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Abstract. We describe an efficient implementation (MRDTL-2) of the
Multi-relational decision tree learning (MRDTL) algorithm [23] which in
turn was based on a proposal by Knobbe et al. [19] We describe some
simple techniques for speeding up the calculation of sufficient statistics
for decision trees and related hypothesis classes from multi-relational
data. Because missing values are fairly common in many real-world ap-
plications of data mining, our implementation also includes some simple
techniques for dealing with missing values. We describe results of exper-
iments with several real-world data sets from the KDD Cup 2001 data
mining competition and PKDD 2001 discovery challenge. Results of our
experiments indicate that MRDTL is competitive with the state-of-the-
art algorithms for learning classifiers from relational databases.

1 Introduction

Recent advances in high throughput data acquisition, digital storage, and com-
munications technologies have made it possible to gather very large amounts of
data in many scientific and commercial domains. Much of this data resides in
relational databases. Even when the data repository is not a relational database,
it is often convenient to view heterogeneous data sources as if they were a col-
lection of relations [28] for the purpose of extracting and organizing information
from multiple sources. Thus, the task of learning from relational data has begun
to receive significant attention in the literature [1,19,11,21,22,12,18,26,9,8,14,16].

Knobbe et al. [19] outlined a general framework for multi-relational data
mining which exploits structured query language (SQL) to gather the informa-
tion needed for constructing classifiers (e.g., decision trees) from multi-relational
data. Based on this framework, Leiva [23] developed a multi-relational decision
tree learning algorithm (MRDTL). Experiments reported by Leiva [23] have
shown that decision trees constructed using MRDTL have accuracies that are
comparable to that obtained using other algorithms on several multi-relational
data sets. However, MRDTL has two significant limitations from the standpoint
of multi-relational data mining from large, real-world data sets:
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(a) Slow running time: MRDTL (like other algorithms based on the multi-
relational data mining framework proposed by Knobbe et al. [19]) uses se-
lection graphs to query the relevant databases to obtain the statistics needed
for constructing the classifier. Our experiments with MRDTL on data from
KDD Cup 2001 [5] showed that the execution of queries encoded by such
selection graphs is a major bottleneck in terms of the running time of the
algorithm.

(b) Inability to handle missing attribute values: In multi-relational databases
encountered in many real-world applications of data mining, a significant
fraction of the data have one or more missing attribute values. For example,
in the case of gene localization task from KDD Cup 2001 [5], 70% of CLASS,
50% of COMPLEX and 50% of MOTIF attribute values are missing. Leiva’s
implementation of MRDTL [23] treats each missing value as a special value
(“missing”) and does not include any statistically well-founded techniques
for dealing with missing values. Consequently, the accuracy of decision trees
constructed using MRDTL is far from satisfactory on classification tasks in
which missing attribute values are commonplace. For example, the accuracy
of MRDTL on the gene localization task was approximately 50%.

Against this background, this paper describes MRDTL-2 which attempts to
overcome these limitations of Leiva’s implementation of MRDTL:

(a) MRDTL-2 includes techniques for significantly speeding up some of the most
time consuming components of multi-relational data mining algorithms like
MRDTL that rely on the use of selection graphs.

(b) MRDTL-2 includes a simple and computationally efficient technique which
uses Naive Bayes classifiers for ‘filling in’ missing attribute values.

These enhancements enable us to apply multi-relational decision tree learning
algorithms to significantly more complex classification tasks involving larger data
sets and larger percentage of missing attribute values than was feasible in the
case of MRDTL. Our experiments with several classification tasks drawn from
KDD Cup 2001 [5], PKDD 2001 [7] and the widely studied Mutagenesis data set
[25] show that MRDTL-2

(a) significantly outperforms MRDTL in terms of running time
(b) yields results that are comparable to the best reported results obtained using

multi-relational data mining algorithms
(c) compares favorably with feature-based learners that are based on clever

propositionalization methods [22]

The rest of the paper is organized as follows: Section 2 reviews the multi-
relational data-mining framework; Section 3 describes our implementation of
MRDTL-2, a multi-relational decision tree learning algorithm; Section 4 de-
scribes the results of our experiments with MRDTL-2 on several representative
multi-relational data mining tasks and compares them with the results of other
approaches available in the literature; Section 5 concludes with a brief summary
and discussion of the main results and an outline of some directions for further
research.
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2 Multi-relational Data Mining

2.1 Relational Databases

A relational database consists of a set of tables D = {X1, X2, ...Xn}, and a set of
associations between pairs of tables. In each table a row represents description
of one record. A column represents values of some attribute for the records in
the table. An attribute A from table X is denoted by X.A.

