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Abstract

We have designed and implemented an intrusion detection system (IDS) prototype based on mobile agents. Our agents travel

between monitored systems in a network of distributed systems, obtain information from data cleaning agents, classify and correlate

information, and report the information to a user interface and database via mediators.

Agent systems with lightweight agent support allow runtime addition of new capabilities to agents. We describe the design of our

Multi-agent IDS and show how lightweight agent capabilities allowed us to add communication and collaboration capabilities to the

mobile agents in our IDS.

� 2002 Elsevier Inc. All rights reserved.
1. Introduction

A secure computer system provides guarantees re-

garding the confidentiality, integrity, and availability of

its objects (such as data, processes, or services). How-

ever, systems generally contain design and implemen-
tation flaws that result in security vulnerabilities. An

intrusion takes place when an attacker or group of at-

tackers exploit security vulnerabilities and thus violate

the confidentiality, integrity, or availability guarantees

of a system. Intrusion detection systems (IDSs) detect

some set of intrusions and execute some predetermined

action when an intrusion is detected.

Detecting intrusions (Denning, 1987) in a distributed
system is a difficult problem. IDSs must analyze large

volumes of data while not placing a significant added

load on the monitored systems and networks. Data must

be obtained from sources distributed around the com-

puting system. Intrusions take place at all levels of the

distributed system, from physical components up to

applications; each level may require monitoring. Data

from various sources must be aggregated and correlated
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to determine whether an intrusion is taking place. In-

trusions should be detected as soon as possible to allow

immediate and effective countermeasures to be executed.

Our research group is applying distributed knowledge

networks (Honavar et al., 1998) and data warehouse

techniques to IDSs. Distributed knowledge networks
use agents for information retrieval and extraction, data

transformation and knowledge discovery. Data ware-

house technologies are used for data and knowledge

organization and assimilation from heterogeneous

physically distributed data and knowledge sources.

Software agents consist of program code and state

and exist to perform tasks on behalf of a user with some

degree of autonomy. A software agent�s goal may re-
quire some degree of intelligence, allowing it to react to

its environment, make plans to achieve its goal, maxi-

mize its utility, and/or modify its behavior over time

(Honavar, 1998). Software agents may use mobility to

travel to sources of data and remotely execute their

tasks, resulting in a natural distribution of work and

reduced communication overhead.

Lightweight agents are agents that accomplish their
essential tasks with minimal code. They are dynamically

updatable and upgradable, smaller, simpler, and faster

to transport (due to their smaller size). For example, in

distributed computing system, there are many operating

systems. For an intrusion detection agent to effectively

operate in these systems, it needs the ability to process

the information in the system it will immigrate to and
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carry the detection rules that will apply in the system

which it will immigrate to. If the agent is designed not

using lightweight agent concept, it will always carry all

the rules that are needed for all systems and will be

bigger and waste resources.

With lightweight agent concept in mind, the design
will be based on simplicity and minimalism. An agent

will only carry the primary features to make it light-

weight; after it arrives the destination system, it will be

upgraded and updated as necessary for the situation.

Using this design objective, the system will save re-

sources because many agents are needed to immigrate to

monitored system. Lightweight agents will reduce the

network bandwidth and CPU time required to move the
agent. Voyager is the only commercial mobile agent

platform currently supporting dynamic upgrading of

agent, so we use Voyager as our lightweight agent

platform. The lightweight agent design also allowed us

to quickly add features to our IDS.

A mobile agent is a program that acts on behalf of a

user or another program and is able to migrate from

host to host on a network under its own control. The
agent chooses when and to where it will migrate and

may interrupt its own execution and continue elsewhere

on the network. The agent returns results and messages

in an asynchronous fashion (University of Ottawa,

2000). mobile agents do not require network connec-

tivity with remote services to interact with them and

network connections are used for one-shot transmission

of data (the agent and possibly its state and data). Re-
sults in the form of data do not necessarily return to the

user using the same communication trajectory, if indeed

the results are to be returned at the originating site.

Alternatively, the agent may send itself to another in-

termediate node and take its partial results with it. Re-

sults are delivered back to the user whose address the

agent knows. Mobile agent implement the distribute

architecture, and it is better than the client–server par-
adigm, which is the most common way of implementing

distributed applications. In this model, a network con-

nection must be established between client and server.

This Paradigm breaks down under the situations dealing

with highly distributed problems, slow and/or poor

quality network connections, and especially in the

maintenance of constantly changing applications. In a

system with a single central server and numerous clients,
there is a problem of scalability. When multiple servers

become involved, the scaling problems multiply rapidly,

as each client must manage and maintain connections

with multiple servers. Finally, the protocol which a cli-

ent and a server agree upon is by its very nature spe-

cialized and static. Often, specific procedures on the

server are coded in the protocol and become a part of

interface. Certain classes of data types are bound to
these procedures and the result is a special network

version of an application program interface. The inter-
face is extensible, but only at the high cost of re-coding

the application to provide for protocol version com-

patibility and software upgrades.

Mobile agents overcome all these inherent limitations

in the client–server paradigm. First and foremost, the

mobile agent paradigm shatters the very notion of client
and server. With mobile agents, the flow of control ac-

tually moves across the network instead of using the

request/response architecture of client–server paradigm.

In effect, every node is a server in the agent network and

the agent moves to the location where it may find the

services it needs to run at each point in its execution.

