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  Abstract- This paper motivates and describes the data 
integration component of INDUS (Intelligent Data Understanding 
System) environment for data-driven information extraction and 
integration from heterogeneous, distributed, autonomous 
information sources. The design of INDUS is motivated by the 
requirements of applications such as scientific discovery, in which 
it is desirable for users to be able to access, flexibly interpret, and 
analyze data from diverse sources from different perspectives in 
different contexts. INDUS implements a federated, query-centric 
approach to data integration using user-specified ontologies. 
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I. INTRODUCTION 
 

Development of high throughput data acquisition in a 
number of domains (e.g. biological sciences, space 
sciences, commerce) along with advances in digital storage, 
computing, and communication technologies have resulted 
in unprecedented opportunities in data-driven knowledge 
acquisition and decision making. The effective use of 
increasing amounts of data from disparate information 
sources presents several challenges in practice [1]:  
a) Data repositories are large in size, dynamic, and 

physically distributed. Consequently, it is neither 
desirable nor feasible to gather all of the data in a 
centralized location for analysis. Hence, there is a need 
for algorithms that can efficiently extract the relevant 
information from disparate sources on demand.  

b) Data sources of interest are autonomously owned and 
operated. Consequently, the range of operations that 
can be performed on the data source (e.g., the types of 
queries allowed), and the precise mode of allowed 
interactions can be quite diverse. Hence, strategies for 
obtaining the necessary information (e.g., statistics 
needed by data mining algorithms) within the 
operational constraints imposed by the data source are 
needed. 

c) Data sources are heterogeneous in structure (e.g., 
relational databases, flat files) and content. Each data 
source implicitly or explicitly uses its own ontology 
(concepts, attributes and relations among attributes) 
[22] to represent data. For example, domain-specific 
ontologies are being developed in many areas (e.g., 
The gene ontology project (www.geneontology.org)  is 
aimed at development of ontologies and their XML 
encodings for use in Bioinformatics). Thus, effective 
integration of information from different sources 

bridging the syntactic and semantic mismatches among 
the data sources is needed. 

d) In many applications (e.g., scientific discovery), 
because users often need to examine data in different 
contexts from different perspectives, there is no single 
universal ontology [22] that can serve all users, or for 
that matter, even a single user, in every context. Hence, 
methods for context-dependent dynamic information 
extraction and integration from distributed data based 
on user-specified ontologies are needed to support 
knowledge acquisition and decision making from 
heterogeneous distributed data. 

 
This paper describes the data integration component of 
INDUS (Intelligent Data Understanding System) – a 
modular, extensible, platform independent environment for 
information integration and data-driven knowledge 
acquisition from heterogeneous, distributed, autonomous 
information sources.  INDUS when equipped with machine 
learning algorithms for ontology-guided knowledge 
acquisition, can accelerate the pace of discovery in 
emerging data-rich domains (e.g., biological sciences, 
atmospheric sciences, economics, defense, social sciences) 
by enabling scientists and decision makers rapidly and 
flexibly explore and analyze vast amounts of data from 
disparate sources.  
  
The rest of the paper is organized as follows:  Section II  
briefly introduces the data integration problem and 
describes the considerations that had an impact on the 
choice of the overall approach to data integration in 
INDUS. Section III provides more precise definitions of the 
relevant terminology and operations on data. Section IV 
describes the implementation of the data integration 
component of INDUS. We conclude in Section V with a 
summary and related work. 
 

II. DATA  INTEGRATION SYSTEMS 
 
Data Integration systems [2,5,10] attempt to provide users 
with seamless and flexible access to information from 
multiple autonomous, distributed and heterogeneous data 
sources through a unified query interface. Ideally, a data 
integration system should allow users to specify what 
information is needed without having to provide detailed 
instructions on how or from where to obtain the 
information. Thus, in general, a data integration system 
must provide mechanisms for the following: 
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a) Communications and interaction with each data source 

as needed.  
b) Specification of a query, expressed in terms of a user-

specified vocabulary (ontology), across multiple 
heterogeneous and autonomous data sources 

c) Specification of mappings between user ontology and 
the data-source specific ontologies. 

d) Transformation of a query into a plan for extracting the 
needed information by interacting with the relevant 
data sources. 

e) Integration and presentation of the results in terms of a 
vocabulary known to the user. 

 
There are two broad classes of approaches to data 
integration: Data Warehousing and Database Federation 
[4]. 
  
