
A Framework for Learning from Distributed Data Using Sufficient
Statistics and its Application to Learning Decision Trees

Doina Caragea, Adrian Silvescu and Vasant Honavar

Artificial Intelligence Research Laboratory,
Computer Science Department, Iowa State University,

226 Atanasoff Hall, Ames, IA 50011-1040, USA
{dcaragea,silvescu,honavar}@cs.iastate.edu

Abstract. This paper motivates and precisely formulates the problem of learning from distributed data;
describes a general strategy for transforming traditional machine learning algorithms into algorithms for
learning from distributed data; demonstrates the application of this strategy to devise algorithms for deci-
sion tree induction from distributed data; and identifies the conditions under which the algorithms in the
distributed setting are superior to their centralized counterparts in terms of time and communication com-
plexity; The resulting algorithms are provably exact in that the decision tree constructed from distributed
data is identical to that obtained in the centralized setting. Some natural extensions leading to algorithms
for learning from heterogeneous distributed data and learning under privacy constraints are outlined.

Keywords: Distributed Learning, Sufficient Statistics, Learning Agents, Decision Trees

1 Introduction

Recent advances in computing, communications, and digital storage technologies, together with development
of high throughput data acquisition technologies have made it possible to gather and store large volumes of data
in digital form. For example, advances in high throughput sequencing and other data acquisition technologies
have resulted in gigabytes of DNA, protein sequence data, and gene expression data being gathered at steadily
increasing rates in biological sciences; organizations have begun to capture and store a variety of data about
various aspects of their operations (e.g., products, customers, and transactions); complex distributed systems
(e.g., computer systems, communication networks, power systems) are equipped with sensors and measure-
ment devices that gather and store a variety of data for use in monitoring, controlling, and improving the
operation of such systems. These developments have resulted in unprecedented opportunities for large-scale
data-driven knowledge acquisition with the potential for fundamental gains in scientific understanding (e.g.,
characterization of macromolecular structure-function relationships in biology) in many data-rich domains. In
such applications, the data sources of interest are typically physically distributed and are often autonomous.
Given the large size of these data sets, gathering all of the data in a centralized location is generally neither
desirable nor feasible because of bandwidth and storage requirements. In such domains, there is a need for
knowledge acquisition systems that can perform the necessary analysis of data at the locations where the data
and the computational resources are available and transmit the results of analysis (knowledge acquired from the
data) to the locations where they are needed (Honavar et al. 1998). In other domains, the ability of autonomous
organizations to share raw data may be limited due to a variety of reasons (e.g., privacy considerations). In
such cases, there is a need for knowledge acquisition algorithms that can learn from statistical summaries of
data (e.g., counts of instances that match certain criteria) that are made available as needed from the distributed
data sources in the absence of access to raw data.

Against this background, this paper presents an approach to the design of systems for learning from dis-
tributed, autonomous data sources. We precisely formulate a class of distributed learning problems; present a
general strategy for transforming traditional machine learning algorithms into distributed learning algorithms;
and demonstrate the application of this strategy to devise algorithms for decision tree induction (using a variety
of splitting criteria) from distributed data. The resulting algorithms are provably exact in that the decision tree
constructed from distributed data is identical to that obtained by the corresponding algorithms in the central-
ized setting (i.e., when all of the data is available in a central location) and they compare favorable to their
centralized counterparts in terms of time and communication complexity.

The rest of the paper is organized as follows: Section 2 presents a precise formulation of the problem of
learning from distributed data; Section 3 introduces a general strategy for transforming centralized learning
algorithms into algorithms for learning from distributed data; Section 4 demonstrates an application of this

strategy to devise algorithms for decision tree induction (using a variety of commonly used splitting criteria)
from horizontally or vertically fragmented distributed data, and provides an analysis of the time and commu-
nication complexity of the proposed algorithms; Section 5 concludes with a discussion of related research and
a brief outline of future research directions.

2 Learning from Distributed Data

The problem of learning from data can be summarized as follows: Given a data set D, a hypothesis class H ,
and a performance criterion P , the learning algorithm L outputs a hypothesis h ∈ H that optimizes P . In
pattern classification applications, h is a classifier (e.g., a decision tree, a support vector machine, etc.). The
data D typically consists of a set of training examples. Each training example is an ordered tuple of attribute
values, where one of the attributes corresponds to a class label and the remaining attributes represent inputs
to the classifier. The goal of learning is to produce a hypothesis that optimizes the performance criterion of
minimizing some function of the classification error (on the training data) and the complexity of the hypothesis.
Under appropriate assumptions, this is likely to result in a classifier that assigns correct labels to unlabeled
instances.