The scaling of servers and connections then becomes

a straightforward capacity issue, without the compli-
cated exponential scaling required between multiple

servers. The relationship between users and servers is

coded into each agent instead of being pieced out across

clients and servers. The agent itself creates the system,

rather than the network or the system administrators.

Server administration becomes a matter simply of

managing systems and monitoring local load.

The problem of robust networks is greatly diminished
for several reasons. The hold time for connection is re-

duced to only the time required to move the agent in or

out of the machine. Because the agent carries its own

credentials, the connection is simply a conduit and is not

tied to user authentication or vulnerable to spoofing. No

requests flow across the connection; the agent itself

moves only once.

Last and most important, no application-level pro-
tocol is created by the use of agents. Therefore, com-

patibility is provided for any agent-based application.

Complete upward compatibility becomes the norm ra-

ther than a problem to be tackled, and upgrading or

reconfiguring an application may be done without re-

gard to client deployment. Servers can be upgraded,

services moved, load balancing interposed, and security

policy enforced, without interruptions or revisions to the
network and clients.

So mobile agents have many advantages for dis-

tributed architecture. Distributed mobile autonomous

agents solve critical problems in intrusion detection,

such as bandwidth, computing cycles on user�s com-
puters, efficiency, reliability, and they provide a general

architecture for adding and integrating ‘‘components’’

into the system. Monolithic, centralized systems have
several faults which may be overcome by the use of a

distributed architecture. Mobile agents diminish the

weaknesses that would be added by a client–server

paradigm to a distributed architecture.

Network intrusion detectors typically use single sen-

sors attached to network segments. However, local area

networks have moved towards switched architectures

which do not broadcast unicast frames to all network
segments. Centralized sensors will miss traffic on seg-

ments to which the sensor is not attached in a switched
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environment. Distributed agents solve this problem by

monitoring network activity at each host.

Network intrusion detectors also have problems with

high data rates. Centralized systems may miss packets

under heavy load situations on Fast or Gigabit Ethernet

networks. Distributed agents distribute the processing
effort between the networked systems and likely would

improve the chances that intrusions will be detected that

would be missed by a centralized IDS.

The modular architecture of the agent-based IDS al-

lows for the integration of intrusion detection compo-

nents from other projects. For example, the SNORT

network IDS (Roesch, 1999) is a small, fast, low-overhead

sensor that watches for network packets that match sig-
natures. The agent-based IDS can incorporate SNORT

and provide network misuse detection at each host.

Likewise, various small programs detect specific intru-

sions such as port scanning, broadcast pings (smurfs),

logins at unusual times, and changes to files. These can be

included in the distributed IDS via wrapper agents.

A centralized or centrally-governed IDS provides a

single point of failure and a single target for an attack.
The distributed agent architecture avoids a central point

of failure. Autonomous agents may continue operating

despite the failure of other agent servers or other failures

in a system, which avoids the compromise of the entire

IDS even if one component fails or is attacked (Mell and

McLarnon, 1999). Mobile agents also may be capable

of evading attackers and resurrecting themselves if

killed.
A distributed agent-based IDS helps solve spatial

problems in intrusion detection, where more than one

host is involved in an intrusion. For example, in an

‘‘FTP bounce’’ attack, an attacker may use an anony-

mous FTP server on one host to spoof a command to a

remote shell on the target host. Agents on both the

anonymous FTP server and the target host could detect

the spatially-separate events in the attack and correlate
the events in near real-time.

Kumar (1995) lists shortcomings of IDSs. Viewed in a

different way, the shortcomings provide a list of desir-

able features in an IDS.

Generic Architecture. The common intrusion detection

framework (CIDF, Porras et al., 1999) specifies a ge-

neric architecture for an IDS and classifies the com-

ponents of an IDS. A system of distributed mobile

agents implements the IDS in a flexible way compat-

ible with the CIDF architecture.

Efficiency. A distributed Multi-agent System obtains
audit data at the appropriate levels of the distributed

system and distributes the information processing

and intrusion detection effort.

Portability. IDSs have tended to be developed with an

orientation to an organization�s security policy. Dif-
ferences in security policies between organizations re-
sult in a lack of portability of an IDS. In a different

sense, portability of the IDS with respect to operating

systems and computer architecture is also an issue.

Perl and Java, two interpreted languages, have been

used to provide portability for IDSs. Autonomous

agents for intrusion detection (AAFID, Balasubra-
maniyan et al., 1998) and our own project, MAIDS,

are two such IDS�s.
Upgradability. An IDS based on a component-based ar-

chitecture such as that available in an agent-based

system satisfies the upgradability and enhancement

concern. New features can easily be added to such a

system.

Maintenance. Maintaining and updating the learned
knowledge used by components of an IDS would de-

pend on the architecture of the components.

Performance benchmarks. Exhaustive quantitative per-

formance evaluations of current IDSs in real-world

environments do not exist. Vulnerability coverage is

beginning to be addressed by vendors with the assis-

tance of vulnerability assessment projects, including

the Common Vulnerability Enumeration (Mann,
1999).

Testing. Kumar says, ‘‘there is no easy way to test intru-

sion detection systems.’’ (Kumar, 1995) The MIT

Lincoln Labs intrusion detection evaluation (Lipp-

mann et al., 1998) was one of the first major tests

of research IDSs. Attacks remain difficult to simulate,

effectiveness of systems is difficult to evaluate without

operating them under real world loads, and signifi-
cant tuning and expertise tends to be necessary to op-

erate systems.

