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ABSTRACT
Motivation: The ability to identify protein–protein interaction
sites and to detect specific amino acid residues that contribute
to the specificity and affinity of protein interactions has import-
ant implications for problems ranging from rational drug design
to analysis of metabolic and signal transduction networks.
Results: We have developed a two-stage method consist-
ing of a support vector machine (SVM) and a Bayesian
classifier for predicting surface residues of a protein that parti-
cipate in protein–protein interactions. This approach exploits
the fact that interface residues tend to form clusters in the
primary amino acid sequence. Our results show that the pro-
posed two-stage classifier outperforms previously published
sequence-based methods for predicting interface residues.We
also present results obtained using the two-stage classifier on
an independent test set of seven CAPRI (Critical Assessment
of PRedicted Interactions) targets. The success of the predic-
tions is validated by examining the predictions in the context
of the three-dimensional structures of protein complexes.
Contact: chhyan@iastate.edu
Supplementary information: http://www.public.iastate.edu/
~chhyan/ISMB2004/list.html

1 INTRODUCTION
Protein–protein interactions play a pivotal role in protein
function. Completion of many genomes is being followed rap-
idly by large-scale efforts to identify interacting protein pairs
experimentally, in order to decipher the networks of interact-
ing proteins. Experimental proteomics projects have already
resulted in complete ‘interactomes’ (Hoet al., 2002; Giot
et al., 2003; Liet al., 2004). While such efforts yield a cata-
log of interacting proteins, experimental detection of residues
in protein–protein interaction surfaces must come from
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determination of the structure of protein–protein complexes.
However, determination of protein–complex structures using
X-ray and NMR methods lags far behind the number of known
protein sequences. Hence, there is a need for the development
of reliable computational methods for identifying protein–
protein interface residues (Teichmannet al., 2001; Valencia
and Pazos, 2002, 2003). Identification of protein–protein
interaction sites and detection of specific amino acid residues
that contribute to the specificity and strength of protein interac-
tions is an important problem with broad applications ranging
from rational drug design to the analysis of metabolic and
signal transduction networks.

Protein–protein interfaces have been a topic of study for
several years (Chothia and Janin, 1975; Jones and Thornton,
1996; Lo Conteet al., 1999; Ofran and Rost, 2003a). Based on
the different characteristics of known protein–protein interac-
tion sites, several methods have been proposed for predicting
these sites. These include methods based on the presence
of ‘proline brackets’ (Kini and Evans, 1996), patch analysis
using a six-parameter scoring function (Jones and Thornton,
1997), properties associated with interface topology (Valdar
and Thornton, 2001), analysis of the hydrophobicity distri-
bution around a target residue (Galletet al., 2000), charge
distribution on interfaces (Sheinerman and Honig, 2002), mul-
tiple sequence alignments (Pazoset al., 1997; Valencia and
Pazos, 2003), structure-based multimeric threading (Luet al.,
2003), docking methods (Halperinet al., 2002), using poten-
tials that describe protein–protein interactions (Keskinet al.,
1998) and analysis of characteristics of spatial neighbors of a
target residue using neural networks (Zhou and Shan, 2001;
Fariselliet al., 2002; Ofran and Rost, 2003b). Our recent work
has focused on an analysis of sequence neighbors of a target
residue using an support vector machine (SVM) method (Yan
et al., 2003).

In our previous report, we used an SVM to identify inter-
face residues using sequence neighbors of a target residue
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(Yan et al., 2003). Here, we report a two-stage classifier
consisting of an SVM and a Bayesian network classifier that
identifies interface residues primarily on the basis of sequence
information. The two-stage method achieved 72% accuracy
with a correlation coefficient of 0.3 when tested on a set of
77 proteins using 5-fold cross-validations. Experiments on the
same dataset demonstrated that the two-stage method outper-
forms the previously published sequenced-based method of
Galletet al. (2000).

CAPRI (http://capri.ebi.ac.uk/) is a community-wide exper-
iment to assess the capacity of protein-docking methods to
predict protein–protein interactions. In each round of CAPRI,
structures of protein–protein complexes are predicted based
on structures of the unbound components. CAPRI targets
present interesting test cases for evaluation of computational
methods for prediction of interface residues. A two-stage
classifier which was trained using the 77 proteins in our
dataset was tested on CAPRI targets. The results were evalu-
ated in the context of three-dimensional structures of protein
complexes.