In a distributed setting, each data source contains only a fragment of the data set. Two common types
of data fragmentation are: horizontal fragmentation (Figure 1 (Left)), wherein (possibly overlapping) subsets
of data tuples are stored at different sites; and vertical fragmentation (Figure 1 (Right)), wherein (possibly
overlapping) subtuples of data tuples are stored at different sites. More generally, the data may be fragmented
into a set of relations (as in the case of tables of a relational database, but distributed across multiple sites). If
a data set D is distributed among the sites 1, · · · , n containing data set fragments D1, · · · , Dn, we assume that
the individual data sets D1, · · · , Dn collectively contain all the information needed to construct the complete
dataset D (at least in principle).

.

D D

D

D

1

1

n

n

Attributes Attributes

... ...

Instances

.

.

.

.

.

Figure 1. Data Fragmentation: (Left) Horizontally Fragmented Data. (Right) Vertically Fragmented Data.

The distributed setting typically imposes a set of constraints Z on the learner that are absent in the central-
ized setting. For example, the constraints Z may prohibit the transfer of raw data from each of the sites to a
central location while allowing the learner to obtain certain statistics from the individual sites (e.g., counts of
instances that have specified values for some subset of attributes). In some applications of data mining (e.g.,
knowledge discovery from clinical records), Z might include constraints designed to preserve privacy.

The problem of learning from distributed data can be summarized as follows: Given the fragments
D1, · · · , Dn of a data set D distributed across the sites 1, · · · , n, a set of constraints Z, a hypothesis class
H , and a performance criterion P , the task of the learner Ld is to output a hypothesis h ∈ H that optimizes P

using only operations allowed by Z. Clearly, the problem of learning from a centralized data set D is a special
case of learning from distributed data where n = 1 and Z = φ.

Having defined the problem of learning from distributed data, we proceed to define some criteria that can
be used to evaluate the quality of the hypothesis produced by an algorithm Ld for learning from distributed
data relative to its centralized counterpart.

We say that an algorithm Ld for learning from distributed data sets D1, · · · , Dn is exact relative to its
centralized counterpart L if the hypothesis produced by Ld is identical to that obtained by L from the complete
data set D obtained by appropriately combining the data sets D1, · · · , Dn.

Example: Let Ld be an algorithm for learning a Support Vector Machine (SVM) classifier hd : <n →
{−1, 1}, under constraints Z, from horizontally fragmented distributed data D1, · · · , Dn, where each Di ⊆
<n × {−1, 1}. Let L be a centralized algorithm for learning an SVM classifier h : <n → {−1, 1} from
data D ⊆ <n × {−1, 1}. If D = ∪n

1 Di, then we say that Ld is exact with respect to L if and only if

∀X ∈ <n, h(X) = hd(X).
Proof of exactness of an algorithm for learning from distributed data relative to its centralized counter-

part ensures that a large collection of existing theoretical (e.g., sample complexity, error bounds) as well as
empirical results obtained in the centralized setting apply in the distributed setting.

Similarly, we can define exactness of learning from distributed data with respect to other criteria of interest
(e.g., expected accuracy of the learned hypothesis). More generally, it might be useful to consider approximate
distributed learning in similar settings. However, we focus on algorithms for learning from distributed data
that are provably exact with respect to their centralized counterparts in the sense defined above.

3 A General Strategy for Designing Algorithms for Learning from
Distributed Data

Our general strategy for designing an algorithm for learning from distributed data that is provably exact with
respect to its centralized counterpart (in the sense defined above) follows from the observation that most of
the learning algorithms use only certain statistics computed from the data D in the process of generating the
hypotheses that they output. (Recall that a statistic is simply a function of the data. Examples of statistics
include mean value of an attribute, counts of instances that have specified values for some subset of attributes,
the most frequent value of an attribute, etc.) This yields a natural decomposition of a learning algorithm
into two components (See Figure 2): (1) an information extraction component that formulates and sends a
statistical query to a data source and (2) a hypothesis generation component that uses the resulting statistic
to modify a partially constructed hypothesis (and further invokes the information extraction component if
needed).

