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Summary 

We describe a machine learning approach for sequence-based prediction of pro-
tein-protein interaction sites. A support vector machine (SVM) classifier was 
trained to predict whether or not a surface residue is an interface residue (i.e., is 
located in the protein-protein interaction surface) based on the identity of the tar-
get residue and its 10 sequence neighbors. Separate classifiers were trained on 
proteins from two categories of complexes, antibody-antigen and protease-
inhibitor. The effectiveness of each classifier was evaluated using leave-one-out 
(jack-knife) cross-validation. Interface and non-interface residues were classified 
with relatively high sensitivity (82.3% and 78.5%) and specificity (81.0% and 
77.6%) for proteins in the antigen-antibody and protease inhibitor complexes, re-
spectively. The correlation between predicted and actual labels was 0.430 and 
0.462, indicating that the method performs substantially better than chance (zero 
correlation). Combined with recently developed methods for identification of sur-
face residues from sequence information, this offers a promising approach to pre-
diction of residues involved in protein-protein interaction from sequence informa-
tion alone. 

Introduction 

Identification of protein-protein interaction sites and detection of specific amino 
acid residues that contribute to the specificity and strength of protein interactions 
is an important problem with applications ranging from rational drug design to 
analysis of metabolic and signal transduction networks. Because the number of 
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experimentally determined structures for protein-protein complexes is small, com-
putational methods for identifying amino acids that participate in protein-protein 
interactions are becoming increasingly important (reviewed in Teichmann et al., 
2001; Valencia and Pazos, 2002). This paper addresses the question: Given the 
fact that a protein interacts with another protein; can we predict which amino acids 
are located in the interaction site?  

Based on different characteristics of known protein-protein interaction sites, 
several methods have been proposed for predicting protein-protein interaction 
sites using a combination of sequence and structural information. These include 
methods based on presence of “proline brackets’ ’  (Kini and Evans, 1996), patch 
analysis using a 6-parameter scoring function (Jones and Thornton 1997a, 1997b), 
analysis of hydrophobicity distribution around a target residue (Gallet et al., 
2000), multiple sequence alignment (Casarai et al., 1995; Lichtarge et al., 1996; 
Pazos et al., 1997), structure-based multimeric threading (Lu et al., 2002), analy-
sis of amino acid characteristics of spatial neighbors of a target residue using a 
neural network (Zhou and Shan,2001; Fariselli et al., 2002).  

We have recently reported that a support vector machine (SVM) classifier can 
predict whether a surface residue is located in the interaction site using the se-
quence neighbors of the target residue, with specificity of 71%, sensitivity of 67% 
and correlation coefficient of 0.29 on a set of 115 proteins belonging to six differ-
ent categories of complexes: antibody-antigen; protease-inhibitor; enzyme com-
plexes; large protease complexes; G-proteins, cell cycle, signal transduction; and 
miscellaneous. (Yan et al. 2002). The results presented in this paper show that the 
SVM classifiers perform even better when trained and tested on proteins belong-
ing to each category separately, suggesting that the design of specialized classifi-
ers for each major class of known protein-protein complexes will significantly im-
prove sequence-based prediction of protein-protein interaction sites. 

Methods 

Protein complexes, proteins and amino acid residues  

Proteins of protease-inhibitor complexes and antibody-antigen complexes were 
chosen from the 115 proteins used in our previous study (Yan et al. 2002). From 
these, we obtained two set of proteins used in this study: 19 proteins from prote-
ase-inhibitor complexes and 31 proteins from antibody-antigen complexes. Sol-
vent accessible surface area (ASA) was computed for each residue in the unbound 
molecule (MASA) and in the complex (CASA) using the DSSP program (Kabsch 
and Sander, 1983). The relative ASA of a residue is its ASA divided by its nomi-
nal maximum area as defined by Rost and Sander (1994). A residue is defined to 
be a surface residue if its relative MASA is at least 25% of its nominal maximum 
area. A surface residue is defined to be an interface residue if its calculated ASA 
in the complex is less than that in the monomer by at least 1Å2 (Jones and Thorn-
ton, 1996). Using this method, we obtained 360 interface residues and 832 non-
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interface residues from the 19 proteins from the Protease-inhibitor complexes and 
830 interface residues and 3370 non-interface residues from the 31 proteins from 
the Antibody-antigen complexes. 

