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Abstract. The increasing availability of large RDF datasets offers an
exciting opportunity to use such data to build predictive models using
machine learning algorithms. However, the massive size and distributed
nature of RDF data calls for approaches to learning from RDF data in
a setting where the data can be accessed only through a query interface,
e.g., the SPARQL endpoint of the RDF store. In applications where the
data are subject to frequent updates, there is a need for algorithms that
allow the predictive model to be incrementally updated in response to
changes in the data. Furthermore, in some applications, the attributes
that are relevant for specific prediction tasks are not known a priori and
hence need to be discovered by the algorithm. We present an approach
to learning Relational Bayesian Classifiers (RBCs) from RDF data that
addresses such scenarios. Specifically, we show how to build RBCs from
RDF data using statistical queries through the SPARQL endpoint of the
RDF store. We compare the communication complexity of our algorithm
with one that requires direct centralized access to the data and hence
has to retrieve the entire RDF dataset from the remote location for pro-
cessing. We establish the conditions under which the RBC models can
be incrementally updated in response to addition or deletion of RDF
data. We show how our approach can be extended to the setting where
the attributes that are relevant for prediction are not known a priori,
by selectively crawling the RDF data for attributes of interest. We pro-
vide open source implementation and evaluate the proposed approach on
several large RDF datasets.

1 Introduction

The Semantic Web as envisioned by Berners-Lee, Hendler, and others [14, 3] aims
to describe the semantics of Web content in a form that can be processed by
computers [5, 2]. A key step in realizing this vision is to cast knowledge and data
on the Web in a form that is conducive to processing by computers [15]. Resource
Description Framework (RDF) ([23] for a primer) offers a formal language for
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describing structured information on the Web. RDF represents data in the form
of subject-predicate-object triples, also called RDF triples, which describe a
directed graph where the directed labeled edges encode binary relations between
labeled nodes (also called resources). RDF stores or triple stores and associated
query languages such as SPARQL [26] offer the means to store and query large
amounts of RDF data. Over the past decade, RDF has emerged as a basic
representation format for the Semantic Web [15]. Cyganiak [8] estimated in 2010
that there are 207 RDF datasets containing over 28 billion triples published in
the Linked Open Data cloud.

The increasing availability of large RDF datasets on the web offers unprece-
dented opportunities for extracting useful knowledge or predictive models from
RDF data, and using the resulting models to guide decisions in a broad range of
application domains. Hence, it is natural to consider the use of machine learning
approaches, and in particular, statistical relational learning algorithms [11], to
extract knowledge from RDF data [17, 4, 28]. However, existing approaches to
learning predictive models from RDF data have significant shortcomings that
limit their applicability in practice. Specifically, existing approaches rely on the
learning algorithm having direct access to RDF data. However, in many settings,
it may not be feasible to transfer data a massive RDF dataset from a remote
location for local processing by the learning algorithm. Even in settings where
it is feasible to provide the learning algorithm direct access to a local copy of
an RDF dataset, algorithms that assume in-memory access to data cannot cope
with RDF datasets that are too large to fit in memory. Hence, there is an urgent
need for approaches to learning from RDF data in a setting where the data can
be accessed only through a query interface, e.g., the SPARQL endpoint for the
RDF store. In applications where the data are subject to frequent updates, there
is a need for algorithms that allow the predictive model to be incrementally up-
dated in response to changes in the data. Furthermore, in some applications,
the attributes that are relevant for specific prediction tasks are not known a pri-
ori and hence need to be discovered by the algorithm. We present an approach
to learning Relational Bayesian Classifiers from RDF data that addresses such
scenarios.

Our approach to learning Relational Bayesian Classifiers (RBCs) from RDF
data adopts the general framework introduced by Caragea et al. [6] for trans-
forming a broad class of standard learning algorithms that assume in memory
access to a dataset into algorithms that interact with the data source(s) only
through statistical queries or procedures that can be executed on the remote
data sources. This involves decomposing the learning algorithm into two parts:
(i) a component that poses the relevant statistical queries to a data source to ac-
quire the information needed by the learner; and (ii) a component that uses the
resulting statistics to update or refine a partial model (and if necessary, further
invoke the statistical query component). This approach has been previously used
to learn a variety of classifiers from relational databases [20] using SQL queries
and from biomolecular sequence data [19]. It has recently become feasible to use
a similar approach to learning RBCs from RDF data due to the incorporation



of support for aggregate queries in SPARQL. (SPARQL 1.1 supports aggregate
queries whereas SPARQL 1.0 does not).

