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Abstract—- Given the autonomous nature of various decision-
making entities in deregulated power systems, this paper em-
braces a paradigm based on software agents and multiagent sys-
tems for distributed rational decision-making in electric power
systems. Our current effort in this line of research is aimed at
producing a platform-independent, robust application program
interface for instantiating complex multiagent systems and a ref-
erence multiagent system application for the power systems envi-
ronment. This paper describes the progress in our efforts on both
these fronts.

Index Terms—agents, decisions, deregulation, multiagent,
power systeims.

1. INTRODUCTION

Complexities in information management and distributed
decisions have the potential to evolve as a limiting factor for
efficiently utilizing existing resources and optimally balance
the interplay between economic and security concerns in the
electric power system. Advances in artificial intelligence have
made it possible to abstract a portion of a human decision-
maker's authority as self-interested software agents, enable
communication between these agents in a reasonably high-
level language, and elicit coordinated behavior via suitable
coordination models. To this end, this paper proposes the ap-
plication of a distributed artificial intelligence paradigm
known as multiagent systems to elicit coordinated and negoti-
ated decisions from power system decision-makers. This
technology is finding applications in coping with heterogene-
ous information systems [1]; intrusion detection in communi-
cation networks [2]; data-driven distributed knowledge dis-
covery [3]; distributed problem solving, building distributed
decision-support systems; enabling electronic markets; air
traffic management system at Sidney airport, Australia [4],
and many other application contexts. Applications of specific
interest to us include those involving balancing system level
security with an individual agent's economic self-interest. In-
stead of narrowly focusing on a particular application, we de-
sign and develop a Java-based software infrastructure, MA-
SPOWER, to easily instantiate agents and distributed multi-
agent systems for complex environments and a generalized
value-based negotiation framework for multi-objective deci-
sions. In sections II and III, we declaratively specify the at-
tributes of the agents and negotiation models, respectively,
and a description of software implementation of these specifi-
cations is given in Section IV. Section V provides prelimi-
nary results from a negotiated decision-making scenario be-
tween power system decision-makers, and Section VI con-
cludes.
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II. THE AGENT MODEL

Foundational concepts and definitions of software agents
and multiagent systems (MAS) together with a framework of
application to power systems were described in [5]. An agent
can be viewed as a software entity that maps percepts from
the environment to actions on the environment in order to
achieve its objectives. Percepts from the agent’s environ-
ment can be thought of being composed of percepts from the
physical environment consisting of power system compo-
nents (usually abstracted as databases) and percepts from
multiagent environment consisting of other agents. The
complete sequence of percepts from the physical environ-
ment until the time instant ¢ is denoted by ENV, while those
from the multiagent environment is denoted by MAS,. The
complete history of percepts until the present time is there-
fore the union of percepts from the physical environment and
the multiagent system. Denoting ¢, as the present time,
the history of percepts is:

P*=ENV, OMAS, 1

The agent usually has some knowledge about the world
encoded as rules; this encoded knowledge is denoted by «
This knowledge includes common knowledge, i.e., knowl-
edge that is known by all the agents and knowledge unique
to the agent. In our environment, common knowledge can
include power system algorithms and other publicly avail-
able operating rules and procedures. Unless the agent is
purely reactive, the agent first updates its internal states
based on the new percepts and its knowledge about the
world; the state-generating function that generates new
states S is denoted by:

SG:(P*,k)—> S 2)

Therefore the agent is unable to distinguish between some
states of the environment; in other words, the agent has equal
preferences for some environment states. This abstraction is
often significant in complex environments like electric
power systems that pass through a continuum of states, but
allows the agent to deal with a finite number of states. One
examples of a state-generating function is a single numeric
risk index that lumps power system states together with vari-
ous operational uncertainties into a quantitative value [6]. It
is evident that designing such functions depends on the laws
governing the physical system and requirements of the agent.
Agents in our system make their decisions based on such in-
ternal state representation; we take a closer look at this proc-
ess in what follows.



Usually, a human decision-maker transfers a portion of his
authority to the software agent. Therefore the agent has a
fixed set of actions that it is authorized to carry out, and this
set is denoted by {a}. What actions can the agent engage in?