A statistic s(D) is called a sufficient statistic for a parameter θ if s(D) (loosely speaking) provides all the
information needed for estimating the parameter θ from data D. Thus, sample mean is a sufficient statistic for
mean of a Gaussian distribution. A sufficient statistic s for a parameter θ is called a minimal sufficient statistic
if for every sufficient statistic sθ for θ there exists a function gsθ

such that gsθ
(sθ(D)) = s(D) (Casella and

Berger 2001).
We can generalize this notion of a sufficient statistic for a parameter θ to yield a notion of a sufficient

statistic sL,h(D) for learning a hypothesis h using a learning algorithm L applied to a data set D. Trivially,
the data D is a sufficient statistic for learning h using L. However, we are typically interested in statistics that
are minimal or at the very least, substantially smaller in size than the whole data set D.

In some simple cases, it is possible to extract a sufficient statistic sL,h(D) for constructing a hypothesis h

in one step (e.g., when L is the standard algorithm for learning a Naive Bayes classifier). In such a case, we
say that sL,h is a sufficient statistic for learning h using the learning algorithm L if there exists an algorithm
that accepts sL,h(D) as input and outputs h = L(D).

In practice, h is constructed by L by interleaving information extraction and hypothesis generation op-
erations (see Figure 2). Thus, a decision tree learning algorithm would first obtain the sufficient statistics
(expected information concerning the class membership of an instance associated with each of the attributes)
for a single node decision tree (a partial hypothesis h1), then follow up with queries for additional statistics
needed to iteratively refine h1 to obtain a succession of partial hypotheses h1, h2 · · · culminating in h.

We say that s(D, hi) is a sufficient statistic for the refinement of a hypothesis hi into hi+1 (denoted by
shi→hi+1

) if there exists an algorithm R which accepts hi and s(D, hi) as inputs and outputs hi+1.
We say that sh(D, h1 · · ·hm) is a sufficient statistic for the composition of the hypotheses (h1 · · ·hm)

into h (denoted by s(h1,···,hm)→h) if there exists an algorithm C which accepts as inputs h1, · · · , hm and
sh(D, h1, · · · , hm) and outputs the hypothesis h.

We say that shi→hi+k
(where k ≥ 0) is a sufficient statistic for iteratively refining a hypothesis hi into

hi+k if hi+k can be obtained through a sequence of refinements starting with hi. We say that s(h1···hm)→h is
a sufficient statistic for obtaining hypothesis h starting with hypotheses h1, · · · , hm if h can be obtained from
h1 · · ·hm through some sequence of applications of composition and refinement operations.

Assuming that the relevant sufficient statistics (and the procedures for computing them) can be defined, the
application of a learning algorithm L to a data set D can be reduced to the computation of sh0→h through some
sequence of applications of hypothesis refinement and composition operations starting with the hypothesis
h0 = φ (see Figure 2).

In light of the previous discussion, the task of designing an algorithm Ld for learning from distributed data
can be decomposed into two components: (1) information extraction from distributed data and (2) hypothesis
generation. Information extraction from distributed data entails decomposing each statistical query q posed by

s(D, h)
i

Statistical Query

Data
 D

Learner

Formulation

Hypothesis Generation

Query

Result
i+1 ih <−R(h , s(D,h))

i

i

s(D, h)

Figure 2. Learning Revisited: identify sufficient statistics, gather the sufficient statistics and generate the current
hypothesis.

the information extraction component of the learner into subqueries q1, · · · , qn that can be answered by the
individual data sources D1, · · · , Dn, respectively, and a procedure for combining the answers to the subqueries
into an answer for the original query q (See Figure 3). When the learner’s access to data sources is subject to
constraints Z the resulting plan for information extraction has to be executable without violating the constraints
Z. The exactness of the algorithm Ld for learning from distributed data relative to its centralized counterpart,
which requires access to the complete data set D, follows from the correctness (soundness) of the query
decomposition and answer composition procedure.

The transformation of the task of learning from distributed data into a sequence of applications of hypoth-
esis refinement and hypothesis composition operations can be performed assuming serial or parallel access to
the data sources D1, · · · , Dn (see Figure 4).

s(D, h)

Statistical Query

Learner

Decomposition
Query

Answer
Composition

D

D

D

1

n

2

q

q

q

1

2

n

Query

Result

Formulation

Hypothesis Generation

i+1 iih <−R(h , s(D, h))

i

i

s(D, h)

Figure 3. Exact Distributed Learning: distribute the statistical query among the distributed data sets and compose
their answers.

Global
1

s(D ... D , h)
n

DD DD D D
1 2 n

2

1 2n n

n1 21 n

 S S S

SGSG SG

 S S S

SG SG SG

1
s(D ... D , h)

n

Data

Gathering
Statistics

Statistics
Partial

Statistics

Figure 4. Distributed Statistics Gathering: (Left) Serial. (Right) Parallel.