We show how to learn RBCs from RDF data using only aggregate queries
through the SPARQL endpoint of the RDF store. This approach does not re-
quire in-memory access to RDF data to be processed by the learning algorithm,
and hence can scale up to very large data sets. Because the predictive model
is built using aggregate queries against a SPARQL endpoint, it can be used to
learn RBCs from large remote RDF stores without having to transfer the data to
a local RDF store for processing (in general, the cost of retrieving the statistics
needed for learning is much lower than the cost of retrieving the entire dataset).
Under certain conditions which we identify in the paper, we show how the RBC
models can be incrementally updated in response to changes (addition or dele-
tion of triples) from the RDF store. We further show how our approach can
be extended to the setting where the attributes that are relevant for prediction
are not known a priori, by selectively crawling the RDF data for attributes of
interest. We have implemented the proposed approach into INDUS [21], an open
source suite of learning algorithms, that learn from massive data sets only us-
ing statistical queries. We describe results of experiments on several large RDF
datasets that demonstrate the feasibility of the proposed approach to learning
RBCs from RDF stores.

The rest of the paper is organized as follows: Section 2 introduces a precise
formulation of the problem of learning RBCs from RDF data. Section 3 describes
how to build RBCs from RDF data using only aggregate queries. Section 4
identifies the conditions under which it is possible to incrementally update an
RBC learned model from an RDF store in response to updates to the underlying
RDF store. Section 5 presents an analysis of the communication complexity
of learning RBCs from RDF stores. Section 6 describes how to extend to the
setting where the attributes that are relevant for prediction are not known a
priori, by selectively crawling the RDF data for attributes of interest. Section 7
describes results of experiments with several RDF datasets that demonstrate the
feasibility proposed approach. Finally Sec. 8 concludes with a summary and a
brief discussion of related work.

2 Problem Formulation

In this section we formulate the problem of learning predictive models from RDF
data. Assume there are pairwise disjoint infinite sets I, B, L and V (IRIs, Blank
nodes, Literals and Variables respectively). A triple (s, p, o) ∈ (I ∪B)× I × (I ∪
B ∪ L) is called an RDF triple. In this triple, s is the subject, p the predicate,
and o the object. An RDF graph is a set of RDF triples.

As a running example for the following definitions, we consider the RDF
schema for the movie domain as shown in Fig. 1. We wish to predict whether a
movie receives more than $2M in its opening week.

Definition 1 (Target Class) Given an RDF graph G, a target class is a dis-
tinguished IRI of type rdfs:Class in G. For example, Movie.



Fig. 1. RDF schema for the movie domain

Definition 2 (Instances) Given an RDF graph G and a target class T , the
instances of T , denoted T (G) is the set {x : (x, rdf:type, T ) ∈ G}.

Definition 3 (Attribute) Given an RDF graph G and a target class T , an
attribute A (of a target class T ) is a tuple of IRIs (p1, . . . , pn) such that the
domain of p1 is T , the range of pi is the domain of pi+1, and the range of pn is
a literal. For example, (hasActor, foaf, yearOfBirth). We also refer the range of
the attribute A as the range of pn.

Definition 4 (Attribute Graph) Given an instance x of the target class T
in the RDF graph G and an attribute A = (p1, . . . , pn), the attribute graph of the
instance x, denoted by A(x), is the union of the sets of triples that match the
Basic Graph Pattern [26]

((x, p1, ?v1) AND (?v1, p2, ?v2) AND . . . AND (?vn−1, pn, ?vn)) (1)

where vi ∈ V are variables.
Given an additional literal value a, we also define a filtered attributed graph,

denoted A(x, a), which includes the filter constraint FILTER(?vn = a) in the
graph pattern (1). Further, if A is a tuple of attributes (A1, . . . , An), then we
define A(x) to be (A1(x), . . . , An(x))

Definition 5 (Target Attribute) Given an RDF graph G and a target class
T , a target attribute is a distinguished attribute denoted by C. For example,
(openingReceipts).

