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Abstract

Recent work [3, 2] has explored a Kalman filter model of
animal spatial learning the presence uncertainty in sen-
sory as well as path integration estimates. This model
was able to successfully account for several of the be-
havioral experiments reported in the animal navigation
literature [10, 6]. This paper extends this model in some
tmportant directions. It accounts for the observed firing
patterns of hippocampal neurons [19] in visually sym-
metric environments that offer polarizing sensory cues.
It incorporates mechanisms that allow for differential
contribution from proximal and distal landmarks dur-
ing localization. It also supports learning of associa-
tions between rewards and places to guide goal-directed
navigation.

Introduction

The computational strategies used by animals to ac-
quire and use spatial knowledge (e.g., maps) for navi-
gation have been the subject of study in Neuroscience,
Cognitive Science, and related areas. A vast body of
data from lesion studies and cellular recordings directly
implicates the hippocampal formation in rodent spa-
tial learning[14]. The present model is based on the
anatomy and physiology of the rodent hippocampus [5].
We draw inspiration the locale hypothesis, which argues
for the association of configurations of landmarks in the
scene to the animal’s own position estimates at differ-
ent places in the environment as suggested by O’Keefe
and Nadel. The system that generates the animal’s
own position estimate using the sensory as well as mo-
tor information is referred to as the path integration
system|[14].

The hippocampus (Cornu Ammonis, abbreviated as
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CA), Dentate Gyrus (Dg) and the Subicular regions
are collectively referred to as the hippocampal forma-
tion. The hippocampal formation receives majority of
its sensory input from the Entorhinal Cortex (EC). The
Entorhinal Cortex region itself is believed to be a major
association area. Neuronal tract tracing experiments
have discovered major projections originating from the
inferior temporal gyri (higher processing area for vi-
sual sensory information), parietal and temporal lobes
(higher processing area for auditory sensory informa-
tion), olfactory bulb and pyriform cortex (primary pro-
cessing areas for olfactory information) and from the
frontal lobes of the cortex project into the superficial
cortical layers of the EC. The EC can therefore be hy-
pothesized to produce a sparse code of the scene based
on the sensory information converging to it. Systematic
and roughly topographic connections originating from
amygdala have also been found to project into the en-
torhinal cortex as well as into the hippocampus [15].
Projections from medial septum, dorsal raphe nucleus,
locus ceruleus and parts of the thalamus also arrive at
hippocampus via the fornix. These subcortical projec-
tions are believed to carry modulatory signals that in-
fluence activity in the hippocampal formation[21]. The
hippocampal formation also projects back to most of
the areas that project to the hippocampal formation[21]

Units in the first layer of our model correspond to EC
layer cells. In accordance with the experimental evi-
dence [13], we model the EC layer units as spatial fil-
ters with Gaussian shaped receptor fields that fire in re-
sponse to individual landmarks at specific relative posi-
tions from the simulated animal’s (henceforth animat)
current position. The sensory measurements are as-
sumed to be noisy, corrupted by an uncorrelated Gaus-
sian noise which varies in proportion to the distance of
the observed landmark(3].

The EC layer cells project to the Dg via the perforant
path fibers. The Dg in turn projects onto the CA3
layer via the mossy fibers. These mossy fiber synapses
with CA3 are quite strong. It has been suggested that
they provide the context for arriving information [12] or



reference frame in navigation [9] by transformation of
the sensory input activity arriving at entorhinal cortex
into a non-overlapping activity pattern of granule cells
in Dg which is then conveyed to the pyramidal cells in
the CA3 layer. It has been found that on an average a
granule cell in Dg makes contact with around 14 pyra-
midal cells and each pyramidal cell is innervated by
only about 46 granule cells[5] which suggests a sparsely
connected network. Many pyramidal cells in the hip-
pocampus as well as neurons in surrounding regions in-
cluding EC and Subiculum have been found to display
a place-dependent firing characteristic, that is, these
cells fire in a complex spike burst only when the ani-
mal visits geometrically constrained regions of its envi-
ronment. The cells that display such place dependent
firing are commonly referred to as “place cells”[14].

Neurons in the second layer of our model (which corre-
sponds to the CA3 layer) respond to a group of EC layer
activations which activate an internal learned place-
code. In the present model, a unit in the CA3 is con-
nected to all EC layer units that were active at the
time of incorporation of that unit. A unit that only re-
sponds to subsets of the active EC layer cells in accor-
dance with observations by Tanila and colleagues [20]
is also conceivable. We choose to connect the whole
set of active EC layer cells to a CA3 cell under the
assumption that due to processing in the Dg, contex-
tual information, or in this case, the information about
other landmarks might be available at CA3 layer. It
is also possible that the recurrent connections amongst
the pyramidal cells in CA3 as well as the widely spread
lateral connections by the interneurons[l] provide in-
formation about activity in other pyramidal cells in the
environment. It has also been suggested elsewhere that
CA3 layer cells play a pattern-completion role using
partially available sensory information[8, 18]. For the
sake of simplicity, in our model CA3 layer cells respond
to the complete set of EC layer cells that were active
at the time of allocation of the CA3 cell.