In the data warehousing approach, data from heterogeneous 
distributed information sources is gathered, mapped to a 
common structure and stored in a central location. In order 
to ensure that the information in the warehouse reflects the 
current contents of the individual sources, it is necessary to 
periodically update the warehouse. In the case of large 
information repositories, this is not feasible unless the 
individual information sources support mechanisms for 
detecting and retrieving changes in their contents. This is 
often an unreasonable expectation in the case of 
autonomous information sources. The warehousing 
approach to data integration has another important 
drawback in the case of applications such as scientific 
discovery in which users often need to analyze the same 
data from multiple points of view: The data warehouse 
relies on a single common ontology for all users of the 
system. This ontology is typically specified as part of the 
design of the data warehouse. Each user queries the 
warehouse using a common vocabulary and a common 
query interface.   
  
In the case of Database Federation, information needed to 
answer a query is gathered directly from the data sources in 
response to the posted query. Hence, the results are up-to-
date with respect to the contents of the data sources at the 
time the query is posted.  More importantly, the database 
federation approach lends itself to be more readily adapted 
to applications that require users to be able to impose their 
own ontologies on data from distributed autonomous 
information sources.  Because our focus is on data 
integration for scientific application, which requires users to 
be able to flexibly integrate data from multiple autonomous 
sources, we adopt the Database Federation approach to 
information integration.  
 
Typically, a query posted by the user must be decomposed 
into a set of operations corresponding to the information 
that needs to be gathered from each data source and the 
form in which this information must be returned to the 

system. To accomplish this, data integration systems must 
support two basic set of operations:  
• get( ) to query the information sources; and 
•  transform( ) for mapping the results in the desired 

form. 
  
These operations should be capable of dealing with 
syntactic and semantic mismatches between the vocabulary 
(names of entities and relationships) of the user (user 
ontology or global ontology) to query for information and 
the vocabulary understood by each information source 
(source-specific ontologies or local ontologies).   
  
There are two basic approaches for dealing with semantic 
mismatches between global ontology and local ontologies:  
Source-Centric Approach and the Query-Centric Approach 
[5]. In the case of the source-centric approach, each 
individual data source determines how the concepts in a 
local (source-specific) ontology are mapped to concepts in 
the global ontology. Thus, the user has little control on the 
true meaning of concepts in the global ontology (and hence 
the results of a query). In other words, the semantics are 
source-centric. This frees the user or the administrator of 
the integration system from the task of specifying the 
transformations between global concepts and local concepts 
– these transformations are specified by the local source(s).  
In contrast, in the query-centric approach to information 
integration, concepts in the global ontology are defined in 
terms of concepts in local ontology (source-specific 
ontologies). Thus, the query-centric approach is better 
suited for data integration in applications in which the users 
need the ability to impose the ontologies (and semantics) of 
their choice to flexibly interpret and analyze information 
from autonomous sources. But this requires the user or 
administrator of the integration system to specify precisely 
how global concepts can be composed from local concepts.  
 
Consider the case of a scientist who has defined a set of 
queries Q to obtain information about a set of proteins. 
Assume that a new data source A becomes available. In this 
case, the scientist may want to decide whether (and how) to 
utilize the new data source in answering queries in Q. This 
decision may be based on the way proteins have been 
classified by the data source and what such classification 
means to the scientist relative to concepts in the global 
(user) ontology. The source-centric approach puts the 
information sources in control of the semantics. In contrast, 
the query-centric approach puts the user in control of 
semantics. Hence, we adopt the Query-Centric approach to 
data integration in INDUS. 
Thus, INDUS offers a federated, query-centric approach to 
information integration from heterogeneous, distributed, 
autonomous information sources. The overall architecture 
of INDUS is shown in Figure 1. 
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Fig. 1 INDUS (Intelligent Data Understanding System) for Information 
Extraction, Integration, and Knowledge Acquisition from Heterogeneous, 
Distributed, Autonomous Information Sources. PROSITE, MEROPS, 
SWISSPROT, and MEME are examples of data sources used by 
Computational Biologists. 
 
 INDUS enables a scientist to view a collection of 
physically distributed, autonomous, heterogeneous data 
sources (regardless of their location, internal structure, and 
query interfaces) as though they were relational databases, 
(i.e. a collection of inter-related tables), structured 
according to an ontology supplied by the scientist. The 
current prototype of INDUS makes explicit, the implicit 
ontologies associated with each of the data sources. Each 
data source is viewed as a repository of instances of 
concepts associated with the data source. Each concept is 
simply a collection of instances or records in a relational 
database i.e. a set of tables, and a set of associations 
between pair of tables. The input from a typical user 
(scientist) includes: an ontology that links the various data 
sources from the user’s point of view, executable code that 
performs specific computations (if they are not supported 
directly from data sources), and a query expressed in terms 
of user-specified ontology. This allows the scientist to 
extract and combine data from multiple data sources and 
store the results in a relational database which is structured 
according to his or her own ontology and can be 
manipulated using application programs or relational 
database operations. 
 