This set could include control actions, acts of negotiating with
other agents, communicating with human authorities, and so
on. Given that agents are persistent software entities, the cur-
rent internal state might require an action to be scheduled
sometime in the future: the set of actions that the agent de-
cides to carry out at a specific time instant time ¢ in future is
denoted by {a, } < {a} (the actions that are scheduled at any

time in the future should be a subset of the authorized actions
for the agent). The agent uses its actions to move the envi-
ronment from one state to another, thereby changing its inter-
nal states.

The agent usually has preferences over internal states. Go-
ing back to the earlier example, an agent may prefer a lower
risk index over a higher risk index or vice versa. A sequence
of actions on the environment can transform the internal state
of the agent from one that is less preferred to a more preferred
state:

Sx24 > 8 3)

The method of transition is important: changes in the inter-
nal state of the agent necessarily come via the environment;
otherwise, the agent can generate preferable internal states by

merely manipulating its data structures. Every agent a, € A
has a decision-making procedure:
D, :(S,5,)— 2 )
This procedure reasons about the internal state and the
goals (S, denotes any of the goal states of the agent) and

formulates a plan of action to transform the internal state. The
plan of action can consist of a sequence of actions indexed by
time at which the actions have to be performed. Here again,
identifying and implementing the decision-making procedure
is specific to design of a single agent. Here, since we are
taking a MAS perspective, we assume that every agent is
equipped with a decision-making procedure, no matter how
rudimentary. The optimal power flow algorithm is an exam-
ple: it takes the current state and specifies a sequence of ac-
tions to change the current system state to a more preferred
state. The current version of MASPOWER has a generalized
decision-making procedure based on value functions as de-
scribed in Section III.

Given the agent has recognized a need for performing some
actions, how does it go about executing them? We use a no-
tion of fasks within the agent to implement the mapping be-
tween internal states to actions. A task is defined as a finite
state automaton that either maps a subset of internal states to
actions or is composed of other tasks. We denote the various
tasks currently under execution by an agent a as:

Tasks® = {task,,...,task,,...,task,} 5)

Assume that the subset of internal states of the agent that is
routed to any task; is S;. If the task is not composed of other

tasks, then it maps the internal state of that task to a subset of
allowable actions to be carried out a specific time:
task ; : S, —> {a;} ()

It is possible that the decision-making procedures of differ-
ent tasks recommend the same actions to be carried out at the
same time instant. To avoid repetition, the set of actions that
is carried out finally by the agent’s effectors at a time ¢ is a
set-theoretic union of the actions recommended by all the
tasks for that time instant:

{a}=v i} &

The above declarative specification is independent of the
internal reasoning model employed by the agent and the ap-
plication under consideration.

III. THE NEGOTIATION MODEL

In this section, we describe a multiagent framework where
agents can coordinate and negotiate with other agents for
mutual benefit.

A. The Case for Negotiated Decisions

Decision-making authority is fragmented in deregulated
power systems. Distributed coordination using decision-
making based on rational multiagent system negotiation is a
feasible alternative to pseudo-decentralized decision-making
currently in place in the electric power industry. The intui-
tive arguments in favor of this are based on the observation
that the two main components in distributed coordination
between humans are communication and individual decision-
making. Communication serves to disseminate relevant in-
formation to various entities; the content of such communi-
cation is usually formulated in a high-level language (like
English) and mediums of communication are telephones,
hotlines, e-mail, etc. A significant portion of decision-
making by human entities is already software driven, usually
relying on complex optimization programs, although it must
be acknowledged that some part of decision-making (espe-
cially in the operational time-frame) relies on human intui-
tion. Encoding a portion of human decision-makers’ prefer-
ences and decision-making procedures, and enabling inter-
agent communication in a reasonably high-level language,
provides the essential to automate some of the tasks per-
formed by human operators. The obvious advantages for the
human entity include reduction in workload and stress. The
act of negotiation is therefore included in the set of allow-
able actions in which an agent can engage. Negotiation is
very complex because it has to accommodate multiple self-
interested agents in its framework together with constraints
on the physical system. In the next section, we describe a
framework for negotiation based on multi-issued value func-
tions.

B. The Negotiation Framework

Negotiations between agents revolve around one or more
issues of common interest. For example, negotiation between
a generator agent and a load agent may involve the issues of



quantity, unit price and quality. The current version of MA-
SPOWER uses a framework based on value functions for
multi-objective decisions. A paradigm based on value func-
tions does not accommodate uncertainty in the consequence
of an action. Value functions can be extended to utility func-
tions to accommodate this uncertainty.

