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Summary. With the growing use of distributed information networks, there is
an increasing need for algorithmic and system solutions for data-driven knowledge
acquisition using distributed, heterogeneous and autonomous data repositories. In
many applications, practical constraints require such systems to provide support for
data analysis where the data and the computational resources are available. This
presents us with distributed learning problems. We precisely formulate a class of dis-
tributed learning problems; present a general strategy for transforming traditional
machine learning algorithms into distributed learning algorithms; and demonstrate
the application of this strategy to devise algorithms for decision tree induction (us-
ing a variety of splitting criteria) from distributed data. The resulting algorithms
are provably exact in that the decision tree constructed from distributed data is
identical to that obtained by the corresponding algorithm when in the batch set-
ting. The distributed decision tree induction algorithms have been implemented as
part of INDUS, an agent-based system for data-driven knowledge acquisition from
heterogeneous, distributed, autonomous data sources.

1 Introduction

Recent advances in computing, communications, and digital storage technolo-
gies, together with development of high throughput data acquisition technolo-
gies have made it possible to gather and store large volumes of data in digital
form. For example, advances in high throughput sequencing and other data
acquisition technologies have resulted in gigabytes of DNA and protein se-
quence data, and gene expression data being gathered at steadily increasing
rates in biological sciences. These developments have resulted in unprece-
dented opportunities for large-scale data-driven knowledge acquisition with
the potential for fundamental gains in scientific understanding (e.g., charac-
terization of macromolecular structure-function relationships in biology) in
many data-rich domains. In such applications, the data sources of interest are
typically physically distributed, heterogenuous, and are often autonomous.
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Given the large size of these data sets, gathering all of the data in a central-
ized location is generally neither desirable nor feasible because of bandwidth
and storage requirements. In such domains, there is a need for knowledge
acquisition systems that can perform the necessary analysis of data at the
locations where the data and the computational resources are available and
transmit the results of analysis (knowledge acquired from the data) to the
locations where they are needed. In other domains, the ability of autonomous
organizations to share raw data may be limited due to a variety of reasons
(e.g., privacy considerations). In such cases, there is a need for knowledge
acquisition algorithms that can learn from statistical summaries of data (e.g.,
counts of instances that match certain criteria) that are made available as
needed from the distributed data sources in the absence of access to raw data.
Furthermore, data sources may be heterogeneous in structure (e.g., relational
databases, flat files) and/or content (e.g., names and types of attributes and
relations among attributes used to represent the data). Data-driven learning
occurs within a context, or under certain ontological commitments on the
part of the learner. In most applications of machine learning, the ontological
commitments are implicit in the design of the data set. However, when sev-
eral independently generated and managed data repositories are to be used
as sources of data in a learning task, the ontological commitments that are
implicit in the design of the data repositories may or may not correspond to
those of the user in a given context. Hence, methods for context-dependent
dynamic information extraction and integration from distributed data based
on user-specified ontologies are needed to support knowledge aquisition from
heterogeneous distributed data [1, 2].

Against this background, this paper presents an approach to the design of
systems for learning from distributed, autonomous and heterogeneous data
sources. We precisely formulate a class of distributed learning problems;
present a general strategy for transforming a large class of traditional ma-
chine learning algorithms into distributed learning algorithms; and demon-
strate the application of this strategy to devise algorithms for decision tree
induction (using a variety of splitting criteria) from distributed data. The
resulting algorithms are provably exact in that the decision tree constructed
from distributed data is identical to that obtained by the corresponding algo-
rithm in the batch setting (i.e., when all of the data is available in a central
location).

Agent-oriented software engineering [3, 1] offers an attractive approach to
implementing modular and extensible distributed computing systems. For the
purpose of this discussion, an agent is an encapsulated information process-
ing system that is situated in some environment and is capable of flexible,
autonomous action within the constraints of the environment so as to achieve
its design objectives. The distributed decision tree induction algorithms de-
scribed in this paper have been implemented as part of INDUS (Intelligent
Data Understanding System), an agent-based system for data-driven knowl-
edge acquisition from heterogeneous, distributed, autonomous data sources.
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2 Distributed Learning