III. DATA INTEGRATION IN INDUS 
 

As noted above, INDUS implements a federated, query-
centric approach to information extraction and integration 
from heterogeneous, distributed and autonomous data 
sources. The system uses a three-layer architecture 
consisting of the physical layer, the ontological layer, and 
the user-interface layer.  
 
The physical layer allows the system to communicate with 
the information sources.  It is based on federated database 
architecture.  The ontological layer contains global 
ontology (or ontologies) specified by users and their 
mappings to local ontologies associated with the 
information sources. It automatically transforms queries 
expressed in terms of concepts in a global ontology into 
execution plans.  The plans describe what information to 

extract from each data source and how to combine the 
results.  Finally, the user interface layer enables users to 
interact with the system, define ontologies, post queries and 
receive answers. All the complexity associated with the 
process of gathering the information is hidden from the 
final user.  In what follows, we formally introduce the 
notions of a concept, ontology and query as we use them in 
INDUS. 
 
A. Concepts  
 
A “concept” in INDUS is equivalent to the mathematical 
entity for a relation underlying the relational model. Thus, a 
concept is a subset of the Cartesian product of a list of 
domains, i.e., if D1,…,Dn is a list of domains, 
then nDDX ××⊆ ...1 is a concept. Here a domain is a set 
of values. Each domain is assumed to be finite, but is 
typically unknown a priori. 
  
If Χ is a concept, the structure of a concept, Χ.atts, is 
described by the list of domains (called also attributes).   
The elements of this list are drawn from Θ, the set of all 
domains.  The i-th element of Χ.atts is represented by Χ.atts[i]; 
its name by Χ.atts[i].name and the associated domain by 
Χ.atts[i].domain. For example, Χ.atts = ((“name”, S), (“age”, N)), 
where S represents the set of strings and N represents the 
set of natural numbers, is the structure of a concept with 
two attributes. 
 
The extensional definition of a concept Χ, denoted by 
Χ.insts, is the enumeration of all instances from the Cartesian 
product D1,…, Dn , such that Di ∈ Χ.atts.  Each instance is 
represented by a list of attribute values.  For example, a 
concept Χ, based on D1 × D2 × D3 = { (a,b,d), (a,b,e), 
(b,b,d), (b,b,e)}, may be extensionally defined as Χ.insts ={ 
(a,b,d), (a,b,e)}. 
  
The intentional definition of a concept Χ, Χ.I, consists of a 
description of instances that belongs to that concept.  Thus, 
an intentional definition for the concept Χ used before may 
be: Χ.I = { i ∈ D1 × D2 × D3 | the first element of the i tuple 
is an ‘a’}.  In general, intentional definitions offer a shorter 
representation than extensional definitions. 
  
An operational definition of a concept Χ, Χ.D, is a 
procedure that specifies how to obtain the set of instances 
of Χ.   
 
We use relational databases to store instances of a concept. 
Therefore, the set of instances that belong to a concept 
(relation) are rows of the corresponding table.Two types of 
concepts are defined in INDUS: Ground Concepts and 
Compound Concepts.  
 
The ground concepts are those whose instances can be 
retrieved from one or more data sources using a set of pre-
defined operations. The operational definition of a ground 
concept describes a procedure for retrieving Χ.inst from a set 
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of relevant data sources.  In order to accomplish this task, 
INDUS provides an extensible set of components called 
instantiators that are able to interact with data sources and 
retrieve a set of instances for a particular concept.  They 
encapsulate the interaction of the system with the data 
sources through a common uniform interface. This common 
interface allows the system to invoke instantiators and also 
to receive instances from the data sources. 
 
The core of an instantiator is an iterator.  An iterator is 
completely specified in terms of the name of the program to 
be executed and the parameters that control the behavior of 
the iterator.  Let Τ be the set of iterators provided by 
INDUS.  If τ ∈ Τ, then τ.name corresponds to the name of the 
program to be executed and τ.param specifies the list of 
parameters associated with τ. The i-th parameter is 
represented by τ.param[i] 
 
In order to fully specify an instantiator, the following 
information must be provided: 
• An iterator, 
• An assignment of values for the iterators parameters, 
• A mapping indicating how to create an instance of a 

particular concept Χ based on the information returned 
by the iterator, and 

• The query capabilities offered by the data sources 
when it is accessed though this instantiator. 
 