2 METHODS

2.1 Datasets
We extracted individual proteins from a set of 70 protein–
protein heterocomplexes used in the study of Chakrabarti
and Janin (2002). After removal of redundant proteins and
molecules with fewer than 10 residues, we obtained a data-
set of 77 individual proteins with sequence identity<30%.
These proteins represent six different categories of protein–
protein interfaces, classified according to the scheme of
Chakrabarti and Janin (2002). The six categories and the
number of representatives in each category are: antibody–
antigen (13), protease-inhibitor (11), enzyme complexes (13),
large protease complexes (7), G-proteins, cell cycle, signal
transduction (16) and miscellaneous (17). Because of the low
level of sequence identity, the resulting dataset is more chal-
lenging than the datasets used in previous studies by our
group (Yanet al., 2003) as well as by other authors (Ofran
and Rost, 2003b). The list of the 77 proteins is available at
http://www.public.iastate.edu/∼chhyan/ISMB2004/list.html.

2.2 Definition of surface residue and interface
residues

The definition of interface residues used in this study is based
on the reduction of solvent accessible surface area (ASA) upon
complex formation. ASA was computed for each residue in the
unbound molecule (MASA) and in the complex (CASA) using
the DSSP program (Kabsch and Sander, 1983). A residue
is defined to be a surface residue if its MASA is at least
25% of its nominal maximum area as defined by Rost and
Sander (1994). A surface residue is defined to be an interface

residue if its calculated ASA in the complex is less than that
in the monomer by at least 1 Å2 (Jones and Thornton, 1996).
Surface residues were extracted and divided into interface
residues and non-interface residues, using structural informa-
tion from Protein Data Bank (PDB) files. We obtained a total
of 2340 positive examples corresponding to interface residues
and 5091 negative examples corresponding to non-interface
residues.

2.3 Analysis of interface residue neighborhoods
LetPactualbe the observed probability that a given neighbor of
an interface residue is also an interface residue. LetPbackground

be the probability that this position has an interface residue
by chance. The log-likelihood of the residue for this position
belonging to an interface is given by log2(Pactual/Pbackground).
Positive values for likelihood indicate that the residue under
consideration has probability greater than that expected by
chance of being an interface residue. Negative likelihood
indicates the opposite. A likelihood of 0 indicates that the
probability of the residue likely to be an interface residue
is the same as what we would expect simply based on
the fraction of residues in the dataset that are interface
residues.

2.4 The two-stage classifier
In designing the two-stage classifier, we exploit the obser-
vation that interface residues tend to form clusters on amino
acid sequence (Ofran and Rost, 2003b). In the first stage, an
SVM classifier is trained to identify interface residues based
on the identities of neighboring residues of the target residue.
The input to the SVM is an encoding of the identities of nine
contiguous amino acid residues, corresponding to a window
containing the target residue and four neighboring residues
on either side of the target residue. Each of the 9 residues in
the window is represented by a 20-bit vector (with 1-bit for
each letter of the 20-letter amino acid alphabet). Thus, the
SVM classifier accepts 9× 20 = 180-bit vector as input
and produces a Boolean output (with 1 denoting an inter-
face residue and 0 denoting a non-interface residue). Our
study used the SVM in the Weka package from the Univer-
sity of Waikato, New Zealand (http://www.cs.waikato.ac.nz/
~ml/weka/). (Witten and Frank, 1999). The package imple-
ments Platt’s (1998) sequential minimal optimization (SMO)
algorithm for training a support vector classifier using scaled
polynomial kernels.

In the second stage, a Bayesian network classifier is trained
to identify interface residues based on the class labels (1
for interface or 0 for non-interface) of its neighbors. The
inputs for Bayesian classifier are the class labels of the
eight residues surrounding the target residue (four on each
side). The Bayesian network classifier is trained to out-
put the most likely class label for the target residue given
the class labels of its neighboring residues. We used the
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Fig. 1. The schematic diagram of the two-stage classifier.

BayesNetB from the Weka package, which implements hill
climbing algorithm to learn the Bayesian network structure
(Buntine, 1991). (We found that on this dataset, the Naïve
Bayes classifier performs as well as a more complex clas-
sifier that models the dependencies among the neighboring
residues.)