In the next section, we will demonstrate the application of the general approach described above in the case
of learning decision trees from distributed data.

4 Decision Tree Induction from Distributed Data

Decision tree algorithms (Quinlan 1986, Breiman et al. 1984) are among some of the most widely used ma-
chine learning algorithms for building pattern classifiers from data. Their popularity is due in part to their abil-
ity to: select from all attributes used to describe the data, a subset of attributes that are relevant for classification;
identify complex predictive relations among attributes; and produce classifiers that are easy to comprehend for
humans.

The ID3 (Iterative Dichotomizer 3) algorithm proposed by Quinlan (Quinlan 1986) and its more recent
variants represent a widely used family of decision tree learning algorithms. The ID3 algorithm searches
in a greedy fashion, for attributes that yield the maximum amount of information for determining the class
membership of instances in a training set D of labeled instances. The result is a decision tree that correctly
assigns each instance in D to its respective class. The construction of the decision tree is accomplished by
recursively partitioning D into subsets based on values of the chosen attribute until each resulting subset has
instances that belong to exactly one of the m classes. The selection of an attribute at each stage of construction
of the decision tree maximizes the estimated expected information gained from knowing the value of the
attribute in question.

Consider a set of instances S which is partitioned into m disjoint subsets (classes) C1, C2, ..., Cm such

that D =
M
⋃

i=1

Ci and Ci

⋂

Cj = ∅ ∀i 6= j. The estimated probability that a randomly chosen instance x ∈ D

belongs to the class Cj is pj =
|Cj |
|D| , where |X | denotes the cardinality of the set X . The estimated entropy

of a set D measures the expected information needed to identify the class membership of instances in D, and

is defined as follows: entropy(D) = −
∑

j

|Cj |
|D| · log2

(

|Cj |
|D|

)

. Given some impurity measure, the entropy

(Quinlan 1986) or Gini index (Breiman et al. 1984), or any other measure that can be defined based on the
probabilities pj , we can define the estimated information gain for an attribute a, relative to a collection of

instances S as follows: IGain(D, a) = I(D) −
∑

v∈V alues(a)
|Dv|
|D| I(Dv), where V alues(A) is the set of

all possible values for attribute a, Dv is the subset of D for which attribute a has value v, and I(D) can be
entropy(D), Gini index, or any other suitable measure.

Thus, the information requirements of ID3-like decision tree learning algorithms can be expressed in terms
of relative frequencies computed from the relevant instances at each node. These relative frequencies represent
refinement sufficient statistics in the sense defined in the previous section. Different algorithms for decision
tree induction differ from each other in terms of the criterion that is used to evaluate the splits that correspond
to tests on different candidate attributes. The choice of the attribute at each node of the decision tree greedily
maximizes (or minimizes) the chosen splitting criterion (Caragea et al. 2003).

To keep things simple, we assume that all the attributes are discrete or categorical. However, all the discus-
sion below can be easily generalized to continuous attributes (Witten, I. and Frank, E. 1999). Often, decision
tree algorithms also include a pruning phase to alleviate the problem of overfitting the training data. For the
sake of simplicity of exposition, we limit our discussion to decision tree construction without pruning. How-
ever, it is relatively straightforward to modify the proposed algorithms to incorporate a variety of pruning
methods.

4.1 Statistics Gathering from Distributed Data

Assume that given a partially constructed decision tree, we want to choose the best attribute for the next
split. Let aj(π) denote the attribute at the jth node along a path π starting from the attribute a1(π) that
corresponds to the root of the decision tree, leading up to the node in question al(π) at depth l. Let v(aj(π))
denote the value of the attribute aj(π), corresponding to the jth node along the path π. For adding a node
below al(π), the set of examples being considered satisfy the following constraints on values of attributes:
L(π) = [a1(π) = v(a1(π))] ∧ [a2(π) = v(a2(π))] · · · [al(π) = v(al(π))] where [aj(π) = v(aj(π))] denotes
the fact that the value of the jth attribute along the path π is v(aj(π)).

It follows from the preceding discussion that the sufficient statistics for constructing decision trees are
the counts of examples that satisfy specified constraints on the values of particular attributes. These counts
have to be obtained once for each node that is added to the tree starting with the root node. If we can devise
distributed statistics gathering operators for obtaining the necessary counts from distributed data sets, we can
obtain exact distributed decision tree learning algorithms. Thus, the decision tree constructed from a given
data set in the distributed setting is exactly the same as that obtained in the batch setting when using the same

splitting criterion in both cases.