The Multi-agent IDS is similar to other intrusion

detection systems in that its effectiveness would need to
be demonstrated in real-world settings.

This modular and extensible approach to building a
system helps solve the complex problems in an IDS. It

divides the problem into the aspects of information re-

trieval, classification, collaboration, and compilation.

Agents have been developed for our system that retrieve

information from distributed systems, classifies the data

(either using embedded expert rules or machine learning

techniques), and stores the data in a database.

In this paper, we briefly examine the design of our
distributed IDS and then explain the addition of agent

collaboration to the system by the use of dynamic ag-

gregation. We show how dynamic aggregation provides

a convenient mechanism for extending existing ob-

jects and allows us to quickly add new features to the

system.

In the initial design of our IDS, agent communication

was vertical: information traveled between a data gath-
ering agent up to its associated mobile agent, and from

there up to the user interface. In this design, though,
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agents were not able to communicate horizontally with

each other to cooperatively detect intrusions.

For horizontal communication, we added the concept

of agent sensitivity, where an agent would become more

sensitive to unusual events when intrusive events have

been noticed by other agents. As an example of sensi-
tivity, consider failed logins. A few login failures on a

single host may be normal, such as when a user forgets

her password. However, when an attacker has identified

a target host (perhaps by portscanning, which is con-

sidered intrusive by our system), he may connect to the

target host and try a few typical passwords. In this case,

a loose temporal relation exists between the first event

(portscanning) and the second event (failed login at-
tempts). Agent sensitivity levels can provide a real-time

correlation of related intrusions while allowing normal,

individual events to pass without triggering alarms. We

used dynamic aggregation to add sensitivity and hori-

zontal communication to the agents.

Our implementation of the system currently includes:

• Static data cleaning agents that obtain information

from system logs, audit data, and operational statis-

tics and render the information in a common format;

• Low-level agents that monitor and classify ongoing
activities, classify events, and pass on their informa-

tion to mediators;

• Facets for the low-level agents that add cooperation

to the agents;
Fig. 1. Architecture of the Mobile-age
• Data mining agents that use machine learning to ac-

quire predictive rules for intrusion detection from

system logs and audit data.

The Multi-agents Intrusion Detection Model is based

on the idea of distributed knowledge networks. The

architecture illustrated in Fig. 1 makes use of the fol-

lowing layers:

User Interface. The user interface allows control of

agents, management of the list of monitored systems,

and reports intrusions.

Database. The database stores data for training and off-
line intrusion detection.

Data fusion and data mining. Agents at this level can

fuse information from lower agents and mine know-

ledge from the database.

Mediators. The low-level agents are managed by media-

tors which control the systems visited by the agents,

obtain the classified data from the agents, and route

the data into the local database and to the user inter-
face. As the system is developed, the mediators will

apply data mining algorithms to the data in the dat-

abase to connect individual events into a cohesive

view of the elements involved in an attack.

Data gathering, base classification, and basic data min-

ing. In the middle of the architecture, the low-level,

mobile agents form the first line of intrusion detec-

tion. They periodically travel to each of their associ-
nts Intrusion Detection System.
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ated data cleaning agents, obtain the recently gleaned

information, and classify the data to determine

whether singular intrusions have occurred.

Data cleaning and formatting. At the bottom of the

tiered architecture, the system log routers and system

activity agents read log files and monitor the opera-
tion of the systems. The routers feed data into the dis-

tributed data cleaning agents which previously

registered their interest in particular events. Targeted

data cleaning agents process data obtained from the

routers and activity agents. They render the data into

common data formats.

The hierarchical architecture for our IDS agent system

has following advantages:

1. The implementation of agent is efficient. When low-

level agent travel to monitored system, mediator

parts need not to travel. Many low-level agents are

generated and migrating to monitored system, the

mediator part need not to be generated many times
and need not to migrate. Much network bandwidth

and CPU time are saved.

2. Layered system is easy to design and modify. Clear or-

ganization of the agents make system easy to maintain.

3. It provides platform indecency. The lower levels that

need to contact with system logs is platform depen-

dent. When new operating system is added, only low-

est level agent-data collecting agents need to be
added.

The delay on reporting intrusion of monitored com-
ponents in hierarchical architecture will be trivial com-

pare to the advantages we benefit from the hierarchical

architecture. The agents can be lightweight in the hier-

archical system architecture and performance is greatly

improved.

As we further develop the system, multiple depart-

mental-level systems can be monitored. Data ware-
Fig. 2. Enterprise date warehou
housing can be used to combine the knowledge and data

from the individual departments into an organization-

wide view of attacks. The agent system of Fig. 1 is

targeted to run at the departmental level of an organi-

zation. To provide enterprise-wide information about

intrusions, the data from each departmental agent
system will feed into a data warehouse as shown in

Fig. 2.

Because the data warehouse will provide a global

view of the intrusion detection systems, it supports not

only the identification of attacks but also:

• helps administrators discover new attacks,

• trains system administrators about how attacks are

mounted on their systems, and

• identifies weak points in the enterprise information

systems.