To keep things simple, in what follows, we will assume that regardless of the
structure of the individual data repositories (relational databases, flat files,
etc.) the effective data set for learning algorithm can be thought of as a ta-
ble whose rows correspond to instances and whose columns correspond to
attributes. We will later discuss how heterogeneous data can be integrated
and put in this form. In this setting, the problem of learning from distributed
data sets can be summarized as follows: The data is distributed across mul-
tiple autonomous sites and the learner’s task is to acquire useful knowledge
from this data. For instance, such knowledge might take the form of a decision
tree or a set of rules for pattern classification. In such a setting learning can be
accomplished by an agent that visits the different sites to gather the informa-
tion needed to generate a suitable model (e.g., a decision tree) from the data
(serial distributed learning). Alternatively, the different sites can transmit the
information necessary for constructing the decision tree to the learning agent
situated at a central location (parallel distributed learning). We assume that
it is not feasible to transmit raw data between sites. Consequently, the learner
has to rely on information (e.g., statistical summaries such as counts of data
tuples that satisfy particular criteria) extracted from the sites. Our approach
to learning from distributed data sets involves identifying the information re-
quirements of existing learning algorithms, and designing efficient means of
providing the necessary information to the learner while avoiding the neeed
to transmit large quantities of data.

2.1 Exact Distributed Learning

We say that a distributed learning algorithm Ld (e.g., for decision tree induc-
tion from distributed data sets) is exact with respect to the hypothesis inferred
by a batch learning algorithm L (e.g., for decision tree induction from a cen-
tralized data set) if the hypothesis produced by Ld using distributed data sets
D1, · · · , Dn stored at sites 1, · · · , n (respectively), is the same as that obtained
by L from the complete data set D obtained by appropriately combining the
data sets D1, · · · , Dn. Similarly, we can define exact distributed learning with
respect to other criteria of interest (e.g., expected accuracy of the learned
hypothesis). More generally, it might be useful to consider approximate dis-
tributed learning in similar settings. However, the discussion that follows is
focused on exact distributed learning.

2.2 Horizontal and Vertical Data Fragmentation

In many applications, the data set consists of a set of tuples where each
tuple stores the values of relevant attributes. The distributed nature of such
a data set can lead to at least two common types of data fragmentation:
horizontal fragmentation wherein subsets of data tuples are stored at different
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sites; and vertical fragmentation wherein subtuples of data tuples are stored at
different sites. Assume that a data set D is distributed among the sites 1, · · · , n
containing data set fragments D1, · · · , Dn. We assume that the individual
data sets D1, · · · , Dn collectively contain enough information to generate the
complete dataset D.

2.3 Transforming Batch Learning Algorithms into Exact
Distributed Learning Algorithms

Our general strategy for transforming a batch learning algorithm (e.g., a tra-
ditional decision tree induction algorithm) into an exact distributed learning
algorithm involves identifying the information requirements of the algorithm
and designing efficient means for providing the needed information to the
learning agent while avoiding the need to transmit large amounts of data.
Thus, we decompose the distributed learning task into distributed informa-
tion extraction and hypothesis generation components.

The feasibility of this approach depends on the information requirements
of the batch algorithm L under consideration and the (time, memory, and
communication) complexity of the corresponding distributed information ex-
traction operations.

In this approach to distributed learning, only the information extraction
component has to effectively cope with the distributed nature of data in or-
der to guarantee provably exact learning in the distributed setting in the
sense discussed above. Suppose we decompose a batch learning algorithm L
in terms of an information extraction operator I that extracts the necessary
information from data set and a hypothesis generation operator H that uses
the extracted information to produce the output of the learning algorithm L.
That is, L(D) = H(I(D)). Suppose we define a distributed information ex-
traction operator Id that generates from each data set Di, the corresponding
information Id(Di), and an operator C that combines this information to pro-
duce I(D). That is, the information extracted from the distributed data sets
is the same as that used by L to infer a hypothesis from the complete dataset
D. That is, C[Id(D1), Id(D2), · · · , Id(Dn)] = I(D). Thus, we can guarantee
that Ld(D1, · · · , Dn) = H(C[Id(D1), · · · , Id(Dn)]) will be exact with respect
to L(D) = H(I(D)).