Foundations of multi-objective decisions using value func-
tions have been formulated in the seminal work of Keeney
and Raiffa [7] in the context of human decision-making. The
framework does not easily apply to negotiations between self-
interested software entities, so it has been further extended by
Faratin, et al in [8]. The paradigm proposed for multi-issued
negotiation is that of value tradeoffs. The agents negotiate
over values for a set of what can be termed as preferentially
independent issues [7, p. 101].

When two issues are preferentially independent, it should
be possible for the agent, by definition, to assert its prefer-
ences for an increasing or decreasing value of one issue with-
out any relation to the other issue. When there are more than
two issues, preferential independence is similarly defined for
every subset of the set of issues and its complement. The set
of issues for negotiations between any two entities usually re-
volve around some notion of {quantity, quality, unit price}. It
might seem that some of the issues could be combined to-
gether into a single quantity, like multiplying unit price and
quantity, to generate a single issue of total cost. However, this
precludes the possibility of keeping the quantity fixed and
bargaining only over the unit price. As proposed in [8], agents
negotiate on the value of an issue that is within a delimited
range, That is, the agents first mutually agree on a range of
allowable values for every issue, for example to negotiate a
value of the quantity between 200MW and 300MW.

In a multiagent system A consisting of at least two agents,
an agent a wants to negotiate a value for a set of issues with
agents in a subset of 4—{a}; let x, :{x,,x_,,...x,,}' be the set

of issues about which agent a wants to negotiate. The set X, is
called a negotiation set. The agent uses a non-decreasing or
non-increasing scoring function’ ¥ (x) to score the value of
each issue between 0 and 1°. Non-decreasing or non-
increasing functions serve to enforce transitive preference
structures. If the agent prefers an outcome x “to x ” for a single
issue, then V' (x") > V(x”); if the agent is indifferent between

two outcomes x”and x”; then V(x")=V(x"). MASPOWER

uses a model of additive value functions [7, p. 90] to get the
net value of a negotiation set. The agent assigns relative im-
portance (weight) to each issue in the negotiation set; w, is the

relative importance of issue X; to the agent, such that the

! The subscript “a” used to identify the agent is omitted when the discus-
sion involves only one agent.

% The terms “scoring functions” and “value functions” mean the same,
hence they are used interchangeably.

3 «x” is used to denote the negotiation issue and also the value for that is-
sue whereas ¥(x) denotes the score for that value of the issue. For example,
an issue x can have a value of 50 when it is defined in the range [0,100] with
have a score of 0.6.

weights are normalized:
w21 w, 20 ®)

In simple cases, finding the relative importance of issues
could be based on a subjective assessment by the human
owner. The agent a’s scoring function for the negotiation set
is defined as:

VOX)=Ew *V(x) ©

The additive scoring function as defined above is the sim-
plest multi-issued value function with useful properties: two
agents using additive scoring functions are sure to maximize
social welfare between them'. Essentially, agents agrecing to
negotiate on a set of issues have to agree on a single mutu-
ally acceptable value for each issue. Since the negotiation is
an action performed by the agent, it is implemented as a task
according to the definition in Section II. The next step in ap-
plying this framework is to generate a value for a single is-
sue. ,

Negotiation functions serve to generate a value of a single
negotiation issue. Although negotiation functions can be
complex functions of the internal states of the agent, the cur-
rent version of MASPOWER uses the notion of resources to
model this dependency [8]. Resources that the agents could
use in their decision-making criteria can include time to
complete the negotiation, money that the agent has at its dis-
posal, equipment usage, and so on. If the agent wants to ne-
gotiate on an issue, say the money it is going to receive for a
particular service, the agent’s valuation of this issue is mod-
eled solely a function of its resources. In other words, the
value of an issue for an agent, at any instant during the ne-
gotiation, does not directly depend on the offers that this
agent receives from other agents. Therefore, from a game
theoretic perspective, the agent does not behave strategically
in response to bids from other agents. The agent uses the
current state of its resources to determine a value for an is-
sue. For an issue x that depends only on resource r, a func-
tion is defined as follows:

x=f(r) (10)

This function sets the value of the issue x based only on
the current state of the resource r. Although the function
f () can be used to model complex dependencies, the cur-

rent implementation of MASPOWER uses a family of param-
eterized functions for this purpose. The implementation de-
tails of these functions are given in [10]. When the issue de-
pends on multiple resources, the dependence is modeled as:

2= leorpn)= S 1)

n
where >, w; =1 and w, 20 (1D
i=1
The agent’s decision-making algorithm under this nego-
tiation paradigm is based on its score for the negotiation set.