Let C be a Binary random variable that denotes the class
label (1 for an interface residue, 0 for a non-interface residue)
for the target residue. LetZ be a vector-valued random vari-
able that denotes the input to the two-stage classifier (i.e. a
Binary encoding of the target residue and its sequence neigh-
bors). The two-stage classifier classifies the target residue as
an interface residue if

P(1|z)
P (0|z) > θ .

The schematic diagram of the two-stage classifier is shown in
Figure 1. Ifθ = 1, this procedure corresponds to assigning
the most probable class label (maximum a posteriori clas-
sification) for the target residue. Varyingθ corresponds to
trading off specificity against sensitivity of interface residue
prediction (Fig. 4 under Experiments and Results section). We
chooseθ so as to maximize the correlation coefficient (see
below), which measures the agreement between the actual
and predicted class labels on the training data. The resulting
classifier is then used to predict whether or not a target residue
is likely to be an interface residue based on its identity and the
identities of its eight-sequence neighbors.

2.5 Performance measures
Let TP is the number of true positives (residues predicted to
be interface residues that actually are interface residues); FP
the number of false positives (residues predicted to be inter-
face residues that are in fact not interface residues); TN the
number of true negatives; FN the number of false negatives;
N = TP + TN + FP+ FN (the total number of examples).

Then we have:

Sensitivity+ = TP

TP+ FN
,

Specificity+ = TP

TP+ FP
,

Accuracy= TP+ TN

N
, and

Correlation coefficient

= TP× TN − FP× FN√
(TP+ FN)(TP+ FP)(TN + FP)(TN + FN)

.

Sensitivity+ (sensitivity for interface residue class) measures
the fraction of interface residues that are identified as such.
Specificity+ (specificity for the interface residue class) meas-
ures the fraction of the predicted interface residues that are
actually interface residues. Accuracy of a classifier measures
the estimated probability of correct predictions. Correlation
coefficient (CC) is a measure of how well the predicted class
labels correlate with the actual class labels. It ranges from
−1 to 1 where a correlation coefficient of 1 corresponds to
perfect predictions, and a correlation coefficient of 0 cor-
responds to random guessing. Note that the commonly used
measure of accuracy is not a particularly useful measure for
evaluating the effectiveness of a classifier when the distribu-
tion of samples over different classes is unbalanced (Baldi
et al., 2000). Average values of specificity and sensitivity are
given by

Average specificity= 1
2(Specificity+ + Specificity−),

Average sensitivity= 1
2(Sensitivity+ + Sensitivity−).

3 EXPERIMENTS AND RESULTS
3.1 Interface residues tend to form clusters on

amino acid sequences
Ofranet al. (2003b) investigated the sequence neighborhood
of protein–protein interface residues in a set of 333 proteins
and reported that 98% of protein–protein interface residues
have at least one additional interface residue within 4 posi-
tions of N- or C-terminal and 74% have at least 4. Among
the 77 proteins we used here, 44 are also in the Ofran dataset.
For the 77 proteins, we obtained similar results: 97% of inter-
face residues have at least one additional interface residue,
and 70% of the interface residues have at least 4 interface
residues within 4 positions on either side. For each inter-
face residue, we analyzed the likelihood that its sequence
neighbors are also interface residues. The results are shown in
Figure 2. Close neighbors of an interface residue have a high
likelihood of being interface residues. The closer a sequence
neighbor is to an interface residue, the greater is its likelihood
of being an interface residue. When the distance increases to
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Fig. 2. The likelihood that positions neighboring interface residues
also contains interface residues. Position 0 is an interface residue.
Negative positions are on the N-terminal side of this target
residue, positive positions are on the C-terminal. Positive likelihood
means that the position has higher probability than random of also
being an interface residue.

16 residues, the likelihood drops to 0. The observation that
the interface residues tend to form clusters on the primary
sequence suggests the possibility of detecting protein–protein
interface residues from local sequence information.

Based on the results shown in Figure 2, a window size of
nine contiguous residues centered on the target residue was
empirically determined to be optimal (data not shown) for
constructing the two-stage classifier.

