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Abstract

This paper describes an approach to data-driven discovery of decision trees or rules

for assigning protein sequences to functional families using sequence motifs. This

method is able to capture regularities that can be described in terms of presence or

absence of arbitrary combinations of motifs. A training set of peptidase sequences la-

beled with the corresponding MEROPSEROPS functional families or clans is used to auto-

matically construct decision trees that capture regularities sufficient to assign the

sequences to their respective functional families. The performance of the resulting de-

cision tree classifiers is then evaluated on an independent test set. We compared the rules

constructed using motifs generated by a multiple sequence alignment based motif dis-

covery tool (MEMEEME) with rules constructed using expert annotated PROSITEROSITE motifs

(patterns and profiles). Our results indicate that the former provide a potentially

powerful high throughput technique for constructing protein function classifiers when

adequate training data are available. Examination of the generated rules in relation to
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known three-dimensional structures of members in the case of two families (MEROPSEROPS

families C14 and M12) suggests that the proposed technique may be able to identify

combinations of sequence motifs that characterize functionally significant three-

dimensional structural features of proteins.

� 2003 Elsevier Inc. All rights reserved.
1. Background and introduction

Proteins are the main catalysts, structural elements, signaling messengers,

and molecular machines in tissues. Hence, assigning putative functions to

protein sequences is one of the most important problems in functional ge-

nomics. Until recently, the primary source of information about protein

function has come from biochemical, structural, or genetic experiments on

individual proteins. The post-genomic era offers new opportunities and chal-

lenges in characterization of protein function from multiple perspectives, using
diverse sources of information [17,37].

Of the various sources of data that can be used for assigning proteins to

functional families, protein sequence information is perhaps the least expensive

and the most readily available. Consequently, sequence-based approaches to

protein function prediction are among the best developed. One such approach

to assignment of function to protein sequences is a nearest neighbor approach

using sequence similarity. Nearest neighbors, i.e., sequences that are most

similar to query sequences are detected using programs such as Blast [1] or
Fasta [30]. Such tools typically assist users in picking the highest scoring hit(s)

with informative annotation to generate a plausible function of the query se-

quence. Sequence search often returns multiple results, so significant human

expertise is needed in interpreting the results. The reliability of homologues

detected by multiple sequence alignment falls rapidly once the pairwise se-

quence identity drops below 30% [34]. Furthermore, at shorter alignment

lengths (9 out of 16 aligned residues), it becomes impossible to infer structural

similarity although results can be improved by careful exploration of related
sequences to accumulate further evidence. While there is substantial evidence

that structure is preserved among homologous proteins (i.e., those encoded by

genes that have evolved from a common ancestor), sequence similarity is

strongly correlated with the structure [13,14], the evidence is less clear with

respect to preservation of function [12].

A second class of sequence-based function classification approaches have

evolved from early work on protein pattern recognition which suggested that

short sequences of amino acids (motifs) may be conserved in a protein family
[15]. Currently, motif composition is often used to assign putative functions to

novel protein sequences based on the known functions of other proteins that

share one or more motifs with the novel protein. Several motif databases have
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been developed, including those that contain relatively short motifs, e.g.,

PROSITEROSITE [18]; or groups of motifs referred to as fingerprints, e.g., PRINTSRINTS [3],

or BLOCKSLOCKS [20]; or sequence patterns, often based on position-specific scoring

matrices or hidden Markov models generated from multiple sequence align-
ments e.g., called profiles, PROSITEROSITE [18] or domains, e.g., Pfam [9]. Such motif

databases or resources that integrate several databases, e.g., InterPro [2],

MetaFam [36], can be queried using a protein sequence to obtain a list of

motifs that are found in the sequence as well as the functions or structures

associated with these motifs.