Support vector machine algorithm  

Our study used the SVM in the Weka package from the University of Waikato, 
New Zealand (http://www.cs.waikato.ac.nz /~ml/weka/) (Witten and Frank 1999). 
The package implements John C. Platt's (1998) sequential minimal optimization 
(SMO) algorithm for training a support vector classifier using scaled polynomial 
kernels. The SVM is trained to predict whether or not a surface residue is in the 
interaction site. It is fed with a window of 11 contiguous residues, corresponding 
to the target residue and 5 neighboring residues on each side. Following the ap-
proach used in a previous study by Fariselli et al. (2002), each amino acid in the 
11 residue window is represented using 20 values obtained from the HSSP profile 
( http://www.cmbi.kun.nl/gv/hssp/ ) of the sequence. The HSSP profile is based on 
a multiple alignment of the sequence and its potential structural homologs (Dodge 
et al., 1998). Thus in our experiments, each target residue is associated with a 220-
element vector. The learning algorithm generates a classifier which takes as input 
a 220 element vector that encodes a target residue to be classified and outputs a 
class label.  

Evaluation measures for assessing the performance of classifiers 

Measures including correlation coefficient, accuracy, sensitivity (recall), specific-
ity (precision), and false alarm rate as discussed by Baldi (2000) are investigated 
to evaluate the performance of the classifier. Detailed definition of these measures 
can be found in supplementary materials (http://www.public.iastate.edu/~chhyan/ 
isda2003/sup.htm). The sensitivity for a class is the probability of correctly pre-
dicting an example of that class. The specificity for a class is the probability that a 
positive prediction for the class is correct. The false positive rate for a class is the 
probability that an example which does not belong to the class is classified as be-
longing to the class. The accuracy is the overall probability that prediction is cor-
rect. The correlation coefficient is a measure of how predictions correlate with ac-
tual data. It ranges from -1 to 1. When predictions match actual data perfectly, 
correlation coefficient is 1. When predictions totally disagree with actual data, 
correlation coefficient is -1. Random predictions yield a correlation coefficient of 
0. We chose not to emphasize the traditional measure of prediction accuracy be-
cause it is not a useful measure for evaluating the effectiveness of a classifier 
when the distribution of samples over different classes is unbalanced (Baldi, 
2000). For instance, in the antibody-antigen category there are 830 interface resi-
dues and 3370 non-interface residues in total, a predictor that always predicts a 
residue to be a non-interaction residue will have an accuracy of 0.80 (80%). How-
ever, such a predictor is useless for correct identification of interface residues.  
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Results 

Classification of surface residues into interface and non-interface 
residues 

To evaluate the effectiveness of this approach we used leave-one-out cross-
validation (jack-knife) experiments on each category of complexes. For the anti-
body-antigen category, 31 such jack-knife experiments were performed. In each 
experiment, an SVM classifier was trained using a training set consisting of inter-
face residues and non-interface residues from 30 of the 31 proteins. The resulting 
classifier was used to classify the surface residues from the remaining protein into 
interface residues (i.e., the amino acids located in the interaction surface) and non-
interface residues (i.e., residues not in the interaction surface). Similarly 19 jack-
knife experiments were performed for the protease-inhibitor category. The results 
reported in Table 1 represent averages for the antibody-antigen and protease in-
hibitor categories, respectively. Detailed results of the experiments are available in 
supplementary materials (http://www.public.iastate.edu/~chhyan/isda2003/ 
sup.htm). 

For proteins from antibody-antigen complexes, the SVM classifies achieved 
relatively high sensitivity (82.3%), specificity (81.0%), with a correlation coeffi-
cient of 0.430 between predicted and actual class labels, indicating that the method 
performs substantially better than random guessing (which would correspond to 
correlation coefficient equal to zero). For proteins from protease-inhibitor com-
plexes, the SVM classifiers performed with sensitivity of 78.5% and specificity of 
77.6%, and with a correlation coefficient of 0.462. For comparison, Table 1 also 
summarizes results obtained in our previous study using an SVM classifier trained 
and tested on a combined set of 115 proteins from six categories (Yan et al. 2002). 
Note that the correlation coefficients obtained in the current study for antibody-
antigen complexes (0.430) and protease inhibitor complexes (0.462), are signifi-
cantly higher than that obtained for a single classifier trained using a combined 
dataset of all six types of protein-protein complexes (0.290). 

Table 1. Performance of the SVM classifier  

Antibody-antigen 
complexesa 

Protease-inhibitor 
complexesa 

Six categories of com-
plexesb 

CC 0.430 0.462 0.290 
SN 82.3% 78.5% 66.9% 
SP 81.0% 77.6% 70.8% 
FAR 41.0% 35.7% 35.9% 

CC correlation coefficient. 
SN sensitibity. 
SP specificity. 
FAR false alarm rate 
a The SVM classifiers were trained and evaluated separately on two categories of proteins. 
b The performance of the SVM trained and tested on a mixed set of 115 proteins from six 
categories (Yan et al. 2002)  
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Fig. 1. Interaction site recognition: distribution of Sensitivity+ (sensitivity for predicting in-
terface residues) values. The bars in graph illustrate the fraction of the experiments (vertical 
axis) that fall into the performance categories named below the horizontal axis. a. the dis-
tribution of Sensitivity+ values for 31 experiments in the antibody-antigen category; b. the 
distribution of Sensitivity+ values for 19 experiments in the protease-inhibitor category 

Recognition of interaction sites  

We also investigated the performance of the SVM classifier in terms of overall 
recognition of interaction sites. This was done by examining the distribution of 
sensitivity+ (the sensitivity for positive class, i.e., interface residues class). The 
sensitivity+ value corresponds to the percentage of interface residues that are cor-
rectly identified by the classifier. 