4.1.1 Horizontally Fragmented Distributed Data

When the data is horizontally distributed, examples corresponding to a particular value of a particular at-
tribute are scattered at different locations. In order to identify the best split at a particular node in a partially
constructed tree, all the sites are visited and the counts corresponding to candidate splits of that node are accu-
mulated. The learner uses these counts to find the attribute that yields the best split to further partition the set
of examples at that node. Thus, given L(π), in order to split the node corresponding to al(π) = v(al(π)), the
statistics gathering component has to obtain the counts of examples that belong to each class for each possible
value of each candidate attribute.

Let |D| be the total number of examples in the distributed data sets; |A|, the number of attributes; V

the maximum number of possible values per attribute; n the number of sites; m the number of classes; and
size(T) the number of nodes in the decision tree. For each node in the decision tree T , the statistics gathering
component has to scan the data at each site to calculate the corresponding counts. We have:

∑n

i=1 |Di| = |D|.
Therefore, in the case of serial access to the distributed data sources (Figure 4 (Left)), the time complexity
of the resulting algorithm is O(|D||A| · size(T)). In the case of parallel access to the data sources (Figure
4 (Right)), this can be further improved since each site can perform information extraction in parallel. For
each node in the decision tree T , each site has to transmit the counts based on its local data. These counts
form a matrix of size m|A|V . Hence, the communication complexity (the total amount of information that
is transmitted between sites) is given by O(m|A||V |n · size(T)). It is worth noting that some of the bounds
presented here can be further improved so that they depend on the height of the tree instead of the number of
nodes in the tree.

4.1.2 Vertically Fragmented Distributed Data

In vertically distributed datasets, we assume that each example has a unique index associated with it. Subtuples
of an example are distributed across different sites. However, correspondence between subtuples of a tuple can
be established using the unique index. As before, given L(π), in order to split the node corresponding to
al(π) = v(al(π)), the statistics gathering component has to obtain the counts of examples that belong to each
class for each possible value of each candidate attribute. Since each site has only a subset of the attributes, the
set of indices corresponding to the examples that match the constraint L(π) have to be transmitted to the sites.
Using this information, each site can compute the relevant counts that correspond to the attributes that are
stored at the site. The hypothesis generation component uses the counts from all the sites to select the attribute
to further split the node corresponding to al(π) = v(al(π)). For each node in the decision tree T , each site
has to compute the relevant counts of examples that satisfy L(π) for the attributes stored at that site. The
number of subtuples stored at each site is |D| and the number of attributes at each site is bounded by the total
number of attributes |A|. In the case of serial access to distributed data sources, the time complexity is given by
O(|D||A|n·size(T)). In the case of parallel distributed learning since the various sites can perform information
extraction in parallel, this can be further improved. For each node in the tree T , we need to transmit to each site,
the set of indices for the examples that satisfy corresponding constraint L(π) and get back the relevant counts
for the attributes that are stored at that site. The number of indices is bounded by |D| and the number of counts
is bounded by m|A|V . Hence, the communication complexity is given by O((|D| + m|A|V)n · size(T)).
Again, it is possible to further improve some of these bounds so that they depend on the height of the tree
instead of the number of nodes in the tree.

4.2 Algorithm for Learning Decision Trees from Distributed Data Compared with
its Centralized Counterpart

Our approach to learning decision trees from distributed data based on the decomposition of the learning
task into a distributed statistics gathering component and a hypothesis generation component provides an
effective way to deal with scenarios in which the sites provide only statistical summaries of the data on demand
and prohibit access to raw data. Even when it is possible to access the raw data, the distributed algorithm
compares favorably with its centralized counterpart which needs access to the entire data set, whenever its
communication cost is less than the cost of collecting all of the data in a central location. It follows from the
preceding analysis that in the case of horizontally fragmented data, the distributed algorithm has an advantage
when mV n · size(T) ≤ |D| since the cost of shipping the data is given by its actual size, which is given by

|D||A|. In the case of vertically fragmented data, the corresponding conditions are given by size(T) ≤ |A|
since the cost of shipping the data is given by its actual size, which has a lower bound of |D||A|. These
conditions are often met in the case of large, high-dimensional data sets.