Several automated tools for generating a set of motifs that capture con-

served sequence regularities among a given set of sequences are available (see

[22] for a review). They fall into two broad classes. The first class of methods
relies on (typically local) multiple sequence alignment to extract conserved

patterns among set of (functionally) related sequences, such as MEMEEME (Mul-

tiple Expectation Maximization for Motif Elicitation) [4]. A second class of

methods uses a combinatorial approach to build a dictionary of motifs from a

given set of sequences without making any assumptions about the functional

family memberships of the sequences in question [33]. The latter are especially

useful for extracting sequence regularities among divergent families. Motifs or

sequence patterns distill information from groups of related sequences to fa-
cilitate detection of weaker sequence similarities. Therefore, pattern based

searches are often more sensitive and selective than sequence database sear-

ches. For example, Jaakkola et al. [23] have shown that HMM profiles gen-

erated from local alignment of sequence fragments can be used to build

classifiers that can help identify distantly related sequences (where sequence

similarity is less than 30%).

Motif-based techniques for protein function prediction focus similarity

searches on parts of the protein that are likely to be functionally or structurally
significant, and hence more likely to be conserved. Current motif-based ap-

proaches to protein function prediction are not without drawbacks. Many

proteins contain several motifs and the same motif may be found in proteins

belonging to several different functional families. More generally, it may be

necessary to identify combinations of motifs that must present, or perhaps even

absent in a sequence, in order to reliably assign it to a functional family. In-

deed, in the PRINTSRINTS database [3], the fingerprints used to assign proteins to

functional families can be simple motifs or a combination of motifs. However,
the process of identifying a fingerprint for each protein family of interest can be

labor intensive and requires considerable domain knowledge. Thus, there is a

need for sophisticated tools that automate the discovery of sequence regulari-

ties predictive of protein function and allow efficient updating of databases.

Proteins with similar three-dimensional structural features very often, but

not always, have similar functions because the shape of the protein both

constrains and facilitates the ways in which the protein can interact with
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substrates, ligands, or other proteins. Hence, if the structure of a protein is

known, one might assign a putative function to it on the basis of its structural

similarity to a known structure [28]. Several algorithms have been developed

for recognizing structurally related proteins e.g., [21], accompanied by the es-
tablishment of a number of structure databases and structural class databases

such as PDBDB [10], SCOPCOP [25], CATHATH [29], and DALIALI [21]. However, experimental

determination of protein structures using NMR or X-ray crystallography

techniques is time consuming and expensive. While there are 254,293 protein

records in PIR-NREF database [7] (Release 1.05, 9 September 2002) contains

1,011,453 entries, there are only 14,339 experimentally determined three-

dimensional protein structures in the Protein Data Bank (PDB) [10] contains

18,691 structures, corresponding to approximately 3000 different proteins (as
of 10 September 2002). Hence, protein function prediction often relies on

protein structure prediction using computational approaches. Ab initio

methods that predict the conformation of a protein from its amino acid se-

quence are computationally very demanding and are currently limited to rel-

atively short proteins or peptides [35]. A number of structure-based approaches

to function determination are therefore focused on identification of function-

ally significant structural elements (e.g., active sites, binding sites) of proteins

[5]. A recent study by Fetrow et al. [19] has shown that a sequence-to-structure-
to-function paradigm that exploits knowledge of functionally relevant

three-dimensional structural elements together with sequence information

significantly improves the accuracy of function annotation of disulphide

oxidoreductases in S. cervisiae. However, experimental determination of

functionally relevant structural features is time consuming and expensive. With

the accumulation of known structures, there is both the potential as well as a

need for data-driven computational methods for identification of functionally

meaningful structural features (and their sequence correlates) that can serve as
reliable predictors of function.

In this paper, we test the feasibility of a fully automated approach for

protein function classification. We present a data-driven approach to discovery

of rules for assigning protein sequences to functional families on the basis of

the presence or absence of specific motifs or combinations of motifs. (For

simplicity, we will use the term motif to include short conserved sequence

patterns as well as profiles.) Machine learning algorithms [26] offer one the

most cost effective approaches to automated discovery of a priori unknown
predictive relationships from large data sets in computational biology [6].

