Learning Classifiers for Misuse Detection Using
a Bag of System Calls Representation*

Dae-Ki Kang!, Doug Fuller?, and Vasant Honavar!
L Artificial Intelligence Lab, Department of Computer Science, Iowa State University
{dkkang, honavar}@iastate.edu
2 Scalable Computing Lab., Towa State University and U.S. Department of Energy
dfuller@scl.ameslab.gov

Abstract. In this paper, we propose a “bag of system calls” representa-
tion for intrusion detection of system call sequences and describe misuse
detection results with widely used machine learning techniques on Uni-
versity of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system
call sequences with the proposed representation. With the feature repre-
sentation as input, we compare the performance of several machine learn-
ing techniques and show experimental results. The results show that the
machine learning techniques on simple “bag of system calls” representa-
tion of system call sequences is effective and often perform better than
those approaches that use foreign contiguous subsequences for detecting
intrusive behaviors of compromised processes.

1 Introduction

In most intrusion detection systems (IDS) that model the behavior of processes,
intrusions are detected by observing fixed-length, contiguous subsequences of sys-
tem calls. For example, in anomaly detection, subsequences of input traces are
matched against normal sequences in database so that foreign sequences [1, 2] are
detected. One potential drawback of this approach is that the size of the database
that contains fixed-length contiguous subsequences increases exponentially with
the length of the subsequences. In this paper, we explore an alternative rep-
resentation of system call traces for intrusion detection. We demonstrate that
simple bag of system calls representation of system call sequences is surprisingly
effective in constructing classifiers for intrusion detection of system call traces.

2 Alternative Representations of System Call Sequences
Let ¥ = {s1,52,83,...,8m} be a set of system calls where m = |X| is the

number of system calls. Data set D can be defined as a set of labeled sequences
{< Zi,¢i > |Z; € ¥*,¢; € {0,1}} where Z; is an input sequence and ¢; is a

* Supported by NSF grant IIS 0219699.

P. Kantor et al. (Eds.): ISI 2005, LNCS 3495, pp. 511 2005.
(© Springer-Verlag Berlin Heidelberg 2005

512 D.-K. Kang, D. Fuller, and V. Honavar

corresponding class label with 0 denoting a “normal” activity and 1 denoting a
“intrusive” activity. Given the data set D, the goal of the learning algorithm is
to find a classifier h : X* — {0,1} that maximizes given criteria. Such criteria
are accuracy, detection rate and false positive rate. Each sequence Z € X*
is mapped into a finite dimensional feature vector by a feature representation
¢ : X* — X. Thus, the classifier is defined as h : X — {0,1} for data set
{< Xj,¢; > |X € X,¢; € {0,1}}. This allows us to use a broad range of
machine learning algorithms to train classification for intrusion detection.

2.1 Contiguous Foreign Subsequences

In this approach, a feature is defined as X; = x1x2x3...2;, a substring of Z;,
where x,€X and [is a constant. The number of possible features is |El‘ > j and
each feature X is assigned a class label ¢; according to the original sequence
Z;. STIDE [3] uses sliding windows with length [over an original input trace
to generate fixed-length substrings as features and constructs a database of the
features in the training stage, and decides a test sequence is anomalous if the
number of mismatches in the user-specified locality frame (locality frame count),
which is composed of adjacent features in the frame, is more than the user-
specified threshold.

2.2 Bag of System Calls

“Bag of system calls” representation is inspired by “bag of words” representation
that has been demonstrated to be effective in text classification problems. In our
approach, a sequence is represented by an ordered list X; = (c1,¢2,¢3,...,Cm)
where m = | X| and ¢; is the number of occurrence of system call s; in the input
sequence Z;. Note that this representation of system call traces does not preserve
information about relative order of system calls in the sequence.

3 Data Sets

3.1 UNM System System Call Sequences

The University of New Mexico (UNM) provides a number of system call data
sets. The data sets we tested are “live Ipr”, “live lpr MIT”, “synthetic sendmail”,
“synthetic sendmail CERT”, and “denial of service” (DoS).

In UNM system call traces, each trace is an output of one program. Most
traces involve only one process and usually one sequence is created for each trace.
Sometimes, one trace has multiple processes. In such cases, we have extracted
one sequence per process in the original trace. Thus, each system call trace
can yield multiple sequences of system calls if the trace has multiple processes.
Table 1 shows the number of original traces and the number of sequences for
each program.