5 Summary and Discussion

5.1 Summary

Efficient learning algorithms with provable performance guarantees for learning from from distributed data
constitute a key element of any practical approaches to data driven discovery and decision making using
large, autonomous data repositories that are becoming available in many domains (e.g., biological sciences,
atmospheric sciences). In this paper, we have precisely formulated a class of distributed learning problems and
described a general strategy for transforming standard machine learning algorithms that assume centralized
access to data in a single location into algorithms for learning from distributed data. We have demonstrated
the application of this strategy to devise algorithms for decision tree induction from distributed data. The
resulting algorithms are provably exact in that the decision tree constructed from distributed data is identical
to that obtained by the corresponding algorithm when it is used in the centralized setting. This ensures that
the entire body of theoretical (e.g., sample complexity, error bounds) and empirical results obtained in the
centralized setting carry over to the distributed setting. We have also identified the conditions under which it
is advantageous to use the algorithm for learning from distributed data instead of its centralized counterpart.

5.2 Discussion

Distributed learning has received considerable attention in the literature. Some of the distributed learning
algorithms proposed focus on distributing a large centralized data set to multiple processors to exploit parallel
processing to speed up learning. In contrast, the approach proposed in this paper focuses on learning from a
set of autonomous distributed data sources. The autonomous nature of the data sources implies that the learner
has no control over the manner in which the data is distributed across the different sources.

Other algorithms for learning classifiers from distributed data (Domingos 1997, Prodromidis et al. 2000)
learn seperate hypothesis from each of the data sets and combine them (typically using a weighted voting
scheme) to obtain an ensemble classifier. This typically requires transmission of a subset of data from each of
the data sources to the central site for use in determining the weights to be assigned to the individual hypothe-
ses, precluding their use when privacy constraints forbid such data transmission. In contrast, the approach
described in this paper is applicable in scenarios which preclude transmission of data but allow transmission
of minimal sufficient statistics needed by the learning algorithm. Another important limitation of the ensem-
ble classifier approach to learning from distributed data is the lack of guarantees concening generalization
accuracy of the resulting hypothesis relative to the hypothesis obtained in the centralized setting.

Most of the algorithms proposed in the literature for learning classifiers from distributed data, barring a few
exceptions (Kargupta et al. 1999, Bhatnagar and Srinivasan 1997), assume horizontal fragmentation. Kargupta
et al (Kargupta et al. 1999) describe an algorithm for learning decision trees from vertically fragmented data.
The authors make use of the fact that a decision tree can be viewed as a boolean function that can be approx-
imated using only low order Fourier coefficients (coefficients corresponding to attribute combinations whose
size is at most logaritmic in the number of nodes in the tree) (Mansour 1994). At each local site, the learner
estimates the Fourier coefficients from the local data, and transmits them to a central site. These estimates are
combined to obtain a set of Fourier coefficients for the decision tree (the transmission of a subset of the data
from each local siteto the central site is needed to compute some coefficients that can not be computed lo-
cally). At present, there are no guarantees of performance of the hypothesis obtained in the distributed setting
relative to that obtained in the centralized setting. An added complication has to do with the fact that a set
of Fourier coefficients can correspond to multiple decision trees. The algorithm proposed in (Bhatnagar and
Srinivasan 1997), is similar to our algorithm for learning decision trees from vertically fragmented data.

The approach described in this paper for learning classifiers from distributed data guarantees that the hy-
pothesis obtained in the distributed setting is provably identical to that obtained in the centralized setting. It
also opens up the possibility for considering variants of the proposed approach that yield bounded error ap-
proximations in the distributed setting of the hypothesis produced by centralized counterparts under resource
(computation, memory, bandwidth) constraints.

Our approach to learning from distributed data relies on a decomposition of the learning task into two

components: extraction of sufficient statistics from data and hypothesis generation. The particular statistics
that are extracted from the data depend on the structure of the hypothesis. In the case of decision trees, the
form of the hypothesis corresponds to a Boolean expression that is a disjuction of conjunctions (where each
conjunction corresponds to a path from the root to a leaf of the decision tree). Thus, the structure of the
hypothesis can be described by a symbolic expression. What is perhaps not so obvious is that the decision
tree also has a set of parameters associated with it, namely, the class distribution of examples at the leaves
of the tree. The structure of the tree, along with these parameters, in fact constitutes a probabilistic classifier.
Thus, decision trees can in fact be viewed as examples of hybrid representations which include a symbolic or
structual part and a set of numeric parameters (e.g., probabilities). Bayesian networks, Hidden Markov Models,
and other hypothesis classes are also examples of such hybrid representations.