3.2 Classification of surface residues from
77 proteins into interface residues and
non-interface residues

The two-stage classifier was evaluated using the dataset of
77 proteins in a 5-fold cross-validation experiment. Table 1
shows the classification performance as measured by correl-
ation coefficient, accuracy, specificity+ and sensitivity+. The
correlation coefficient was maximized by choosingθ = 1.
The resulting classifier achieved an overall accuracy of 72%
with a correlation coefficient of 0.30. The SD of accuracy is
2% and that of correlation coefficient is 0.04. Of the residues
predicted to be interface, 58% are actually interface residues,
and 39% of interface residues are identified as such. We also
investigated the fraction of interface residues in each protein
that are correctly identified by the classifier. Our results show
that in 65 out of 77 (84%) proteins, the classifier can recognize
at least 20% of interface residues.

To examine whether the two-stage method learns sequence
characteristics that are predictive of target residue functions,
we ran a control experiment in which the class labels were
randomly shuffled to destroy the attributes–class relationship
in the original dataset. The correlation coefficient obtained
on the class label shuffled dataset is−0.01 (as compared with

Table 1. Classification performance on a dataset of 77 proteins based on
5-fold cross-validation

Dataset Two-stage method Gallet’s method
Original
dataseta

Randomized
datasetb

Original dataseta

Correlation coefficient 0.30 −0.01 −0.02
Accuracy 0.72 0.53 0.51
Specificity+ 0.58 0.31 0.30
Sensitivity+ 0.39 0.37 0.44

aClass labels were not shuffled (i.e. these are original class labels extracted from PDB
structure files).
bClass labels were randomly shuffled for all the examples before training and testing the
classifiers.

Table 2. The performance of two-stage and one-stage classifier

SVM method Two-stage method

Correlation coefficient 0.19 0.30
Accuracy 0.66 0.72
Specificity+ 0.44 0.58
Sensitivity+ 0.43 0.39

0.30 on the original dataset) indicating that the two-stage clas-
sifier performs significantly better than a random predictor
(correlation coefficient≈ 0) (Table 1).

3.3 Comparison with Gallet’s method
Previously Galletet al. (2000) published a method to identify
interface residues using an analysis of sequence hydrophobi-
city based on earlier work of Eisenberget al. (1984). For direct
comparison, we evaluated Gallet’s method using 5-fold cross
validation on the same dataset that was used to evaluate our
two-stage classifier. We used an input window size of five for
the Gallet method, which is the window size reported to per-
form best (Galletet al., 2000). The results shown in Table 1
indicate that the two-stage method achieves a much higher
accuracy, correlation coefficient, and specificity+ than Gallet
method, thereby outperforming Gallet method in overall clas-
sification, although the Gallet method achieves slightly higher
value sensitivity+. Notably, the correlation coefficient for the
Gallet’s method is−0.02—very close to that of a random
predictor.

3.4 Two-stage classifier yields substantially more
accurate interface residue predictions than
the one-stage SVM classifier

Previously, we reported an SVM method to identify interface
residues (Yanet al., 2003). The two-stage method reported
here combines an SVM and a Bayesian classifier. Table 2
shows the performance enhancement achieved by the two-
stage method. Comparison of the performance shows that
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A1 A2 B1 B2

Fig. 3. Representative prediction results on the 77 proteins. The target protein (for which the predictions are made) in each complex is shown
in green, with residues of interest shown in spacefill and color coded as follows: red, interface residues identified as such by the classifier
(TPs); yellow, interface residues missed by the classifier (FPs); and blue, residues incorrectly classified as interface residues (FPs). For clarity,
interface residues for the partner protein in each complex (gray wireframe) are not shown. (A1) and (B1) are the predictions of SVM method.
(A2) and (B2) are the corresponding predictions of two-stage method on the same proteins. A1, A2: predictions on BARSTAR from PDB
1brs; B1, B2: predictions on SEB from PDB 1seb; structure diagrams were generated using RasMol (http://www.openrasmol.org/).

the Bayesian method (the second stage) helps to improve the
classification: correlation coefficient increases from 0.19 to
0.30, accuracy increases from 0.66 to 0.72 and specificity+
increases from 0.44 to 0.58; although sensitivity+ decreases
slightly from 0.43 to 0.39. Thus, we conclude that exploit-
ing the distribution of interface and non-interface residues
in the neighborhood of an interface residue can significantly
improve the performance of classifiers for identifying inter-
face residues.