C(x) is intended to describe the class label of the instance x, hence we assume
that each instance has exactly one class label, i.e., |C(x)| = 1 for every x ∈ T (G).
Given a target attribute C = (p1, . . . , pn), we define v(C, x) to be the value of
?vn matched by the graph pattern (1).



Definition 6 (Class Label) Given a target attribute C = (p1, . . . , pn), the set
of class labels is the the range of pn. For brevity we denote this set by C.

Definition 7 (RDF Dataset) An RDF dataset D is a tuple (G, T ,A, C) where
G is an RDF graph, T a target class in G, A a tuple of attributes, and C is a
target attribute. We also denote the tuple (T ,A, C) as Desc(D) corresponding
to the descriptor of the dataset.

Definition 8 (Induced Attribute Graph Dataset) Given an RDF dataset
D = (G, T ,A, C), its induced attribute graph dataset, denoted I(D), is defined
as {(A(x), v(C, x)) : x ∈ T (G)}.

We now formalize the the problem of learning from RDF data.

Problem 1. Given an RDF dataset D = (G, T ,A, C) and its induced attribute
graph dataset I(D), a hypothesis class H, and a performance criterion P , the
learning algorithm L outputs a classifier h ∈ H that optimizes P . The input to
the classifier h is A(x) where x is an instance of a target class T , and the output
h(x) ∈ C is a class label.

3 Learning from RDF data

We reduce the problem of learning from RDF data to the problem of learning
from multiset attribute data which is defined below. This reduction allows for ap-
plication of algorithms for learning from multiset attribute data (e.g. Relational
Bayesian Classifier [25]) to this setting. Given an RDF dataset D = (G, T ,A, C)
and its induced attribute graph dataset I(D), consider an attribute A and the
attribute graph A(x) of an instance x ∈ T (G). The attribute graph A(x) can be
viewed as a directed acyclic graph (DAG) rooted in x, and here we are interested
in only the leaves of this DAG. The following definition captures this notion.

Definition 9 (Leaf) Given an attribute Ai, we define the leaf function L(Ai(x))
that returns the multiset of leaves of Ai(x), such that each leaf a ∈ Ai(x) is re-
placed with n copies of a where n is the number of unique paths from x to a. For
brevity we write L(Ai(x)) as Li(x) and L(Ai(x, a)) as Li(x, a).

Also, we overload the leaf function on a tuple of attributes A = (A1, . . . , An)
by L(A(x)) = (L1(x), . . . ,Ln(x)).

Using the leaf function, we reduce I(D) into a multiset attributed dataset
M(D) = {(L(A(x)), v(C, x)) : x ∈ T (G)}. To learn from M(D) we focus our
attention on Relational Bayesian Classifiers (RBC) motivated from modeling
relational data [25]. RBC assumes that attribute multisets are independent given
the class, and the most probable class of an instance is given by:

hRBC(x) = argmax
c∈C

p(c)
∏
i

p(Li(x) : c) (2)

Several methods to estimate the probabilities p(Li(x) : c) are described
in [25]:



– Aggregation: p̂agg(Li(x) : c) = p̂(agg(Li(x)) : c), where agg is an aggrega-
tion function such as min, max, average for continuous attributes; and mode
for discrete attributes.

– Independent Value: p̂ind(Li(x) : c) =
∏

a∈Li(x)p̂(a : c), which assumes each
value in the multiset is independently drawn from the same distribution
(attribute value independence).

– Average Probability: p̂avg(Li(x) : c) =
∑

a∈Li(x)p̂(a: c)

|Li(x)| , which also assumes

attribute value independence as in Independent Value, however during infer-
ence the probabilities are averaged instead of multiplied.