Definition 1. The domain of the attribute X.A is denoted as DOM(X.A) and
is defined as the set of all different values that the records from table X have in
the column of attribute A.

Associations between tables are defined through primary and foreign key at-
tributes.

Definition 2. A primary key attribute of table X, denoted as X.ID, has a
unique value for each row in this table.

Definition 3. A foreign key attribute in table Y referencing table X, denoted
as Y.X ID, takes values from DOM(X.ID).

An example of a relational database is shown in Figure 1. There are three ta-
bles and three associations between tables. The primary keys of the tables GENE,
COMPOSITION, and INTERACTION are: GENE ID, C ID, and I ID, respec-
tively. Each COMPOSITION record references some GENE record through the
foreign key COMPOSITION.GENE ID, and each INTERACTION record refer-
ences two GENE records through the foreign keys INTERACTION.GENE ID1
and INTERACTION.GENE ID2. In this setting the attribute of interest (e.g.,

COMPOSITION

GENE_ID

CLASS

COMPLEX

PHENOTYPE

MOTIF

C_ID

GENE_ID1

GENE_ID2

TYPE

EXPRESSION_CORR

INTERACTION

I_ID

GENE_ID

ESSENTIAL

CHROMOSOME

LOCALIZATION

GENE

Fig. 1. Example database

class label) is called target attribute, and the table in which this attribute is
stored is called target table and is denoted by T0. Each record in T0 corresponds
to a single object. Additional information about an object is stored in other ta-
bles of the database that can be looked up by following the associations between
tables.
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2.2 Multi-relational Data Mining Framework

Multi-relational data mining framework is based on the search for interesting
patterns in the relational database, where multi-relational patterns can be viewed
as “pieces of substructure encountered in the structure of the objects of interest”
[19].

Definition 4. ([19]) A multi-relational object is covered by a multi-relational
pattern iff the substructure described by the multi-relational pattern, in terms of
both attribute-value conditions and structural conditions, occurs at least once in
the multi-relational object.

Multi-relational patterns also can be viewed as subsets of the objects from
the database having some property. The most interesting subsets are chosen
according to some measure (i.e. information gain for classification task), which
guides the search in the space of all patterns. The search for interesting patterns
usually proceeds by a top-down induction. For each interesting pattern, sub-
patterns are obtained with the help of refinement operator, which can be seen
as further division of the set of objects covered by initial pattern. Top-down
induction of interesting pattern proceeds recursively applying such refinement
operators to the best patterns. Multi-relational pattern language is defined in
terms of selection graphs and refinements which are described in the following
sections.

2.3 Selection Graphs

Multi-relational patterns are expressed in a graphical language of selection
graphs [20].

Definition 5. ([19]) A selection graph S is a directed graph S = (N, E). N
represents the set of nodes in S in the form of tuples (X, C, s, f), where X is a
table from D, C is the set of conditions on attributes in X (for example, X.color
= ‘red’ or X.salary > 5,000), s is a flag with possible values open and closed,
and f is a flag with possible values front and back. E represents edges in S in
the form of tuples (p, q, a, e), where p and q are nodes and a is a relation between
p and q in the data model (for example, X.ID = Y.X ID), and e is a flag with
possible values present and absent. The selection graph should contain at least
one node n0 that corresponds to the target table T0.

An example of the selection graph for the data model from Figure 1 is shown
in Figure 2. This selection graph corresponds to those GENE(s) that belong
to chromosome number 5, that have at least one INTERACTION record of
type ’Genetic’ with a corresponding GENE on chromosome number 11, but
for which none of the INTERACTION records have type value ’Genetic’ and
expression corr value 0.2. In this example the target table is GENE, and within
GENE the target attribute is LOCALIZATION.