Decision tree induction algorithms are relatively fast, and produce rules that

are easy to interpret. Machine learning approaches have been previously used

for protein function classification. For example, King et al. [24] investigated an

inductive logic programming approach to the construction of protein function

classifiers using alternative representations of protein sequences (amino acid

residue frequencies, phylogeny, and predicted structure). In a previous study,
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we used the C4.5 family of decision tree induction algorithms [31] to discover

rules for protein classification on the basis of presence or absence of combi-

nations of PROSITEROSITE motifs with encouraging results [38]. The study demon-

strated, for several protein families, that decision tree classifiers generated
using PROSITEROSITE patterns and motifs can provide more accurate protein family

classification than the use of a single characteristic motif. PROSITEROSITE patterns are

usually fairly short (less than 20 amino acids) and typically correspond to bi-

ologically significant sites experimentally identified in PROSITEROSITE functional

families. PROSITEROSITE profiles, on the other hand, correspond to Hidden Markov

models that usually match longer sequence fragments (often over 100 amino

acids). These longer profiles are useful as ‘‘signatures’’ for protein families, but

make it difficult to identify underlying sequence regularities that are predictive
of protein function, or may correspond to biologically significant structural

features.

Here we explore whether it is possible to use relatively short, automatically

generated motifs to discover rules for protein classification. In this study, we

used MEMEEME (Multiple Expectation Maximization for Motif Elicitation) a motif

discovery program that can be used to automate the construction of motif

databases from any given set of sequences [4]. We also explore the use of the

resulting classifiers as a source of information about the sequence correlates of
functionally significant structural features of proteins. For our data set, we

chose a well-characterized subset of protein families from the MEROPSEROPS pro-

tease database [Release 5.4 23 March 2000] [32]. We compared rules discovered

based on motifs automatically generated using MEMEEME with those generated

based on PROSITEROSITE patterns and profiles [18]. Further, we investigated the

ability of decision trees to identify functionally significant structural features of

proteins using the caspase protease family as a test case.
2. Data-driven discovery of rules for protein function classification using sequence

motifs

The basic computational problem is the following: Given a database or

training set of amino acid sequences corresponding to proteins with known

(i.e., experimentally determined) function, our goal is to induce a classifier that

would be able to assign novel protein sequences to one of the protein families

represented in the training set. The general approach is illustrated in Fig. 1.

2.1. Data representation

A majority of algorithms for data-driven induction of pattern classifiers

represent instances to be classified using a fixed set of attributes. Hence, we first
map each protein sequence into a corresponding attribute-based representation
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Fig. 1. Data mining approach to motif-based protein function classification.
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[38]. The choice of attributes plays a critical role in the data mining process.

Here, we represent protein sequences using a suitable vocabulary of sequence

motifs. The set of motifs to be used can be chosen to correspond to one of the

existing motif databases (e.g., PROSITEROSITE) or the set of motifs identified by

running a suitable motif-finding program (e.g., MEMEEME) on the set of protein
sequences. Suppose the vocabulary contains N motifs. Any given sequence

typically contains a few of these motifs. We encode each sequence as an N -bit

binary pattern where the ith bit is 1 if the corresponding motif is present in the

sequence; otherwise the corresponding bit is 0. Each N -bit sequence is asso-

ciated with a label which identifies the functional family of the sequence (if

known). A training set is simply a collection of N -bit binary patterns, each of

which has associated with it a label that identifies the functional family of the

corresponding protein. This training set is used to train a classifier which can
then be used to assign novel sequences to one of the several functional families

represented in the training set.
2.2. Data set

A subset of the peptidase (protease) families classified according to the

MEROPSEROPS (Release 5.5 15 June 2000) two-level classification system [32] was
used in this study. The choice of the peptidase families was motivated by the

diversity of the proteins in the family and the fact that many of them are well-

characterized and have known structures and functions [8]. The MEROPSEROPS

database (http://www.merops.co.uk/) classifies proteases into functional fami-

lies and clans. Clans are groupings of evolutionarily related functional families.

This classification structure permits analysis of the performance of protein

classifiers at two levels of sequence diversity.