Formally, if Χ is a ground concept, its operational 
definition (Χ.D) corresponds to the set of instantiators that 
can be used to retrieve instances of Χ.  If ι ∈ Χ.D, 
• The concept associated with the instantiator must be Χ 

(ι.concept ≡Χ). 
• ι.iterator ∈ Τ. 
• ι.values is the list of values assigned to the parameters of 

ι.iterator.  Note that |ι.iterator.param| must be equal to |ι.values|, 
and the value assigned to the ith-parameter, 
ι.iterator.param[i],  corresponds to ι.values[i]. 

• ι.mapping specifies how to build an instance of Χ based 
on the values returned by the instantiator.  Therefore, 
ι.mapping is a list where each element specifies which 
attribute returned by the instantiator must be assigned 
to which attribute of Χ. Thus, any information returned 
by the instantiator which is marked as ι.mapping[i] must be 
assigned to the corresponding Χ.atts[i]. 

• ι.queryCapabilities is the list of conditions associated with the 
instantiator ι where the ith-element of the list is 
ι.queryCapaibilities[i].  If  b ∈ ι.queryCapabilities, then b.attribute ∈ 
Χ.atts and b.operator ∈ Ο, where Ο is the set of operators 
supplied by INDUS.   

 
The definition of a compound concept X specifies the set of 
operations that must be applied over a set of instances of 
other previously defined concepts in order to determine the 
set of instances of X. INDUS uses four operations for 
operationally defining new compound concepts based on 
the existing concepts: selection, projection, vertical 

integration and horizontal  integration. We say that two 
concepts X and Y have equivalent structure if: 
• |Χ.atts| = |Υ.atts|, and 
• ∀1 ≤ i ≤ |Χ.A| the ith-element of both lists has the same 

domain or there is a natural transformation between the 
corresponding domains of Χ andΥ. 
 

Selection: Given two concepts X and Y that have 
equivalent structure, the operational definition of Υ in terms 
of some selection operation on Χ can be described as Υ.D := 
σs ( X ), where s is a conjunction of built-in predicates. A 
built-in predicate is of the form (argument operator 
argument), where argument follows the format 
function1(attribute1,attribute2,…). Thus, the previous 
definition implies that the set of instances of Υ is the set of 
instances of Χ that satisfy the condition expressed by s. 
 
Projection: Let X and Y be two concepts and let p be a list 
with equivalent structure with Y. The operational definition 
of Y in terms of a projection over the concept X can be 
expressed as: Υ.D := πp (Χ), where p is a list of functions 
applied over Χ attributes. Thus, when Υ is instantiated, the 
set of instances of Υ is the set of instances of Χ after 
applying the functions specified in p to the attributes in Χ.    
 
Vertical Integration: Vertical fragmentation occurs when 
the instances of a concept are fragmented across two or 
more data sources.  Thus, each data source stores values of 
a subset of attributes of the concept.  We assume the 
existence of a special attribute (corresponding to a unique 
key or index) that is stored at each source so that the 
corresponding fragments of each instance can be combined. 
Vertical integration of two concepts A and B into a new 
concept AB involves combining each instance of A with the 
corresponding instance of B followed by selection and 
projection operations (as needed).  Let  Χ, Υ and Ζ be three 
concepts such that |Χ.atts| = |Υ.atts|⋅|Ζ.atts|, where “⋅” 
represents the list concatenation operation.  The operational 
definition of Χ in terms of the Cartesian product of Υ and Ζ 
can be written as X.D := Υ× Ζ. Thus, the operational 
definition of Χ is described in terms of the vertical 
integration of Υ and Ζ as follows:  Χ.D := πp (σs (Υ× Ζ)). In 
general, a concept Χ may include n concepts Υ1, Υ2,…, Υn 
in its operational definition using a vertical integration 
operation, as follows: Χ.D :=  πp (σs (Υ1 × Υ2 × … × Υn)). 
 