In graphical representation of a selection graph, the value of s is represented
by the absence or presence of a cross in the node, representing values open
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Expression_corr = 0.2

GENE.gene_id = 

INTERACTION.gene_id1 =
GENE.gene_id 

INTERACTION.gene_id2

GENE.gene_id = 

GENE

INTERACTION

Type = ’Genetic’

Chromosome=5

GENE

Chromosome=11

INTERACTION

Type = ’Genetic’ and

INTERACTION.gene_id2

Fig. 2. Selection graph corresponding to those GENEs which belong to chro-
mosome number 5, that have at least one interaction of type ’Genetic’ with a
corresponding gene on chromosome number 11 but for which none of the inter-
action records are of the type ’Genetic’ and expression corr value 0.2

TRANSLATE(S, key)
Input Selection graph S, key (primary or foreign) in the target node of the selection
graph S
Output SQL query for objects covered by selection graph S
1 table list := ′′

2 condition list := ′′

3 join list := ′′

4 for each node i in S do
5 if (i.s = ′open′ and i.f = ′front′)
6 table list.add(i.table name + ′T ′ + i)
7 for each condition c in i do
8 condition list.add(c)
9 for each edge j in S do
10 if (j.e = ′present′)
11 if (j.q.s = ′open′ and j.q.f = ′front′)
12 join list.add(j.a)
13 else join list.add(j.p + ′.′ + j.p.primary key + ′ not in ′ +

TRANSLATE( subgraph(S, j.q), j.q.key)
15 return ′select distinct′ + ′T0.

′ + key +
′ from ′ + table list +
′ where ′ + join list + ′ and ′ + condition list

Fig. 3. Translation of selection graph into SQL query

and closed, respectively. The value for e, in turn, is indicated by the presence
(absent value) or absence (present value) of a cross on the corresponding arrow
representing the edge. An edge between nodes p and q chooses the records in the
database that match the join condition, a, between the tables which is defined
by the relation between the primary key in p and a foreign key in q, or the
other way around. For example, the join condition, a, between table GENE



A Multi-relational Decision Tree Learning Algorithm 43

and INTERACTION in selection graph from Figure 2 is GENE.GENE ID =
INTERACTION.GENE ID2.

A present edge between tables p and q combined with a list of conditions,
q.C and p.C, selects those objects that match the list of conditions, q.C and
p.C, and belong to the join between p and q, specified by join condition, e.a. On
the other hand, an absent edge between tables p and q combined with a list of
conditions, q.C and p.C, selects those objects that match condition p.C but do
not satisfy the following: match q.C and belong to the join between tables at the
same time. Flag f is set to front for those nodes that on their path to n0 have
no closed edges. For all the other nodes flag f is set to back.

select distinct T0.gene id
from GENE T0, INTERACTION T1, GENE T2

where T0.gene id = T1.gene id2 and T1.gene id2 = T2.gene id
and T0.chromosome = 5 and T1.type = ’Genetic’ and T2.chromosome = 11
and T0.gene id not in ( select T0.gene id2

from INTERACTION T0

where T0.type = ’Genetic’ and T0.expression corr = 0.2)

Fig. 4. SQL query corresponding to the selection graph in Figure 2

Knobbe et al. [20] introduce the algorithm (Figure 3) for translating a se-
lection graph into SQL query. This algorithm returns the records in the target
table covered by this selection graph. The subgraph(S, j.q) procedure returns
the subgraph of the selection graph S starting with the node q as the target
node, which label s is reset to open, removing the part of the graph that was
connected to this node with the edge j and resetting all the values of flag f at
the resulting selection graph by definition of f . Notation j.q.key means the name
of the attribute (primary or foreign key) in the table q that is associated with
the table p in relation j.a. Using this procedure the graph in Figure 2 translates
to the SQL statement shown in Figure 4.

2.4 Refinements of Selection Graphs

Multi-relational data mining algorithms search for and successively refine inter-
esting patterns and select promising ones based on some impurity measure (e.g.
information gain). The set of refinements introduced by [20] are given below. We
will illustrate all the refinements on the selection graph from Figure 2. Labels s
and f help identify the nodes that needs to be refined. Note that a refinement
can only be applied to the open and front nodes in the selection graph S.

(a) Add positive condition. This refinement simply adds a condition c to the
set of conditions C in the node that is being refined in the selection graph
S without actually changing the structure of S. For the selection graph
from Figure 2 positive condition expression corr=0.5 applied to the node
INTERACTION results in the selection graph shown on Figure 5 a.
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Expression_corr = 0.5

Expression_corr = 0.2

Type = ’Genetic’
Expression_corr = 0.5

Type = ’Genetic’ and
Expression_corr = 0.2

INTERACTION GENE
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GENE
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INTERACTION

INTERACTION

GENE
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Chromosome=5

a) b)

INTERACTION GENE

Chromosome=11Type = ’Genetic’

Type = ’Genetic’ and

Fig. 5. Complement refinements for adding condition expression corr=0.5 to the
node INTERACTION in the selection graph from Figure 2: a) positive condition,
b) negative condition

(b) Add negative condition (Figure 5 b). If the node which is refined is not n0, the
corresponding refinement will introduce a new absent edge from the parent
of the selection node in question. The condition list of the selection node is
copied to the new closed node and extended by the new condition. This node
gets the copies of the children of the selection graph in question and open
edges to those children are added. If the node which is refined represents the
target table, the condition is simply negated and added to the current list
of conditions for this node. This refinement is the complement of the “add
positive condition refinement”, in the sense that it covers those objects from
the original selection graph which were not covered by corresponding “add
positive condition” refinement.