It is important to note that the general strategy for learning classifiers from distributed data is applicable to
the entire class of algorithms for learning classifiers from data. This follows from the fact that the output h of
any learning algorithm is in fact a function of the data D, and hence by definition, a statistic. Consequently,
we can devise a strategy for computing h from the data D through some combination of refinement and
composition operations starting with an initial hypotheses (or an initial set of hypotheses). The seperation of
concerns between hypothesis construction and extraction of sufficient statistics from data makes it possible
to explore the use of sophisticated techniques for query optimization that yield optimal plans for gathering
sufficient statistics from distributed data sources under a specified set of constraints that describe the query
capabilities and operations permitted by the data sources (e.g., execution of user supplied procedures).

This makes the proposed approach to learning from distributed data applicable in a broad range of data
fragmentation scenarios. Of particular interest is learning from distributed data sources when the ontologies
(names for terms, relationships among terms) associated with the individual data sources are different from
each other. Provided well-defined mappings between ontologies can be specified, the proposed approach to
learning from distributed data can be extended yield an approach to learning from heterogeneous distributed
data of the sort encountered in many large scale scientific applications (Reinoso-Castillo et al. 2003).

5.3 Future Work

The design of algorithms for learning from distributed data described in this paper has been motivated by
the desirability of performing as much of the processing of data as feasible at the sites where the data and
computing resources are available to avoid retrieving large volumes of data from remote sites. The applicability
of the proposed approach in practice depends on whether information requirements of the centralized learning
algorithm L under consideration can be met under the constraints imposed by the distributed setting and
the time, memory, and communication costs of the resulting algorithm relative to the other alternatives (e.g.,
gathering all of the data in a centralized site and then applying the centralized learning algorithm if such a
solution is allowed by the constraints Z). In general, it is desirable to use a query optimization procedure
to decompose a statistical query q to generate an optimal plan of operation where the primitive operations
correspond to queries that can be directly executed on the individual data sources based on the relative costs
of the alternatives available. Query optimization in settings where some of the operations that need to be
performed on data from remote sites can be executed by code shipped to remote sites has been investigated
in (Rodriguez-Martinez and Roussopoulos 2000). It is of interest to incorporate similar techniques for query
optimization in the statistical query decomposition component of the proposed algorithms for learning from
distributed data for different choices of constraints Z (e.g., privacy constraints in knowledge acquisition from
clinical records) that arise in practice.

The discussion in this paper has focused primarily on algorithms for learning from distributed data that
are provably exact relative to their centralized counterparts. In many applications, it would be of interest to
relax the exactness requirement leading to provably approximate algorithms (based on resource constrained
approximations of sufficient statistics). Also of interest are extensions of the proposed approach to cumulative
and incremental learning scenarios (Caragea et al. 2001, Polikar et al. 2001) as well as collaborative learning
in communities of multiple autonomous agents (in which each agent has its own private knowledge and goals
and access to some limited set of information sources and can benefit from interaction with other agents).

Many distributed data sources are also heterogeneous in structure (e.g., relational databases, information
systems accessed through web interfaces that support a limited set of queries, image databases, text databases,
databases of molecular sequences, 3-dimensional structures), semantics (because of differences in underlying
choices of real world entities and relationships being modeled and the terms used to denote them), granularity
of information, and query capabilities. The approach to learning from distributed data proposed in this paper
is motivated by the considerations that arise in learning from heterogeneous data sources. As noted above,

it is possible to generate plans for obtaining sufficient statistics from heterogeneous data sources when map-
pings between ontologies are specified. Related work in our laboratory has focused on the development of the
INDUS (Intelligent Data Understanding System) architecture for data-driven knowledge acquisition from het-
erogeneous, distributed information sources. The information integration component of INDUS allows users to
define customized views to integrate data from remote sources (Reinoso-Castillo et al. 2003). Work in progress
is aimed at extending INDUS to support execution of queries for sufficient statistics needed by the learning
algorithms (expressed in terms of the learner’s ontology) over heterogeneous distributed data sources. This
would allow us to extend the algorithms proposed in this paper to work with heterogeneous distributed data
and to perform case studies and extensive comparisons of performance of the resulting algorithms with their
centralized counterparts.