3.2 MIT Lincoln Lab Data Sets

We used data sets provided by the MIT Lincoln Lab [4]. The fourth week (start-
ing at 6/22/98) training data set of year 1998 is used for the experiments in this

Learning Classifiers for Misuse Detection 513

Table 1. The number of original traces and generated sequences in UNM data sets

Program # of original traces|# of sequences

live Ipr (normal) 1232 1232

live Ipr (exploit) 1001 1001

live Ipr MIT (normal) 2704 2704

live Ipr MIT (exploit) 1001 1001
synthetic sendmail (normal) 7 346
synthetic sendmail (exploit) 10 25
synthetic sendmail CERT (normal) 2 294
synthetic sendmail CERT (exploit) 6 34

denial of service (normal) 13726 13726
denial of service (exploit) 1 105

paper. MIT Lincoln Labs datasets include omnibus files containing all system
call traces. For each omnibus file, there is a separate, network traffic analysis
data file that indicates inbound network connections to the system. Attack at-
tempts are logged with the network data, so labeling of the training data requires
cross-indexing this file with the system call trace file. The system call trace file
identifies the source of each call using the process ID. Therefore, cross-indexing
requires tracking the argument to the ‘exec’ system call identifying the binary to
be executed. Additionally, the timestamps from the network traffic analyzer do
not exactly correspond to the execution timestamps from the operating system
kernel. A tolerance of one second was chosen and seems to permit the matching
of a large majority of connection attempts with their corresponding server pro-
cesses run on the target system. All processes detected that do not correspond
to some network connection attempt identified in the trace are removed from
consideration (since they cannot be classified), as are all calls attributed to a
process ID for which an ‘exec’ system call is not found. The resulting data are
available at http://www.cs.iastate.edu/"dkkang/IDS_Bag/.

4 Experiments and Results

For the evaluation of classifiers generated in the experiment, ten-fold cross vali-
dation is used for rigorous statistical evaluation of the trained classifiers. Thus,
in each experiment, the data set is divided into ten disjoint subsets, nine of
which are used for training the classifier and the tenth part used for evaluating
the classifier. The reported the results represent averages over ten such runs.
Table 2 shows the accuracy, detection rate, and false positive rate [5] of the data
sets we tested. The detection rate is a fraction of the intrusions identified and
the false positive rate is a fraction of normal data mis-identified as intrusion.

Figure 1 shows the Receiver Operating Characteristic (ROC) Curve of “UNM
live Ipr” and “UNM synthetic sendmail” data sets using C4.5 and Naive Bayes
Multinomial algorithms respectively.

514 D.-K. Kang, D. Fuller, and V. Honavar

Table 2. Percentage of misuse detection based on 10 fold cross-validation

Program Naive Bayes| C4.5 |RIPPER| SVM | Logistic
Multinomial Regression
UNM live lpr
accuracy 83.43 99.91| 99.91 |100.00f 99.91
detection rate 100.00 99.80 | 99.80 |100.00/ 100.00
false positive rate 30.03 0.00 0.00 0.00 0.16
UNM live lpr MIT
accuracy 54.52 99.89 | 99.86 |99.83 99.97
detection rate 100.00 99.90 | 99.80 |99.80| 99.90
false positive rate 62.31 0.11 0.11 0.14 0.00
UNM synthetic sendmail
accuracy 20.21 94.87| 94.33 |95.68| 95.41
detection rate 92.00 40.00 | 48.00 |40.00 64.00
false positive rate 84.97 1.15 2.31 0.28 2.31
UNM synthetic sendmail CERT
accuracy 24.39 96.64 | 95.42 |96.03 96.03
detection rate 100.00 85.29 | 82.35 |64.70| 82.35
false positive rate 84.35 2.04 3.06 0.34 2.38
UNM denial of service
accuracy 98.70 99.97 | 99.96 |99.98| 99.97
detection rate 44.76 99.04 | 98.09 |100.00{ 99.04
false positive rate 0.88 0.02 0.02 0.01 0.01
MIT LL 1998 4" Week
Monday
accuracy 100.00 |{100.00{ 100.00 |100.00{ 100.00
detection rate 100.00 |100.00{ 100.00 |100.00{ 100.00
false positive rate 0.00 0.00 0.00 0.00 0.00
Tuesday
accuracy 99.55 99.55| 99.55 |99.55 99.55
detection rate 98.60 98.60 | 98.60 |98.60 98.60
false positive rate 0.00 0.00 0.00 0.00 0.00
Thursday
accuracy 99.73 99.73 | 99.73 |99.73 99.73
detection rate 100.00 |{100.00{ 100.00 |100.00 100.00
false positive rate 0.04 0.04 0.04 0.04 0.04
Friday
accuracy 98.80 98.80 | 98.80 |98.80| 98.80
detection rate 89.28 89.28 | 89.28 |89.28 | 89.28
false positive rate 0.00 0.00 0.00 0.00 0.00