Each unit in the third layer is connected to a CA3 layer
unit which was active at the time of allocation of that
unit. The newly allocated third layer unit, which cor-
responds to the CAl layer in the hippocampus, is also
labeled with the metric path integration position es-
timate generated by the animat. This newly incorpo-
rated unit is also labeled with a variance of the position
estimate at the time of incorporation. A Mahalanobis
test is performed between all CAl units attached to
the active CA3 units. The CA1l unit with the lowest
Mahalanobis distance is taken as an active place cell.
A new set of CA3 and CA1 units is recruited into the
network if the animat finds itself at a previously unvis-
ited place as it explores its environment. A previously

unvisited place is defined as a place where either no
CA3 layer cell fires, or the Mahalanobis distances of
a metric place-label of all active CAl layer cells from
the current path integration estimate are larger than a
threshold distance. The model can learn such encod-
ings of its environment over several episodes of random
explorations which are then integrated to form a co-
herent map whenever there is an overlap in incoming
sensory information. The model is able to successfully
deal with perceptual aliasing (i.e., when different places
look alike) during a single episode [3]. The model uses a
Kalman Filter like approach [7] to calculate and correct
estimates of the animat’s position in the environment
in the presence of errors in sensing and path integration
by comparing and updating labels associated with CA1
layer units with the path integration estimates [3]. The
model is able to successfully account for a large body
of behavioral results [2], reported in the animal naviga-
tion literature [10, 6]. In this paper, we report results
of simulation based on extensions of the model in some
key directions. The proposed extensions account for
the observed firing patterns of hippocampal neurons in
visually symmetric environments that include multiple
sensory cues reported in [19]. They allow for differ-
ential contributions of different landmark types during
localization. They also support learning of associations
between places in the environment and rewards through
exploration thereby providing a basis for goal-directed
navigation.

Variable Tuning Widths of EC Layer
Spatial Filters

EC layer cells in the present model act as spatial filters,
responding to individual landmarks at specific positions
relative to the animat. O’Keefe and Burgess[13] showed
that the place cells in hippocampus can be modeled as
a sum of Gaussians of varying variances where each
Gaussian function encodes the distance to an edge of
the environment along one of the two orthogonal axes.
We have extended the spatial filters in EC in the light
of the aforementioned work so that the tuning curves
of such filters vary with the landmark distances along
two orthogonal axes.

As the animat explores its environment, it recruits a
new EC cell if no existing cell responds to an observed
landmark position [3]. A newly recruited EC cell has a
Gaussian activation function:
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Where p; is the distance of the landmark in direction
z1 from the current position of animat, and similarly,
Lo is the distance of the landmark in direction x5 from
the current position of animat.

For the purpose of simulation, we set o¢ to 1.0 and R
was set to 20, the diameter of the circular arena. As we
shall see in what follows, this has an interesting effect
on the localization behavior exhibited by animats.

It should also be noted that EC cell firing is also based
on the landmark type, so that an EC unit firing signifies
a landmark of a particular type at a particular relative
position from the animat.

All-Or-None Connections Between EC and
CA3 Layers

In the training phase, if none of the CA3 layer cells fire
above a predetermined fraction of their peak firing level,
a new CA3 layer cell is allocated. This newly created
cell is then connected to the active EC layer cells. We
have modified the connection weight assignment pro-
cedure of the existing model to reflect an all-or-none
connection type. Rather than assigning weights pro-
portionate to the activation of corresponding EC cells,
we assign a weight of 1/nconn to each links, where
nconn is the total number of EC layer cells firing above
their threshold levels. We set firing threshold of the
newly allocated CA3 layer cell to 70% of its maximum
possible weighted sum of incoming activations. During
testing this threshold was reduced to 25% of the maxi-
mum possible activation level in order to allow animats
to localize even in presence of partial sensory stimu-
lus, or in other words, partial activity in the EC layer.
Such a method has been found to be successful in mod-
eling place-cell firing characteristics in simplified envi-
ronments [13].

It has been observed that rodents give more impor-
tance to landmarks physically closer to their actual
positions while localizing. Sharp and colleagues [19]
performed experiments on rodents in a cylindrical en-
vironment with a single cue card. After training, one
more cue was added to the environment, producing a
mirror symmetry in the environment. It was found that
an overwhelming number of place-fields retained their
shape and orientation with respect to only one of the
two cues. Also, in most cases, place-fields were fixed
relative to the cue that was nearest to the animal when
it was first introduced in the environment.