For estimating the parameters in (2), we assume that the learner does not
have access to the RDF graph G but instead only has knowledge T ,A, and C.
In addition, we assume that the RDF store answers statistical queries over the
RDF graph G which in our setting correspond to aggregate SPARQL queries
submitted to a SPARQL endpoint. Given a descriptor Desc(D) = (T ,A, C)
where C = (c1, . . . , cm) we assume that the RDF store supports the following
type of primitive queries:

(Q1) S(G, T ) = |T (G)|, the number of instances of target type T in G. This
corresponds to the SPARQL query:

SELECT COUNT(*) WHERE { ?x rdf:type <T> . }

(Q2) S(G, T , C = c) = |{x ∈ T (G) : v(C, x) = c}|, the number of instances of
target type T in which the target attribute takes the class label c. This
corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

}

(Q3) S(G, T , C = c, Ai) =
∑

x∈T (G) and v(C,x)=c |Li(x)|. Assuming the attribute

Ai = (p1, . . . , pj) this corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

}

(Q4) S(G, T , C = c, Ai = a) =
∑

x∈T (G) and v(C,x)=c |Li(x, a)|. Assuming the

attribute Ai = (p1, . . . , pj) this corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <C> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

?x <p1> ?v1 . ... ?vj-1 <pj> a .

}

(Q5) S(G, T , C = c, Ai, agg, [vl, vh]). Given a range [vl, vh] this corresponds to
the SPARQL query:



SELECT COUNT(*) WHERE {

{ SELECT (agg(?vj) AS ?aggvalue) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

OPTIONAL { ?x <p1> ?v1 . ... ?vj-1 <pj> ?vj . }

} GROUP BY ?x

} FILTER(?aggvalue >= vl && ?aggvalue <= vh)

}

We now proceed to describe how an RBC can be built using the supported
SPARQL queries without requiring access to the underlying dataset. The RBC
estimates the following probabilities from training data:

1. p̂(c)
2. p̂(agg(Ai) : c) for each attribute Ai where aggregation is used to estimate

probabilities. For simplicity, we discretize the aggregated values and prede-
termine the bins prior to learning. Hence, we estimate p̂(agg(Ai) ∈ [vl, vh] :
c) for each bin [vl, vh]

3. p̂(a : c) where a is in the range of Ai, for each attribute Ai where independent
value or average probability is used to estimate the probabilities.

The above three probabilities can be estimated (using Laplace correction for
smoothing) as follows:

1. p̂(c) = S(G,T ,c)+1
S(G,T )+m where m is the number of class labels

2. p̂(agg(Ai) ∈ [vl, vh] : c) = S(G,T ,C=c,Ai,agg,[vl,vh])+1
S(G,T ,c)+m where m is the number

of bins (ranges)

3. p̂(a : c) = S(G,T ,C=c,Ai=a)+1
S(G,T ,C=c,Ai)+m where a is in the range of Ai and m is the size

of range of Ai

Hence, it is possible to learn RBCs from an RDF graph by interacting with
the RDF store only through SPARQL queries. This approach does not require
access to the underlying dataset and in most practical settings requires much less
bandwidth as compared to transferring the data to a local store for processing
(see Sec. 5).

4 Updatable Models

In many settings, the RDF store undergoes frequent updates i.e., addition or
deletion of sets of RDF triples. In such settings, it is necessary to update the
predictive model to reflect the changes in the RDF store used to build the model.
While in principle, the algorithm introduced in Sec. 3 can be re-executed each
time there is an update to the RDF store, it is of interest to explore more
efficient solutions for incrementally updating the RBC model by updating only
the relevant statistics.

Given a dataset D and a learning algorithm L, let L(D) be a predictive model
built from the dataset D. Let θ be a primitive query required over the dataset
D to build L(D).



Definition 10 (Updatable Model [19]) Given datasets D1 and D2 such that
D1 ⊆ D2, we say that a primitive query θ is updatable iff we can specify functions
f and g such that:

1. θ(D2) = f(θ(D2 −D1), θ(D1))
2. θ(D1) = g(θ(D2), θ(D2 −D1))

We say that the predictive model constructed using L is updatable iff all primitive
queries required over the dataset D to build L(D) are updatable.

The following propositions show that the primitive query (Q1) of the RBC
model is updatable, whereas the rest of the queries are not updatable. Hence, in
general, the RBC model is not updatable.

Proposition 1. The primitive query S(G, T ) is updatable.

Proof. This query counts the number of instances of target type T in G, which is
the cardinality of {x : (x, rdf:type, T ) ∈ G}. Since G1 ⊆ G2 we have S(G2, T ) =
S(G2 − G1, T ) + S(G1, T ), and also S(G1, T ) = S(G2, T )− S(G2 − G1, T ).

