are then combined in an ensemble for
prediction.
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3 The Algorithm

We motivate our method by first introducing MI Naive Bayes (MINB), an adap-
tation of Naive Bayes (NB) classifier to MIL settings. The NB classification rule
is defined by Eq. 1, where Pr(cj) is the a priori probability of class cj and
Pr(ak|cj) is the probability that the kth attribute of the instance X takes the
value ak given the class cj .

c(X) = arg max
cj∈C

Pr(cj)
n∏

k=1

Pr(ak|cj) (1)

These probabilities, which completely specify a NB classifier, can be esti-
mated from the training data using standard probability estimation methods
based on relative frequencies of the corresponding classes and attribute value
and class label cooccurrences observed in the data [20]. These relative frequen-
cies summarize all the information relevant for constructing a NB classifier from
a training data set, and hence constitute sufficient statistics for NB Classifier.

When the class labels are binary, that is, C = {−1, 1}, the NB classifier can
be viewed as a linear discriminant by considering the logarithm of posterior odds
as defined by Equations 2 and 3.

φ(X) = ln
Pr(c = 1)
Pr(c = −1)

+ ln
Pr(a1|c = 1)
Pr(a1|c = −1)

+ . . .+ ln
Pr(an|c = 1)
Pr(an|c = −1)

(2)

c(X) =
{

1 , φ(X) > 0
−1 , otherwise (3)

Similarly, given unlabeled bag Bi with mi instances, MINB assigns a label
to Bi as follows:

c(Bi) = arg max
cj∈C

Pr(cj |Bi)

= arg max
cj∈C

Pr(Bi|cj)Pr(cj)

= arg max
cj∈C

Pr(Xi1, Xi2, . . . , Ximi
|cj)Pr(cj)

= arg max
cj∈C

Pr(cj)
∏mi

l=1 Pr(Xil|cj)

(4)

The prior probabilities of labels, Pr(cj), can be easily estimated by counting
the number of negative and positive bags. Recalling that instances within a bag
are not labeled, estimating Pr(Xil|cj) is not trivial. In order to approximate
Pr(Xil|cj), we first need to assign a label to each instance. Then, assuming
independence between attributes given the instance class dramatically simplifies
the computation of Pr(Xil|cj). That is, Pr(Xil|cj) =

∏
k Pr(Xilk|cj). Following

the approach in [13], we construct a single instance training data set from the
set of all instances contained in all bags, labeled with their bag’s class label.
Instances in a bag Bi are assigned a weight equal 1

|Bi| .
N
M , where N =

∑m
i |Bi|

and M denotes the number of bags in the training data set.
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Based on these assumptions, the MINB classification rule can be defined as in
Eq. 5, where Xilk = ak denotes the value of the kth attribute in the lth instance
in bag Bi with mi instances where each instance is represented by an ordered
tuple of n attribute values.

c(Bi) = arg max
cj∈C

Pr(cj)
mi∏
l=1

n∏
k=1

Pr(Xilk|cj) (5)

Alternatively, we can rewrite the MINB classifier as a linear discriminant:

φ(Bi) = ln
Pr(c = 1)
Pr(c = −1)

+ ln
Pr(X11|c = 1)
Pr(Xi1|c = −1)

+ . . .+ ln
Pr(Ximi |c = 1)
Pr(Ximi

|c = −1)
(6)

c(Bi) =
{

1 , φ(Bi) > 0
−1 , otherwise (7)

Unfortunately, MINB has strong independence assumptions and its observed
cross-validation performance on Musk data sets [1] is not competitive with the
performance of the state-of-the art MIL methods (See Table 1). Instead of adapt-
ing NB for MIL setting, we propose to use NB to map the MI representation
into a single meta-instance representation such that any standard supervised
classification algorithm is applicable.