A number of agent infrastructures exist to support

agent systems. Generally, agents infrastructures provide

agent servers, agent interfaces, and agent brokers.
Agents servers may provide mobility and authentica-

tion. Agent interfaces are used by application programs

to create and communicate with agents. Agent brokers

provide naming and location services. The prototype

mobile agent IDS has been built in the Java language

using the Voyager Object Request Broker (ObjectSpace

Inc., 1999) . Voyager provides the mobility, interfacing,

and naming services needed to implement the agents in
the IDS. Voyager is a platform that is easily to use,

freely available on the web and 100% percent Java, so

the applications developed based on Voyager are por-

table and compatible with multiple operating systems

and hardware platforms. Voyager is also the only

commercial mobile agent platform currently support-

ing dynamic aggregation, which is the feature we used

to design our lightweight agent system. Based on
these advantages, we used Voyager for our agent plat-

form.
se for intrusion detection.



114 G. Helmer et al. / The Journal of Systems and Software 67 (2003) 109–122
2. Related work

2.1. Distributed intrusion detection systems

The distributed intrusion detection system (DIDS) of

the University of California––Davis (Mukherjee et al.,
1994) used a combination of host and LAN monitors to

observe system and network activity. A centralized di-

rector obtained information from the monitors to detect

intrusions. DIDS is similar to our system in that it used

multiple, distributed monitors, akin to our agents, and

artificial intelligence algorithms to discover anomalous

events. DIDS differs from our system in that the intel-

ligence is purely centralized, and DIDS did not make use
of any agent technology.

The CIDF (Reilly and Stillman, 1998) resembles our

project general architecture. CIDF is a proposed stan-

dard being developed by a group composed of the In-

formation Technology Office of the Defense Advanced

Projects Agency, University of California––Davis, In-

formation Sciences Institute, Odessey Research, and

others. The CIDF nomenclature differs from ours, in-
cluding the reconnaissance agents which correspond to

our data gathering agents, the analysis agents corre-

spond to our low-level agents and facets, and the deci-

sion-response agents correspond to our high-level

agents. In general, the CIDF provides a model with

which we can compare our system, but it does not spe-

cially related to agents.

2.2. Agents in intrusion detection systems

Several projects have investigated the use of agents in

intrusion detection systems. The Computer Immuno-

logy Project, Java agents for meta-learning (JAM), and

AAFID projects each examined the problem in different

ways.

The AAFID project (Balasubramaniyan et al., 1998)
at Purdue�s COAST project is a flexible, distributed IDS
infrastructure with some similarity to the MAIDS de-

sign. It has developed an IDS using Perl agents for fast

prototyping and cross-platform compatibility. The

communication between agents are incidental. Their

project also analyzed the agent-based approach to in-

trusion detection. Our approach differs in the emphasis

on the use of learning algorithms, data warehousing,
and mobile agents. Our system is implemented in Java.

The Computer Immunology Project at the University

of New Mexico (Warrender et al., 1999; Forrest et al.,

1997, 1996) explored designs of IDSs based on ideas

gleaned by examining animal immune systems. Small,

individual agents would roam a distributed system,

identify intrusions, and resolve the intrusions. One

portion of the project developed a sense of self for se-
curity-related computer programs by observing the

normal sets of system calls executed by the programs.
This sense of self can be used to detect intrusions by

discovering when a program executes an unusual set of

system calls. The Computer Immunology Project differs

from our project by their focus on individual agents

rather than an integrated system of cooperating Multi-

agents.
The JAM Project at Columbia University (Lee and

Stolfo, 1998; Stolfo et al., 1997) uses intelligent, dis-

tributed Java agents and data mining to learn models of

fraud and intrusive behavior that can be shared between

organizations. Our project differs in its concentration on

intrusion detection within a single organization and its

use of data warehousing to aggregate department data

and provide organization-wide views of security infor-
mation.
3. Lightweight agents

Dynamic aggregation allows runtime addition of new

capabilities to agents. This section explains the addition

of agent collaboration to the system by the use of dy-
namic aggregation.

We call the small, minimal agents lightweight because

the agents implement a minimum of functionality, as

opposed to heavyweight agents that include all functions

that may ever be needed. Compared to heavyweight

agents, lightweight agents are:

• Smaller,

• Simpler,

• Faster to transport (due to their smaller size),

• Dynamically updatable and upgradable.

Dynamic aggregation allowed us to add collabora-

tion capabilities to the lightweight mobile agents and

quickly add new features to the system. Our particular
use of dynamic aggregation allows the agents in our IDS

to inform each other about intrusive activity.

Each agent uses dynamic aggregation to manage its

sensitivity level. The sensitivity level determines how

sensitive an agent is to events which may not be con-

sidered intrusive under normal circumstances but which

can be intrusive in the presence of related intrusions.

An example of the sensitivity issue is the problem of
failed login attempts. A few login failures on a single

host may be normal, such as when a user forgets her

password. However, when an attacker has identified a

target host (perhaps by portscanning, which is consid-

ered intrusive by our system), he may connect to the

target host and try a few typical passwords. In this case,

a loose temporal relation exists between the first event

(portscanning) and the second event (failed login at-
tempts). Agent sensitivity levels can provide a real-time

correlation of related intrusions while allowing normal,

individual events to pass without triggering alarms.
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3.1. Adding agent capabilities with dynamic aggregation

Dynamic aggregation of objects offers three benefits

(ObjectSpace Inc., 1999).

• The behavior of a binary-only object may be ex-

tended.

• An object may be customized in specific ways.