Proposition 2. The primitive query S(G, T , C = c, A = a) is not updatable.

Proof. We prove by showing a counter example. Let the target class be T , the
target attribute be C = (c1), an attribute A = (p1, . . . , pi, . . . , pn), and sup-
pose we have the following RDF graphs: S1 = {(x, rdf:type, T ), (x, c1, c)}, S2 =
{(x, p1, o1), . . . , (oi−1, pi, oi)} , and S3 = {(oi, pi+1, oi+1), . . . , (on−1, pn, a)}. Sup-
pose the graph before update is G1 = S1 ∪ S2 and after an insertion of S3 the
graph becomes G2 = S1 ∪ S2 ∪ S3. For brevity let θ(G) = S(G, T , C = c, A = a).
We will show that there exists no functions f for the query θ(G2), which counts
the total number of leaves of A(x, a) such that x has the class label c. In G2
the attribute graph A(x) is S2 ∪ S3, and hence θ(G2) = 1. However, A(x) is
partitioned among S2 and S3, so θ(G1) = 0 and θ(G2 − G1) = 0, therefore in
this case f(θ(G2 − G1), θ(G1)) = f(0, 0) = 1 = θ(G2). Now consider another case
where initially the graph is G3 = S1 and after insertion of S3 the graph becomes
G4 = S1∪S3. In this case we have θ(G4) = 0, θ(G3) = 0, and θ(G4−G3) = 0, and
so f(0, 0) = 0. Since a function can not map an input to more than one output,
this shows that there exists no function f to maintain the query result.

Similarly, can show that the primitive queries S(G, T , C = c), S(G, T ,
C = c, A), and S(G, T , C = c, A, agg, [vl, vh]) are not updatable.

Corollary 1. RBC model is not updatable.

The proof of Prop. 2 shows that when an attribute graph is partitioned
across multiple updates, there exists no function to update the required counts.
This raises the question as to whether we can ensure updatability by requir-
ing that each update involves only complete attribute graphs. However, this
requirement is not sufficient for the query to be updatable. To see why, consider
G1 = {(x, rdf:type, T ), (x, c1, c), (x, p1, o), (o, p2, a)} and G2 − G1 =



{(y, rdf:type, T ), (y, c1, c), (y, p1, o), (o, p2, b)}, then f(0, 1) = 2. The extra count
from θ(G2) is due to o being shared between two datasets despite the fact that
each attribute graph is complete. This motivates the restriction of not allow-
ing the update to reuse certain subjects or objects. We formalize this notion as
follows.

Definition 11 (Clean Update) Assume G1 ⊆ G2, and let V (G) = {s : (s, p, o)
∈ G} ∪ {o : (s, p, o) ∈ G} denote the set of all subjects and objects of an RDF
graph G. An update (from G1 to G2 by insertion, or from G2 to G1 by deletion)
is said to be clean if [∀(s, p, o) ∈ G2][s /∈ V (G1)∩ V (G2 −G1)]. That is, triples in
G2 − G1 share objects with only the leaves of attribute graphs in G1.

Proposition 3. RBC models are updatable if every update is clean.

Proof. Let D1 and D2 be two RDF datasets such that D1 ⊆ D2. We first consider
the primitive query θ(G) = S(G, T , C = c, A = a). Since every update is clean,
the attribute graphs A(x) for all attributes in A, and all instances x ∈ T (G1) and
x ∈ T (G2 − G1) remain the same after insertion (or deletion). Hence, M(D2) =
M(D1) ∪M(D2 −D1) and similarly M(D1) =M(D2)−M(D2 −D1) for the
multiset attributed dataset reductions. It follows that θ(G2) = θ(G1)+θ(G2−G1)
and θ(G1) = θ(G2)− θ(G2 − G1). Similar argument also holds true for the other
queries used for learning a RBC.