The results in table 2 show that standard machine learning techniques are
surprisingly effective in misuse detection when they are used to train misuse
detectors using simple bag of system calls representation. For example, with
SMO (a widely used algorithm for training SVM) using a linear kernel, an SVM
can perfectly detect both normal and intrusion sequences in the “UNM live Ipr”
data set.

Learning Classifiers for Misuse Detection 515

C4.5 on UNM live Ipr Naive Bayes Multinomial on UNM synthetic sendmail
T T T T 1 T T T T T

0995

06

04t

Detection Rate
Detection Rate

0985 [

FaI;Ae Positive f:fate Falesée Positive Eisate
(a) C4.5 decision tree induction on (b) Naive Bayes Multinomial on UNM
UNM live lpr synthetic sendmail

Fig. 1. ROC Curve of “UNM live Ipr” and “UNM synthetic sendmail” data sets in
misuse detection

5 Summary and Discussion

Results of our experiments using widely used benchmark data sets - the University
of New Mexico (UNM) and MIT Lincoln Lab (MIT LL) system call sequences
show that the performance of the proposed approach in terms of detection rate
and false positive rate is comparable or superior to that of previously reported
data mining approaches to misuse detection. In particular, as shown in table 2,
the proposed methods achieve nearly 100% detection rate with almost 0% false
positive rate on all the data sets studied with the exception of two synthetic data
sets (‘UNM synthetic sendmail’ and ‘UNM synthetic sendmail CERT").

When compared with the widely used fixed-length contiguous subsequence
models, the bag of system calls representation explored in this paper may seem
somewhat simple. It may be argued that much more sophisticated models that
take into account the identity of the user or perhaps the order in which the calls
were made. But our experiments show that a much simpler approach may be
adequate in many scenarios. The results of experiments described in this paper
show that it is possible to achieve nearly perfect detection rates and false positive
rates using a data representation that discards the relationship between system
call and originating process as well as the sequence structure of the calls within
the traces.

Forrest et. al. [1, 3] showed that it is possible to achieve accurate anomaly de-
tection using fixed-length contiguous subsequence representation of input data.
In their approach, the detector will find anomalous subsequences right after they
are executed depending on user-specified thresholds. The proposed ‘bag of sys-
tem calls representation has advantage of fast learning, low memory requirement
for training classifiers. A simple counter program can be used to discriminate
normal sequences and abnormal sequences very quickly, before the process is
terminated.

516 D.-K. Kang, D. Fuller, and V. Honavar

We limit our discussion for misuse detection in this paper. Additional ex-
perimental results and detailed discussions including an application to anomaly
detection can be found in [5].

References

1. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy,
IEEE Computer Society (1996) 120

2. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6 (1998) 151-180

3. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system
calls: Alternative data models. In: IEEE Symposium on Security and Privacy. (1999)
133-145

4. Lippmann, R., Cunningham, R.K., Fried, D.J., Graf, 1., Kendall, K.R., Webster,
S.E., Zissman, M.A.: Results of the darpa 1998 offline intrusion detection evaluation.
In: Recent Advances in Intrusion Detection. (1999)

5. Kang, D.K., Fuller, D., Honavar, V.: Learning classifiers for misuse and anomaly
detection using a bag of system calls representation. Technical Report 05-06, Iowa
State University (2005)

	Introduction
	Alternative Representations of System Call Sequences
	Contiguous Foreign Subsequences
	Bag of System Calls

	Data Sets
	UNM System System Call Sequences
	MIT Lincoln Lab Data Sets

	Experiments and Results
	Summary and Discussion
	References