• An object�s behavior may be extended at runtime, in
ways that need not be specified at compile time.

To this list of benefits we add:

• An object is as small as it can be until new function-

ality is needed.

The Voyager terminology for objects used in dynamic

aggregation is ‘‘facets’’. Voyager defines a primary ob-

ject and its facets to be an ‘‘aggregate’’ that is managed

as a single unit. Voyager�s facet selection rules conve-
niently select a facet implementation tailored to a par-

ticular object. This allows specific customization of an

object.

Voyager selects an implementation of a facet based

on the name of the facet and the class name of the pri-

mary object. When a facet of a particular class is re-

quested, Voyager searches for a facet that implements

an interface by the facet class�s name with an I prefixed.
For example, if the facet by the name of AFacet were

requested, Voyager would search for a class that im-

plements the interface IAFacet.

Voyager searches objects for implementations of the

facet�s interface using the name of the primary object
suffixed by the name of the facet. If a matching imple-

mentation is not found, Voyager searches using the

primary object�s superclasses. For example, if the pri-
mary object were of the class aClass (which extends

java.lang.Object) and the facet AFacet were requested,

Voyager would first look for a facet named

aClassAFacet, then for ObjectAFacet, and finally

AFacet.

When Voyager looks for an implementation for the

facet, it searches the primary object�s package and the
facet�s package.
3.2. Use of dynamic aggregation

Intelligent agents in the Multi-agents Intrusion De-

tection System are lightweight in that they are oriented

towards gathering and classifying data. The low-level

agents themselves communicate directly only to their

related data gathering agents and mediators. Adding
low-level agent communication in the IDS allows agents

to fuse related data in real time and take advantage of

knowledge about the security status of related compo-

nents in the system. Dynamic aggregation provides a
convenient way of adding communication between low-

level agents without adding excess baggage to the agents

themselves.

Inter-agent communication was implemented by the

use of sensitivity facets as an aggregate to the low-level

agents. Sensitivity facets are a family of objects that
communicate intrusion information among themselves

and use information about related intrusions to affect

future decisions about intrusions.

The issue of failed attempts to login provides a good

example of how the sensitivity facets are used. A few

failed logins in a distributed system are expected as users

tend to forget passwords, try wrong passwords on the

wrong systems or mistype as they try to login. However,
in the face of an attack, a few failed logins may signal

the next step in an intrusion as the attacker tries com-

monly-used or default passwords after having identified

systems that allow virtual terminal or file transfer con-

nections from the network. The failed logins sensitivity

facets listen for network connection events from unusual

sources (which occur as the attacker identifies her tar-

gets), remember these events, and increase their sensi-
tivity to failed logins for a period of time.

Agent collaboration in the IDS was not developed

until after the agents had been designed, developed, and

tested. Dynamic aggregation provided a way in which

the agents could be extended without having to overload

an agent with new features. However, the agents needed

a bit of redesign to accommodate the sensitivity facets.

Each adjustment facet must integrate itself into its pri-
mary agent to affect decisions on whether events are

intrusive. The agents were modified to provide newly-

obtained events to a listener (namely, the adjustment

facet) for adjustment of the event�s intrusion classifica-
tion. The agents were also modified to notify a listener

(the reporting facet) if an event was determined to be

intrusive. This adjustment to the agent architecture

makes the agents much more flexible and open to future
enhancement by aggregation.

The reporting facets were designed to broadcast in-

trusion messages from their primary agent to other in-

terested facets. The adjustment facets listen for intrusion

messages from the reporting facets. Fig. 3 illustrates the

flow of information between the agents and facets.

3.3. Communication in the IDS

Auditing information is exchanged between agents

using subclasses of an Audit class. The Audit class pro-

vides methods for serializing an audit object in a table of

keys and values, deserializing an audit object, storing an

audit object in a database, and obtaining an audit object

from a database. Subclasses of the Audit class fully de-

scribe events like logins, changes to important files,
network connections, and processes executed. Low-level

agents obtain audit objects from data gathering agents
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and apply the first level of intrusion detection, using

artificial intelligence or expert rules. Audit objects are

passed vertically through the IDS (see Fig. 1).

Intrusion information is exchanged between facets
using descriptive strings in ASN.l syntax. In the style

advocated by Tim Bass (Bass, 1999), a small manage-

ment information base (MIB) was designed to encap-

sulate information about intrusions. The MIB allows the

low-level agents to communicate intrusion information

at a higher, more abstract level and describe more

knowledge about the intrusion. A sample of the ASN.l

hierarchy of intrusions follows.

host Intrusions identified on a host computer

host.priv_prog Intrusions against a privileged pro-
gram

host.auth Intrusions related to authentication

net Intrusions related to network services

net.ip Intrusions via the IP network protocol

net.ip.icmp Intrusions via the ICMP protocol

net.ip.udp Intrusions via the UDP protocol

net.ip.udp.service¼ nfs Intrusions via NFS
net.ip.tcp Intrusions via the TCP protocol
net.ip.tcp.service¼ login Intrusions via the rlogin
protocol

Listeners can register interest in any portion of the
hierarchy by specifying a prefix. For example, a listener

could register the prefix net.ip.tcp to listen for all

TCP-related intrusions.
Table 1

Agents and their related intrusions

Agent Related intrusion

Untrusted connection;

NetTCP

Attack on network daemon; Chan-

ged configuration file

Critical files Attack on network daemon; NFS

Failed logins Port scanning
3.4. Communicating between facets

The intrusions detected by each agent in the IDS were

examined for related intrusions. Examples of such re-
lations are shown in Table 1.