Horizontal Integration: In the case of horizontal 
fragmentation, instances of a concept X are distributed 
across several information sources. If  Χ, Υ, and Ζ are three 
concepts with equivalent structure  Χ.D, the operational 
definition of Χ, is defined in terms of the concepts Υ and Ζ 
using a horizontal integration operation, as follows: Χ.D := 
Υ ∪ Z. Thus, the set of instances of Χ is obtained by taking 
the union of the instances of Υ and instances of Ζ. A more 
general definition of a horizontal integration operation may 
include a selection, a projection and the union of more than 
two concepts.  Thus, if Χ is a concept, its operational 
definition can be based on a horizontal integration operation 
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as follows: Χ.D :=  πp (σs (Υ1 ∪ Υ2 ∪ … ∪ Υn)).  We 
assume the union operation is applied over bags (not over 
sets) in our current prototype.  This means that duplicated 
instances are not eliminated. 
 
Note that the selection and projection operations are special 
cases of the vertical integration or the horizontal 
integration.  Therefore, the general form of the operational 
definition of a compound concept is of the form: Χ.D :=  πp 
(σs (Υ1 • Υ2 • … • Υn)), where Χ stands for a compound 
concept, s is the selection criteria, p is the projection 
criteria, and each Υi makes reference to a predefined 
concept and  • is one of the compositional operations 
defined in INDUS (e.g., ∪ or × in our current 
implementation). 
 
C. Global Ontology 
 
 In general, an Ontology specifies terms and relationships 
among terms [22]. In INDUS, a global ontology consists of 
the set of concepts that are used to describe entities and 
relationships in the domain of discourse (e.g., molecular 
biology). In principle, the global ontology can be tailored to 
suit the needs of each user or each group of users that share 
a common vocabulary. Queries are expressed in terms of 
concepts in the global ontology.  The global ontology can 
be extended by defining new concepts in terms of existing 
concepts using a well-defined set of compositional 
operations. From a user’s perspective, the global ontology 
used in INDUS hides the complexity of accessing and 
retrieving the information from the data sources. Semantics 
of user-defined concepts in the global ontology are mapped 
to the semantics associated with the ground concepts 
associated with the individual information sources (i.e., 
concepts in the respective local ontologies) using 
compositional operations and/or predefined or user-
supplied functions.  
 
This mapping process allows the user to resolve semantic 
mismatches among the different sources. Examples of 
semantic mismatches include: the use of the same term to 
describe two semantically different concepts, or when two 
different concepts are denoted by the same term. INDUS 
also supports transformations between values of attributes 
that are used to define concepts. Such transformations can 
be used to map values of attributes associated with 
instances retrieved from different sources so that they are 
expressed in terms of a common unit (e.g., to transform 
temperature values from degrees Fahrenheit to degrees 
Celsius) or to compute values of an attribute associated 
with instances of a compound concept in terms of values of 
one or more attributes in the corresponding instances of its 
component concepts.   
    
 The ontological layer includes the global ontology, the 
data-source specific ontologies (i.e., the corresponding set 
of ground concepts) and the information needed for 
obtaining instances of a ground concept from a 
corresponding data source. Figure 2 shows the definition of 

a simplified ontology for the PROSITE database, composed 
of two basic concepts: Family and Motif. Each concept is 
described in terms of the corresponding attributes (which 
define the structure of the concept). 
 
D. Queries 
 
In INDUS, a query over a concept Χ allows users to obtain 
instances of  Χ.  Formally, if Q is a query over a concept Χ, 
it is specified by a projection and selection operation over 
instances of Χ  as follows: Q := πp (σs (Χ)).   

 
 

Fig. 2 Basic Ontology for PROSITE 
 
INDUS provides a query-centric algorithm that takes as 
input a query Q and returns the set of instances that satisfy 
Q. We illustrate the query-centric approach through an 
example. Assume a global concept corresponding to a table 
called PROTEIN with columns ID, NAME, TYPE. Assume 
that there are two data sources A and B that contain 
information about proteins. In a query-centric approach, the 
PROTEIN concept is described in terms of ground concepts 
associated with the sources A and B as follows: 

 
Create Or Replace View PROTEIN (Id, Name, Type) As 
Select Id, Name, Type From A.Protein 
Union 
Select Id, Name, Type From B.Protein; 
 

If a new data source D stores different chemical compounds 
(including proteins) in a table, it can be added to the 
definition as follows: 

 
Create Or Replace View PROTEIN (Id, Name, Type) As 
Select Id, Name, Type From A.Protein 
Union 
Select Id, Name, Type From B.Protein 
Union 
Select Id, Name, ‘Enzyme’ From C.Protein 
Union 
Select Id, Name, Type From D.chemical_compound  
Where D.kind = ‘Protein’; 

The procedure for answering a query Q finds an equivalent 
rewriting Q’ of Q expressed in terms of ground concepts 
and compositional operations (vertical integration and 
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horizontal integration in our current prototype). Q’ is 
represented by an expression tree, where each internal node 
corresponds to a well-defined operation (union, projection 
etc.) and each leaf node corresponds to a ground concept.  