We now proceed to describe, MICCLLR, a MIL algorithm that uses class
conditional log likelihood ratio (CCLLR) statistics estimated from the MI train-
ing data to map each bag into a single meta-instance. The pseudo code for
MICCLLR is described in Algorithm 1. The input to the algorithm is a set of
binary labeled bags EMI and a base learner h. First, MICCLLR assigns the
label of each bag to its instances and associate a weight with each instance to
compensate for the fact that different bags may be of different sizes (i.e, differ-
ent number of instances). Second, MICCLLR estimates the probability of each
possible value for each attribute given the instance label. Under Naive Bayes
assumption, the posterior probability of each attribute is independent of other
attributes given the instance label. Therefore, the posterior probability of each
attribute can be easily estimated from the training data using standard prob-
ability methods based on relative frequencies of each attribute value and class
label occurrences observed in the labeled training instances [20]. Third, the algo-
rithm uses the collected statistics to map each bag into a single meta-instance.
Let Bi = {Xi1, . . . , Ximi} be a bag of mi instances. Each instance is represented
by an ordered tuple of n attribute values. We define a function s that maps Bi

into a single meta-instance of n real value attributes as; s(Bi) = {s1, s2, . . . , sn}
where each meta-instance attribute is computed using Eq. 8.

sq =
1
mi

ln

mi∑
l=1

Pr(Xilq = aq|c = 1)
Pr(Xilq = aq)|c = −1)

(8)

Once bags in a multiple-instance data set have been transformed into meta-
instances, the base learner h is trained on the transformed data set of labeled
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meta-instances. During the classification phase, each bag to be classified is first
transformed into a meta-instance in a similar fashion before being fed to the
base classifier h.

Algorithm 1 Training MICCLLR
1: Input : EMI = {〈B1, y1〉, . . . 〈Bm, ym〉} set of training bags and h base learner
2: Use EMI to construct the collection of all instances EAV by labeling each instance

with its bag’s class label and assign to instances in a bag Bi a weight equal to
1

|Bi|
. N
M

, where N =
∑

i |Bi| and M denotes the number of bags in the training
data set.

3: Estimate the posterior probabilities of each attribute, Pr(aq|cj), from EAV .
4: Convert each bag in EMI to a single meta-instance {s1, s2, ..., sn} using Eq. 8.
5: Train the base learner h using the meta-instance data.

4 Experiments and Results

In our experiments, we implemented MINB and MICCLLR using Java and
WEKA API [26]. The rest of classification algorithms considered in our ex-
periments were used as implemented in WEKA. The default parameters for all
WEKA classifiers were used unless otherwise specified. As a measure of the pre-
dictive performance of the MIL algorithms, we used the classification accuracy
obtained by averaging the results of 10 different runs of 10-fold cross-validation
tests. We conducted our experiments using five widely used MIL data sets from
drug activity prediction [1] and content-based image retrieval (CBIR) [17] ap-
plication domains.

Recently, Demšar [27] has suggested that non-parametric tests should be
preferred over parametric tests for comparing machine learning algorithms be-
cause the non-parametric tests, unlike parametric tests, do not assume normal
distribution of the samples (e.g., the data sets). Demšar suggested a three-step
procedure for performing multiple hypothesis comparisons using non-parametric
tests. Unfortunately, this procedure can not be applied to our experimental re-
sults because it requires the number of data sets to be greater than 10 and the
number of methods to be greater than 5 [27]. However, as noted by Demšar
[27], the average ranks by themselves provide a reasonably fair comparison of
classifiers. Hence, the classifiers being compared are ranked on the basis of their
observed performance on each data set. Then, the average rank of each classifier
on all data sets is used to compare the overall performance of different MIL
methods.

4.1 Comparison of base learners for MICCLLR

As mentioned above, MICCLLR uses class conditional log likelihood ratio statis-
tics collected from the training data for mapping each bag of instances into a
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single-meta instance such any supervised base classifier becomes applicable. In
our experiments, we evaluated MICLLR using a representative set of base clas-
sifiers. Specifically, we used Logistic Regression (LR) [28], C4.5 [29], Alternating
Decision Trees (ADTree) [30], and 2-norm SVM (SMO) [31] classifiers SVML,
SVMP, and SVMR evaluated using three kernels (linear, puk [32], and radial-bias
function (RBF) kernel) (respectively) as base classifiers for MICCLLR. Table 1
compares the classification accuracy of MINB and six MICCLLR classifiers eval-
uated using different base learners on Musk and CBIR data sets. Interestingly,
MICCLLR classifiers with SVML, SVMP, ADTree, and J48 as base learners have
better average ranks than MINB. The results also suggest that MICCLLR per-
formance seems to be sensitive to the choice of the base classifier. However, none
of the base classifiers produces a MICCLLR classifier with consistently superior
performance on the five data sets. An ensemble of the five reported MICCLLR
classifiers developed using WEKA implementation of majority voting, Vote clas-
sifier, outperforms any individual classifier on three out of five data sets. The
ensemble of MICCLLR classifiers has the best average rank (1.6) followed by
MICCLLR classifier using SVML and SVMP with average ranks 3.2 and 3.6, re-
spectively. The predictive performance of the ensemble of MICCLLR classifiers,
MICCLLR_Vote, could be further improved by: i) adding more MICCLLR classi-
fiers utilizing other base learners to the ensemble; ii) using more sophisticated
methods for constructing the ensemble (e.g., stacking [33]).