Reporting facets were constructed to encode intru-

sion information in the MIB described previously and

send the reports to interested facets. Adjusting facets

encode the relationships between intrusions by regis-

tering interest in related intrusions. Adjustment facets

interpret the received intrusion messages to affect their

sensitivity level and use their sensitivity level to adjust
intrusion classifications of events via their related low-

level agent.

3.5. Machine learning method used by low-level agent

In this project, we use distributed intelligent agent for

intrusion detection. A lower-level layer of agents, just

above the data cleaning agents in the system architec-
ture, form the first level of intrusion detection. Using

lightweight mobile agent technology, these agents travel

to each of their associated data cleaning agents, gather

recent information, and classify the data to determine

whether suspicious activity is occurring. The agents are

able to use a variety of classification algorithms, the

choice of which will depend on data.

In our project, several data cleaning and low-level
agents have been implemented. Our research in this part

focuses on agents that monitors privileged programs
Rationale

Attacker will often attempt to login via the network after

attacking a network daemon or changing a configuration file

Attacker may change a critical file to enable further attacks

Attacker may scan available network ports to find machines on

which to try to login
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and algorithms for detecting intrusion based the log

data of the privileged programs. Programs that provide

network service in distributed computing systems often

execute with special privileges. For example, the popular

sendmail mail transfer program operates with superuser

privileges on UNIX systems. Forrest�s project at the
University of New Mexico (Forrest et al., 1996) devel-

oped databases of systems calls from normal and

anomalous uses of privileged programs such as send-

mail. Forrest�s system call data is a set of files consisting
of lines giving a process ID number and system call

number. The files are partitioned based on whether they

show behavior of normal or anomalous use of the

privileged sendmail program running on SunOS 4.1.
Forrest organized system call traces into sequence win-

dows to provide context, and showed that a database of

known good sequence windows can be developed from a

reasonably sized set of non-intrusive sendmail execu-

tions. Forrest then showed that intrusive behavior can

be determined by finding the percentage of system call

sequences that do not match any of the known good

sequences. We use the same data set with Forrest�s to
enable comparison with techniques used in related pa-

pers (Lee and Stolfo, 1998; Warrender et al., 1999).

We present a feature vector technique that improves

on Forrest�s technique because it does not depend on a
threshold percentage of abnormal sequences. Our fea-

ture vector technique compactly summarizes the vast

data obtained from each process, enabling longer-term

storage of the data for reference and analysis. With re-
spect to other rule learning techniques, our technique

induces a compact rule set that is easily carried in

lightweight agents. Our technique also may mine

knowledge from the data in a way that can be analyzed

by experts.

For details about our work in this aspect, please refer

to our these papers (Helmer et al., 1998, 1999).

3.6. Lightweight agents for distributed intrusion detection

Distributed knowledge network include computa-

tional tools for accessing, organizing, transforming, and

analyzing the contents of heterogeneous, distributed

data and knowledge sources and for distributed problem

solving and decision making. Our current design of

distributed knowledge network consists of the following
components: a mobile agent infrastructure; intelligent

agent for information extraction, intrusion classifica-

tion, coordination and control mechanisms for Multi-

agent Systems, and distributed intrusion detection based

on software fault tree (SFT) and color petri net (CPN)

model.

Intrusion data from heterogeneous data sources re-

sides on multiple hardware platforms and operating
systems at different geographical locations. This requires

a robust and flexible framework for interoperability
between the various data sources and clients and good

methods for understanding the temporal and spatial

relationship of the distributed data.

For assimilation and processing of distributed intru-

sion information, understanding the temporal and spa-

tial relationship of the distributed data, and correlating
intrusion events, we use two methods:

The first method is adding communication between

low-level agents, allowing agents to fuse related know-

ledge and take advantage of knowledge about the se-

curity status of related components in the system by

dynamic aggregation and sensitivity facets. This has

been introduced in detail above in Sections 3.1–3.4.

The second method is fusing the knowledge using
SFT and CPN models, which enable understanding and

capture of domain knowledge needed to accurately de-

fine the requirements of intrusion detection. We use SFT

to model the combinations and sequences of events by

which intrusions can occur. Then the SFT models of

intrusions are used to create CPN designs for the de-

tectors in the IDS. The CPN detector models are then

mapped into implementation as mobile agents that form
the distributed IDS. For details, please refer to our these

papers (Helmer et al., 2001, submitted for publication).

The mobile agent intrusion detection architecture

enables efficient, distributed knowledge fusion, intrusion

event correlation, and effectively reduces false alarms.
4. Implementation

In this section, the overall implementation of the

prototype IDS is discussed. Then, the implementation of

dynamic aggregation to add communications between

agents is presented.

4.1. IDS implementation

The prototype IDS has been implemented using Sun�s
Java Development Kit version 1.1 (Sun Microsystems,

2000) and ObjectSpace�s Voyager Object Request Bro-
ker version 3 (ObjectSpace Inc., 1999).