 
Any compound concept that appears in the query is 
recursively replaced by its definition to arrive at a plan (an 
expression tree) in which only the ground concepts appear 
as leaves. Therefore, each non leaf represents an operational 
definition described by πp (σs (node1• node2 • … • noden)), 
where nodej represents a descendant node of nodei, for i > j. 
Here, • corresponds to a cross product operations ( × ) if 
vertical integration operation is required.  Similarly, a union 
operation (∪) is used if a horizontal integration is needed.  
In the case of a leaf  node nodei, the associated operational 
definition of nodei corresponds to the formula πp(σs (Χ)) 
where  Χ is a ground concept. The algorithm for finding the 
expression tree of a query Q is presented Figure 3. 
 

Fig 3.  The ConstructTree algorithm 

   
 

 
Fig. 4  Pseudo-algorithm for Executing the Expression Tree. 

 After the plan is created, the next step is execution. The 
instances that correspond to the extensional definition of 
each ground concept associated with an information source 
are extracted from the respective source. The instances 
corresponding to each internal node of the plan (execution 

tree) are constructed by appropriately combining the set of 
instances returned by its descendents. The process 
terminates when the set of instances for the root of the tree 
is obtained. The algorithm for executing an expression tree 
is shown in Figure 4. For example, consider a query posted 
over the PROTEIN concept as follows (Figure 5): 
 
Select Id, Name From PROTEIN Where type=’Enzyme’ 

 
The first step is to create an expression tree for the query 
based on the definition of the PROTEIN concept.  The 
definition of the PROTEIN concept is recursively rewritten 
until it is expressed in terms of ground concepts associated 
with the available data sources. The resulting plan 
(execution tree) is traversed in post-order fashion. The leaf 
nodes corresponding to ground concepts are `executed’ by 
invoking the corresponding instantiators. One of the 
common optimization approaches we adopt is to push down 
the selection and projection operations as close to the leaves 
of the tree as possible. 
 

 
Fig. 5  Execution order of the expression tree 

 
 

IV. IMPLEMENTATION OF INDUS 
 

This section describes the implementation of the data 
integration component of INDUS. This component of 
INDUS consists of five principal modules as shown in 
Figure 6: graphical user interface, common global ontology 
area, instantiator library, query resolution module, and 
private user workspace. 
 

 
 

Fig. 6 INDUS modules  
 
The graphical user interface allows the users to interact 
with the INDUS. It enables users to describe ontologies, 
define operational definitions of ground concepts; 
compound concepts and queries, register the iterators, and 
execute queries.  
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The common global ontology area manages the repository 
where definitions of ontologies, ground concepts, 
compound concepts, queries, and iterator signatures are 
stored.  
 
The instantiator library contains the set of functions used to 
interact with the individual data sources. Each instantiator 
is based on a particular iterator. The latter interacts directly 
with a data source. Each iterator is implemented by a Java 
class. An instantiator supplies the parameters that control 
the behavior of the corresponding iterator. It also maps the 
instances returned by the iterator into instances of the 
corresponding ground concept. Thus, the functionality of an 
instantiator (together with the corresponding iterator) 
corresponds roughly to that of a wrapper. However, unlike 
wrapper-based data integration systems that often have 
ontologies and the required semantic mappings hardwired 
into the wrappers, INDUS enforces a clear separation of 
functionality between ontologies defined by the users and 
the instantiators that call the relevant iterators to retrieve 
instances associated with ground concepts.  
 
The query resolution module accepts a query expressed in 
terms of concepts in the global ontology as input and 
returns the answer to the query constructed from the 
relevant data sources.  
 
Finally, the user workspace module allows INDUS to 
manage the private workspace where users store answers 
for posted queries. The required partial results are also 
stored in this area. In particular, the set of instances 
associated with each ground concept present in the 
expression tree associated with the query are stored as 
populated relational tables. Furthermore, each internal node 
of the expression tree, which represents a set of 
compositional operations described in the operational 
definition of a particular compound concept, is materialized 
as a relational view defined in terms of tables or views 
previously created and materialized by the query resolution 
algorithm. 
 