* Therefore, for a negotiation process that has successfully concluded,
the outcome of the negotiation is pareto optimal for the agents. The proof
is straightforward and is available in [9, p. 164].



Suppose agent a’s private scoring function for a negotiation
set X at the time instant ¢ is ¥“(X). This score is purely

based on the internal state of this agent and is a function of its
value functions, tradeoffs, current state of resources, and ne-
gotiation functions. When agent a receives an inter-agent
message containing an offer X’ from another agent for the
same negotiation thread at a time ¢" > ¢, it requires a decision-
making procedure; such a procedure is shown in Fig. 1. This
procedure is the basic structure used by the agent as con-
strained by the implementation of the platform and the nego-
tiation paradigm; further constraints can be enforced by the
conversation protocols. It should be noted that this imple-
mentation of a value-based framework is a stepping stone to
utility-based decisions, where we accommodate uncertainty in
the consequences and the risk preferences of the human deci-
sion-maker.

IV. IMPLEMENTATION OF MASPOWER

Considering the functionalities desired of agents described
previously, it is evident that instantiating such software enti-
ties could lead to considerable complexity in design and im-
plementation. Our approach employs object-oriented software
design methodology and develops an abstract generic agent
that has most of the desiderata of software agents. Software
agents for specific functions can be implemented by extend-
ing the generic agent. The generic agent and the associated
infrastructure, all implemented using the Java programming
language [11], provide most of the functionalities required by
software agents like managing muitiple concurrent tasks,
managing multiple conversation threads, perceptors for ac-
cessing local and remote percept sources, and receiving mes-
sages from remote agents. Java was chosen because of its in-
herent distributed programming support, ease of program-
ming, safety features and support for multithreading. Many
common programming bugs in large programs do not occur in
Java because of automatic garbage collection and type-safe
references. The distributed computing components of MA-
SPOWER are engineered by using the functionalities provided
by Voyager ORB, Version 3.2 [12]. Voyager ORB is a high-
performance object request broker that simultaneously sup-
ports RMI, CORBA and DCOM. Its innovative dynamic
proxy generation, naming service, synchronous and asynchro-
nous messaging support simplifies the development of a dis-
tributed multiagent system. Details of the design have been
documented using UML notations; descriptions of the most
important methods are in [10].

V. A NEGOTIATION EXPERIMENT

Numerous decision-making contexts in deregulated power
systems can be cast in the framework of Section IV. Several
such decision-making contexts have been described in [10]. In
the rest of this section, we describe and implement one such
negotiated decision-making context and provide preliminary

if (no appropriate task is defined for handling
this message)
reply (not-understood)

else if (no “handler” is defined for this per-
formative)
reply (not-understood)

else if (time for completing this negotiation
has elapsed) i

reply (refuse)
else {

if (V(X) <= VI(X"))
reply (accept, X’)

else
reply (propose, X)

}
Fig. 1. Basic Decision-Making Procedure
results.

In the electric network-operating environment of the past,
decision-making authority was centralized, as the transmis-
sion owner and the system operator were the same company.
This is no longer the case in the U.S.A, as the Federal En-
ergy Regulatory Commission (FERC) has mandated that the
system operator exists as an organization-independent neu-
tral entity having operating authority but no equipment own-
ership. This mandate is mainly to motivate unbiased use of
this authority. However, this arrangement fragments certain
types of decisions that require consideration of equipment
integrity (of interest to the transmission owner) and system
integrity (of interest to the operator). We desire to explore
one such decision-making problem in this context in order to
illustrate the manner in which multiagent systems may be
applied and to identity the benefits and drawbacks for doing
so. The decision problem is a familiar one: how much do we
operate a transmission circuit in excess of its identified rat-
ing, where by doing so we incur the following influences:

(1) The energy supplied to the load is less expensive

(ii) The security-level of the system is lower, meaning that
the system is at higher risk with the additional flow. In
this work, we measure system security as a function of
the number of (N-1) overload violations.

(iii) The revenues from transmission usage are higher.

(iv) The circuit itself may incur some loss of life through the
higher operating conditions requiring expending re-
sources to perform unscheduled maintenance and over-
hauls to extend equipment life.