Java was chosen as the development language be-

cause of its platform independence, security, and speed

of development. Java�s platform independence has al-

lowed us to compile and execute completely shared code
on any one of several platforms including Silicon Gra-

phic�s IRIX and Hewlett–Packard�s HP-UX commercial
operating systems and free operating systems including

Free BSD and Linux. Java�s security features include
sandboxes for executing untrusted code, strict typing,

bounds checking, byte-code verification, and code

signing. Java�s strict typing and object orientation as-
sisted development by enforcing structure, allowing the
addition of functionality by extending existing objects,

and reducing time needed for debugging as compared to
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projects of similar complexity that have been imple-

mented in the C language.

The runtime performance of Java code is a concern,

but has not been an obstacle to the IDS project. The

performance has been sufficient to demonstrate opera-

tion of the prototype IDS. When additional perfor-
mance has been required, just-in-time compilers that

compile Java byte code into native machine code have

satisfied the requirements.

The Voyager Object Request Broker was chosen for

the prototype IDS because of its availability, develop-

ment in Java as its native language, and support for

mobile agents. Voyager provides mobility, message

passing (independent of the target object�s location), and
naming services for Java objects, all of which are nec-

essary for our prototype IDS. Voyager also supports

extending lightweight agents via dynamic aggregation,

or facets. Facets allow us to add capabilities to IDS

agents, including agent communication and collabora-

tion. We could also dynamically add countermeasures

capabilities to agents. This would allow a running IDS

system to adapt to new attacks by implementing new
countermeasures.

The bottom tier of agents in the IDS is the set of

stationary data cleaning agents. The stationary agents

obtain information from sources including system logs,

audit data, and operational statistics. The stationary

agents convert the information into a common format

for use by the higher levels of agents.

An example of a stationary agent is the
DGFailedLoginAgent, which reads the system logs

for reports of failed logins. It parses failed login mes-

sages from the system log into Login objects which

describe when the failed login took place, which user

account was used, and which computers were involved

in the failed login.

The middle tier of agents in the IDS is the set of low-

level agents. Low level agents are mobile agents that
gather information from the stationary agents. Low-

level agents process the gathered information to monitor

and classify events. Low-level agents then pass on the

information to their mediator.

An example of a low-level agent is the FailedLo-

ginAgent, which visits each host�s DGFailedLo-

ginAgent to retrieve the recent list of failed logins. If

the number of failed logins in the entire distributed
system exceeds a threshold in a short period of time, the

failed logins are flagged as an attempted intrusion.

The prototype detects intrusions including attempts

at trying multiple passwords on multiple machines, un-

usual TCP network connections, changes in critical files

(with the assistance of Tripwire (Kim and Spafford,

1994)), attacks against the sendmail mail transfer agent,

and refused connections to unsafe network services.
Note, however, that the flow of information in this

design is purely vertical (in terms of Fig. 1) and agents at
each level are not cooperating or coordinating with each

other. The existing low-level agents are then considered

‘‘lightweight’’ in the view that they do not have the ca-

pability to communicate directly with each other.

4.2. Adding cooperation to the agents

Sensitivity facets were created to add communica-

tions capabilities to the low-level agents. The Sensitivity

facets implement the adjustment and intrusion reporting
functions shown in Fig. 3. Mediators construct agents

and attach Sensitivity facets to agents. The Sensitivity

facets implement the reporting and adjusting functions

described in Section 3.3. As agents gather information,

the information is passed through the Sensitivity facets

for reporting and adjusting.

The interface ISensitivity was defined with the

methods:

register( ) To subscribe to events in the associated

agent,
setIntrusionClasses( ) To subscribe to interest-

ing intrusions from other agents,

getSensitivity( ) To obtain the current sensitiv-

ity level,

sendIntrusionMessage( ) To publish messages

about intrusions, and

recvIntrusionMessage( ) Through which intru-

sion messages are received by the facet.

A default implementation of the interface, Sensi-

tivity, was created. The register( ) method im-

plementation subscribes to all events seen by its attached
agent. The setIntrusionClasses( ) method im-

plementation defines which intrusions are interesting to

this facet. The getSensitivity( ) method imple-

mentation returns an indicator of how sensitive the facet

is to suspicious events. The sendIntrusionMes-

sage( ) method implementation publishes informa-

tion about an intrusive event to other listening

Sensitivity facets. The recvIntrusionMessage( )

method implementation receives messages about intru-

sive events from other Sensitivity facets and adjusts the

facet�s sensitivity level based on the significance of the
event.

Fig. 4 shows a slice of the IDS with Sensitivity

facets included. A specific Sensitivity facet,

NetTCPAgentSensitivity, extends the basic

Sensitivity facet to listen for intrusive activity in-
cluding changes to files and buffer overflow attacks. If

other agents report these intrusive activities, the sensi-

tivity of the NetTCPAgent should be raised since the

target may receive anomalous TCP connections in the

near future which may be part of the intrusion. Because

of Voyager�s rules for attaching facets to an agent, when
a Sensitivity facet is added to the NetTCPAgent,
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the NetTCPAgentSensitivity facet is added to the

NetTCPAgent.
The FailedLoginAgentSensitivity facet lis-

tens for intrusive activity reports from the NetTCP-

Agent. If the NetTCPAgent were to sense activity

such as scanning for available telnet ports, the Fail-

edLoginAgentSensitivity facet will raise is level

of suspicion. An intruder may scan for available telnet

ports, then connect to the discovered telnet ports and try

to login to well-known accounts with typically-used
passwords. If this were to happen, the FailedLo-

ginAgentSensitivity facet would help detect the

attack by lowering the threshold of acceptable failed

logins.