Thus, RBC model can be updated incrementally in a restricted setting where
every update is clean in the sense defined above. When clean updates are not
available, RBC models can still be incrementally updated if we are willing to
sacrifice some accuracy; and rebuild the model periodically by querying the
entire RDF store, with the frequency of rebuild chosen based on the desired
tradeoff between computational efficiency and model accuracy. Regardless of
whether the RBC model is updatable or not, answering of aggregate queries from
RDF stores answering can be optimized using an aggregate view maintenance
algorithm [16]. Since we assume that the data descriptor does not change as
frequently as the data, the aggregate queries needed by the RBC model can be
set up and maintained as views on the RDF store.

5 Communication Complexity

In this section, we analyze the communication complexity, i.e., the amount of
data transfer needed to build an RBC model. We compare the communication
complexity of building an RBC model from RDF data in the following two
scenarios: (i) posing statistical queries needed for learning the model against
a remote RDF store which is the approach proposed in this paper; and (ii)
retrieving the entire RDF dataset from a remote RDF store for local processing.

Given an RDF dataset D = (G, T ,A, C) where A = (A1, . . . , An). Suppose
the RDF store holds the RDF graph G, and let |G| denotes the size of this graph.
The communication complexity in scenario (ii) is simply O(|G|). We now analyze



the communication complexity in scenario (i). Let lC denotes the length of tuple
C, let rC denotes the size of range of C, and let lA denotes the maximum length
of an attribute tuple. Also let r1A denotes the maximum number of bins of those
attributes estimated by aggregation, let r2A denotes the maximum size of range
of the remaining attributes, and we define rA to be max(r1A, r

2
A).

The size of query expressed in SPARQL, is O(1) for (Q1), O(lC) for (Q2),
and O(lC + lA) for (Q3), (Q4), and (Q5). Further, to estimate the probabilities
to build an RBC, the following number of calls for each query described in Sec. 3
are required:

(Q1) one.
(Q2) rC , once for each class label.
(Q3) rC · n, once for each class label and each attribute.
(Q4) O(rC · n · rA), once for each class label, each attribute, and each value of

the attribute.
(Q5) O(rC · n · rA), same as (Q4).

Therefore, the total complexity is O(1) +O(lCrC) +O((lC + lA)rCn)+
O((lC + lA)rC · n · rA) + O((lC + lA)rC · n · rA) = O((lC + lA)rC · n · rA). In
Sec. 7.1 we provide results of experiments which show that O((lC + lA)rC ·n ·rA)
is usually less than O(|G|) in practice.

6 Selective Attribute Crawling

In previous sections we have considered the problem of learning RBCs given
an RDF dataset D = (G, T ,A, C) in the setting where the learner has direct
access to T ,A, and C, but not G. Here we consider a more general problem
where the learner does not have a priori knowledge of A. This requires the
learner to interact with the RDF store containing G in order to determine A
(e.g. by crawling and selecting attributes) that best optimizes a predetermined
performance criterion P . Since the number of attributes in an RDF store can be
arbitrarily large we specify an additional constraint Z to guarantee termination
(e.g. number of attributes crawled, number of queries posed, time spent, etc.).

Problem 2. Given an RDF dataset without attributes, D = (G, T , C), a hypoth-
esis class H, a performance criterion P , and constraint Z, the learning algorithm
L outputs the following while respecting Z: (i) The selected tuple of attributes
A, and (ii) a classifier h ∈ H that optimizes P .

For simplicity, we focus the setting where the constraint Z specifies the max-
imum the number of attributes crawled. We consider the problem of identifying
A of cardinality at most Z so as to optimize P . This problem is a variant of the
well-studied feature subset selection problem [22, 12], albeit in a setting where
the set of features is a priori unknown. Identifying attributes one at a time to
optimize P can be seen as a search over a tree rooted at T , where the edges
are IRIs of properties and the nodes are the domain/range of properties, and an



attribute corresponds to a path from the root to an RDF literal (a leaf in this
tree). To complete the specification of the search problem, we need to specify
operations for expanding a node to generate its successors and define the scoring
function for evaluating nodes. Expanding a node consists of querying (i) the set
of distinct properties outgoing from a node, (ii) the range of each property, and
(iii) the type of each range (e.g. numeric, string, non-literal), each of which can
be expressed as SPARQL queries. We define the score of a node based on the
degree of correlation of the node with the target attribute C. Specifically, for
each attribute (represented by a leaf), we compute mutual information [7] be-
tween it and the the target attribute C. The score of an internal node is defined
(recursively) as a function of its descendants, e.g. average of the scores of its
children.