Association of rewards with places

We have also extended the model to incorporate mech-
anisms that result in enhanced response of the EC layer
neurons to landmark types that are closer to the reward
locations. Whenever the animat receives a reward upon
visiting a location, the maximum possible activations in
EC layer cells are updated according to the following

rule:
>
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where n is the number of types of landmarks present
in the environment, ©(%) is the total number of land-
marks of type ¢ present in the environment, and T is
the amount subtracted from the landmark weights. T
is computed as follows:

I'=0
fori:=1ton
do
if w; < o O(37)
I'=T+ w;
wiIO
else
I'=T'+a« @(Z)
w; = w; — « O(1)
endif
done

If multiple landmarks of same type are present, weights
are altered by summing the distances of landmarks of
similar types to the estimated goal location. The de-
generate case of n = 1 is handled separately. It is clear
that the weights remain unaltered if all landmarks are
of the same kind, or, if all landmarks are equidistant
from the goal. For the purpose of our simulations, «
was set to 0.05 and the weights were initialized to 1.0.

The above rule gives more preference to landmark types
that are near the goal location by removing a uniform
amount « from weights assigned to each of the land-
mark types, and redistributing it so that a landmark
type gains weight if such a landmark is near the goal.
On the other hand, if there are multiple landmarks of
the same type, or, if landmarks are far from the goal,
such landmark type loses weight. It is also clear from
the above equations that the sum of weights assigned
to all landmark types remains unaltered.

It should be noted that the activation level is mod-
ulated uniformly across all EC cells that respond to a



particular landmark type, and not just for EC cells that
are active at the time of reward presentation.

We hypothesize that such a computation, which gives
more weight to a particular type of sensory stimulus,
takes place in the EC-Dg layers, as these layers get sen-
sory information from the cortical areas as well as feed-
back connections from the Subiculum. The Subiculum
is strongly believed to be part of the path-integration
system[17]. Assuming a population code in the subicu-
lum, it is conceivable that units encode path integration
information which is reset using subsets of landmarks.
This information can be used to supply a modulatory
feedback signal to the units in EC and Dg.

Simulation Results

All simulation parameters and methods were identical
to those in [2]. Briefly, the animats were introduced in
an a-priori unknown environment that consisted of one
or more landmarks. The landmarks could be identical
or distinguishable from each other depending on the
experiment being performed. Animats then explored
their environments and allocated cells corresponding
to different locations in the environment. The animats
were also rewarded for visiting specific locations as they
explored its environment. After a certain number of
training trials, animats were removed from the envi-
ronment, landmark positions were altered and the re-
ward removed. When reintroduced in the environment,
animats were able to re-localize, despite the change in
configuration of the landmarks, using the available per-
ceptual input, and moved toward the learned goal lo-
cation.

Firing characteristics of units

In order to simplify analysis, for this part of experi-
ments, animats were trained over a single training trial
of 750 steps of random exploration.

As seen in Figure , animat consistently localized by giv-
ing more preference to the landmark physically closer
to the point of entry into the environment. This phe-
nomenon was not guaranteed with the scheme used
in [2]. It should be noted, however, that the overall be-
havior displayed by animat stays unaltered with these
enhancements, and we get search histograms similar to
those in [2]. Figure also shows the activation of CAl
layer place-cells once animats localized. It is important
to note that the place-cell in question fired only in one
of the two clusters over a single test trial. The place-cell
in question fired at the position cluster based around
position (12,5) when the animat localized according to
the landmark on the left, while the same place cell fired
at places clustered around (18,6) when the animat lo-

Figure 1: Left: Trajectories taken by an animat dur-
ing test trials. Right: Superimposed place field firing
regions during test trials.

Figure 2: Left to right: Trajectories taken by animat
when trained in an environment with three landmarks.
The landmark on far right was distinguishable from
rest. The landmark on far right was moved further
while testing.

calized using the landmark on the right. Interestingly
enough, the right cluster is spread over a larger area,
signifying that the place-cell in question fired over a
larger area of the environment when animat localized
using the right landmark. This effect can be explained
by conflicting CA3 layer cell firing pattern due to the
incorrect binding of CA1 unit activity with the path in-
tegration system for some of the activated CA1 units,
resulting in a greater path integration estimate variance
which in turn causes the CA1 unit in question pass the
Mahalanobis distance test over a larger area of the en-
vironment. Figure shows the trajectories during test
trials, when one of the landmarks was distinct from the
rest during training. In some of the trials animats were
unable to localize because of lack of training in those re-
gions of the environment. It can be seen in Figure that
in one of the test trials, animat localized solely based
on the position of the right most landmark. The reason
for such a behavior is discussed in the next subsection.