4.3. Results

By only adding the sensitivity capability when it is
required, the load on the network and speed of trans-

mission of the agents is much better in the normal case.

In particular, the Java byte-compiled code for the

FailedLoginAgent class is a total of 5665 bytes

(2298þ 3367). The byte-compiled code for the Fail-
edLoginAgentSensitivity class is a total of 5547

bytes (1540þ 4007). Permanently adding the sensitivity
capability to the FailedLoginAgent would increase
the size of the agent by 96%. Considering only the size

of the code, the FailedLoginAgent is roughly half

the size without the sensitivity facet as it would be with

the sensitivity facet. At a constant transmission rate, the
time to transmit the lightweight agent by itself is about

half the time required to transmit the agent with the
facet.

The savings are less dramatic for the NetTCPAgent.

The Java byte-compiled code for the NetTCPAgent

class is a total of 7434 bytes (4067þ 3367). The byte-
compiled code for the NetTCPAgentSensitivity

class is a total of 4493 bytes (486þ 4007). Permanently
adding the sensitivity capability to the NetTCPAgent

would increase its size by 60%.
Our IDS system has not only good efficiency and fast

response time but also high accuracy and low false

alarm rate. We conducted several experiments.

First, we conducted an experiment to test the classi-

fication of sendmail system calls by a lower-level agent.

We used the database of system calls from Forrest�s
project at the University of New Mexico to train our

agent. For sendmail system calls, the average false alarm
rate is only 0.83% using our method and the complexity

of learned hypothesis is 8.6 rules on average. For details

of the experiment, please refer to our other papers

(Helmer et al., 1998, 1999).

Second, we conducted experiments to test the corre-

lation ability of the IDS. Some distributed attacks were

used to test the false alarm rate and correlation ability.

One distributed attack used was the FTP bounce attack.
The FTP bounce attack can be used to transfer data to a

network port to which an attacker does not normally

have access. One way to exploit this problem is to send

data to a remote shell server that trusts the FTP host via
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the FTP server. If the target trusts the FTP server, the

rsh daemon will accept the data as if it were user input

and execute the given command. To perform the ex-

periment, we used one attacker machine which sent data

to an FTP server, one relay machine which ran the

vulnerable FTP server, and one machine running an rsh
daemon that trusted the relay machine. All the FTP

bounce attacks were successfully identified and no false

alarms were reported in this experiment (Helmer et al.,

2002, submitted for publication).

4.4. Discussion

In our project, we explored how to use lightweight
distributed agent to implement an IDS. In this paper, we

focus our discussion on agent architecture and the up-

gradability of agent.

Security problem is a big problem for agent system.

Currently our system does not consider the security

problem: anyone who can access the agent system can

take control. In the future, we will explore this problem.

Newly discovered distributed attacks must be mod-
eled and integrated into the IDS for distributed intru-

sion detection. Using our technique, a SFT analysis is

performed to describe the new distributed intrusion. The

SFTA is then translated to detector agents. Translation

by hand is troublesome and tedious, so we have de-

signed a system to automatically translate the SFTA to

detection agents. For more details, please refer to our

these papers (Helmer et al., 2001, submitted for publi-
cation).
5. Conclusions and future work

Extending lightweight agents provides a convenient

mechanism for implementing a new form of communi-

cation in our IDS. By developing facets that imple-
mented listening and reporting functions, a significant

new feature was added to the IDS without negatively

affecting the existing agent design or operation. Opera-

tion of the system is improved in the normal case, since

the load on the system due to the size of the agents is

reduced when no intrusions are present.

Extension of agents offers many possibilities for ex-

tending the IDS. A potential use for lightweight agent
capabilities would be to add data mining capabilities to

mediators in the IDS. A group of facets could be con-

structed that implement various data mining algorithms.

Mediators could then dynamically add data mining al-

gorithms for higher-level intrusion detection by adding

appropriate facets.

The prototype MIB for intrusions should be formal-

ized based on a taxonomy of intrusions. Using the
ASN.l syntax for describing intrusions seems to hold

promise for integration of IDSs and communication
between intrusion detection agents. Also, relationships

between intrusions should be formally identified and

encoded into facets. The prototype table of intrusion

relationships was a first step in developing our sensi-

tivity facets. Previous IDSs encoded these relationships

as rules in an expert system (Mukherjee et al., 1994).
Using agents and facets seems to offer a more dynamic,

malleable way to deal with these relationships than en-

coding rules in an expert system.

An extension of the IDS system may be possible by

using facets to implement data fusion to identify the

source of an intrusion in real time. Some attacks

identify the source IP address of the attacker, and at

times even more information may be gathered from
the source that help determine the identity of the at-

tacker.

A possible further extension using facets would be to

implement countermeasures to respond to intrusions.

Facets could be designed that fuse intrusion information

in real time. When the fused information meets certain

criteria, the facets could direct the monitored system to

take corrective or defensive action to deter or stop the
intrusion. If the source of the intrusion is known (by the

identification facets previously mentioned), counter-

measures may be possible to prevent further attacks.

Because facets are aggregated with their agents, the

countermeasures facets would be operating on the sys-

tem on which the actions would need to be executed. No

additional communications overhead would be required

to send commands to the target system to counter an
attack.
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