3 Decision Tree Induction from Distributed Data

Decision tree algorithms [4, 5, 6] represent a widely used family of machine
learning algorithms for building pattern classifiers from labeled training data.
They can also be used to learn associations among different attributes of the
data. Some of their advantages over other machine learning techniques include
their ability to: select from all attributes used to describe the data, a subset
of attributes that are relevant for classification; identify complex predictive
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relations among attributes; and produce classifiers that can be translated in
a straightforward manner, into rules that are easily understood by humans.
A variety of decision tree algorithms have been proposed in the literature.
However, most of them select recursively, in a greedy fashion, the attribute
that is used to partition the data set under consideration into subsets until
each leaf node in the tree has uniform class membership.

The ID3 (Iterative Dichotomizer 3) algorithm proposed by Quinlan (Quin-
lan, 1986) and its more recent variants represent a widely used family of deci-
sion tree learning algorithms. The ID3 algorithm searches in a greedy fashion,
for attributes that yield the maximum amount of information for determining
the class membership of instances in a training set S of labeled instances.
The result is a decision tree that correctly assigns each instance in S to its
respective class. The construction of the decision tree is accomplished by re-
cursively partitioning S into subsets based on values of the chosen attribute
until each resulting subset has instances that belong to exactly one of the M
classes. The selection of attribute at each stage of construction of the decision
tree maximizes the estimated expected information gained from knowing the
value of the attribute in question.

Different algorithms for decision tree induction differ from each other in
terms of the criterion that is used to evaluate the splits that correspond to
tests on different candidate attributes. The choice of the attribute at each node
of the decision tree greedily maximizes (or minimizes) the chosen splitting
criterion. To keep things simple, we assume that all the attributes are discrete
or categorical. However, all the discussion below can be easily generalized to
continuous attributes.

Often, decision tree algorithms also include a pruning phase to alleviate
the problem of overfitting the training data. For the sake of simplicity of expo-
sition, we limit our discussion to decision tree construction without pruning.
However, it is relatively straightforward to modify the proposed algorithms to
incorporate a variety of pruning methods.

3.1 Splitting Criteria

Some of the popular splitting criteria are based on entropy [4] which is used
by Quinlan’s ID3 algorithm and its variants, and the Gini Index [5] which
is used by Breiman’s CART algorithm, among others. More recently, addi-
tional splitting criteria that are useful for exploratory data analysis have been
proposed [6].

Consider a set of instances S which is partitioned into M disjoint subsets

(classes) C1, C2, ..., CM such that S =
M⋃
i=1

Ci and Ci

⋂
Cj = ∅ ∀i �= j. The

estimated probability that a randomly chosen instance s ∈ S belongs to the
class Cj is pj = |Cj|

|S| , where |X | denotes the cardinality of the set X . The
estimated entropy of a set S measures the expected information needed to
identify the class membership of instances in S, and is defined as follows:
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entropy(S) = −∑
j

|Cj|
|S| · log2

( |Cj|
|S|

)
. The estimated Gini index for the set

S containing examples from M classes is defined as follows: gini(S) = 1 −∑
j(

|Cj|
|S| )2. Given some impurity measure (either the entropy or Gini index, or

any other measure that can be defined based on the probabilities pj) we can
define the estimated information gain for an attribute a, relative to a collection
of instances S as follows: IGain(S, a) = I(S) − ∑

v∈V alues(a)
|Sv|
|S| I(Sv) where

V alues(A) is the set of all possible values for attribute a, Sv is the subset of
S for which attribute a has value v, and I(S) can be entropy(S), gini(S) or
any other suitable measure.

It follows that the information requirements of decision tree learning algo-
rithms are the same for both these splitting criteria; in both cases, we need the
relative frequencies computed from the relevant instances. In fact, additional
splitting criteria that correspond to other impurity measures can be used in-
stead, provided that these measures can be computed based on the statistics
that can be obtained from the data sets. Examples of such splitting criteria
include misclassification rate, one-sided purity, one-sided extremes [6]. This
turns out to be quite useful in practice since different criteria often provide
different insights about data. Furthermore, as we show below, the information
necessary for decision tree construction can be efficiently obtained from dis-
tributed data sets. This results in provably exact algorithms for decision tree
induction from horizontally or vertically fragmented distributed data sets.