For this study, all MEROPSEROPS-defined protease families that had more than
two protein members and belonged to a clan were chosen. Clans with fewer

http://www.merops.co.uk/
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than two member proteins were excluded from the data set. Protein sequences

that were only fragments were removed. The resulting dataset consisted of 84

families (out of a total of 161 in MEROPSEROPS) with between 3 and 313 members,

and 19 clans with between 1 and 18 families. In order to avoid excessive bias in
favor of large families (i.e., those consisting of a large number of members with

high levels of sequence identity), the PURGE program [27] was used to select

sequences from large families. This resulted in a data set of 1627 proteins.

MEMEEME motifs were extracted from each of the 84 families of proteins. The data

set used in the study can be obtained by contacting xiangyun.wang@astra-

zeneca.com.
2.3. Motif-based representation of the protein sequences

Decision trees were constructed using motif-based representation of se-

quences generated using two different sources of motifs:
• A database of motifs generated by the MEMEEME (Multiple Expectation Max-

imization for Motif Elicitation) program [4] for each peptidase family used

in the study. MEMEEME was chosen as a representative of automated motif iden-

tification programs because of its ability to identify motifs among highly di-

vergent sequences [22]. The MASTAST (Motif Alignment and Search Tool)

program was used to determine the motif composition of a sequence. Sev-

eral perl scripts were used to transform the MASTAST output into the appropri-

ate format for the C4.5 program.
• Motifs and profiles from PROSITEROSITE, which is one of the most carefully cu-

rated motif databases [18]. The PROSITEROSITE database associates with each func-

tional family, a characteristic motif or HMM profile which can be used to

identify members of the family. ProfileScan (available from PROSITEROSITE) was

used to identify PROSITEROSITE motifs or profiles (with a length of at least five

amino acids) in each peptidase sequence.
2.4. Decision tree algorithm

We used the C4.5 decision tree algorithm [31] for building protein sequence

classifiers. C4.5 uses a greedy procedure that selects the attributes that yield the

maximum information gain to recursively partition the training set. It also uses
post-pruning to compensate for any over fitting that may have occurred. The

decision trees generated were evaluated using 5-fold cross-validation (i.e., five

independent runs using 80% of the data for training and the remaining 20% for

testing). Decision trees produced were then converted into rules for further

analysis. Each rule is of the form ‘‘if condition then class’’ where condition

checks for a motif combination whose presence or absence is a reliable pre-

dictor for the corresponding class (e.g., protein family).

mail to: mailto:xiangyun.wang@astrazeneca.com
mail to: mailto:xiangyun.wang@astrazeneca.com
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3. Experiments and results

The computational experiments were designed to address the following

question: How does the performance of protein function classifiers based on
motifs generated automatically using a multiple sequence alignment based

motif discovery tool such as MEMEEME compare with that of classifiers based on

motifs from the expert-curated PROSITEROSITE database? Can classification rules

generated using this approach pick out a small subset of structurally or

functionally significant sequence features (motifs) from among a large set of

candidate motifs?

A representative decision tree and the corresponding rules are shown in

Fig. 2.
Two key measures of classifier performance were used in this study: Preci-

sion and Recall. In intuitive terms, precision of a classifier (whether it is a rule

that checks for presence of a single motif or applies a more complex rule)

measures the degree to which the classifier is able to pick out members of a

class of interest while rejecting all other instances. Recall measures the extent

to which the classifier is able to identify all members of the class of inter-

est (perhaps at risk of including some instances that do not belong to the

class).
An instance assigned by a classifier to a specific class is said to be a true

positive with respect to that class if it in fact belongs to that class. An instance is

said to be a false positive with respect to a class if it is assigned to that class by

the classifier, but in fact belongs to a different class. True negatives and false

negatives can be defined in an analogous fashion. Let a be a classifier and c a

class. Let TPaðcÞ, TNaðcÞ, FPaðcÞ, and FNaðcÞ respectively be the number of

true positives, true negatives, false positives, and false negatives produced by

the classifier a for class c on a given test set. Then the precision of classifier a on
class c (estimated using the given test set) is given by TPaðcÞ=ðTPaðcÞ þ FPaðcÞÞ
and recall by TPaðcÞ=ðTPaðcÞ þ FNaðcÞÞ . The accuracy of the classifier a for

class c is estimated by ðTPaðcÞ þ TNaðcÞÞ=N where N is the total number

of instances tested. In our study, estimates were averaged over 5-fold cross-

validation runs. Note that an ideal classifier has both precision and recall of 1

for each class. Overall precision and recall for a classifier can be obtained by

calculating the overall average of precision and recall for all classes.