Table 1. Comparisons of prediction accuracy of MINB with five MICCLLR classifiers
evaluated using different base learners on Musk and CBIR data sets. Last row is the
performance of an ensemble of the five MICCLLR classifiers constructed using WEKA’s
Vote method. For each data set, the rank of each classifier is shown in parentheses.
Last column is the average performance and rank for each method over the five data
sets.

Method musk1 musk2 elephant fox tiger avg.

MINB 77.06(8) 77.90(6) 81.70(1.5) 56.80(3) 72.00(6) 72.75(4.9)
LR 80.86(7) 85.28(2) 74.35(6.5) 55.8(5) 67.45(8) 72.75(5.7)
J48 87.71(3) 72.05(8) 74.35(6.5) 60.25(1) 73.2(5) 73.51(4.7)
ADTree 84.89(5) 75.35(7) 75.05(5) 59.25(2) 76.85(3) 74.28(4.4)
SVML 86.02(4) 82.20(3) 80.65(3) 52.10(7) 79.10(1) 76.01(3.6)
SVMP 88.39(2) 81.55(4) 75.90(4) 55.00(6) 76.50(4) 75.47(4)
SVMP 82.40(6) 80.53(5) 70.10(8) 50.25(8) 70.25(7) 70.71(6.8)
Vote 91.64(1) 86.12(1) 81.70(1.5) 56.15(4) 78.50(2) 78.82(1.9)

4.2 Boosting weak MICCLLR classifiers

Several methods for adapting boosting algorithms for the MIL settings have been
proposed in the literature [34–37]. Xu and Frank [36] have noted that supervised
learning boosting algorithms (e.g., AdaBoost.M1 [22]) can be applied directly
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to weak MIL learners. However, they did not compare their proposed MI boost-
ing method with this basic approach. Here, we explored the utility of directly
applying AdaBoost.M1 to MICCLLR and MIWrapper [38] weak learners. We
compared the performance of the two MIL boosting algorithms implemented in
WEKA, MIBoost [36] and MIOpimalBall [35], with AdaBoosted MICCLLR and
MIWrapper classifiers. For MIOptimalBall, the weak learner constructs a ball
such that at least one instance from each positive bag is included in the ball and
all negative instances lie outside the ball. For MIBoost, we used decision stumps
(DS) [24] and C4.5 as the week learners with 25 iterations. For AdaBoost.M1,
MICCLLR and MIWrapper weak learners were obtained using DS and C4.5 as
the base classifiers and the number of boosting iterations was set to 25.

Table 2 shows that boosted MIWrapper and boosted MICCLLR with C4.5
have the best average ranks of 2 and 2.6, respectively. The results show that
boosted MIWrapper and boosted MICCLLR classifiers are competitive with
(if not outperforming) the two MIL boosting methods, MIOptimalBall and
MIBoost. Interestingly, we observed that MIBoost, boosted MIWrapper, and
boosted MICCLLR with C4.5 as the weak learner generally outperform their
counterpart classifiers with DS as the weak learner. Among the classifiers us-
ing C4.5 as the weak learner, boosted MIWrapper has the best average rank
while boosted MICCLLR has the best average rank if we limit our comparison
to methods with DS as the weak learner.

Table 2. Comparisons of classification accuracy of two MIBoosting algorithms (MIOp-
timalBall and MIBoost) with boosted MIWrapper and boosted MICCLLR. For MIOp-
timallBall the weak learner is a ball while for other methods C4.5 and DS were used
as weak learners.