3.2 Distributed Information Extraction

Assume that given a partially constructed decision tree, we want to choose the
best attribute for the next split. Let aj(π) denote the attribute at the jth node
along a path π starting from the attribute a1(π) that corresponds to the root
of the decision tree, leading up to the node in question al(π) at depth l. Let
v(aj(π)) denote the value of the attribute aj(π), corresponding to the jth node
along the path π. For adding a node below al(π), the set of examples being
considered satisfy the following constraints on values of attributes: L(π) =
[a1(π) = v(a1(π))] ∧ [a2(π) = v(a2(π))] · · · [al(π) = v(al(π))] where [aj(π) =
v(aj(π))] denotes the fact that the value of the jth attribute along the path
π is v(aj(π)).

It follows from the preceding discussion that the information required for
constructing decision trees are the counts of examples that satisfy specified
constraints on the values of particular attributes. These counts have to be ob-
tained once for each node that is added to the tree starting with the root node.
If we can devise distributed information extraction operators for obtaining the
necessary counts from distributed data sets, we can obtain exact distributed
decision tree learning algorithms. Thus, the decision tree constructed from a
given data set in the distributed setting is exactly the same as that obtained
in the batch setting when using the same splitting criterion in both cases.
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Horizontally Distributed Data

When the data is horizontally distributed, examples corresponding to a partic-
ular value of a particular attribute are scattered at different locations. In order
to identify the best split of a particular node in a partially constructed tree,
all the sites are visited and the counts corresponding to candidate splits of
that node are accumulated. The learner uses these counts to find the attribute
that yields the best split to further partition the set of examples at that node.
Thus, given L(π), in order to split the node corresponding to al(π) = v(al(π)),
the information extraction component has to obtain the counts of examples
that belong to each class for each possible value of each candidate attribute.

Let |D| be the total number of examples in the distributed data set; |A|,
the number of attributes; V the maximum number of possible values per
attribute; n the number of sites; M the number of classes; and size(T ) the
number of nodes in the decision tree. For each node in the decision tree T ,
the information extraction component has to scan the data at each site to
calculate the corresponding counts. We have:

∑n
i=1 |Di| = |D|. Therefore, in

the case of serial distributed learning, the time complexity of the resulting
algorithm is |D||A| · size(T ). This can be further improved in the case of
parallel distributed learning since each site can perform information extraction
in parallel. For each node in the decisision tree T , each site has to transmit
the counts based on its local data. These counts form a matrix of size M |A|V .
Hence, the communication complexity (the total amount of information that
is transmitted between sites) is given by M |A||V |n ·size(T ). It is worth noting
that some of the bounds presented here can be further improved so that they
depend on the height of the tree instead of the number of nodes in the tree
by taking advantage of the sort of techniques that are introduced in [7, 8].

Vertically Distributed Data

In vertically distributed datasets, we assume that each example has a unique
index associated with it. Subtuples of an example are distributed across dif-
ferent sites. However, correspondence between subtuples of a tuple can be
established using the unique index. As before, given L(π), in order to split
the node corresponding to al(π) = v(al(π)), the information extraction com-
ponent has to obtain the counts of examples that belong to each class for
each possible value of each candidate attribute. Since each site has only a
subset of the attributes, the set of indices corresponding to the examples that
match the constraint L(π) have to be transmitted to the sites. Using this in-
formation, each site can compute the relevant counts that correspond to the
attributes that are stored at the site. The hypothesis generation component
uses the counts from all the sites to select the attribute to further split the
node corresponding to al(π) = v(al(π)). For each node in the decision tree
T , each site has to compute the relevant counts of examples that satisfy L(π)
for the attributes stored at that site. The number of subtuples stored at each
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site is |D| and the number of attributes at each site is bounded by the total
number of attributes |A|. In the case of serial distributed learning, time com-
plexity is given by |D||A|n · size(T ). This can be further improved in the case
of parallel distributed learning since the various sites can perform informa-
tion extraction in parallel. For each node in the tree T , we need to transmit
to each site, the set of indices for the examples that satisfy corresponding
constraint L(π) and get back the relevant counts for the attributes that are
stored at that site. The number of indices is bounded by |D| and the num-
ber of counts is bounded by M |A|V . Hence, the communication complexity
is given by (|D|+ M |A|V )n · size(T ). Again, it is possible to further improve
some of these bounds so that they depend on the height of the tree instead of
the number of nodes in the tree using techniques similar to those introduced
in [7, 8].