(c) Add present edge and open node. This refinement introduces a present edge
together with its corresponding table to the selection graph S. For the selec-
tion graph from Figure 2 adding edge from GENE node to COMPOSITION
node results in the selection graph shown in (Figure 6 a).

(d) Add absent edge and closed node (Figure 6 b). This refinement introduces an
absent edge together with its corresponding table to the selection graph S.
This refinement is complement to the “add present edge and open node”, in
the sense that it covers those objects from the original selection graph which
were not covered by “add present edge and open node” refinement.

It is important to note that only through the “add edge” refinements the
exploration of all the tables in the database is carried out. We can consider “add
condition” refinement on some attribute from some table only after the edge to
that table has been added to the selection graph. This raises the question as to
what happens if the values of the attributes in some table are important for the
task but the edge to this table can never be added, i.e. adding edge doesn’t result
in further split of the data covered by the refined selection graph. Look ahead
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Type = ’Genetic’

Expression_corr = 0.2
Type = ’Genetic’ and
Expression_corr = 0.2

GENE
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Chromosome=5
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COMPOSITION
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Fig. 6. Complement refinements for adding edge from GENE node to COMPO-
SITION node to selection graph from Figure 2: a) adding present edge and open
node, b) adding absent edge and closed node

refinements, which are a sequence of several refinements, are used for dealing
with this situation. In the case when some refinement does not split the data
covered by the selection graph, the next set of refinements is also considered as
refinements of the original selection graph.

3 MDRTL-2: An Efficient Multi-relational Decision Tree
Learning Algorithm

3.1 Decision Tree Construction

Multi-relational decision tree learning algorithm constructs a decision tree whose
nodes are multi-relational patterns i.e., selection graphs. MRDTL-2 that we
describe below is based on MRDTL proposed by Leiva [23] which in turn is
based on the algorithm described by [20] and the logical decision tree induction
algorithm called TILDE proposed by [1]. TILDE uses first order logic clauses
to represent decisions (nodes) in the tree, when data are represented in first
order logic rather than a collection of records in a relational database. MRDTL
deals with records in relational databases, similarly to the TILDE’s approach.
Essentially, MRDTL adds selection graphs as the nodes to the tree through a
process of successive refinement until some termination criterion is met (e.g.,
correct classification of instances in the training set).

The choice of refinement to be added at each step is guided by a suitable
impurity measure (e.g., information gain). MRDTL starts with the selection
graph containing a single node at the root of the tree, which represents the set
of all objects of interest in the relational database. This node corresponds to the
target table T0. The pseudocode for MRDTL is shown in Figure 7.
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TREE INDUCTION(D, S)
Input Database D, selection graph S
Output The root of the tree, T
1 R := optimal refinement(S)
2 if stopping criteria(S)
3 return leaf
4 else
6 Tleft := TREE INDUCTION(D, R(S))

8 Tright := TREE INDUCTION(D, R(S))

9 return node(Tleft, Tright, R)

Fig. 7. MRDTL algorithm

The function optimal refinement(S) considers every possible refinement that
can be made to the current selection graph S and selects the (locally) optimal
refinement (i.e., one that maximizes information gain). Here, R(S) denotes the
selection graph resulting from applying the refinement R to the selection graph
S. R(S) denotes the application of the complement of R to the selection graph
S. Our implementation of MRDTL considers the refinements described in the
Section 2 as well as the look ahead refinements. The program automatically
determines from the relational schema of the current database when look ahead
might be needed. When adding an edge does not result in further split of the
data, two-step refinements of the original selection graph are considered. Each
candidate refinement is evaluated in terms of the split of the data induced by the
refinement with respect to the target attribute, as in the case of the propositional
version of the decision tree learning algorithm [30]. Splits based on numerical
attributes are handled using a technique similar to that of C4.5 algorithm [30]
with modifications proposed in [10,29].