In the experiments described below, we performed two types of comparison.
First, in separate experiments using either MEMEEME and PROSITEROSITE motifs, we

compared the accuracy, precision and recall of decision tree classifiers based on

a combination of motifs with that of classifiers which use the presence or ab-

sence of the single best motif for each class as the only criterion for classifi-

cation. We define the single best motif for a family or clan as the motif with the

highest value for the product of precision and recall for that family or clan

using the entire data set. This scoring was used because having high recall and
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low precision (and vice versa) is useless for classification. In each case, we

compared the performance precision, recall, and accuracy of rules derived from

decision tree classifiers with that of the single best motif. Second, we compared

the performance of rules based on automatically generated MEMEEME motifs
(using empirically determined optimal parameter settings) with that of rules

based on motifs from the expert-curated PROSITEROSITE database.

Classification performance results obtained using decision tree classifiers

based on MEMEEME motifs vs. classification using single best motifs are shown in

Table 1. In assigning protein sequences to families, rules extracted from deci-

sion tree classifiers had accuracy comparable to that of single best motifs

(91.8% vs. 91.0%) but precision higher than that of single best motifs (94.6% vs.

85.2%). On the other hand, the recall of the rules was somewhat lower than
that of single best motifs (92.8% vs. 96.4%). In assigning sequences to clans,

decision tree classifiers performed significantly better in assigning peptidases to

MEROPSEROPS clans than single best motifs, both in terms of accuracy (90.4% vs.

43.1%) and recall (90.8% vs. 65.2%), and had comparable precision (92.0% vs.



Table 1

Comparison of classification performance of family and clan rules based on MEMEEME motifs with that

of single best motifs, i.e., motifs with the largest (precision� recall)

MEMEEME

motifs per

rule set

Accuracy (%) Precision (%) Recall (%)

Rules Best motif Rules Best motif Rules Best motif

Families 2.9 91.8 91.0 94.6 85.2 92.9 96.4

Clans 9.2 90.4 43.1 92.0 88.5 90.8 65.2

Column 1 shows the average number of motifs per rule. The percentage precision and recall figures

for family (clan) correspond to averages taken over families (clans). Percentage accuracy is com-

puted over the entire test sample. All of the results represent estimates based on 5-fold cross-

validation.
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88.5%). These results show that the decision tree algorithm is able to suc-

cessfully identify combinations of motifs that capture shared features of diverse
sets of proteins belonging to a clan. In contrast, families tend to comprise more

closely related sequences than clans, and hence, single best motifs often per-

form as well as rules.

3.1. Decision trees using PROSITEROSITE motifs

Table 2 shows results of an analogous set of experiments carried out using

PROSITEROSITE motifs to build decision tree classifiers. For families, rules generated
by decision tree classifiers had somewhat lower accuracy (77.4%) than single

best motifs (84.9%), but higher precision (88.9% vs. 75.7%) and recall (84.4%

vs. 81.0%). For clans, decision tree classifiers performed significantly better

than single best motifs, in terms of accuracy (88.0% vs. 75.3%), precision

(98.4% vs. 92.9%) and recall (83.2% vs. 73.5%). Closer examination of the rule

set for MEROPSEROPS family S1 with 6–7 motifs on average in its rule shows that the

rule set significantly outperforms single best motif in terms of accuracy (98.3%

vs. 89.7%), precision (97.6% vs. 89.7%), and recall (97.0% vs. 89.7%). These
Table 2

Comparison of classification performance of family and clan rules based on PROSITEROSITE motifs with

that of single best motifs, i.e., motifs with the largest (precision� recall)

PROSITEROSITE

motifs per

rule set

Accuracy (%) Precision (%) Recall (%)

Rules Best motif Rules Best motif Rules Best motif

Families 2.9 77.4 84.9 88.9 75.7 84.4 81.0

Clans 12.0 88.0 75.3 98.4 92.9 83.2 73.5

Column 1 shows the average number of motifs (checked for presence or absence) per rule. The

percentage precision and recall figures for family (clan) are correspond to averages taken over

families (clans). Percentage accuracy is computed over the entire test sample. All of the results

represent estimates based on 5-fold cross-validation.
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results are consistent with the pattern observed in the case of MEMEEME motifs: the

more diverse the set of sequences that are to be assigned to a group the more

likely it is that rules outperform single best motifs.