3.5 Evaluation of the predictions in the context of
three-dimensional structures

To evaluate further the performance of the classifier, we
examined predictions in the context of the three-dimensional
structures of heterocomplexes. Two representative prediction
results are shown in Figure 3. For comparison, the prediction
results for both the SVM method alone (the first stage) and
two-stage method are shown. The 1st and 7th best (out of 77
proteins) predictions (in term of correlation coefficient) are
shown in Figure 3A and B respectively. Figure 3A1 and B1

are the predictions of SVM method. Figure 3A2 and B2

are the corresponding predictions of two-stage method on
the same proteins. Figure 3A1 and A2 show the predictions
on BARSTAR from PDB 1brs, which is the complex of
BARNASE and BARSTAR. On BARSTAR, the SVM method
identified 8 interface residues with 1 FP (Fig. 3A1), whereas
two-stage method identified 16 interface residues with 0 FP
(Fig. 3A2). Figure 3B1, and B2 show the predictions on SEB
from an MHC protein–antigen complex (PDB 1seb), which
is the structure of SEB bound by HLA-DR1. On SEB, the
SVM method identified 12 interface residues but with 20 FP
(Fig. 3B1), whereas the two-stage method identified 13 inter-
face residues with only 7 FP (Fig. 3B2). The results show
that the two-stage classifier can successfully identify inter-
face residues with fewer FP than the SVM classifier above.
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Fig. 4. Specificity+ versus sensitivity+ plot of the two-stage method.

The correctly identified interface residues (residues in red)
form contiguous patches on surface. With this level of success,
such predictions could be valuable for guiding experimental
investigations into the roles of specific residues of a protein in
its interaction with other proteins or for limiting search space
for docking studies.

3.6 Specificity–sensitivity tradeoff
In some situations (e.g. identification of critical interface
residues for site-specific mutagenesis), it is desirable to
predict interface residues with very high specificity. This
requirement can be met by modifying the parameters used
by the two-stage classifier. In the results presented so far,
the two-stage classifier labels a target residue as an interface
residue ifP(1|z)/P (0|z)>1. As noted above, we can calib-
rate the cut off to increase the specificity of interface residue
predictions (specificity+) at the expense of reduced cover-
age (sensitivity+). Figure 4 shows the specificity+ versus
sensitivity+ plot of the predictions when different cut offs
are used. When we increased the cut off to 8, the specificity
of interface residue predictions (specificity+) increases to
0.85 and sensitivity+ decreases to 0.05. That is, 85% of the
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Fig. 5. Test results on Fab HC63 in CAPRI target 03. Fab HC63
is shown in green, with residues of interest shown in spacefill and
color coded as follows: red, TPs; yellow, FPs; and blue, FPs.
For clarity, interface residues for hemagglutinin (gray wireframe)
are not shown. Structure diagrams were generated using RasMol
(http://www.openrasmol.org/).

residues predicted to be interface residues are actually inter-
face residues although only 5% of the interface residues are
identified as such. Alternatively, if it is important to identify
more potential interface residues (even at the expense of
confidence), 60% interface residues can be identified with
50% specificity+.

3.7 Evaluation of the two-stage classifier on
CAPRI targets

To evaluate further the two-stage classifier, we used our data-
set of interface and non-interface residues from the 77 proteins
as a training set and used the resulting classifier to identify
interface residues in CAPRI targets. At the time this study
was performed, 7 CAPRI targets (target 01 through target 07)
were available. A representative result is shown in Figure 5:
the prediction on Fab HC63 in target 03, which is the complex
of Fab HC63 and hemagglutinin. On Fab HC63, the two-stage
method identified 10 interface residues with 10 FPs.

4 DISCUSSION
Development of accurate and robust computational methods
for identification of protein–protein interface residues from
amino acid sequence would contribute to elucidation of
protein sequence–structure function relationships, with the
attendant benefits in a number of applications including
drug design. Several approaches for predicting the inter-
face residues from amino acid sequence, protein structure
or both have been explored with varying degrees of suc-
cess. Methods that predict interface residues from amino acid