Our implementation of MRDTL uses SQL operations to obtain the counts
needed for calculating information gain associated with the refinements. First
we show the calculation of the information gain associated with “add condition”
refinements. Let X be the table associated with one of the nodes in the cur-
rent selection graph S and X.A be the attribute to be refined, and Rvj (S) and
Rvj (S) be the “add condition” X.A = vj refinement and the complement of it
respectively. The goal is to calculate entropies associated with the split based
on these two refinements. This requires the following counts: count(ci, Rvj (S))
and count(ci, Rvj (S)), where count(ci, S) is the number of objects covered with
selection graph S which have classification attribute T0.target attribute = ci ∈
DOM(T0.target attribute). The result of the SQL query shown in Figure 8 re-
turns a list of the necessary counts: count(ci, Rvj (S)) for each possible values
ci ∈ DOM(T0.target attribute) and vj ∈ DOM(X.A).

The rest of the counts needed for the computation of the information gain
can be obtained from the formula:
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select T0.target attribute, X.A, count(distinct T0.id)
from TRANSLATE(S).get table list
where TRANSLATE(S).get join list and TRANSLATE(S).get condition list

Fig. 8. SQL query that returns counts of the type count(ci, Rvj (S)) for each of
the possible values ci ∈ DOM(T0.target attribute) and vj ∈ DOM(X.A)

count(ci, Rvj (S)) = count(ci, S)− count(ci, Rvj (S))

Consider the SQL queries needed for calculating information gain associated
with “add edge” refinements. Let X be the table associated with one of the
nodes in the current selection graph S and e be the edge to be added from
table X to table Y , and Re(S) and Re(S) be the “add edge” e refinement and
its complement respectively. In order to calculate the entropies associated with
the split based on these refinements we need to gather the following counts:
count(ci, Re(S)) and count(ci, Re(S)). The result of the SQL query shown in
Figure 9 returns a list of the desired counts: count(ci, Re(S)) for each possible
value ci ∈ DOM(T0.target attribute).

select T0.target attribute, count(distinct T0.id)
from TRANSLATE(S).get table list, Y
where TRANSLATE(S).get join list and TRANSLATE(S).get command list and e.a

Fig. 9. SQL query returning counts of the type count(ci, Re(S)) for each possible
value ci ∈ DOM(T0.target attribute)

The rest of the counts needed for the computation of the information gain
can be obtained from the formula:

count(ci, Re(S)) = count(ci, S)− count(ci, Re(S))

The straightforward implementation of the algorithm based on the descrip-
tion given so far suffers from an efficiency problem which makes its application
to complex real-world data sets infeasible in practice. As one gets further down
in the decision tree the selection graph at the corresponding node grows. Thus,
as more and more nodes are added to the decision tree the longer it takes to
execute the corresponding SQL queries (Figures 8, 9) needed to examine the
candidate refinements of the corresponding selection graph. Consequently, the
straightforward implementation of MRDTL as described in [23] is too slow to
be useful in practice.

MRDTL-2 is a more efficient version of MRDTL. It exploits the fact that
some of the results of computations that were carried out in the course of adding
nodes at higher levels in the decision tree can be reused at lower levels in the
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course of refining the tree. Note that the queries from Figures 8 and 9 unneces-
sarily repeats work done earlier by retrieving instances covered by the selection
graph whenever refining an existing selection graph. This query can be signif-
icantly simplified by storing the instances covered by the selection graph from
previous iteration in a table to avoid retrieving them from the database. Thus,
refining an existing selection graph reduces to finding a (locally) optimal split
of the relevant set of instances.

Now we proceed to show how the calculation of the SQL queries in Figures 8
and 9 is carried out in MRDTL-2. In each iteration of the algorithm, we store the
primary keys from all open, front nodes of the selection graph for every object
covered by it together with its classification value. This can be viewed as storing
the ‘skeletons’ of the objects covered by the selection graph, because it stores
no other attribute information about records except for their primary keys. The
SQL query for generating such a table for the selection graph S is shown in
Figure 10. We call the resulting table of primary keys the sufficient table for S
and denote it by IS .

SUF TABLE(S)
Input Selection graph S
Output SQL query for creating sufficient table IS

1 table list, condition list, join list := extract from(TRANSLATE(S))
2 primary key list := ′T0.target attribute

′

3 for each node i in S do
4 if (i.s = ′open′ and i.f = ′front′)
5 primary key list .add(i.ID)
6 return ′create table IS as ( select ′ + primary key list +

′ from ′ + table list +
′ where ′ + join list + ′ and ′ + condition list + ′)′

Fig. 10. Algorithm for generating SQL query corresponding to the sufficient
table IS of the selection graph S

Given a sufficient table IS , we can obtain the counts needed for the calculation
of the entropy for the “add condition” refinements as shown in Figure 11, and
for the “add edge” refinements as shown in Figure 12.