Landmark prominence based on location and
uniqueness

The extension to the model that alter prominence as-
signed to landmark type is able to successfully replicate
some of the behavioral results that were unaccounted
for in [2], namely, the experiments where an array of
three landmarks with different types of landmarks was
transformed, in figure 9 ¢ of [6] as seen in Figure . The
simulation parameters used here were identical to those

in [2].

In addition, simulations demonstrate that the proposed
extensions enable the animat to acquire associations
between rewards and places and use them for goal-
directed navigation.

Figure 3: Top Left: Training Environment;Top Right:
Normalized test histograms averaged over five animats
with ten test trials each, when landmarks were indistin-
guishable from each other; Bottom: Right-most land-
mark distinguishable from the rest

As seen in Figure | during training the animats learned
to give more weight to the type of landmark on the ex-
treme right, due to its proximity to the goal as well as
the uniqueness of its type. During testing, the right
most landmark, which was distinguishable from the
rest, was moved further towards right. Animats local-

ized based on this unique landmark. Hence, a simple
rule to associate the landmark type to a goal location
was learned. Obviously, if all landmarks are identical,
no such rule was learned, and the animats localized us-
ing a majority vote, as seen in Figure | top right. In
Figure , since only one visit to goal was allowed during
training, the effect of prominence given by the animat
to the unique landmark was not very pronounced.

Related Work

Burgess and colleagues have implemented a robotic
simulation of rat navigation, which effectively repro-
duces place-cell firing characteristics [4]. However, it is
unclear how a metric distance between any two places
in the environment can be coded in their model. Our
model, on the other hand, labels each place-cell with a
metric position in the environment, thus, providing a
basis for computing the distance between any two place
fields. Also, as the animat navigates in its environment,
the model uses a Kalman Filter like update procedure
to reduce the effects of errors in the sensory and the
path integration systems.

O’Keefe and Burgess have been successful in replicating
place fields in an simple rectangular environment [13].
However, in their model, the tuning widths as well as
receptive fields of the EC layer cells parameters were
preprogrammed. In the model discussed in this paper,
on the other hand, EC layer cells are automatically as-
signed Gaussian activation functions of varying widths.
Nevertheless, the characteristics of the EC layer cells in
the present model are similar to those of O’Keefe and
Burgess (1996) . Also, in the model discussed here, cells
are allocated incrementally as new perceptual informa-
tion arrives.

Conclusion and Future Work

We have presented several extensions of a Kalman-filter
based model of animal spatial learning that was pre-
sented in [3, 2]. The model is capable of learning and
representing metric places in an a priori unknown en-
vironment and localizing when reintroduced in an en-
vironment. The extensions presented here enable the
model to learn to give preference to certain types of
landmarks based on their uniqueness and proximity to
the goals. This results in the usage of different strate-
gies under different landmark configurations.

We have also demonstrated that the proposed model is
able to successfully replicate the firing characteristics
of cells in behaving animals in visually symmetric en-
vironments that offer multiple sensory cues as reported

in [19].

The mechanisms that govern selection of landmarks in a



dynamic environment are yet to be understood. Also,
if the hippocampus is capable of storing information
about multiple environments, it would be interesting
to find out how such representations can co-exist, and
how one of the representations is retrieved when the
animal first enters a familiar environment. Although
several hypotheses have been put forth in the literature
[9, 16], they remain to be verified through concrete real-
izations in terms of computational models that explain
the relevant neurobiological as well as behavioral data.

A study of the EC-Dg layer neurons could shed more
light on the merging of subsets of available multi-
modal sensory input streams which are then conveyed
to hippocampus. Such a study could help understand
how multiple traces of similar (and possibly related)
events can be encoded into the hippocampal formation
and then eventually consolidated and stored into other
brain regions which function as long term memory stor-
age devices. Recent theory suggested by Nadel and
Moscovitch[11] justifies the need for such a research ef-
fort.

It is also interesting to explore whether Kalman-filter
based approaches offer a general framework for model-
ing the role of the hippocampus and related structures
in settings other than spatial learning (e.g., episodic
memories). Exploration of the relationship between
such models and various hypotheses concerning the
mechanisms underlying memory consolidation and the
role of hippocampal system in learning [11, 17] need to
be further investigated. In order for hippocampus to
perform as a temporary storage or an index of events,
the encoding of information in at least the EC area
must be similar to the ones used by other cortical re-
gions. Further, there needs to be a switching mecha-
nism that channels the memory traces to appropriate
cortical regions based on modality of stimulus involved
in the event replay during sleep. These suggest some
interesting directions of research that are worth pursu-
ing.
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