Fig. 1a shows the distribution of sensitivity+ values for the 31 experiments in 
antibody-antigen category. In 54.8% (17 of 31) of the proteins, the classifier rec-
ognized the interaction surface by identifying at least half of the interface residues, 
and in 87.1% (27 of 31) of the proteins, at least 20% of the interface residues were 
correctly identified. Fig. 1b shows the distribution of sensitivity+ values for the 19 
experiments in protease-inhibitor category. In 63.2% (12 of 19) of the proteins, the 
classifier recognized the interaction surface by identifying at least half of the inter-
face residues, and in 84.2% (16 of 19) of the proteins, at least 20% of the interface 
residues were correctly identified. Distributions of other performance measures for 
the experiments are available in supplementary materials (http://www.public. 
iastate.edu/~chhyan/isda2003 /sup. htm). 

Evaluation of the predictions in the context of three-dimensional 
structures 

To further evaluate the performance of the SVM classifier, we examined predic-
tions in the context of the three-dimensional structures of heterocomplexes. In the 
antigen-antibody category, in the "best" example (correlation coefficient 0.87, 
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sensitivity+ 96%) 22 out of 23 interface residues were correctly identified as such 
(i.e., there was only 1 false negative) and only 5 non-interface residue was incor-
rectly classified as belonging to the interface (false positive).  

Fig. 2a illustrates results obtained for another example in the antigen-antibody 
complex category, murine Fab N10 bound to Staphylococcal nuclease (SNase) 
(Bossart-Whitaker et al., 1995). Note that predicted interface residues are shown 
only for Fab N10, and not for its interaction partner (gray) to avoid confusion in 
the figure. The Fab N10 "target" protein shown in this example ranked 9th out of 
31 proteins in the antibody-antigen category in terms of prediction performance, 
based on its correlation coefficient. True positive predictions are shown in red. 
The classifier correctly identified 20 interface residues in Fab N10 (sensitivity+ 
83.3%), and failed to detect only 4 of them (false negatives, yellow). Note that 
several residues that were incorrectly predicted to be interface residues (false posi-
tives, blue) are located in close proximity to the interaction site. In this example, 
the SVM classifier correctly identified interface residues from all 6 complementar-
ity determining regions (CDRs) known to be involved in epitope recognition 
(Bossart-Whitaker et al., 1995). 

Fig. 2b and c illustrate results obtained for two proteins from the protease-
inhibitor complex category, the "best" example (correlation coefficient 0.83) and 
"4th best" (correlation coefficient 0.70). In the best example (Fig. 2b), the target 
protein is a serine protease, bovine α-chymotrypsin (1acb E), in complex with the 
leech protease inhibitor eglin c (1acb I; Frigerio et al., 1992). Only 1 interface 
residue in chymotrypsin was not identified as such (Gly59, yellow) and only 1 
false positive residue (Leu 123 blue) is not located near the actual interface. Fig.. 
2c shows results obtained for the 4th ranked target protein in this category, porcine 
pancreatic elastase (1fle E) in complex with the inhibitor elafin (1fle I; Tsunemi et 
al., 1996). In elastase, only 7 interface residues were not identified (false nega-
tives, yellow), but there were 4 false positives (blue).  

Discussion 

Protein-protein interactions play a central role in protein function. Hence, se-
quence-based computational approaches for identification of protein-protein inter-
action sites, identification of specific residues likely to participate in protein-
protein interfaces, and more generally, discovery of sequence correlates of speci-
ficity and affinity of protein-protein interactions have major implications in a wide 
range of applications including drug design, and analysis and engineering of 
metabolic and signal transduction pathways. The results reported here demonstrate 
that an SVM classifier can reliably predict interface residues and recognize pro-
tein-protein interaction surfaces in proteins of antibody-antigen and protease-
inhibitor complexes. In this study, interface and non-interface residues were iden-
tified with relatively high sensitivity (82.3% and 78.5%) and specificity (81.0% 
and 77.6%). In 54.8% and 62.3% of the proteins tested, the interaction site could 
be easily recognized because more than half of the interface residues were cor-



 7 

rectly identified. With this level of success, predictions generated using this ap-
proach should be valuable for guiding experimental investigations into the roles of 
specific residues of a protein in its interaction with other proteins. Detailed exami-
nation of the predicted interface residues in the context of the known 3-
dimensional structures of the complexes suggest that the degree of success in pre-
dicting interface residues achieved in this study is due to the ability of the SVM 
classifier to "capture" important sequence features in the vicinity of the interface. 