It is easy to see that now the number of tables that need to be joined is
not more than 3, whereas the number of tables needed to be joined in Figures
8 and 9 grows with the size of the selection graph. It is this growth that was
responsible for the significant performance deterioration of MRDTL as nodes
get added to the decision tree. It is important to note that it is inefficient to use
the algorithm from Figure 10 in each iteration, since again the size of the query
would increase with the growth of the selection graph. It is possible to create the
sufficient table for the refined selection graph using only the information about
refinement and sufficient table of the original selection graph as shown in Figure
13.
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select IS.T0 target attribute, X.A, count(distinct IS.T0 id)
from IS, X
where IS.X ID = X.ID

Fig. 11. SQL query which returns the counts needed for calculating entropy for
the splits based on “add condition” refinements to the node X for the attribute
X.A using sufficient table IS

The simple modifications described above makeMRDTL-2 significantly faster
to execute compared to MRDTL. This is confirmed by experimental results pre-
sented in section 4.

3.2 Handling Missing Values

The current implementation of MRDTL-2 incorporates a simple approach to
dealing with missing attribute values in the data. A Naive Bayes model for
each attribute in a table is built based on the other attributes (excluding the
class attribute). Missing attribute values are ‘filled in’ with the most likely value
predicted by the Naive Bayes predictor for the corresponding attribute. Thus,
for each record, r, from table X we replace its missing value for the attribute
X.A with the following value:

vNB = argmax
vj ∈ DOM(X.A)

P (vj)
∏

∀Xl∈D

∏

∀Xl.Ai,Ai �=A,

Ai �=T0.target attribute

∏

∀rn∈Xl,rn
associatedwithr

P (Xl.Ai|vj)

Here the first product is taken over the tables in the training database; The
second product is taken over all the attributes in that table, except for the
target attribute, T0.target attribute, and the attribute which is being predicted,
namely, X.A; The third product is taken over all the records in the table Xl

which are connected to the record r through the associations between the tables
X and Xl. In the case of one-to-many relation between the tables X and Xl,
one record from table X may have several corresponding records in the table Xl.
The value P (Xl.Ai|vj) is defined as the probability that some random element
from table X has at least one corresponding record from table Xl.

Once the tables in the database are preprocessed in this manner, MRDTL-2
proceeds to build a decision tree from the resulting tables that contain no missing
attribute values.

select IS.T0 target attribute, count(distinct IS.T0 id)
from IS, X, Y
where IS.X ID = X.ID and e.a

Fig. 12. SQL query which returns counts needed for calculating entropy for the
splits based on “add edge” e refinements from the node X to the node Y using
sufficient table IS
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REFINEMENT SUF TABLE(IS, R)
Input Sufficient table IS for selection graph S, refinement R
Output SQL query for sufficient table for R(S)
1 table list := IS

2 condition list := ′′

3 join list := ′′

4 primary key list := primary keys(IS)
5 if R == add positive condition, c, in table Ti

6 table list += Ti

7 condition list += Ti.c
8 join list += Ti.ID+′ =′+IS.Ti ID
9 else if R == add negative condition, c, in table Ti

10 condition list += T0.ID +
′is not in ( select distinct′ + IS.T0 ID +

′ from′ + IS, Ti +
′ where′ + Ti.c +

′and′ + Ti.ID+′ =′ +IS.Ti ID+′)′

12 else if R = add present edge, e, from Ti to Tj

13 table list += Ti+
′,′+Tj

14 join list += Ti.ID+′ =′ +IS.Ti ID+′ and ′ + e.a
15 primary key list += Tj .ID
16 else if R == add absent edge, e from Ti to Tj

17 condition list += T0.ID +
′is not in ( select distinct′ + IS.T0 ID +

′ from ′ + IS+
′,′+Ti+

′,′+Tj +
′ where ′ + Ti.ID+′ =′ +IS.Ti ID+′ and ′ + e.a+′)′

19 return ′create table I R as ( select ′ + primary key list +
′ from ′ + table list +
′ where ′ + join list + ′ and ′ + condition list + ′)′

Fig. 13. Algorithm for generating SQL query corresponding to sufficient table
IR(S)

In the future it would be interesting to investigate more sophisticated tech-
niques for dealing with missing values.

3.3 Using the Decision Tree for Classification

Before classifying an instance, any missing attribute values are filled in by prepro-
cessing the tables using the method described above on the database of instances
to be classified.