The modular design of INDUS ensures that each module 
can be updated and alternative implementation easily 
explored. Modularization enables INDUS to use different 
network architectures. For example, INDUS may be 
implemented in a centralized architecture, locating all the 
modules in a single server, or in an architecture where 
modules are distributed across several servers. Thus, an 
application server may support the operation of the 
graphical user interface, the Iterators library and the query 
resolution modules sharing the same Java virtual machine. 
A repository server may support the operation of the 
common global ontology area and the user workspace 
modules sharing the same relational database system. For 
the current prototype of INDUS, we used JSP (Java Server 
Pages) for developing the graphical user interface. It is 
hosted in an Apache Tomcat 4.0 web server. The common 
global ontology area was developed under a relational 
database in order to provide a robust environment to store 

and manipulate ontologies of large size. Relational database 
technology also offers us an efficient way to support 
multiple concurrent users. Standard protocols such as 
ODBC and JDBC can be used to share the ontology with 
other applications as needed. The user workspace resides in 
a relational database. This enables users to manipulate the 
results of queries using relational database operations. 
Although the workspaces are private for each user, using 
mechanisms for granting privileges provided by the 
relational database management system (RDBMS) enables 
users to share their results with others if they so desire. The 
Iterators and the resolution algorithm are implemented in 
Java. Thus, all essential components of INDUS are platform 
independent.   
 
At least four different roles may be played by a user when 
interacting with INDUS. As a domain scientist, a user may 
define ontologies, compound concepts and queries. Also, a 
user may execute queries and manipulate the retrieved data. 
In this role, the user is expected to have knowledge of the 
relevant domain, some familiarity with the data sources and 
their capabilities, but no deep knowledge of programming. 
As an ontology engineer, a user may expand the iterator 
library by programming new iterators, define the ground 
concepts associated with new data sources, or new modes 
of interaction with existing data sources. As an 
administrator, a user is able to install the INDUS software, 
including the graphical user interface and the query 
resolution module, and set up and manage the databases 
supporting the common global ontology module and the 
user workspace, which includes adding new users to the 
system. As a developer, a user may add new compositional 
operations to INDUS, modifying the graphical user 
interface and the query resolution module. In practice, a 
given user may play multiple roles.  
 
Setting up the INDUS data integration environment 
involves installation of INDUS and a relational database 
system that is to be used by INDUS for the ontolgies and 
user workspace. Incorporation of new data sources into 
INDUS involves registering the data sources, defining the 
relevant ground concepts and implementing the necessary 
instantiators and iterators. Using INDUS to extract and 
integrate data from multiple sources involves defining the 
relevant compound concepts and functions and formulating 
and executing queries expressed in terms of concepts in the 
global ontology. 

 
V. SUMMARY AND DISCUSSION 

 
A. Summary 

 
In this paper, we have described the design and 
implementation of the data integration component of 
INDUS (Intelligent Data Understanding System) 
environment for flexible information extraction and 
information integration and knowledge acquisition from 
heterogeneous, distributed, autonomous information 
sources. INDUS implements a federated, query-centric 
approach to data integration. Hence, the information 
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extraction operations to be executed are dynamically 
determined on the basis of the user-supplied ontology and 
the query supplied by the user or an application program 
(e.g. a decision tree learning program which needs counts 
of instances that satisfy certain criteria).  
 
B. Related Work  
 
There has been a large body of related work on data 
integration. Early work on multi-database systems [21] 
focused on relational or object-oriented database views for 
integrated access to data from several relational databases. 
More recently, mediators [24] and wrappers have been 
developed for information integration from multiple data 
repositories (including semi-structured and unstructured 
data). Examples include the TSIMMIS project at Stanford 
University [7], the SIMS project [17], the Ariadne project 
[26] at the University of Southern California, the Hermes 
project at the University of Maryland [23], NIMBLE -- a 
commercial system based on research at the University of 
Washington [20], and the TAMBIS project in UK [8].  
 
INDUS has been inspired by, and builds on previous work 
by several groups on data integration, and in particular, 
logic-based and ontology-based approaches to data 
integration [5,6]. A major goal of the INDUS project is to 
provide modular, extensible, open source software 
environment for ontology-based information integration 
and data-driven knowledge acquisition from heterogeneous, 
distributed, autonomous information sources. 
  