Comparison of data shown in Tables 1 and 2 indicates that the rules con-
structed for classifying peptidase sequences into the corresponding MEROPSEROPS

families using MEMEEME mofis performed better (avg. accuracy 91.8%, precision

94.6% and recall 92.9%) than rules constructed using PROSITEROSITE motifs (avg.

accuracy 77.4%, precision 88.9% and recall 84.4%). Thus, using the parameter

settings chosen in this study, MEMEEME motifs appear better suited for distin-

guishing closely related members of peptidase families (according to MEROPSEROPS

classification) than the available PROSITEROSITE motifs. This is not surprising because

PROSITEROSITE does not include characteristic motifs for many of the peptidase
families used in our data set. Motifs in PROSITEROSITE are limited to those that have

been identified as characteristic signatures of specific protein families. In con-

trast, because MEMEEME motifs are generated automatically from a given set of

sequences, they can capture a broader range of regularities among the chosen

set of sequences. Therefore, decision trees and rules constructed using MEMEEME

motifs may have more flexibility than rules constructed using PROSITEROSITE motifs

for characterizing functional families at different hierarchical classification

levels.
The performance of classification rules for assigning peptidases to MEROPSEROPS

clans (each clan typically contains several related families) constructed using

MEMEEME motifs (avg. accuracy 90.4%, precision 92.0% and recall 90.8%) was

comparable to that of rules constructed using PROSITEROSITE motifs (average accu-

racy 88.0%, precision 98.4% and recall 83.2%). The classification rules con-

structed from PROSITEROSITE motifs used more motifs (12.0 per clan) than the rules

constructed from MEMEEME motifs (avg. 9.2 per clan).

3.2. Performance of rules based on MEMEEME motifs on MEROPSEROPS families with a

corresponding PROSITEROSITE classification

In light of the preceding discussion, it is interesting to ask: How does a fully

automated method of constructing decision tree classifiers for assigning protein

sequences to functional families (using MEMEEME motifs) compare with an ap-
proach that relies on motifs that have been identified and associated with

specific functional families using great deal of expert knowledge in the case of

functional families that are represented in PROSITEROSITE. Table 3 shows how the

rule sets performed on the subset of families and clans that had a corre-

sponding PROSITEROSITE family.

One difficulty in comparing the performance of classifiers constructed using

PROSITEROSITE motifs with those constructed using MEMEEME motifs is that ProfileScan

(used to identify PROSITEROSITE motifs in data sets) and MASTAST (used to identify
MEMEEME motifs) use different types of parameters to control the stringency of



Table 3

Performance of family rule sets for the subset of MEROPSEROPS families with a corresponding PROSITEROSITE

family (MEROPSEROPS families S1 S2B S10 S14 S16 C12 C14 C15 C19 A8 M17 M24B M22)

PROSITEROSITE MEMEEME

Accuracy (%) Best motif 92.0 91.4

Rule set 95.7 85.3

Precision (%) Best motif 99.8 91.1

Rule set 99.8 95.6

Recall (%) Best motif 92.0 93.7

Rule set 93.1 88.9

Motifs per rule set 1.6 1.2

All entries represent averages over the families. Percentage accuracy is computed over the entire test

sample. All of the results represent estimates based on 5-fold cross-validation.
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motif matches. ProfileScan offers two choices for motif matching: weak match

and strong match. We used the weak match setting based on preliminary ex-
periments which showed that it yielded better results for the peptidase data set.