Formally, the score of an attribute A is:

Score(A) =
∑

C=c,A=a

p(A = a,C = c) log2

p(A = a,C = c)

p(A = a)p(C = c)
(3)

These probabilities can also be estimated based on the queries described in
Sec. 3. Given this framework, a variety of alternative search strategies can be
considered, along with several alternative scoring functions.

7 Experiments

We conduct three experiments each with a different goal. The first measures
the communication complexity using the LinkedMDB [13] dataset. The second
experiment combines the US Census dataset with a government dataset to eval-
uate the accuracy of models using different attribute crawling strategies. Finally
we demonstrate learning of RBC from another government dataset through a
live SPARQL endpoint.

7.1 Communication Complexity Experiment

The goal of this experiment is to measure the communication complexity under
two different approaches described in Sec. 5.

Dataset and Experiment Setup The IMDB dataset is a standard bench-
mark that has been used to evaluate probabilistic relational models including
RBCs [25]. The task is to predict whether a movie receives more than $2M in
its opening week. We used LinkedMDB [13], which is an RDF store extracted
from IMDB, with links to other datasets on the Linked Open Data cloud [8].
We used links to Freebase1 which includes foaf property to the Person class
and three properties of class Person. Fig. 1 shows the RDF schema of the
extracted dataset. Since LinkedMDB does not have openingReceipts, we add

1 http://www.freebase.com



them by crawling the IMDB website2; also for the Freebase data, we parse
the yearOfBirth property for each Person from the dateOfBirth property. We
extract 20 movies which are released after 2006 such that each movie has at
least one actor, one director, and one producer. The target class is Movie and
the target attribute is (openingReceipts). We consider a total of 10 attributes:
(runtime), and (h, foaf, a) where h ∈ {hasActor, hasDirector, hasProducer}
and a ∈ {yearOfBirth, gender, hasAward}.

To show the growth of data transfer, we prepared 20 subsets of the dataset
by corresponding to 1 to 20 movies. A movie instance consists of the URI of
the movie and all reachable linked data for it. For communication complexity of
learning RBC from RDF stores using statistical queries, we used the proposed
approach to build an RBC for each subset and logged the SPARQL queries sent,
saved the log in a plain text format, and measured the size of the logs. We
compared the results with the communication complexity of learning RBC by
first retrieving the data from a remote store for local processing as measured by
the size of the corresponding dataset in RDF/XML format on disk.

Fig. 2. Comparison of size of data
transfer for Experiment 7.1

Fig. 3. Comparison of two crawling
strategies for Experiment 7.2

Results Figure 2 shows that the size of the raw data exceeds that of the query
when there are more than three movie instances in the dataset. We also consid-
ered the case where the RDF store compresses the raw data before transfer, and
in this case the size of the compressed raw data exceeds that of the query when
there are more than 90 movie instances.

2 http://www.imdb.com



7.2 Selective Attribute Crawling Experiment

The goal of this experiment is to evaluate the accuracy of RBC models built using
different attribute crawling strategies. Recall that in this setting the learner is
only given a SPARQL endpoint of the RDF store, the target class, and the target
attribute.

Dataset and Experiment Setup In this experiment we use datasets from
Data.gov and US census 2000. The target class is 52 US states and we wish to
predict whether a state’s violent crime rate is over 400 per 100,000 population,
which is from dataset 311 of the Data-gov project [9]. We link this with the US
Census 2000 dataset for the corresponding states. This dataset was converted
to over 1 billion RDF triples by [27]. Part of its RDF schema is shown in [27].
It uses a property as a way to sub-divide the population, and a number at
a leaf represents the population that satisfies the conditions (properties) on
the path from root. In our experiment we normalize by dividing every number
of a state by the state’s total population. We vary the maximum number of
attributes to be crawled. We set the constraint to be the number of attributes the
learner is allowed to crawl. We apply two different attribute crawling strategies
(described below) separately and build RBC models using the crawled attributes.
To measure the accuracy of the built models, we randomly partition 52 states
into 13 groups (of 4 states each) and perform cross validation. That is, for each
group, the 4 states in the group are held out and used for prediction, and the
remaining are used for training the model. The overall accuracy is the total
number of correct predictions divided by the number of states (52).