Distributed versus Centralized Learning

Our approach to learning decision trees from distributed data based on a
decomposition of the learning task into a distributed information extraction
component and a hypothesis generation component sites provides an effective
way to deal with scenarios in which the sites provide only statistical summaries
of the data on demand and prohibit access to raw data. Even when it is
possible to access the raw data, the distributed algorithm compares favorably
with the corresponding centralized algorithm which needs access to the entire
data set whenever its communication cost is less than the cost of collecting all
of the data in a central location. It follows from the preceding analysis that
in the case of horizontally fragmented data, the distributed algorithm has an
advantage when MV n · size(T ) ≤ |D| since the cost of shipping the data is
given by its actual size, which is given by |D||A|. In the case of vertically
fragmented data, the corresponding conditions are given by size(T ) ≤ |A|
since the cost of shipping the data is given by its actual size, which has a
lower bound of |D||A|. These conditions are often met in the case of large,
high-dimensional data sets.

4 Data Integration in INDUS

The discussion of distributed learning in the preceding section assumed that
it is possible to extract the information needed by the learning algorithm
(e.g., counts of instances that satisfy specific constraints on the values of the
attributes) from the distributed data sources. This is rather straightforward
in the case of data sources that have a homogeneous structure and semantics.
However the heterogeneity in the structure and semantics of data can make
this task significantly more complex in real-world knowledge discovery tasks
[2].
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INDUS is designed to provide a unified query interface over a set of dis-
tributed, heterogeneous and autonomous data sources which enables us to
view each data source as if it were a table. For the purpose of decision tree
learning, we formulate queries whose executions return tables containing data
of interest (e.g., counts). They are driven by the learning algoritm which used
them whenever a new node needs to be added to the tree.

5 Summary and Discussion

Efficient learning algorithms with provable performance guarantees for knowl-
edge acquisition from distributed data sets constitute a key element of any
attempt to translate recent advances in our ability to gather and store large
volumes of data into an ability to effectively use the data to advance our un-
derstanding of the respective domains (e.g., biological sciences, atmospheric
sciences) and decision support tools. In this paper, we have precisely formu-
lated a class of distributed learning problems and briefly presented a general
strategy for transforming a class of traditional machine learning algorithms
into distributed learning algorithms. We have demonstrated the application
of this strategy to devise algorithms for decision tree induction (using a va-
riety of splitting criteria) from distributed data. The resulting algorithms are
provably exact in that the decision tree constructed from distributed data is
identical to that obtained by the corresponding algorithm when it is used
in the batch setting. This ensures that the entire body of theoretical (e.g.,
sample complexity, error bounds) and empirical results obtained in the batch
setting carry over to the distributed setting. The proposed distributed deci-
sion tree induction algorithms have been implemented as part of INDUS, an
agent-based system for data-driven knowledge acquisition from heterogeneous,
distributed, autonomous data sources.

The distributed learning problem has begun to receive considerable at-
tention in recent years. However, many of the algorithms proposed in the
literature [9, 10, 11] do not guarantee generalization accuracies that are prov-
ably close to those obtainable in the centralized setting. Typically, they deal
with only horizontally fragmented data. Furthermore, several of them are mo-
tivated by the desire to for scale up batch learning algorithms to work with
large data sets by partitioning the data and parallelizing the algorithm. In
this case, the algorithm typically starts with the entire data set in a central
location; the data set is then distributed across multiple processors to take
advantage of parallel processing. In contrast, in the distributed scenario dis-
cussed in this paper, the algorithm may be prohibited from accessing the raw
data; even when it is possible to access the raw data, it may be infeasible to
gather all of the data at a central location (because of the bandwidth and
storage costs involved).

The algorithm proposed in [12], is closely related to our algorithm for
learning decision trees from vertical fragmented data using entropy or infor-
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mation gain as the splitting criterion. It provides a mechanism for obtaining
counts from implicit tuples in the absence of a unique index for each tuple in
the data set by simulating the effect of join operation on the sites without
enumerating the tuples. In contrast, our algorithms assume the existence of a
unique index, but are more general in other respects (ability to deal with both
horizontal and vertical fragmentation, incorporation of multiple splitting cri-
teria). Our approach can be modified using an approach similar to that used
in [12] in the absence of unique indices.

Our work on the algorithms and software for data-driven scientific dis-
covery has been driven, at least in part, by the needs of emerging data-rich
disciplines such as biological sciences where there is an explosive growth in
number, diversity, and volume of data being archived in publicly accessible,
distributed, autonomous data repositories [2].
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