The performance of MASTAST is sensitive to p-value used. For example, using

p-value of 0.0001, the MEMEEME motif based decision tree accuracy was 78%, but

reducing the p-value by a factor of 10 caused the MEMEEME-based decision tree

accuracy to increase to 96%.
3.3. Structural and functional significance of the classification rules constructed

using MEMEEME motifs

The results presented in previous sections show that decision trees con-

structed using relatively short (12 amino acids long) motifs can classify pep-

tidase sequences into MEROPSEROPS families and clans with high accuracy, precision,

and recall. This suggests the possibility that the resulting automatically gener-

ated classification rules capture sequence regularities that correspond to

structurally and/or functionally significant aspects of protein structure. Hence,

it is interesting to examine the motifs frequently used in decision tree rule sets

in the context of the three-dimensional structure of several representatives of
peptidase families with known structures and functions. We chose to examine

the C14 family (Caspase family) for which three-dimensional structural in-

formation is available in the PDB database [10]. Caspases play critical roles in

programmed cell death or apoptosis [16]. The structure of a representative

member of the C14 family, human Caspase 1 (PDB ID: 1BMQ), is shown in

Fig. 3(a). Two key catalytic residues of the enzyme are His237 and Cys285;

Arg179 and Arg341 contribute to substrate binding. Mutations of either of the

two catalytic residues or Arg179 have been shown to abolish caspase activity
[39].



Fig. 3. (a) The three-dimensional structure of human Caspase-1 (MEROPSEROPS family C14), corre-

sponding to PDB entry 1BMQ. The four labeled residues Arg 179, His 237, Cys 285, and Arg 341

are known to form the substrate binding pocket of the Caspase-1 enzyme [39]. Three of these

residues (arg 179, His 237, and Cys 285) are located within the MEMEEME-generated motifs frequently

used by the decision tree classifier for the MEROPSEROPS family C14. These, motifs correspond to resi-

dues 179–190 (red), 228–239 (yellow), 276–287 (green). (b) The three-dimensional structure of

Astacin (MEROPSEROPS family M12) from A. astacus, corresponding tp PDB entry 1QJJ. Five MEMEEME-

generated motifs selected by the decision tree algorithm for the MEROPSEROPS family M12 correspond to

residues 83–94 (red), 96–107 (yellow), and 142–153 (green). The five labeled residues––His 92, His

96, Glu 93, His 102, Tyr149 that appear within the motifs have been shown to form the zinc binding

pocket of the enzyme [11].
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Examination of rule sets for the C14 family constructed based on MEMEEME

motifs (using maximum motif lengths ranging from 6 to 50 and a p-value of

10�5) revealed that four motifs were found in 80% of the rules generated from

10 independent runs. When we examined the location of these motifs within the

human Caspase-1 protein structure, we found that three of the four motifs are

close to each other in the three-dimensional structure (Fig. 3(a)), and each of

these three motifs contained one of three residues involved in the catalytic
activity of Caspase-1: Arg179, His237 and Cys285. When we examined the

rules constructed from motifs generated using different values for the maxi-

mum motif length parameter, we found that approximately 69% of the motifs

most frequently appearing in the rule sets include active site residues. The

presence of one or two of these three motifs was found to be sufficient to re-

liably separate Caspases from all the other peptidases families. The motif that

covers Cys285 corresponds to the top ranked motif in caspase family in the

output of the MEMEEME program.
Similarly, examination of the rule sets generated for the MEROPSEROPS family

M12 in relation to the three-dimensional structure of Astacin (PDB entry

1QJJ) showed that five residues that have been shown to form the zinc binding

pocket His 92, His 96, Glu 93, His 102, Tyr 149 [11] are contained in the motifs

most frequently used by the decision tree algorithm (see Fig. 3(b)).



Table 4

Percentage of active site motifs among the motifs used in the rule sets

Peptidase family PDB ID % of motifs with active site in

the rule sets

M24A 1MAT 98

M20A 1CG2 87

M24B 1A16 83

M12A 1QJJ 78

C15 1A2Z 68

S21 1LAY 68

C14 1ICE 66

S8A 1BE6 64

M10A 2TCL 59

C12 1UCh 57

C1 1YAL 46

A2 4UPJ 43

S1A 2GMT 43

S14 1TYF 41

S26 1B12 39

C5 1AVP 37

M17 1BLL 33

S10 1CPY 30

A1 1F34 29

M10B 1AFO 28

M12B 1DTH 26

C2 1DFO <25

C3 1HAV <25

M13 1DMT <25

M27 1F82 <25

M4 1TLP <25

M8 1LML <25

S3 2SNV <25

S24 1UMU <25

S29 1A1R <25

A6 1F8V <25
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To investigate how often motifs that contain active sites show up in the rule

sets, we examined a total of 31 MEROPSEROPS families with known active sites.