We experiment with two crawling strategies: BreadthFirst (BFS) and Best-
First. BFS chooses the node with the least depth to expand and BestFirst chooses
the node that has the highest score as defined in Sec. 6.

Results As shown in Fig. 3, BestFirst outperforms BFS with the exception of
the case where the number of attributes is 5. We examined the crawled attributes
for BestFirst from for choices of Z from 20 to 45, and found that the strategy
focused on expanding the households property. This is because attribute selection
is guided by mutual information between a candidate attribute and the target
class. The sub-divisions of this property may provide very minimal additional
information compared to the first one crawled in this group, and hence they may
not contribute to the predictive accuracy. One way to circumvent this problem
is to use a scoring function to that measures the amount of information gain
resulting from a candidate attribute given all the attributes that have already
been chosen. Another approach is to penalize the attributes based on the depth
of search. A third approach is to use the marginal improvement in the accuracy
of the RBC classifier resulting from inclusion of the attribute to decide whether
to retain it. Other alternatives worth exploring include different search strategies
such as Iterative Deepening Search (IDS) [18].



7.3 Live Demonstration

The goal of this experiment is to demonstrate learning of RBC from a government
dataset through a live SPARQL endpoint3 hosted on Rensselaer Polytechnic
Institute [10]. This endpoint supports aggregate and nested queries proposed in
SPARQL 1.1.

Dataset and Experiment Setup We used a Health Information National
Trends Survey (HINTS) [24] from NCI which has been converted into RDF as
part of the Data-gov project [9]. The survey represents a cross-sectional study
of health media use and cancer-related knowledge among adults in the United
States, and it has been used by [1] to study associations of covariates with
different smoking statuses. There are 12080 participants across two years (2003
and 2005), represented by 623544 total number of RDF triples, and the raw
RDF data (as TTL dump) has a size 35.9MB on disk. The task in our setting
is to predict the smoking status (never, former, or current) of a participant
from 16 other attributes such as race, sex, household income, and education.
The dataset is propositional in nature although represented in RDF format;
that is, every attribute has exactly one value in terms of the reduced multiset
attribute data, hence the task reduces to learning of a conventional Naive Bayes
classifier. Nevertheless, the experiment demonstrates learning of RBC from large
and remote RDF store by querying its SPARQL endpoint.

Results A total of 159 queries were posed to the live SPARQL endpoint, and
the model was learned in approximately 30 secs, using 2.8 GHz processor with
4 GB memory, and the network download and upload speed is approximately 3
Mbps.

8 Summary and Related Work

Summary The emergence of RDF as a basic data representation format for
Semantic Web has led to increasing availability of all kinds of data in RDF.
Transforming this data into knowledge calls for approaches to learning predictive
models from massive RDF stores in settings where (i) the learning algorithm can
interact with the data store only through a SPARQL endpoint; (ii) the model
needs to be updated in response to updates to the underlying RDF store; and
(iii) the attributes that can be used to build the predictive models are not known
a priori and hence need to be identified by crawling the RDF store. We have
introduced an approach to learning predictive models from RDF stores in such
settings using Relational Bayesian Classifiers (RBCs) as an example. We have
implemented our solutions in an open source system available as part of the
INDUS toolkit for learning predictive models from massive data sets [21] and
demonstrated the its feasibility using experiments with several RDF datasets.

3 http://logd.tw.rpi.edu/sparql



Related Work The work on SPARQL-ML [17] extends SPARQL with data
mining support to build classifiers, including statistical relational models such
as RBC from RDF data. Other works on learning predictive models from RDF
data include [4] and [28]. In [4] kernel machines are defined over RDF data where
features are constructed by ILP-based dynamic propositionalization. In [28] RDF
triples are represented as entries in a Boolean matrix, and matrix completion
methods are used to train the model and predict unknown triples off-line. How-
ever, all the approaches assume that the learner has direct access to RDF data.
In contrast, our approach does not require the learning algorithm to have direct
access to RDF data, and relies only on the ability of the RDF store to answer
aggregate SPARQL queries.
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