The Information Manifold System developed at AT&T Bell 
Laboratories [3] is a heterogeneous data integration system 
offering a unified query interface for retrieving structured 
information stored in the WWW and in internal sources. 
Unlike INDUS which uses a query-centric approach, 
Information Manifold uses a source-centric approach for 
answering queries. Like INDUS, Information Manifold 
utilizes definition of data sources capabilities to perform 
query decomposition and query resolution.  However, 
unlike Information Manifold, INDUS allows users to define 
several access points for a concept in a data source, each 
allowing different binding parameters. Information 
Manifold allows definition of only one capability record per 
data source. INDUS offers support for several operands (=, 
<, > etc.), while in Information Manifold only the equality 
operator is supported. 
 
The Stanford-IBM Manager of Multiple Information 
Sources (TSIMMIS) is a system that facilitates the rapid 
integration of heterogeneous data sources [7]. The data 
integration TSIMMIS architecture is based on the concept 
of wrappers and mediators. Each wrapper knows how to 
deal with a particular data source and it is able to receive a 
query in a common language -- Object Exchange Model 
(OEM) and to transform it into a particular language 
understood by the data sources. Both INDUS and 
TSIMMIS use query-centric approach to data integration. 
However, unlike TSIMMIS, INDUS maintains a clear 
separation between ontologies used for data integration 

(which are supplied by users) and the procedures that use 
ontologies to perform data integration. This allows INDUS 
users to replace ontologies used for data integration ‘on the 
fly’. This makes INDUS attractive for data integration tasks 
that arise in exploratory data analysis wherein scientists 
might want to experiment with alternative ontologies. 
 
The Transparent Access to Multiple Bioinformatics 
Information System (TAMBIS) is an ontology centered 
system for evaluating queries that offers access to multiple 
heterogeneous bioinformatics data sources [8]. TAMBIS is 
based on three-layer wrapper/mediator architecture. Like 
INDUS, it uses a query-centric approach to data integration. 
It includes an ontological layer and a graphical user 
interface for querying. The ontology allows the creation of 
new concepts based on compositional operations of 
previously defined concepts using a restricted grammar 
based on the description logic language GRAIL [9]. 
TAMBIS returns the answer for a query as an HTML file. 
Thus, the size of the main memory may limit the amount of 
data that may be returned in response to a query. In 
contrast, INDUS stores the answer for a query in a user 
private area implemented by a relational database system. 
Thus, queries that return large amounts of data are 
manipulated more efficiently in terms of hardware and 
software resources. INDUS also provides better support for 
defining multiple ontologies for use in different contexts by 
different users. 

C. Work in Progress 

INDUS is a prototype for a data integration system for a 
scientific discovery environment. As a prototype, it has 
helped us to understand and demonstrate elements of a 
promising approach for design of software environments 
for information integration and knowledge acquisition from 
heterogeneous, distributed information sources. Some 
directions for ongoing and future research include: 
a) Further development of the INDUS prototype into a 

platform to support exploratory data analysis and 
knowledge acquisition in representative problems in 
bioinformatics and computational biology e.g., data-
driven construction of classifiers of protein function 
[11, 12]; and predictors of protein-protein interaction 
[25].  

b) Extending the information integration framework to 
support extraction of sufficient statistics (e.g., counts 
that satisfy certain constraints on attribute values) 
needed for construction of classifiers. This can be 
accomplished by utilizing aggregate operators for 
retrieving such statistics (if such operators are 
supported by the data sources) or by supplying 
executable code in the form of mobile agents [13] that 
can execute in a secure environment where the data and 
computation resources are available to compute the 
desired statistics instead of bringing the raw data to the 
user. This would allow us to extend the recently 
developed distributed learning algorithms [14,15] to 
work with heterogeneous data sources. 
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c) Extending recently-developed algorithms for learning 

from multiple relational databases [16] to work with 
heterogeneous data sources, taking advantage of the 
capability of INDUS to view heterogeneous 
information sources as though they were a collection of 
relational databases. 

d) Extending recently developed algorithms for learning 
from attribute value taxonomies (a special type of 
ontologies) and partially specified data [18] to work 
with data from heterogeneous sources. 

e) Performance improvements in INDUS through the use 
of more sophisticated query optimization methods, and 
data caching methods. 

f) Exploration of the use of emerging frameworks for 
data and metadata description, ontologies, and data 
source (or more generally resource description), and 
registry services, being developed as part of the 
Semantic Web project and related efforts in INDUS. 

g) Exploration of methods for automatically learning 
mappings between data sources from examples [19], 
algorithms for ontology merging, and algorithms for 
learning specific types of ontologies (e.g., attribute 
value taxonomies) from data. 

h) Extension of approaches used in INDUS to support 
user and context-specific information integration in 
peer-to-peer environments and distributed sensor 
networks. 
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