Our previous work (Yan et al. 2002) used a similar approach to predict interac-
tion site residues in 115 proteins belonging to six categories (antibody-antigen; 
protease-inhibitor; enzyme complexes; large protease complexes; G-proteins, cell 
cycle, signal transduction; and miscellaneous). In each jack-knife experiment the 
classifier was trained using examples from 114 proteins and tested on the remain-
ing protein. The resulting classifier performed with specificity of 71%, sensitivity 
of 67%, and with a correlation coefficient of 0.29. In contrast, the results reported 
in this paper were obtained using separate classifiers for antibody-antigen category 
and protease-inhibitor category. The correlation between actual and predicted la-
beling of residues as interface versus non-interface residues in this case -- 0.430 
and 0.462 respectively -- is substantially better than the correlation of 0.29 ob-
tained using a single classifier trained on the combined data set from all six cate-
gories of protein-protein complexes. This indicates that there may be significant 
differences in sequence correlates of protein-protein interaction among proteins 
that participate in different broad categories of protein-protein interaction. In this 
context, systematic computational exploration of such sequence features, com-
bined with directed experimentation with specific proteins (e.g., using site-specific 
mutagenesis) would be of interest. These results also suggest that in building se-
quence-based classifiers for identifying residues likely to form protein-protein in-
teraction surfaces, a 2-stage approach based on identification of the broad category 
of interaction the protein is likely to be involved in (say antibody-antigen versus 
protease-inhibitor), followed by classification of amino acid residues into interface 
versus non-interface classes may be worth exploring. 

Because interaction sites consist of clusters of residues on the protein surface, 
some false positives (blue residues) in our experiments can be eliminated from 
consideration if the structure of target protein is known.  For example, in Figure 
2b, Leu 123 is predicted to be an interface residue. From the structure of the target 
protein, we can see that Leu 123 is isolated from the other predicted interface resi-
dues. Thus, it is highly likely that Leu 123 is not an interface residue. Thus we can 
remove Leu 123 from the set of predicted interface residues. Similarly two false 
positives in Figure 2c can be removed. Therefore the performance of the SVM 
classifier can be further improved if the structure of a target protein (but not the 
complex) is available. (If the structure of the complex is available, then there is no 
need to predict interface residues as they can be determined by analysis of the 
structure of the complex). 
Recently Zhou et al. (2002) and Fariselli et al. (2002) used neural network-based 
approaches to predict interaction sites with accuracy of 70% and 73%. It would be 
particularly interesting to directly compare the results obtained in our study and 
theirs.  Unfortunately, such a direct comparison is not possible due to differences 
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in choice of data sets and methods for accessing performance. A notable differ-
ence between our study and the others is that the only structural information we 
used is the knowledge of the set of surface residues of the target proteins. Knowl-
edge of surface topology and the geometric neighbors of residues used in the other 
studies were not used in our study.   

Several authors have recently reported success in predicting surface residues 
from amino acid sequence (Mandler 1988; Holbrook et al. 1990; Benner et al. 
1994; Gallivan et al. 1997; Mucchielli-Giorgi et al. 1999; Naderi-Manesh et al. 
2001). This raises the possibility of first predicting surface residues based on se-
quence information and then using the predicted surface residue information to 
predict the interaction sites using the SVM classifier. The classifier resulting from 
this combined procedure will be able to predict interaction site using amino acid  

 
 

 

 

 
 

Fig. 2. Interaction site recognition: visualization on three-dimensional structures of repre-
sentative heterocomplexes. The target protein in each complex is shown in green, with resi-
dues of interest shown in space fill and color coded as follows: red, true positives (interface 
residues identified as such by the classifier); yellow, false negatives (interface residues 
missed by the classifier); blue, false positives (residues incorrectly classified as interface). 
The interaction partner is shown in gray wireframe.. a. FabN10 in the 1nsn complex; b. α-
chymotrypsin in the 1acb complex; c. Elastase in the 1fle complex. Structure diagrams were 
generated using RasMol (http://www.openrasmol.org/) 

a 

b 

c 



 9 

sequence information alone. We are also exploring the use of phylogenetic infor-
mation for this purpose. Other work in progress is aimed at the design and imple-
mentation of a server for identification of protein-protein interaction sites and in-
terface residues from sequence information. The server will provide classifiers 
that are based on all protein-protein complexes available in the most current re-
lease PDB. 
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