Active site information was extracted from the MEROPSEROPS database. Table 4

shows the percentage of the motifs in the rule sets that correspond to a known

active site for each of the families. For 10 of the families, the active site motifs

account for more than 50% of the motifs used in the rule sets, with average of

73%. In 11 families, active site motifs account for 25–50% of the motifs in the

rule sets with an average of 36%. In the remaining 10 families, the active site
motifs account for less than 25% of the motifs used in the rule sets. When active

sites are highly conserved and unique for a family, they provide a reliable

source of information for discriminating that family from other families.
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However, this is not always the case. Families that appear to have a common

evolutionary origin (e.g., families belonging to the same clan) often have

similar active sites. Thus, it is necessary to use information other than the

active site motifs for telling such families apart. The families with relatively
high fractions of active motifs in the rule sets often belong to clans with fewer

families. For example, C15 is the sole member of clan CF, C14 is the only

member from clan CD in the dataset, M24A and M24B are the only members

of clan MG. Family M24B has the highest presence of active site motifs (98%)

in its rule sets.
4. Summary and future directions

In this paper, we investigated the feasibility of a fully automated approach

for protein function classification. In summary, we found that:

• Decision trees built using a motif-based representation of protein sequences

constructed using MEMEEME outperform decision trees constructed using PRO-RO-

SITESITE motifs in classifying proteases into corresponding MEROPSEROPS families.
• Decision tree classifier for clans significantly outperformed single best motif

(defined as one having the largest product of precision and recall for a given

clan): The difference in performance between decision trees and single best

motifs was less dramatic in the case of families. Examination of the results

for individual families showed that the more diverse of the sequences in a

functional family, the greater the performance advantage offered by the

decision trees.

• In several examples of proteins with known structure, the decision tree algo-
rithm was able to identify combinations of motifs from different parts of the

sequence that clustered together in three-dimensional structure and corre-

sponded to a functionally significant structural feature (e.g., binding site)

(see Fig. 3(a) and (b)). This is especially intriguing in light of the fact that

no biological expertise or knowledge was used in identifying the motifs

(other than the amino acid substitution matrix used by MEMEEME) or in con-

structing the rules (other than the MEROPSEROPS family labels for the sequences

in the training set).

The results presented in this paper have shown that a motif discovery al-

gorithm such as MEMEEME can provide a source of sequence features for auto-

mated, data-driven construction of decision trees or rules for classifying

proteins into relevant functional families. These results suggest that the rules

constructed using MEMEEME motifs are especially good at characterizing se-

quence regularities (in the form of relatively short conserved sequence patterns)

associated with closely related functional families. Thus, when adequate
training data are available, data-driven discovery of protein sequence–function
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relationships using automated motif identification and machine learning ap-

pears to complement if not offer a viable high throughput alternative for

assigning putative functions to novel proteins by labor intensive expert an-

notation.
Translating the recent advances in high throughput data acquisition tech-

nologies in biological sciences into fundamental gains in scientific under-

standing of biological processes calls for the development of sophisticated

computational tools for characterization and prediction of macromolecular

structure–function relationships. The results reported here raise the possibility

of using techniques similar to those employed in this study to explore and

characterize protein structure–function relationships at multiple levels. More

extensive studies with a broader range of proteins are needed to rigorously test
whether rules constructed using decision trees or other similar machine

learning algorithms can, using a purely data-driven automated approach,

identify the sequence correlates of functionally significant three-dimensional

structural features of proteins. It is intriguing to consider whether knowledge

of such relationships mined from the data can be effectively incorporated into

ab initio approaches to structure prediction.
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