The decision tree produced by MRDTL-2, as in the case of MRDTL, can
be viewed as a set of SQL queries associated with the selection graphs that
correspond to the leaves of the decision tree. Each selection graph (query) has
a class label associated with it. If the corresponding node is not a pure node,
(i.e., it does not unambiguously classify the training instances that match the
query), the label associated with the node is based on the classification of the
majority of training instances that match the corresponding selection graph in
our implementation. (Alternatively, we could use probabilistic assignment of
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labels based on the distribution of class labels among the training instances
that match the corresponding selection graph). The complementary nature of
the different branches of a decision tree ensures that a given instance will not
be assigned conflicting labels. It is also worth noting that it is not necessary to
traverse the entire tree in order to classify a new instance; all the constraints on a
certain path are stored in the selection graph associated with the corresponding
leaf node.

4 Experimental Results

Our experiments focused on three data sets - the mutagenesis database which has
been widely used in Inductive Logic Programming (ILP) research [25], the data
for prediction of protein/gene localization and function from KDD Cup 2001 [17]
and the data for predicting thrombosis from PKDD 2001 Discovery Challenge
[27]. We compared the results we obtained using MRDTL-2 algorithm with those
reported in the literature for the same datasets.

4.1 Mutagenesis Data Set

The entity-relation diagram for the part of the Mutagenesis database [25] we
used in our experiments is shown in Figure 14. The data set consists of 230
molecules divided into two subsets: 188 molecules for which linear regression
yields good results and 42 molecules that are regression-unfriendly. This database
contains descriptions of molecules and the characteristic to be predicted is their
mutagenic activity (ability to cause DNA to mutate) represented by attribute
label in molecule table.

CHARGE

BOND

MOLECULE_ID

ATOM_ID1

ATOM_ID2

TYPE

MOLECULE

MOLECULE_ID

LOG_MUT

LOGP

LUGMO

IND1

INDA

LABEL

ATOM

ATOME_ID

MOLECULE_ID

ELEMNT

TYPE

Fig. 14. Schema of the mutagenesis database

This dataset comes with different levels of background knowledge B0, B1, B2,
and B3. In our experiments we chose to use the background knowledge B2 and
regression friendly subset of the dataset in order to compare the performance of
MRDTL-2 with other methods for which experimental results are available in
the literature. The results averaged with ten-fold cross-validation are shown in
the Table 1.
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Table 1. Experimental results for mutagenesis data

accuracy time with MRDTL-2 time with MRDTL

mutagenesis 87.5 % 28.45 secs 52.155 secs

Table 2. Experimental results for gene/protein localization prediction task

localization accuracy time with MRDTL-2 time with MRDTL

accuracy with mvh 76.11 % 202.9 secs 1256.387 secs

accuracy without mvh 50.14 % 550.76 secs 2257.206 secs

4.2 KDD Cup 2001 Data Set

We also considered the two tasks from the KDD Cup 2001 data mining compe-
tition [5]: prediction of gene/protein function and localization.

We normalized the data given in the task which resulted in the schema shown
in Table 1. The resulting database consists of 3 tables, GENE, INTERACTION
and COMPOSITION, where GENE table contains 862 entries in the training set
and 381 in the testing set. Gene localization and function tasks present signifi-
cant challenges because many attribute values in the data set are missing. We
have conducted experiments both using technique for handling missing values,
denoted mvh in the tables 2 and 3, and not using it (considering each missing
values as a special value “missing”).

Table 2 summarizes the results we obtained for predicting GENE.localization
value on this set.

In the case gene/protein function prediction, instances often have several class
labels, since a protein may have several functions. MRDTL-2, like its proposi-
tional counterpart C4.5, assumes that each instance can be assigned to only
one of several non-overlapping classes. To deal with multivalued class attributes,
we transformed the problem into one of separately predicting membership in
each possible class. i.e. for each possible function label we predicted whether the
protein has this function or not. The overall accuracy was obtained from the
formula:

(true positive + true negative)
(true positive + true negative + false positive + false negative)

for all binary predictions. Table 3 summarizes the results we got for predicting
the function of the protein.