Data MIOptimalBall MIBoost boosted MIWrapper boosted MICCLLR
C4.5 DS C4.5 DS C4.5 DS

musk1 70.37(7) 84.07(3) 76.98(6) 85.53(2) 78.13(5) 88.57(1) 82.49(4)
musk2 80.80(2) 80.55(3) 74.68(6) 81.61(1) 72.53(7) 79.18(4) 78.03(5)
elephant 72.00(7) 82.05(3) 81.65(4) 86.15(1) 80.75(5) 82.8(2) 78.5(6)
fox 54.60(7) 64.85(1) 62.95(2) 62.8(3) 62.65(4) 62.15(5) 58.8(6)
tiger 65.15(7) 78.95(6) 80.25(4) 81.2(3) 79.25(5) 82.5(1) 81.6(2)

Avg. 68.58(6) 78.09(3.2) 75.3(4.4) 79.46(2) 74.66(5.2) 79.04(2.6) 75.88(4.6)

4.3 Comparison of MICCLLR to other MIL methods

The classification accuracy of the best performing three MICCLLR classifiers,
MICCLLR with SVM base learner trained using linear kernel (MICCLLR_SVML),
ensemble of MICCLLR classifiers (MICCLLR_Vote), and boosted MICCLLR_C4.5
was compared to existing MIL with reported performance on the five data
sets considered in this study (See Table 3). The average ranks for the three
MICCLLR classifiers are boosted MICCLLR_C4.5 (4), MICCLLR_Vote (5.4), and
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MICCLLR_SVML (8.4). Hence, boosted MICCLLR_C4.5 improves the predictive
performance over the majority vote ensemble of MICCLLR classifiers and the
single MICCLLR classifier with SVM as the base learner. The results suggest
that boosted MICCLLR_C4.5 is also competitive in performance with the state-
of-the-art MIL methods on Musk and CBIR data sets. The best performing
three methods, as measured by the average rank of the classifier, are CH-FD [6],
RW-SVM [39], and boosted MICCLLR_C4.5 with average ranks 3.4, 3.6, and 4,
respectively.

Table 3. Comparison of the classification accuracy of three MICCLLR classifiers with
different MIL methods on Musk and CBIR data sets.

Method musk1 musk2 elephant fox tiger avg.

EM-DD [17] 84.50(9) 84.90(6) 78.30(10) 56.10(9) 72.10(10) 75.18(8.8)
mi-SVM [17] 87.40(7) 83.60(8) 82.20(4) 58.20(6) 78.9(8) 78.06(6.6)
MI-SVM [17] 77.90(10) 84.30(7) 81.40(7) 59.40(4) 84.00(1) 77.40(5.8)
MICA [40] 88.40(5) 90.50(1) 80.50(9) 58.70(5) 82.60(2) 80.14(4.4)
CH-FD [6] 88.80(3) 85.70(5) 82.40(3) 60.40(2) 82.20(4) 79.90(3.4)
I-DD [41] 90.80(2) 86.40(3) 81.50(6) 57.30(7) 80.70(5) 79.34(4.6)
RW-SVM [39] 87.60(6) 87.10(2) 83.30(1) 60.00(3) 79.50(6) 79.50(3.6)
MICCLLR_SVML 86.02(8) 82.20(9) 80.65(8) 52.10(10) 79.10(7) 76.01(8.4)
MICCLLR_Vote 91.64(1) 86.12(4) 81.70(5) 56.15(8) 78.50(9) 78.82(5.4)
boosted MICCLLR_C4.5 88.57(4) 79.18(10) 82.80(2) 62.15(1) 82.50(3) 79.04(4.0)

5 Conclusions

We introduced MINB, an adaptation of Naive Bayes for the MIL settings. We
showed that the proposed MINB algorithm imposes strong and unrealistic in-
dependence assumptions (instances within a bag are independent given the bag
label and instance attributes are independent given the label of the instance). We
empirically showed that class conditional log likelihood ratio statistics estimated
from the training data provide useful single feature representation of bags that
allows the applicability of standard supervised learning methods (base learners)
for predicting labels of MIL bags given their single feature vector representation
as an input. The performance of our proposed method, MICCLLR, has been
evaluated using different base learners. Moreover, we empirically showed that
further improvements in MICCLLR performance is obtained using ensemble of
MICCLLR classifiers utilizing different base learners. Finally, we demonstrated
that an additional gain in classification accuracy is obtained when AdaBoost.M1
is applied directly to weak MIL learner derived from MIWrapper and MICCLLR
using C4.5 as the base learner. Our results suggest that integrating AdaBoost.M1
with MIWrapper and MICCLLR weak learners is a promising approach for de-
veloping MIL methods with improved prediction performance.
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