With centralized decision-making in vertically integrated
utilities, these influences are assessed together by a single de-
cision-maker, the operator, as they are all of significance to
the operator’s organization. The decision made is based on a
desire to find a balance between these four influences that is
most aftractive to the operator’s organization. Under frag-
mented decision-making authority, however, the operator
considers only the first two influences, the remaining are of
no significance to his organization. On the other hand, the
transmission company considers only the last two issues. Yet,
from a societal point of view, all four influences should be in-
cluded in the decision-making. Casting the problem and the
decision-making entities into a multiagent system framework
enables this.

This negotiation scenario involves the interests of two
agents, viz., the independent system operator agent (ISOA)
and the transmission company agent (TA). By definition, the
ISOA does not have any profit motivation while its responsi-
bility is to implement all the transactions coming from the
markets with minimal alterations while not violating any sys-
tem-level security constraints. However, the ISOA cannot
violate the normal transmission limits of the line without the
consent of the concerned TA. We simplify the decision-
making responsibilities of these entities by asserting the fol-
lowing roles:

* ISOA: The system level security constraints considered
are emergency limit violations on transmission lines under
loss of a single component; i.e., a N-1 contingency analyses.

= T4: The TA increases its revenues as it accepts more
flows on its lines, but at the expense of reduction in equip-
ment life. The TA may have to spend money for unscheduled
maintenance and overhauls to increase equipment life. There-
fore the TA must decide the tradeoff between accepting flows
beyond the normal limits and loss of equipment life.

Both agents are instantiated using MASPOWER. The ISOA
uses money and time as its resources whereas the TA uses
money, time, and equipment life of the concerned transmis-
sion line(s) as resources. The details of this experiment are
provided in [10]. The agents use the 24-bus RTS as the physi-
cal system. We generated a dispatch schedule that created an
overload of 10.1 MW on the line between buses 14 and 16.
The TA and ISOA negotiate on whether this excess flow can
be allowed in the line for a suitable compensation. The agents
agree that the allowable interval for the overload (MW) is
[0,10.1]; and compensation ($/MW) is [5,20]. This compen-
sation can be considered as transmission service revenues.
Although these revenues might very well originate with the
generation or load-serving entities, we assume without loss of
generality that the ISOA has the authority to negotiate it. The
conversation protocol used by the agents and enforced by
MASPOWER is shown in Fig. 2 using COOL notations. These

notations have been described in [5]. The agents iteratively
exchange proposals, and finally agree on an increase in flows
by 5.54 MW for a 11.54 $/MW in compensation. The agents
exchange 42 proposals over a span of 225 seconds. The
score of this outcome to the ISOA is 0.536 and TA is 0.474.
The progress of the negotiation is shown in Fig. 3. The
drawing convention used in Fig. 3 showing the progress of
the negotiation is as follows: dark points are used to plot the
score for the agent’s private value of the negotiation set,
whereas lighter points are used to plot this agent’s score for
the offer it as received from the other agent.

Some of the preferences of the human decision-maker is

SUCCESS

Agree /

- / Propose -

/ Cancel

Propose /

START

Cancel /

FAIL

Fig. 2. Negotiation Protocol in COOL Notations

encoded in the agent as value functions and tradeoff values.
The decision made by the software agent reflects these pref-
erences. It is evident that negotiation proposals and the score
of the outcome to the self-interested agents depend on the
internal states of the agents. We have conducted several ne-
gotiation simulations to interpret the outcome of the nego-
tiation as a function of the internal states. Details of these
simulations are available in [10], and the results will be re-
ported in a future publication.

VI. CONCLUSIONS

In this paper, we have described a design of MASPOWER, a
Java-base API to instantiate complex agents and multiagent
systems. We described the value-based negotiation model
that has been implemented as part of MASPOWER. In sec-
tion V, we described a negotiated decision-making scenario
between the transmission company and the system operator



and provided preliminary results of the negotiations. We are
presently engaged in conducting more such simulations and
interpreting the results of this simulation as a function of the
internal states of the agents. An additional dimension of our
current effort is to provide a richer abstraction of the electric
power system and its security levels to the agents. For
achieving this, we are working to integrate a sophisticated
long-time power system simulator [13,14,15,16,17] and risk-
based security assessment programs [18,19] with MA-
SPOWER. The simulator will serve as the environment for the
agents and risk-based security assessment capability will en-
able the agents to quantify the security of the system or
equipments considering the current state and the uncertainty
in various operating parameters.
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