It is also of interest to extend algorithms for learning from attribute value taxonomies and data (Zhang,
J. and Honavar, V. 2003) to distributed settings, where data at different sites may be specified in terms of
attribute values at different levels of granularity (corresponding to different levels of an attribute value taxon-
omy). In related work, we have developed algorithms for learning from multiple tables in a relational database
(Atramentov et al. 2003). It is of interest to explore approaches similar to those described in this paper for
learning from distributed relational databases as well as heterogeneous distributed data which are presented
by INDUS as if they were set of relations. Some of the work in progress is aimed at application of the pro-
posed algorithms to knowledge acquisition tasks that arise in applications in computational biology, medical
informatics, information security, and related domains.

Acknowledgments: This work has been supported in part by grants from the National Science Foundation
(IIS 0219699), and the National Institutes of Health (GM 066387) to Vasant Honavar and an IBM Ph.D.
fellowship to Doina Caragea.

References

Atramentov, A., Leiva, H., and Honavar, V. (2003), “Learning Decision Trees from Multi-Relational Data”, In
Horvth, T. and Yamamoto, A. (eds.), Proceedings of the 13th International Conference on Inductive Logic
Programming, vol. 2835 of Lecture Notes in Artificial Intelligence, pp. 38–56. Springer-Verlag.

Bhatnagar, R., Srinivasan, S. (1997), “Pattern discovery in distributed databases”, Proceedings of the Four-
teenth AAAI, pp. 503–508, Providence, RI, AAAI Press / The MIT Press.

Breiman, L., Friedman, J., Olshen, R., Stone, C. (1984), “Classification and Regression Trees”, Wadsworth &
Brooks, Monterey CA.

Caragea, D., Silvescu, A., Honavar, V. (2003), “Decision Tree Induction from Distributed Heterogeneous
Autonomous Data Sources”, Proceedings of the International Conference on Intelligent Systems Design
and Applications, Tulsa, Oklahoma. In press.

Caragea, D. and Silvescu, A. and Honavar, V. (2001), “Towards a Theoretical Framework for Analysis and
Synthesis of Agents That Learn from Distributed Dynamic Data Sources”, Emerging Neural Architectures
Based on Neuroscience, Berlin: Springer-Verlag, pp. 547–559.

Casella, G. and Berger, R.L. (2001), “Statistical Inference”, Duxbury Press, Belmont, CA.
Domingos, P. (1997), “Knowledge acquisition from examples via multiple models”, Proceedings of the Four-

teenth International Conference on Machine Learning, Morgan Kaufmann, Nashville, TN, pp. 98–106.
Kargupta, H., Park, B.H., Hershberger, D., and Johnson, E. (1999), “Collective Data Mining: A New Per-

spective Toward Distributed Data Mining”, Advances in Distributed and Parallel Knowledge Discovery,
Kargupta, H. and Chan, P. (Eds.), Cambridge, MA: MIT Press.

Honavar, V., Miller, L., Wong, J. (1998). “Distributed Knowledge Networks”, In: Proceedings of the IEEE
Information Technology Conference, Syracuse, NY, IEEE Press.

Mansour, Y. (1994), “Learning Boolean Functions via the Fourier Transform”, Theoretical Advances in Neural
Computation and Learning, Roychowdhury, V.P., Siu, K.Y., Orlitsky, A., (Eds.), Kluwer.

Polikar, R., Udpa, L., Udpa, S., and Honavar, V. (2001). “Learn++: An Incremental Learning Algorithm for
Multi-Layer Perceptron Networks”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 31, No. 4.
pp. 497-508.

Prodromidis, A., Chan, P., Stolfo, S. (2000), “Meta-learning in distributed data mining systems: Issues and
approaches”, Advances of Distributed Data Mining, H. Kargupta, P. Chan (Eds.), AAAI Press.

Quinlan, R. (1986),“Induction of decision trees”, Machine Learning vol. 1, pp. 81-106.
Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J. and Honavar, V. (2003), “Information Extraction

and Integration from Heterogeneous, Distributed, Autonomous Information Sources: A Federated, Query-

Centric Approach”, IEEE International Conference on Information Integration and Reuse. In press.
Rodriguez-Martinez, M. and Roussopoulos, R. (2000), “MOCHA: A Self-Extensible Database Middleware

System for Distributed Data Sources”, Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, TX, pp. 213-224.

Witten, I., Frank, E. (1999), “Data mining: practical machine learning tools and techniques with Java imple-
mentations”, Morgan Kaufmann, San Francisco, CA.

Zhang, J. and Honavar, V. (2003), “Learning Decision Tree Classifiers from Attribute-Value Taxonomies and
Partially Specified Data”, Fawcett, T. and Mishra, N. (eds.), Proceedings of the International Conference on
Machine Learning, pp. 880-887, Washington, DC, AAAI Press.