4.3 PKDD 2001 Discovery Challenge Data Set

The Thrombosis Data from the PKDD 2001 Discovery Challenge Data Set [7]
consists of seven tables. PATIENT INFO contains 1239 records about patients.
For our experiments we used 4 other tables (DIAGNOSIS, ANTIBODY EXAM,
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Table 3. Experimental results for gene/protein function prediction task

function accuracy time with MRDTL-2 time with MRDTL

accuracy with mvh 91.44 % 151.19 secs 307.82 secs

accuracy without mvh 88.56 % 61.29 secs 118.41 secs

Table 4. Experimental results for Thrombosis data set

accuracy time with MRDTL-2 time with MRDTL

thrombosis 98.1 % 127.75 secs 198.22 secs

Table 5. Comparison of MRDTL-2 performance with the best-known reported
results

dataset MRDTL accuracy best reported accuracy reference

mutagenesis 87.5 % 86 % [31]

localization 76.11 % 72.1 % [5]

function 91.44 % 93.6 % [5]

thrombosis 98.1 % 99.28 % [7]

ANA PATTERN and THROMBOSIS) which all have a foreign key to the PA-
TIENT INFO table. There are no other relations between the tables in this
dataset. The task is to predict the degree of thrombosis attribute from AN-
TIBODY EXAM table. The results we obtained with 5:2 cross-validation are
shown in Table 4. The cross-validation was done by partitioning the set of all
records in the ANTIBODY EXAM table and their corresponding records from
other tables into training and test sets.

4.4 Comparative Evaluation

The results of the comparison of MRDTL-2 performance with the best-known
reported results for the datasets we described above are shown in the Table 5.

5 Summary and Discussion

Advances in data acquisition, digital communication, and storage technologies
have made it possible to gather and store large volumes data in digital form.
A large fraction of this data resides in relational databases. Even when the
data repository is not a relational database, it is possible to extract informa-
tion from heterogeneous, autonomous, distributed data sources using domain
specific ontologies [28]. The result of such data integration is in the form of
relational tables. Effective use of such data in data-driven scientific discovery
and decision-making calls for sophisticated algorithms for knowledge acquisi-
tion from relational databases or multi-relational data mining algorithms is an
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important problem in multi-relational data mining which has begun to receive
significant attention in the literature [1,19,11,21,22,12,18,26,9,8,14,16,2,6,13,24].
Learning classifiers from relational databases has also been a focus of KDD Cup
2001 Competition and the PKDD 2001 Discovery Challenge. Against this back-
ground, this paper describes the design and implementation of MRDTL-2 - an
algorithm for learning decision tree classifiers from relational databases, which is
based on the framework for multi-relational data mining originally proposed by
Knobbe et al. [19]. MRDTL-2 extends an MRDTL, an algorithm for learning de-
cision tree classifiers described by Leiva [23]. MRDTL-2 includes enhancements
that overcome two significant limitations of MRDTL:

(a) Slow running time: MRDTL-2 incorporates methods for speeding up
MRDTL. Experiments using several data sets from KDD Cup 2001 and
PKDD 2001 Discovery Challenge show that the proposed methods can sig-
nificantly reduce the running time of the algorithm, thereby making it pos-
sible to apply multi-relational decision tree learning algorithms on far more
complex data mining tasks. The proposed methods are potentially applica-
ble to a broad class of multi-relational data mining algorithms based on the
framework proposed by Knobbe et al. [19].

(b) Inability to handle missing attribute values: MRDTL-2 includes a simple and
computationally efficient technique using Naive Bayes classifiers for ‘filling
in’ missing attribute values, which significantly enhances the applicability of
multi-relational decision tree learning algorithms to the real-world classifi-
cation tasks.

Our experiments with several classification tasks drawn from KDD Cup 2001 [5]
and PKDD 2001 Discovery Challenge [7] and the widely studied Mutagenesis
data set show that MRDTL-2

(a) significantly outperforms MRDTL in terms of running time
(b) yields results that are comparable to the best reported results obtained using

multi-relational data mining algorithms (Table 5)
(c) compares favorably with feature-based learners that are based on clever

propositionalization methods [22]

Work in progress is aimed at:

(a) Incorporation of more sophisticated methods for handling missing attribute
values into MRDTL-2

(b) Incorporation of sophisticated pruning methods or complexity regularization
techniques into MRDTL-2 to minimize overfitting and improve generaliza-
tion

(c) Development of ontology-guided multi-relational decision tree learning algo-
rithms to generate classifiers at multiple levels of abstraction [33]

(d) Development of variants of MRDTL that can learn from heterogeneous, dis-
tributed, autonomous data [4,3,28]

(e) More extensive experimental evaluation of MRDTL-2 on real-world data
sets.
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(f) Incorporation of more sophisticated methods for evaluation of MRDTL-2
[15].
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