sequence alone, or using amino acid sequence along with
the structure of the target protein (but not the structure of
the complex it forms with another protein) are of interest
because relatively few experimentally determined structures
of protein–protein complexes are currently available. In this
paper, we have described a machine-learning approach to con-
struct a two-stage classifier for classifying protein surface
residues into interface and non-interface residues. The first
stage consists of an SVM classifier. A Bayesian classifier is
used at the second stage. The Bayesian classifier exploits the
observation that interface residues tend to form contiguous or
nearly contiguous clusters along the protein sequence. When
trained and tested using 5-fold cross-validation on a non-
redundant set of 77 proteins (with sequence identity below
30%) selected from heterocomplexes, the method achieved
72% accuracy with a correlation coefficient of 0.3, 66% aver-
age specificity and 65% average sensitivity. The specificity
of interface residue predictions (specificity+) was 58% and
sensitivity (sensitivity+) was 39%. Our results also show
that the two-stage classifier that combines the SVM method
with the Bayesian network classifier achieves better perform-
ance (correlation coefficient= 0.3, accuracy= 0.72) than a
single stage SVM classifier (correlation coefficient= 0.19,
accuracy= 0.66).

It is worth noting that the two-stage classifier trained using
our method, on a subset of 77 proteins, also performed reason-
ably well in terms of identifying interface residues of CAPRI
targets despite the fact that no information from the CAPRI
targets was used in training the classifier. Taken together,
our experiments show that the two-stage approach, which
exploits the observation that interface residues tend to form
contiguous or nearly contiguous clusters on protein sequences,
significantly outperforms the SVM classifier.

To the best of our knowledge, the methods proposed by
Galletet al. (2000) and Ofran and Rost (2003b) represent the
only fully sequence-based approaches to prediction of inter-
face residues that have been evaluated on datasets consisting
of more than a handful of proteins. These two methods predict
interface residues by directly classifying all residues (includ-
ing surface as well as core residues) into interface residues and
non-interface residues whereas the methods reported in this
paper classify surface residues into interface residues and non-
interface residues. This is especially useful in cases where the
structure of the target protein is known although the structure
of the complex(es) formed by it with one or more other pro-
tein(s) is unknown. For direct comparison, we implemented
the Gallet method and used it to classify the same dataset of
surface residues used here into interface residues and non-
interface residues. The results of our experiments show that
the two-stage method presented here outperforms Gallet’s
method on this dataset. Further comparisons of the methods of
Galletet al. and of Ofran and Rose, with and without a second
stage Bayesian classifier, with the methods described in this
paper, on a broader range of datasets is clearly of interest.
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Two points should be emphasized in evaluating the signi-
ficance of these and other interface prediction results. First, it
is important to note that the numbers of TP, FP, TN and FN
predictions taken together provide all the relevant information
for evaluating a classifier. Specificity, sensitivity, accuracy,
and the correlation coefficient offer different ways to summar-
ize these four numbers into a single measure of performance.
As noted by Baldiet al. (2000), each of these measures,
taken alone, yields only partial information about classifier
performance. This problem is exacerbated when the dataset
has unequal numbers of positive examples and of negative
examples. For instance, if 80% of the residues are non-
interaction residues, then a predictor that always predicts a
residue to be a non-interaction residue will have an accuracy
of 0.80 (80%). However, such a predictor is useless for cor-
rect identification of interface residues. In such a scenario,
correlation coefficient is a much better indicator of the per-
formance of a method. In this context, it is worth noting that
Gallet’s method shows a negative correlation coefficient that
is close to zero (random prediction) on the dataset used in this
study.

Second, it should be pointed out that because any given
protein can interact with multiple partners, some residues
identified as FPs in performance assessment of our method,
as well as the methods proposed by Galletet al. (2000) and
Ofran and Rost (2003b), could in fact be residues that actually
participate in contacts with protein(s) other than their known
partners in the PDB file (or CAPRI targets).

Mucchielli-Giorgi et al. (1999) and Naderi-Maneshet al.
(2001) have reported an accuracy of 85% in identifying sur-
face residues based on amino acid sequence information using
techniques for predicting solvent accessibility of residues.
This raises the possibility of coupling our method with sur-
face residue predictions to identify interface residues based on
sequence information alone: first, classify all residues into sur-
face residues and core residues; then classify surface residues
into interface residues and non-interface residues.

Evolutionary information in sequences has been used in
sequence-based methods to identify interface residues (Pazos
et al., 1997; Valencia and Pazos, 2003). It would be interesting
to explore whether methods that exploit evolutionary informa-
tion along with sequence identity (or biophysical properties of
amino acid residues) would yield more accurate identification
of interface residues from amino acid sequences. Alternative
approaches to exploiting knowledge of the structure (or the
predicted structural properties) of the target protein may also
result in more accurate prediction of interface residues.
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